

LATEST ASSAYS FOR NARNDEE EXTEND EASTERN ANOMALY MINERALISATION TO 900m

Highlights

- Initial assays for hole ND0028 confirm a 10m intersection of Ni-Cu PGE mineralisation in the Eastern Anomaly.
- Assays confirm the Eastern Anomaly now extends 900m in length and thickens to the north
- Results from a deeper disseminated sulphide zone, the 292-332m interval, in hole NDD0028 are yet to be received. Further, results from hole NDD0029 are also pending.
- IP Gradient Array completed at Wyemandoowith a number of anomalies identified and to be targeted with surface sampling.

Aldoro Resources Ltd ("Aldoro", "The Company") (ASX: ARN) is pleased to announce that encouraging Ni-Cu-PGE mineralisation was intersected in hole NDD0028.

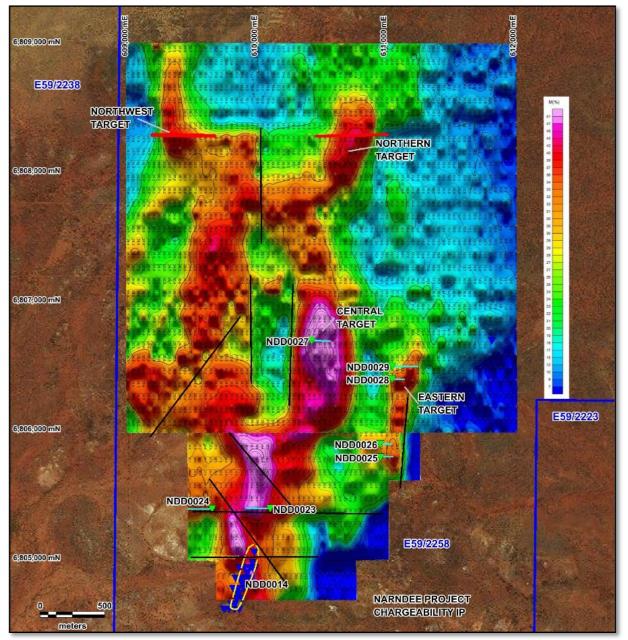
• 10m at 0.59%Ni, 0.17%Cu and 0.67g/t 3E (Pd+Pt+Au) from 219m.

These results from the Eastern Anomaly are consistent with the earlier results 600m to the south, which suggest the mineralisation thickens to the north along the chargeability anomaly (see Figure 1).

Results from a deeper disseminated sulphide zone, the 292-332m interval, in hole NDD0028 are yet to be received. Further, results from hole NDD0029 are also pending. Both holes NDD0028 and NDD0029 targeted the eastern IP anomaly.

The Eastern chargeability target is over 900m long, where the earlier drill hole NDD0025, to the south of NDD0028, reported 4m@ 0.57g/t Pd, 0.09g/t Pt,0.04g/t Au (**0.69g/t 3E**) and 0.54% Ni, 0.15% Cu from 247m (ASX:17 January 2023)

The analytical results from NDD0027 into the strong central anomaly were not sufficiently mineralised with Ni averaging 0.31% over 52m from 348m. Upon review it was considered that mineralisation may lie deeper than the drilled depth.


Results from the deeper sulphide bearing section of hole NDD028 and the sulphide zone in hole NDD0029 are awaited, see table 1.

Hole_ID		GPS Survey	1	Din	Azm	EOH Depth	IP Line	Sulphic	le Zone f	or Testing
HOIE_ID	Easting	Northing	Elevation	Dip	AZIII	(m)	IP LINE	From (m)	To (m)	Interval (m)
NDD0028	611039	6806403	467	-75	90	346.8	6400	292	332	40
NDD0029	611041	6806502	468	-55	90	351.1	6500	285	319	34
										74

Table 1: Pending results from selected sulphide bearing intervals for analytical Ni-Cu-PGE and Au testing

Figure 1: Drill locations, drill traces and IP chargeability image with targets labelled. TheVC01 area is outlined with the 2021 drilling including hole NDD0014 which recovered massive sulphides. Interpreted faults are shown as black lines. (Datum GDA94_z50)

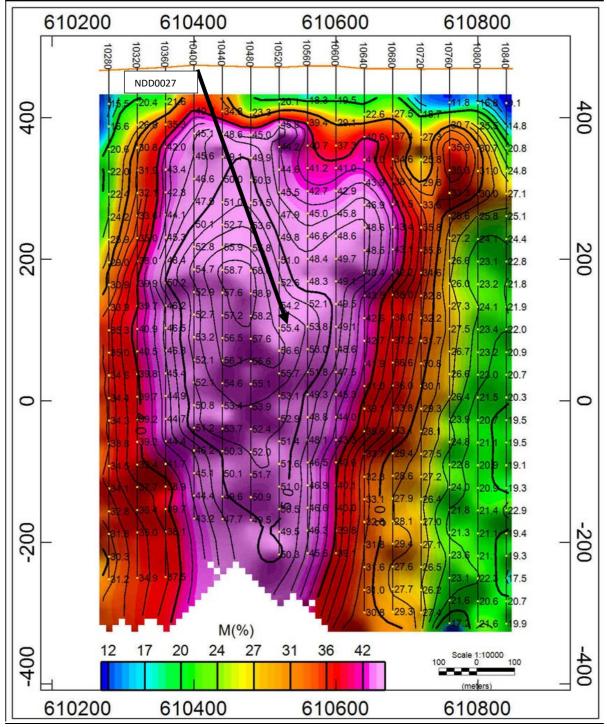


Figure 2: Hole NDD0027 Cross section through the 6700 line with the East-West line showing the drill trace through chargeability anomaly.

At the eastern anomaly, the target is over 900m long and hole NDD0025 reported 4m@ 0.57g/t Pd, 0.09g/t Pt and 0.04g/t Au (**0.69g/t 3E**) and 0.54% Ni, 0.15% Cu from 247m (ASX:17 January 2023). The two additional holes were drilled further along strike in an attempt to intersect thicker mineralisation. Hole NDD0028 intersected pentlandite from 90m and disseminated sulphides to the end of the hole at 346.8m where a large cavity was intersected resulting in the loss of the drill rods & the hole being terminated. Chalcopyrite zones were noted at 304.7m-329m, 339.5m-EOH.

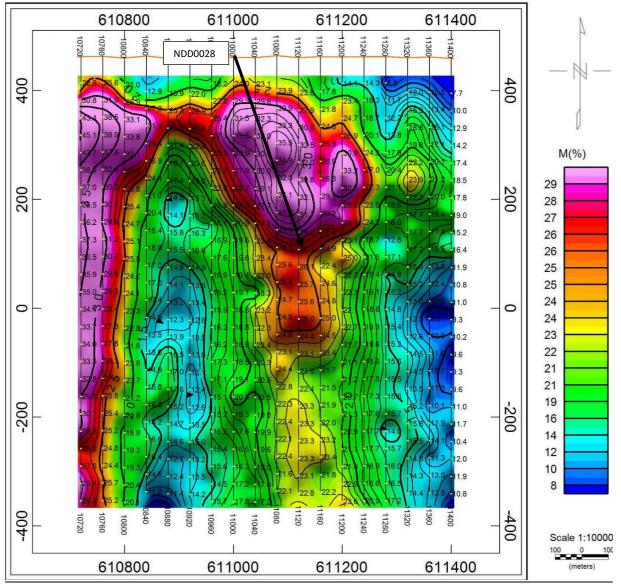
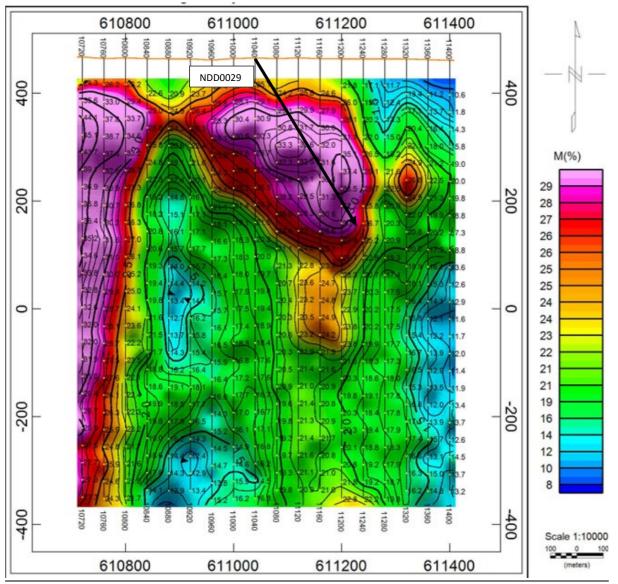



Figure 3: Hole NDD0028 Cross section through the 6400mN East-West line showing the drill trace through chargeability anomaly.

In hole NDD0029 chalcopyrite was noted from 284.9-317m, with the 285-319m interval currently being analysed at Intertek's Perth laboratory.

Figure 4: Hole NDD0029 Cross section through the 6500mN East-West line showing the drill trace through chargeability anomaly.

The Forward Work Programme for Narndee will be assessed on the pending assay results and formal review correlating the drilling results, IP images, geology and structural information.

Wyemandoo Project.

The IP Gradient Array survey at Wyemandoo Project (Windimurra Igneous Complex) was completed with preliminary data is shown in Figure 5. The Ni-Cu target is based on magnetic features offset from the major NNE-SSW magnetic linear associated with Huntsman's Canegrass Ni-Cu anomalies. Preliminary interpretation indicates a strong anomaly in the northwest and a formational anomaly striking NNE through the central portion of the survey area. These anomalies will be surface rock chipped sampled for geochemical analysis.

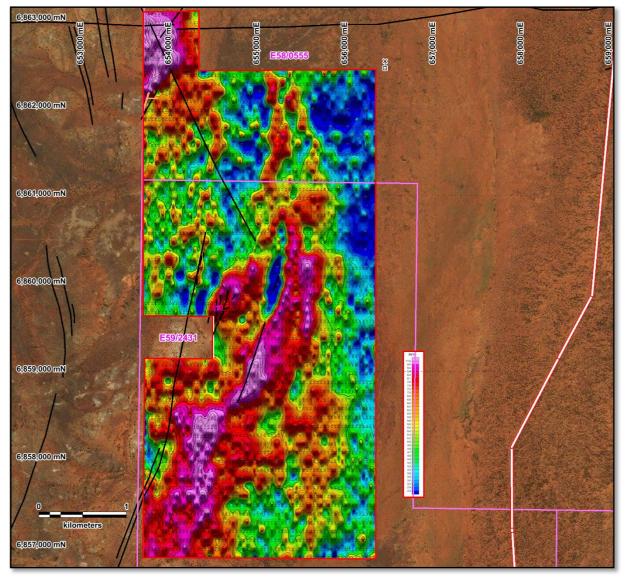


Figure 5: IP gradient array Chargeability image with mapped faults. The image shows a strong anomaly in the northwest and a formational anomaly striking NNE through the central portion of the survey area. The cut-out area is due to a cattle watering point. (Datum GDA94_z50).

Narndee drill collars reported in this release.

Hole_ID	Easting	Northing	Datum	Elevation (m)	Dip	Azm	Depth (m)	IP Line
NDD0027	610418	6806702	GDA94_z50	475	-70	90	400.1	6700
NDD0028	611039	6806403	GDA94_z50	467	-75	90	346.8	6400
NDD0029	611041	6806502	GDA94_z50	468	-55	90	351.1	6500

 Table 2: List of drill collars relevant to this release.

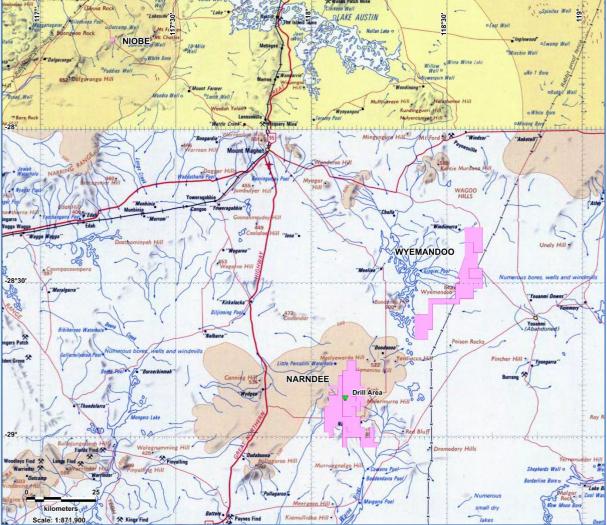
Note: Geological logs reported in ASX:ARN release 10 March 2023 and the key element analytical results are presented below.

Summary Assays

NDD0027 Assays

	ZZ Assay		Daniela Ta	A	6	•		N	Dal maral	Di santa	
	Hole_ID						Ni_ppm_MS				
ND02176		348	349	X	141.1	8.8	3126.9	3272	4.9	4.8	X
ND02177		349	350	X	152.4	8.3	3292.5	3173	3.3	4.9	
ND02178		350	351	X	151.4	7.4	3289.9	3225	3	6.4	
ND02179		351	352	X	157.7	7.4	3354.9	3285	3.2	4.3	
ND02180		352	353	1	149.8	8.2	3199.5	3177	2.7	4.9	
ND02181		353	354	Х	140.6	4.8	3059.9	3173	3.4	4	
ND02182		354	355	Х	156.1	8.9	3311	3212	3.6	5.6	Х
ND02183		355	356	Х	155.8	10.1	3373.6	3198	3.6	5.2	Х
ND02184	NDD0027	356	357	Х	154.1	13.9	3331.6	3255	6	14.8	
ND02185		357	358	1	141.4	8.8	3092	3322	4.2	4.7	
ND02186		358	359	Х	124.6	6.9	2710.8	3310	3.1	5.2	Х
ND02187	NDD0027	359	360	1	154.1	8.7	3300.2	3228	3.1	5.2	Х
ND02188	NDD0027	360	361	Х	155.7	4.3	3316.3	3092	2.7	4.8	Х
ND02189	NDD0027	361	362	1	146.6	6.9	3330.6	3109	4.7	4.5	0.07
ND02190	NDD0027	362	363	1	112.5	14.6	2469.1	2288	2.4	3.1	Х
ND02192	NDD0027	363	364	1	125.8	5.3	2728.3	2706	3.2	4.8	Х
ND02193	NDD0027	364	365	Х	156.5	16.5	3270.9	3238	4.2	7.4	Х
ND02194	NDD0027	365	366	2	162.5	11	3373.2	3144	3.5	7.3	Х
ND02195	NDD0027	366	367	Х	143.8	7.2	2996.2	3027	2.8	4.5	Х
ND02196	NDD0027	367	368	14	153	7.7	3203.1	3058	2.8	4.4	Х
ND02197	NDD0027	368	369	Х	159.6	7.6	3306.3	3138	3.1	5.8	Х
ND02198	NDD0027	369	370	Х	148.2	8.5	3147	3103	3.3	4.3	Х
ND02199	NDD0027	370	371	Х	149.3	8	3167.2	3141	4	4.7	0.05
ND02200	NDD0027	371	372	2	157.1	10.7	3293.4	3072	3.4	3.9	Х
ND02201	NDD0027	372	373	1	150.5	18.4	3100.9	3047	3	4.6	Х
ND02202	NDD0027	373	374	3	148	11.6	3029.3	2908	4.7	8.7	Х
ND02203	NDD0027	374	375	Х	145.3	12.1	2999.5	3039	3.1	5	х
ND02204	NDD0027	375	376	1	152.7	6.8	3139.9	3065	2.9	4.8	
ND02205	NDD0027	376	377	2	148.6	7.4	3045.5	3127	4.1	4.3	Х
ND02206	NDD0027	377	378	Х	116.2	5.2	2399.9	3023	2.6	5.6	х
ND02208		378	379	1	149.5	11.2	3078	3067	2.8	4.6	
ND02209	NDD0027	379	380	Х	150.9	8.3	3071.5	3006	2.7	7.6	
ND02210		380	381	1	145.9	4.7	2975.2	3110	3.5	4.2	х
ND02211		381	382	х	152.7	6.9	3167	3153	4.1	4.3	х
ND02212		382	383	Х	154.2	6.5	3143.4	3079	3.8	4.1	х
ND02213		383	384	х	149.6	8.1	3135.2	3084	3.4	4	x
ND02214		384	385	х	154.8	8.6	3209.9	3104	2.8	5.1	x
ND02215		385	386	1	152.9	6.9	3169.9	3072	2.2	3.5	X
ND02216		386	387	X	146.7	9.6	3079.8	3046	2.5	4.5	
	NDD0027	387	388		149.7						
ND02218		388	389	X	153.7	7.1	3201	3119		4.5	
ND02219		389	390	X	151	11.1		3077	2.3		
ND02220		390	391	X	147.4	7.7		3070	1.8	4.5	
ND02221		391	392	X	147.4	9.3		3105			
	NDD0027	391	392	X	147.4	10	3033.3	3103	2.0		
ND02222		392	393	X	140.7	11.5	3150.2	3083	2.1		
-	NDD0027	393	394	X	148.7		3156.1	3083			
ND02225		394	395	1	127.3	8.6	2647.2	3096	3.1	5.1	
ND02226			396	X							
		396			148.5	8.2	3089.2	3128			
	NDD0027	397	398		149	9.3	3126.9	3093			
ND02229		398	399	X	152.7	14.4		2960			
ND02230	NDD0027	399	400.1	1	150.1	9.4	3009.5	3072	3	4.4	Х

NDD0028 Summary Log


ND02232 ND0028 184 185 2 126.8 72.8 1983.1 2005 10.5 4.5 0 ND02233 ND00028 186 187 2 109.5 61.4 1778.3 1774 10 4.2 0 4.8 2.3 0 ND02235 ND00028 187 138 X 103.5 43.1 1676.4 1769.6 1776.4 3.8 3.5 0 10.5 10.7	0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NDD02233 NDD0028 185 186 2 112.3 59.5 1779.4 1783 4.8 2.3 0 ND02234 NDD0028 186 187 2 109.5 61.4 1798.3 1774 10 4.2 1 ND02235 NDD0028 188 189 X 103.9 28.3 1602.7 164.3 2.9 2.9 0 ND02237 NDD0028 190 191 2 105.6 2.9 1774.6 1770.0 1.7 4.1 1 0.0 1.0	0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ND02233 NDD0028 185 186 2 112.3 59.5 1779.4 1783 4.8 2.3 0 ND02234 ND00028 186 187 2 109.5 61.4 1798.3 1774 10 4.2 1 ND02235 ND00028 188 189 X 103.9 28.3 1602.7 1643 2.9 2.9 0 ND02237 ND00028 190 1 105.8 38.1 1674.8 1665 2 10.8 1774.6 1770.6 1774.6 1770.0 7 4.1 1 0.0 1.4 10.0 10.7 1.8 1.1 1.746 11.8 1.4 4.3 0.1 6.2 10.0 10.0 1.0	0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NDD02234 NDD0028 186 187 2 109.5 61.4 1798.3 1774 10 4.2 0 ND02235 NDD0028 187 188 X 108.5 41 1769.6 1764 3.8 3.5 0 ND02237 NDD0028 189 190 3 105.8 38.1 1674.8 1665 2 10.8 0 ND02238 NDD0028 191 192 2 106.6 29.2 1795.6 1852 9.5 4.9 0 ND02241 NDD0028 192 193 1 103.7 38.1 1734.6 1843 8.1 4.3 0 10.1 6.2 1.447 0.9 2.4 0 106243 ND0028 195 196 X 97.9 5.4.4 1420.9 1447 0.9 2.4 0 10244 ND0028 197 13.5 3.5 438.5 469 1.7 3.5 ND0244 ND0028 19	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
ND02235 NDD0028 187 188 X 108.5 41 1769.6 1764 3.8 3.5 0 ND02236 ND00028 188 189 X 103.9 28.3 160.7. 1643 2.9 0 105.8 38.1 1674.8 1665 2 10.8 0 ND02239 ND00028 190 191 2 105.7 44.2 1774.6 1770 10.7 4.1 0 ND02241 ND00028 193 194 5 108.5 29.4 1804.2 1764 10.1 6.2 0 ND02241 ND0028 194 195 7 9.7 80.1 1365.2 1367 3.4 2.8 (1.01 6.2 1.01 1.02 1.02 1.02 1.4 0.9 2.4 (ND0224 ND0028 1.99 3 3.5 1.4 1.4 0.9 2.4 (1.02 1.12 1.03 1.71.3 1.75.5 1.033 1.8.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ND02236 NDD028 188 189 X 103.9 28.3 1602.7 1643 2.9 2.9 0 ND02237 ND00028 190 191 2 105.7 44.2 1774.6 1777.0 10.7 <t< td=""><td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td></t<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ND02237 NDD0028 189 190 3 105.8 38.1 1674.8 1665 2 10.8 6 ND02238 ND00028 190 191 2 106.6 29.2 1775.6 1732.6 1775.7 44.2 1774.6 1776.4 10.7 4.1 0 ND02241 ND00028 192 193 1 103.7 38.1 1734.6 1843 8.1 4.3 0 ND02241 ND00028 193 194 5 108.5 29.4 1804.2 1764 10.1 6.2 2.4 0 ND0224 ND00028 196 197 3 121 168 171.7.3 1762 14 50 ND02244 ND00028 199 200 3 86.2 48.7 1295 1333 18.5 7.5 0 ND02244 ND0028 200 201 7 118 161.5 204.7 2198 1333 18.5 7.5	0.00 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1
ND02238 NDD0028 190 191 2 105.7 44.2 1774.6 1770 10.7 4.1 0 ND02239 ND00028 191 192 2 106.6 29.2 1795.6 1852 9.5 4.9 0 ND02241 ND00028 193 194 5 108.5 29.4 1804.2 1764 10.1 6.2 0 ND02243 ND00028 195 196 X 97.9 54.4 1420.9 1447 0.9 2.4 0 ND02246 ND00028 195 196 X 97.9 54.4 1420.9 1447 0.9 2.4 0 ND02246 ND00028 197 198 7 117.9 125.5 1978.3 2020 47.4 12.9 1333 18.5 7.5 0 0 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 <td< td=""><td>0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1</td></td<>	0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1
ND02239 ND0028 191 192 2 106.6 29.2 1795.6 1852 9.5 4.9 0 ND02241 ND00028 192 193 1 103.7 38.1 1734.6 1843 8.1 4.3 0 ND02242 ND00028 193 194 5 108.5 29.4 1804.2 1764 10.1 6.2 0 ND02243 ND00028 195 196 X 97.9 55.4 1420.9 1447 0.9 2.4 0 ND02245 ND00028 197 198 7 117.9 125.5 1978.3 2020 47.4 12.9 ND02247 ND0028 199 200 3 86.2 48.7 1225 1333 18.5 7.5 0 ND02240 ND0028 200 201 7 118.1 161.5 2047.6 2180 39.7 10.9 0 173.3 175.0 173.3 175.0	0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1
ND02241 ND0028 192 193 1 103.7 38.1 1734.6 1843 8.1 4.3 0 ND02242 ND00028 193 194 5 108.5 29.4 1804.2 1764 10.1 6.2 0 ND02243 ND00028 194 195 7 95.7 80.1 1365.2 1357 3.4 2.8 0 ND02244 ND00028 195 197 3 121 168 1717.3 1762 144 5 0 ND02246 ND00028 199 5 35 3.5 438.5 469 1.7 3.5 1 ND02249 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02249 ND00028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 1.8 7 3.9 0 ND0225 ND0028	0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0
ND02243 ND0028 194 195 7 95.7 80.1 1365.2 1357 3.4 2.8 0 ND02244 NDD0028 195 196 X 97.9 54.4 1420.9 1447 0.9 2.4 0 ND02245 NDD0028 196 197 3 121 168 1717.3 1762 14 5 0 ND02245 NDD0028 199 198 7 117.9 125.5 1978.3 2020 47.4 12.9 ND02247 NDD0028 199 200 3 86.2 48.7 1295 1333 18.5 7.5 0 ND02250 NDD0028 201 202 21 120.4 194.9 194.2 1965 91.8 22 0 ND02251 NDD0028 203 204 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 NDD0028 205 206 6<	0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0
ND02244 NDD0028 195 196 X 97.9 54.4 1420.9 1447 0.9 2.4 0 ND02245 NDD0028 196 197 3 121 168 1717.3 1762 14 5 0 ND02246 NDD0028 197 198 7 117.9 125.5 1978.3 2020 47.4 12.9 ND02247 NDD0028 199 200 3 86.2 48.7 1295 133.3 18.5 7.5 0 ND02249 NDD0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02250 NDD0028 201 202 203 2 143.2 91.4 226.5 2067 8.9 5.2 0 ND02251 NDD0028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND0255 NDD0028 205 2	0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0
ND02245 ND0028 196 197 3 121 168 177.3 1762 14 5 N002246 ND0028 197 198 7 117.9 125.5 1978.3 2020 47.4 12.9 ND02247 ND0028 199 200 3 86.2 48.7 1295 1333 18.5 7.5 ND02248 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02249 ND0028 201 202 21 120.4 194.9 1942.9 1965 91.8 22.0 0 ND02251 ND0028 202 203 2 143.2 91.4 2266.5 2067 8.9 5.2 0 ND02253 ND0028 205 206 6 142.9 120.7 2266.2 2262 2.4 5.5 0 ND02255 ND0028 207 208 3 146	0.0 0.1 0.1 0.1 0.0 0.0
ND02246 ND0028 197 198 7 117.9 125.5 1978.3 2020 47.4 12.9 ND02247 ND0028 198 199 5 35 3.5 438.5 469 1.7 3.5 ND02249 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02250 ND00028 201 202 21 120.4 194.9 1942.9 1965 91.8 22 (0 0 10.9 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02253 NDD0028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02253 NDD0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02253 NDD0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 1	0.1 0.1 0.1 0.0 0.0
ND02247 ND0028 198 199 5 35 3.5 438.5 469 1.7 3.5 ND02248 ND0028 199 200 3 86.2 48.7 1295 1333 18.5 7.5 0 ND02249 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02250 ND0028 201 202 21 120.4 194.9 1942.9 1965 91.8 22 0 ND02251 ND0028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 ND0028 205 206 6 142.9 120.7 248.7 2308 11.2 3.9 0 ND02255 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 ND00028 207 208	0.1 0.1 0.1 0.0 0.0
ND02248 ND0028 199 200 3 86.2 48.7 1295 1333 18.5 7.5 0 ND02249 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02250 ND00028 201 202 21 120.4 194.9 1942.9 1965 91.8 22 0 ND02251 ND00028 202 203 2 143.2 91.4 2266.5 2067 8.9 5.2 0 ND02253 ND0028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 ND0028 207 208 3 146 98.5 2426.2 2402 11.3 6.4 13.1 6.4 13.1 6.4 13.1 <td>0.1 0.1 0.1 0.0 0.0</td>	0.1 0.1 0.1 0.0 0.0
ND02249 ND0028 200 201 7 118 161.5 2047.6 2180 39.7 10.9 0 ND02250 ND00028 201 202 21 120.4 194.9 1942.9 1965 91.8 22 0 ND02251 ND00028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02252 ND00028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02254 NDD0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 ND0028 209 210 8 148.3 123.5 2402 11.3 5.9 0 ND02260 ND0028 210	0.1 0.1 0.0 0.0
ND02250 ND00028 201 202 21 120.4 194.9 1942.9 1965 91.8 22 0 ND02251 ND00028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02252 ND00028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 ND00028 204 205 3 140.4 100.7 2438.7 2308 11.2 3.9 0 ND02254 NDD0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 NDD0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02258 NDD0028 209 210 8 148.3 123.5 2319 37.1 9.2 ND02260 NDD0028 211 211	0.1 0.0 0.0
ND02251 NDD0028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02252 ND0028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 ND0028 204 205 3 140.4 100.7 2438.7 2308 11.2 3.9 0 ND02254 ND0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 NDD0028 209 201 8 148.3 123.5 2490 43.6 11.3 6.4 0 ND02260 NDD028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD028 211 <t< td=""><td>0.0</td></t<>	0.0
ND02251 NDD0028 202 203 2 143.2 91.4 2226.5 2067 8.9 5.2 0 ND02252 NDD0028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 NDD0028 204 205 3 140.4 100.7 2438.7 2308 11.2 3.9 0 ND02254 NDD0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 NDD0028 206 207 2 151 85.4 232.4.4 2192 10.8 3.6 0 ND02255 NDD0028 208 209 9 146 134.1 2396.5 2490 43.6 11.3 0 ND02260 NDD028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD028 211	0.0
ND02252 NDD028 203 204 1 150.3 79.1 2359.3 2211 8.7 3.9 0 ND02253 NDD028 204 205 3 140.4 100.7 2438.7 2308 11.2 3.9 0 ND02254 NDD028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 NDD028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02255 NDD0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02250 NDD028 209 210 8 148.3 123.5 2319 37.1 9.2 13.1 6.4 0 ND02261 NDD028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD028 211 <t< td=""><td></td></t<>	
ND02253 NDD0028 204 205 3 140.4 100.7 2438.7 2308 11.2 3.9 0 ND02254 ND0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02257 ND0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02258 ND0028 209 201 8 148.3 123.5 2390 43.6 11.3 6.4 0 ND02260 ND0028 210 211 4 155.3 3173.9 3000 265.1 57.9 0 ND02261 ND0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02263 ND0028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 <t< td=""><td>0.1</td></t<>	0.1
ND02254 ND0028 205 206 6 142.9 120.7 2266.2 2262 22.4 5.5 0 ND02255 ND0028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02257 ND0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02258 ND0028 209 9 146 134.1 2396.5 2490 43.6 11.3 6.4 0 ND02250 ND0028 209 210 8 148.3 123.5 2525.5 2402 13.1 6.4 0 ND02261 ND0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 ND0028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02263 ND0028 213 <td< td=""><td></td></td<>	
ND02255 NDD028 206 207 2 151 85.4 2324.4 2192 10.8 3.6 0 ND02257 ND0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02258 ND0028 209 20 8 148.3 123.5 2426.2 2402 13.1 6.4 0 ND02259 ND0028 209 210 8 148.3 123.5 2525.5 2402 13.1 6.4 0 ND02260 ND0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02263 ND0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02263 ND0028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 ND0028 213 216 <t< td=""><td>0.1</td></t<>	0.1
ND02257 NDD0028 207 208 3 146 98.5 2426.2 2402 11.3 5.9 0 ND02258 NDD0028 209 9 146 134.1 2396.5 2400 43.6 11.3 6.4 0 ND02259 NDD0028 209 210 8 148.3 123.5 2525.5 2402 13.1 6.4 0 ND02260 NDD0028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 NDD028 211 211 4 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD028 211 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02264 NDD028 214 215 </td <td></td>	
ND02258 NDD028 208 209 9 146 134.1 2396.5 2490 43.6 11.3 0 ND02259 NDD0028 209 210 8 148.3 123.5 2525.5 2402 13.1 6.4 0 ND02260 NDD0028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 NDD028 211 212 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD028 211 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02264 NDD028 213 214 5 138.1 155.6 2304.9 2212 26.3 10.1 0 ND02265 NDD028 21	
ND02259 NDD0028 209 210 8 148.3 123.5 2525.5 2402 13.1 6.4 0 ND02260 NDD0028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 NDD0028 212 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 NDD028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02265 NDD028 217 218	-
ND02260 NDD0028 210 211 4 155.3 109.8 2315.5 2319 37.1 9.2 ND02261 NDD0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 NDD0028 212 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 NDD028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02266 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 219 2	-
ND02261 NDD0028 211 212 9 137 341.7 2628.7 2569 94.7 19.1 ND02262 NDD0028 212 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD0028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 NDD028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 100 0 ND02266 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD028 221 222	0.
ND02262 NDD0028 212 213 42 147.6 551.8 3173.9 3000 265.1 57.9 0 ND02263 NDD028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 NDD028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02266 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 10 0 ND02267 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD028 221 <td>0.</td>	0.
ND02263 NDD0028 213 214 5 138.1 155.6 2304.9 2212 26.3 6.6 0 ND02264 NDD0028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD0028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02266 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 10 0 ND02267 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD028 221	
ND02264 NDD028 214 215 8 148.5 197.3 2657.8 2592 45.3 10.1 0 ND02265 NDD028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02266 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 10 0 ND02267 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 218 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02268 NDD028 220 227 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD028 222 223<	
ND02265 NDD0028 215 216 14 149.8 192.7 2674.2 2563 79 18.5 0 ND02266 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 10 0 ND02267 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 218 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02268 NDD028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 2 ND02274 NDD028 223	0.1
ND02266 NDD028 216 217 5 147.1 213.9 2618.3 2558 43.7 10 0 ND02267 NDD028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD028 218 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 2 ND02273 NDD028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 2 ND02274 NDD028	-
ND02267 NDD0028 217 218 93 146.7 460.8 2789.4 2751 232.4 72.3 0 ND02268 NDD0028 218 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD0028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD0028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD0028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 2 ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 2 ND02274 NDD0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 2 ND02275 NDD0028	-
ND02268 NDD0028 218 219 27 140.6 169.3 2619.7 2637 80 18.5 0 ND02269 NDD0028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD0028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD0028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 2 ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 2 ND02274 NDD0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 2 ND02275 NDD0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 2 ND02276 NDD0028	
ND02269 NDD0028 219 220 27 166 1253.7 4008.6 4057 477 80.5 0 ND02270 NDD0028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD0028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 2 ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 2 ND02274 NDD0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 2 ND02275 NDD0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 2 ND02276 NDD0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 2	
ND02270 NDD0028 220 221 30 203.9 1827.8 5703.1 5713 429.1 93.4 ND02271 NDD0028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 1 ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 1 ND02274 NDD0028 2223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 1 ND02275 NDD0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 1 ND02276 NDD0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 1	_
ND02271 NDD0028 221 222 37 196.6 1734.6 5378.1 5416 496.2 92.5 1 ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 1 ND02274 ND0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 1 ND02275 ND0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 1 ND02276 ND0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 1	1.
ND02273 NDD0028 222 223 59 204.8 1004.9 5972.2 6068 778.3 86 7 ND02274 ND0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 1 ND02275 ND0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 1 ND02276 ND0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 2	
ND02274 ND0028 223 224 17 169.9 796.4 4205.1 4400 391.3 53.1 1 ND02275 ND0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 1 ND02276 ND0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 1	
ND02275 ND0028 224 225 21 177.5 1179.5 4415.6 4532 300.7 53.2 3 ND02276 ND0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2 3	
ND02276 NDD0028 225 226 26 223.5 1998.5 6808.1 7044 510.4 125.2	
ND02277 NDD0028 226 227 45 235.6 3066.9 7782.7 7836 676.4 140.5 2	
ND02278 NDD028 227 228 39 222.7 1816 7369.1 7758 470.1 122.1 2	_
ND02279 NDD0028 228 229 58 200.2 2310.9 6231 6218 824.5 101.7 1	
ND02280 NDD028 229 230 13 136.5 165.4 2535.4 2477 53.6 13.3 0	
ND02280 ND0028 230 231 18 144.5 442.8 2992.1 2969 166.2 27.1 (-
	-
ND02226 ND0028 234 235 15 131.3 413.3 3056.4 3476 153.2 29.8 (-
ND02286 NDD028 235 236 6 139.5 90.5 2490.9 2551 30.6 8.4	
ND02289 NDD0028 237 238 3 133.1 35.7 2422.5 2423 19.3 4.8 (-
ND02290 NDD028 238 239 4 135.2 114.7 2537.3 2486 51.4 11.9 (-
	-
	-
	-
	0.0
	0.1
	0.1
	0.0
	0.0
	0.0 0.1 0.0
ND02299 NDD0028 247 248 3 134.6 39.7 2438.6 2501 28.9 7.4 Note : X denotes below detection	0.0 0.1 0.0 0.

Note : X denotes below detection

ENDS

This Announcement has been approved for release by the Board of Aldoro Resources Ltd

Figure 6. Location of the ARN landholding over the Murchison Terrane

About Aldoro Resources

Aldoro Resources Ltd is an ASX-listed (**ASX: ARN**) mineral exploration and development company. Aldoro has a portfolio of lithium, rubidium and base metal projects, all located in Western Australia. The Company's flagship projects are the Wyemandoo lithium-rubidium-tungsten project and the Niobe lithium-rubidium-tantalum Project. The Company's other projects include the Narndee Igneous Complex, which is prospective for Ni-Cu-PGE mineralisation.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Aldoro operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Aldoro's control.

Aldoro does not undertake any obligation to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Aldoro, its Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as of the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for or purchase securities by Aldoro. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of Mark Mitchell, technical director for Aldoro Resources Ltd. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

This announcement has been approved for release to ASX by the Board of Aldoro Resources

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria JORC Code explanation	Commentary
 Nature and quality of sampling (eg cut channels, random chips specific specialised industry standard measurement tools appring to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample repress and the appropriate calibration of any measurement tools or sy used. Aspects of the determination of mineralisation that are Materia Public Report. In cases where 'industry standard' work has been done this were relatively simple (eg' reverse circulation drilling was used to other samples from which 3 kg was pulverised to produce a 30 g for fire assay'). In other cases more explanation may be require such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg' submarine nodules) may warrant disclosure of detailed information is a submarine nodules). 	 In the sample service of the sample service of the servic

Criteria	JORC Code explanation	Commentary
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond core drilling was conducted by Orlando Drilling with collars positioned by handheld GPS with a +/-5m accuracy and using an average technique based on time. The top of the collar was reamed using a Chlore tool using to 6m depth. Holes are drilled by HQ3 to fresh rock, cased off and drilled NQ2 to end of the hole. The NQ2 part of the hole is oriented by a Reflex Act-IQ orientation tool. Bottom of the hole is marked on the core surface using an orientation cradle. All holes have been surveyed post drilling using a down hole gyro collecting continuous readings of dip and azimuth down hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are measured using industry-standard logging techniques. Core recoveries average close to 100% in fresh rock, and 90% in weathered material Sample bias is very unlikely given the very good sample recoveries especially below the base of oxidation. As the core loss is relatively low, no sample bias is considered
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aldoro core is logged using industry-standard semi-quantitative logging templates on handheld digital devices recording lithologies, colour weathering, alteration, mineralisation, veining, gangue and well as α and β structural information. The logging is generally considered both qualitative and quantitative in nature with all cores photographed, both wet and dry. Core lengths are tape measured with any loss recorded both digitally and core markers.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Selected NQ2 core samples on half cut core based on geology and sulphide occurrence and submitted for geochemical analysis at 1m lengths.

Criteria	JORC Code explanation	Commentary
sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The size of the sample from the diamond drilling method is the industry standard for the mineralisation style analytical technique. Sample preparation includes drying, crushing, splitting and pulverising before analysis. QAQC standard samples of CRM pulps and quartz were included routinely, duplicate aliquots were used at 15m intervals. Sample sizes are considered appropriate for the rock type, style of mineralisation (massive, stringer and disseminated sulphides), the thickness and consistency of the intersections, the sampling methodology and percent value assay ranges for the primary elements within the Narndee Project
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay and laboratory procedures are industry standard. The technique is considered near total for the elements of interest. A Bruker S1 Titan with factory calibration was used for check pXRF readings. These are not reported due to a lack of confidence due to the small sampling window and the bias this produces. Standard reference materials were analysed routinely by pXRF and found to be reporting withing acceptable limits. Quality control methods to be used include external standards and blanks to establish precision from the lab
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Aldoro's visual intersections are logged, interpreted, and reported by the JORC Competent Person QAQC procedures and documentation of primary data are adopted for the core samples. Twinned holes are not being used or reported. No adjustments are made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Drillhole collars are measured by handheld GPS and checked several times before drilling. Coordinates presented are in GDA94, UTM Zone 50S. Aldoro holes are surveyed by a Reflex GYRO SPRINT-IQ

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	The holes are yet to be accurately modelled vertically from DEM
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Not relevant as only 4 holes have been completed to test various IP anomalies. The IP survey parameters were designed to give depth penetration to 800m and the orientation to give control in discriminating conductivity changes. A Mineral Resource is not being reported. No sample compositing has been applied, but assay results are reported on a length weighted average
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of drilling is as close to perpendicular to the interpreted key mineralised. The orientation of drilling to key mineralised structures is an evolving interpretation. The geophysical survey has been designed to be orthogonal to the anticipated mineralisation. The interpretated anomalous chargeability/resistivity features identified are consisted with the petrophysical properties targeted, i.e., massive sulphides, however these require validation through drilling to see if they relate to Ni-Cu-PGE mineralisation
Sample security	• The measures taken to ensure sample security.	 Selected core trays were hand delivered to the assay laboratory for cutting and assaying in Maddington by company personnel
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been completed given the early stage of the project

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests,	 Tenements E59/2223, E59/2238 and E59/2258 Held by Gunex Pty Ltd, a 100% owned subsidiary of Altilium Metals Pty Ltd, which in turn is a 100% owned subsidiary of Aldoro Resources Limited

Criteria	JORC Code explanation	Commentary
land tenure status	 historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 GSR to original tenement holder The tenements are in good standing, with no native title interests and no known historical or environmentally sensitive areas with the tenement areas
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Previous relevant exploration was undertaken by: Westralian Nickel-INCO (1960s-70s) BHP-Hunter Resources (1985-90) Wedgetail Resources (2001) Apex Minerals-Mark Creasy (2001-06) Falconbridge-Apex-Mark Creasy (2002-03) Maximus Resources (2005-14)
Geology	Deposit type, geological setting and style of mineralisation.	 The Narndee Project is located within the Youanmi Terrane of the Yilgarn Craton, close to a major structural boundary between the Murchison and Southern Cross Domains. The regional geology is dominated by Archaean granite-greenstone terranes (greenstone 2.8- 3.0 billion years, granites 2.6-2.95 billion years) and the Windimurra Group of layered mafic intrusions (2.847 billion +/- 71 million years). These bodies represent the largest layered mafic-ultramafic intrusive complex in Australia. The Narndee Igneous Complex forms the primary component of the Boodanoo Suite and is divided into three broad units of stratigraphy: Ultramafic Zone, Lower Zone and Main Zone. Historical exploration has generally focused on stratiform PGE-reef mineralisation, whereas Aldoro's focus will be on massive magmatic nickel sulphide deposits
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Summary information of the diamond holes is provided in the text. The relevant details for Aldoro's drilling are contained in the body of this announcement. The use of any data is recommended for indicative purposes only in terms of potential Ni- Cu-PGE mineralisation and for developing exploration targets.

Criteria	JORC Code explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• Full analytical data was not provided in this report only the data pertaining to the style of mineralised being tested PGE-Au-Ni-Cu-Co. XRF data was also not provided as it is considered not representative in nature and is only used for aiding in lithological and mineral context.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Aldoro results will be presented on a length weighted average, in this case 1m intervals No short interval lengths were reported. No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All results referenced are based on down-hole lengths and may not reflect the true width of mineralisation or thickness of host lithologies, which is unknown
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps and tabulations are presented in the body of the announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All significant and relevant intercepts have been highlighted and key elements have been reported in all tested intervals.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density,	IP sounding and Gradient array techniques have been utilised.

Criteria	JORC Code explanation	Commentary
	groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Short term future work plans are detailed in the body of this announcement. Exploration is at an early stage, and longer-term future work will be results driven

