

Renegade Exploration Limited

Level 7, 333 Adelaide Street Brisbane QLD 4000 Australia ASX:RNX

ABN 92 114 187 978 Phone 1300 525 118 www.renegadeexploration.co m

31st March 2023

ASX RELEASE

Drilling intercepts near surface copper at Mongoose

Highlights

- Drill hole results from three holes targeting close to surface copper mineralisation have returned from the lab.
- RMG001 encountered:
 - > 19 m @ 1.0 % Cu, 0.39 g/t Au, & 391 ppm Co from surface, including

5 m @ 1.7 % Cu, 0.25 g/t Au, 618 ppm Co from 7 m;

- ➤ 4 m @ 1.0 % Cu from 24 m;
- > 5 m @ 1.1 % Cu, 0.23 g/t Au, & 104 ppm Co from 98 m; and
- > 4 m @ 2.1 % Cu, 1.2 g/t Au, and 133 ppm Co from 133 m.
- RMG002 intercepted:
 - > 7 m @ 0.52 % Cu from surface; and
 - ➢ 6 m @ 0.54 % Cu from 45 m.
- RMG003 hit:
 - > 29 m @ 0.58 % Cu & 0.1 g/t Au from 17 m; including

4 m @ 1.0 % Cu & 0.12 g/t Au from 33 m .

- These drill holes are targeting the shallow supergene copper mineralisation previously identified at Mongoose and are in line with expectations.
- These holes do not include the drill holes which encountered large sulphide zones¹ underneath 'Malachite Hill' (announced previously, 21st March 2023)
- The company eagerly awaits the return of these high-sulphide drill hole results (RMG018, RMG019, and RMG021).

Renegade Exploration Limited (ASX:RNX) has completed a reverse circulation (RC) drilling campaign comprising up to ~2,000 m over 23 holes at the Mongoose Copper-Gold Project near Cloncurry.

¹ Refer cautionary statement.

Mongoose is a primary target given significant historical copper-gold drill intercepts and its location along strike from the neighbouring Paddock Lode Mine and Taipan Deposit. The recent drilling is confirming the presence of significant copper-gold mineralisation at surface and large sulphide zones encountered at reasonably shallow depths announced on 21 March 2023².

Renegade Director, Mr Robert Kirtlan, said he was pleased to have successfully tested the close to surface 'supergene' copper mineralisation.

"We are very pleased to have increased the confidence in the close to surface copper mineralisation and anticipate this to continue as more the early drill holes are finalised assay wise." Mr Kirtlan said.

"This copper mineralisation is significant due to the extremely close proximity of Mongoose to the Great Australia Copper Mine and its own near surface oxide mineralisation."

"We are eagerly awaiting the results from holes RMG018, RMG019, and, in particular, RMG021. These holes were targeting underneath the appropriately named Malachite Hill and hit significant chalcopyrite-rich fault zones as announced. We anticipate the assays within the next 2-3 weeks."

"We have just completed a high resolution ground magnetic survey over Mongoose and anticipate a down hole EM (DHTEM) crew to be onsite within the next week or so. This work will assist with drill targeting for the next program."

"Cultural heritage clearances were also completed this week together with field mapping. We are confident of having a rig return within 4-8 weeks by which time we will have full interpretation of the magnetic surveys and all assays will be in and incorporated into our geological model."

Renegade will report assays for drilling as they come to hand from the assay lab.

² Refer ASX Releases dated 21 and 22 March: Drilling hits large copper sulphide zones at Mongoose.

Figure 1: Plan view of recent drill holes

Figure 2: Cross section of recent assayed holes and previous historical holes

Mongoose is part of the Carpentaria Joint Venture (CJV) between Glencore plc and Renegade, whose stake is currently 23.03%. In January 2023, Renegade reached agreement with Glencore to excise the Mongoose Project (EPM8588) and sole risk future expenditure. Renegade's interest in EPM8588 will increase with expenditure³.

Mongoose Project Background

Mongoose is hosted by dolerite-gabbro-porphyritic basalts of the Toole Creek Formation. The mineralised zone is dominated by magnetite-actinolite-albite-chlorite altered, sheared and brecciated dolerites. The mineralisation is both primary and supergene in nature. The supergene zone is defined by the presence of malachite, chrysocolla, chalcocite, and cuprite. The fresh, primary (hypogene) copper mineralisation is defined by chalcopyrite with accessory pyrite.

³ See ASX Release dated 16 January 2023, Renegade assumes control of Mongoose Project

The work completed by the CJV during the early 2010's delineated an extensive coincident magnetic-chargeable anomaly. Based on the coincident anomalies, CJV completed 3,988.1 m of reverse circulation (RC) and diamond drilling over 21 drill holes during 2013/2014⁴. This drilling is exclusively orientated towards the south and has intercepted large zones of Cu-Au mineralisation:

- 44 m @ 1.7 % Cu & 0.17 g/t Au from 2 m (MGX009)
- 11 m @ 1.2 % Cu & 0.31 g/t Au from 20 m (MGX019)
- 6 m @ 1.0 % Cu & 0.34 g/t Au from 98 m (MGX017)
- 15 m @ 1.6 % Cu & 0.32 g/t Au from 174 m (MGX002)
- 10 m @ 0.95 % Cu & 0.12 g/t Au from 8 m (MGX011)
- 28 m @ 0.66 % Cu % 0.067 g/t Au from 105 m (MGX010)

Recent work completed by Renegade has consisted of field geological mapping, rock sampling, and drilling. The rock sampling returned significant copper-gold results including:

- 15.6 % Cu & 0.52 g/t Au
- 8.81 % Cu & 4.12 g/t Au
- 1.81 % Cu & 0.21 g/t Au
- 1.87 % Cu & 1.98 g/t Au
- 1.04 % Cu & 1.95 g/t Au
- 2.88 % Cu & 0.1 g/t Au

Figure 3. Mongoose Project location, showing nearby open pit mines, historical mines, and resources with magnetics RTP.

⁴ See ASX Release dated 16 January 2023, Renegade assumes control of Mongoose Project

This announcement has been approved by the Board of Renegade Exploration Limited.

For more information, please contact:

Robert Kirtlan Director Mobile +1 300 525 118 info@renegadeexploration.com Gareth Quinn Investor Relations Mobile + 61 417 711 108 gareth@republicpr.com.au

About Renegade Exploration Limited

Renegade Exploration Limited (ASX:RNX) is an Australian based minerals exploration and development company with an interest in the Carpentaria Joint Venture which covers a package of advanced copper and gold projects in Queensland's Cloncurry mining district. The Company's' immediate primary focus is the Mongoose Project located at Cloncurry. This project has been excised from the Carpentaria Joint Venture and is advanced in terms of prospective targets and previous exploration activity. Renegade funds and operates this project.

The company has recently expanded its north-west Queensland interests by earning a 75% joint venture interest in the North Isa Project, located just north of MIM's George Fisher mining operations and has several advanced prospects to continue exploration activities on.

For further information

Competent Person Statement and Geological Information Sources

The information in this announcement that relates to geological information for Mongoose Project is based on information compiled by Mr Edward Fry, who is a full-time employee of the Company. Mr Fry is a Member of the Australian Institute of Mining and Metallurgy. Mr Fry has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results (JORC Code). Mr Fry consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The references in this announcement to Exploration Results were reported in accordance with Listing Rule 5.7 in the following announcements:

Listing Rule 5.7 in the following announcements:

ASX Release Title	Date
Renegade assumes control of Mongoose Project	16 January 2023
Significant copper-gold mineralisation confirmed at Mongoose	21 February 2023
Drilling hits large copper sulphide zones at Mongoose	21 March 2023
Update to March 21 Announcement	22 March 2023

The company confirms it is not aware of any new information or data that materially affects the information included in the previous market announcements noted above.

Cautionary Statement

The Company notes that while the sulphide species chalcopyrite is readily observable in RC drill chips when present, the relative abundance is particularly subjective due to the manner in which the logged chips are selected as only the chips are observed rather than the powdered fines. In this respect while the estimated percentage of malachite in mineralised intervals can be quite variable, it never exceeded 60% and was more usually estimated at 1% - 3%. In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of chalcopyrite abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of mineralisation. The Company will update the market when laboratory analytical results become available for these samples.

Hole ID	East MGA 94	North MGA94	RL m	Zone	Azi	Dip	EoH m
RMG001	447974	7708318	250	54	201.4	-60	160
RMG002	447950	7708251	251	54	199.46	-70	82
RMG003	447939	7708216	251	54	200	-60	80
RMG004	448015	7708298	251	54	200	-70	112
RMG005	447982	7708243	251	54	200	-70	40
RMG006	447954	7708154	252	54	200	-70	130
RMG007	447941	7708107	253	54	200	-60	80
RMG008	448026	7708331	252	54	200	-70	70
RMG009	448040	7708286	251	54	200	-60	46
RMG010	447978	7708352	250	54	202.2	-60	58
RMG011	448036	7708382	252	54	200.4	-70	88
RMG012	447896	7708278	248	54	200.4	-70	46
RMG013	447882	7708250	249	54	199.4	-60	52
RMG014	447868	7708189	250	54	199.4	-70	28
RMG015	447874	7708351	247	54	199.4	-70	52
RMG016	448050	7708299	251	54	185.4	-90	52
RMG017	448003	7708266	251	54	185.4	-90	28
RMG018	447964	7708191	251	54	200.5	-60	124
RMG019	447964	7708172	252	54	200.3	-60	154
RMG020	448005	7708146	251	54	199.6	-60	244
RMG021	448002	7708131	251	54	199.4	-55	130
RMG022	448036	7708212	250	54	161.7	-70	46
RMG023	447927	7708185	252	54	161.4	-60	94

Table 2: RMG assay results

	From	То	Cu	Au	Со		From	То	Cu	Au	Со
Hole ID	m	m	ppm	g/t	ppm	Hole ID	m	m	ppm	g/t	ppm
RMG001	0	1	9580	0.08	300	RMG002	1	2	5510	0.07	47
RMG001	1	2	7360	0.22	505	RMG002	2	3	5040	0.07	31
RMG001	2	3	3240	1.09	481	RMG002	3	4	7230	0.09	32
RMG001	3	4	4440	2.92	586	RMG002	4	5	6730	0.1	34
RMG001	4	5	7040	0.76	1105	RMG002	5	6	4300	0.07	37
RMG001	5	6	6670	0.39	277	RMG002	6	7	3610	0.09	40
RMG001	6	7	9800	0.2	185	RMG002	7	8	2320	0.02	37
RMG001	7	8	19050	0.12	314	RMG002	8	9	2470	0.03	37
RMG001	8	9	13900	0.12	633	RMG002	9	10	2540	0.03	35
RMG001	9	10	10500	0.13	1010	RMG002	10	11	1790	0.03	25
RMG001	10	11	25300	0.74	954	RMG002	11	12	1205	0.02	27
RMG001	11	12	18250	0.16	178	RMG002	12	13	1270	0.02	30
RMG001	12	13	7240	0.06	225	RMG002	13	14	1130	0.01	36
RMG001	13	14	8690	0.06	169	RMG002	14	15	459	0.01	32
RMG001	14	15	12900	0.08	93	RMG002	15	16	821	0.01	38
RMG001	15	16	7190	0.04	163	RMG002	16	17	1685	0.01	46
RMG001	16	17	3590	0.07	88	RMG002	17	18	1835	0.02	28
RMG001	17	18	17900	0.24	107	RMG002	18	19	1915	0.02	38
RMG001	18	19	5470	0.05	57	RMG002	19	20	2420	0.02	47
RMG001	19	20	1830	0.02	25	RMG002	20	21	1205	0.01	19
RMG001	20	21	2130	0.02	62	RMG002	21	22	2490	0.02	24
RMG001	21	22	1360	0.05	26	RMG002	22	23	1235	0.01	18
RMG001	22	23	6340	0.05	26	RMG002	23	24	1895	0.02	27
RMG001	23	24	2870	0.08	21	RMG002	24	25	1490	0.04	26
RMG001	24	25	17950	0.12	39	RMG002	25	26	1205	0.02	35
RMG001	25	26	12850	0.06	34	RMG002	26	27	1210	0.02	103
RMG001	26	27	5650	0.05	27	RMG002	27	28	1520	0.02	752
RMG001	27	28	4020	0.05	31	RMG002	28	29	452	<0.01	30
RMG001	28	29	2270	0.05	27	RMG002	29	30	1790	0.02	26
RMG001	29	30	4210	0.05	25	RMG002	30	31	1500	<0.01	18
RMG001	30	31	1860	0.02	26	RMG002	31	32	1115	0.02	22
RMG001	31	32	999	0.01	24	RMG002	32	33	2660	0.07	30
RMG001	32	33	2410	0.02	67	RMG002	33	34	903	0.02	31
RMG001	33	34	1170	0.03	54	RMG002	34	35	2080	0.02	38
RMG001	34	35	1430	0.01	30	RMG002	35	36	11700	0.1	683
RMG001	35	36	2050	0.02	34	RMG002	36	37	2080	0.04	44
RMG001	36	37	3730	0.05	38	RMG002	37	38	2420	0.01	48
RMG001	37	38	1545	0.02	22	RMG002	38	39	671	0.01	22
RMG001	38	39	1290	0.03	44	RMG002	39	40	1850	0.03	22
RMG001	39	40	1015	0.03	32	RMG002	40	41	825	0.02	26
RMG001	40	41	719	0.01	37	RMG002	41	42	957	0.02	27
RMG001	41	42	3290	0.05	54	RMG002	42	43	646	0.01	20
RMG001	42	43	1885	0.02	40	RMG002	43	44	3100	0.02	38
RMG001	43	44	2230	0.04	40	RMG002	44	45	1010	0.01	20

	From	То	Cu	Au	Со		From	То	Cu	Au	Со
Hole ID	m	m	ррт	g/t	ppm	Hole ID	m	m	ppm	g/t	ppm
RMG001	44	45	1255	0.03	31	RMG002	45	46	8570	0.07	54
RMG001	45	46	753	0.02	27	RMG002	46	47	1360	0.03	34
RMG001	46	47	212	0.01	18	RMG002	47	48	5690	0.04	106
RMG001	47	48	232	0.01	33	RMG002	48	49	5440	0.06	49
RMG001	48	49	148	0.01	24	RMG002	49	50	2620	0.04	96
RMG001	49	50	817	0.02	45	RMG002	50	51	8790	0.12	175
RMG001	50	51	575	0.02	92	RMG002	51	52	1140	0.01	19
RMG001	51	52	216	0.01	51	RMG002	52	53	236	0.01	15
RMG001	52	53	268	0.02	34	RMG002	53	54	1560	0.02	44
RMG001	53	54	109	0.01	31	RMG002	54	55	415	0.01	31
RMG001	54	55	146	0.01	31	RMG002	55	56	377	0.01	20
RMG001	55	56	91	0.01	25	RMG002	56	57	1570	0.03	154
RMG001	56	57	409	0.02	30	RMG002	57	58	339	0.01	17
RMG001	57	58	9720	0.08	133	RMG002	58	59	1565	0.02	21
RMG001	58	59	211	0.01	27	RMG002	59	60	851	0.01	15
RMG001	59	60	2710	0.04	33	RMG002	60	61	3180	0.04	70
RMG001	60	61	1340	0.04	25	RMG002	61	62	2990	0.08	119
RMG001	61	62	1395	0.1	32	RMG002	62	63	535	0.07	1345
RMG001	62	63	370	0.02	29	RMG002	63	64	753	0.01	42
RMG001	63	64	467	0.01	33	RMG002	64	65	3450	0.04	96
RMG001	64	65	6640	0.11	353	RMG002	65	66	243	<0.01	21
RMG001	65	66	599	0.01	61	RMG002	66	67	368	<0.01	21
RMG001	66	67	388	0.01	52	RMG002	67	68	540	0.01	22
RMG001	67	68	141	0.01	40	RMG002	68	69	368	<0.01	24
RMG001	68	69	211	0.01	34	RMG002	69	70	264	<0.01	22
RMG001	69	70	160	0.01	63	RMG002	70	71	164	<0.01	26
RMG001	70	71	175	0.01	128	RMG002	71	72	153	<0.01	28
RMG001	71	72	144	0.01	54	RMG002	72	73	521	0.01	27
RMG001	72	73	3670	0.04	55	RMG002	73	74	1730	0.03	65
RMG001	73	74	6720	0.1	147	RMG002	74	75	330	0.01	83
RMG001	74	75	2620	0.02	149	RMG002	75	76	161	<0.01	20
RMG001	75	76	4740	0.6	43	RMG002	76	77	714	0.01	153
RMG001	76	77	4710	0.1	32	RMG002	77	78	120	<0.01	18
RMG001	77	78	6280	0.05	40	RMG002	78	79	2260	0.01	33
RMG001	78	79	2520	0.02	26	RMG002	79	80	479	0.01	23
RMG001	79	80	3670	0.03	63	RMG002	80	81	228	<0.01	27
RMG001	80	81	1490	0.02	90	RMG002	81	82	175	<0.01	17
RMG001	81	82	792	<0.01	68	RMG003	0	1	4580	0.07	50
RMG001	82	83	1940	0.01	201	RMG003	1	2	4600	0.1	49
RMG001	83	84	806	<0.01	38	RMG003	2	3	4120	0.09	44
RMG001	84	85	520	<0.01	62	RMG003	3	4	2970	0.04	39
RMG001	85	86	1860	0.01	33	RMG003	4	5	1850	0.03	34
RMG001	86	87	2910	0.03	34	RMG003	5	6	1555	0.05	97
RMG001	87	88	1070	< 0.01	57	RMG003	6	7	914	0.02	65
RMG001	88	89	503	<0.01	49	RMG003	7	8	1470	0.02	79

	From	То	Cu	Au	Со		From	То	Cu	Au	Со
Hole ID	m	m	ppm	g/t	ppm	Hole ID	m	m	ррт	g/t	ppm
RMG001	89	90	243	<0.01	31	RMG003	8	9	1650	0.03	79
RMG001	90	91	206	<0.01	25	RMG003	9	10	1825	0.03	89
RMG001	91	92	174	<0.01	34	RMG003	10	11	2130	0.04	67
RMG001	92	93	168	<0.01	30	RMG003	11	12	1125	0.01	55
RMG001	93	94	166	<0.01	35	RMG003	12	13	2060	0.06	61
RMG001	94	95	7400	0.04	140	RMG003	13	14	1835	0.03	37
RMG001	95	96	2650	0.01	58	RMG003	14	15	1400	0.03	28
RMG001	96	97	2310	<0.01	26	RMG003	15	16	3330	0.06	39
RMG001	97	98	725	<0.01	24	RMG003	16	17	4560	0.1	49
RMG001	98	99	16850	0.34	36	RMG003	17	18	5700	0.09	40
RMG001	99	100	18850	0.62	325	RMG003	18	19	6950	0.1	34
RMG001	100	101	2950	0.09	51	RMG003	19	20	6590	0.1	41
RMG001	101	102	12600	0.06	59	RMG003	20	21	5810	0.14	35
RMG001	102	103	4740	0.03	52	RMG003	21	22	4560	0.15	53
RMG001	103	104	1295	<0.01	29	RMG003	22	23	1240	0.02	61
RMG001	104	105	259	<0.01	25	RMG003	23	24	945	0.01	23
RMG001	105	106	363	<0.01	20	RMG003	24	25	3090	0.25	41
RMG001	106	107	5800	0.05	51	RMG003	25	26	4700	0.08	36
RMG001	107	108	5290	0.05	29	RMG003	26	27	15900	0.33	153
RMG001	108	109	2000	0.02	35	RMG003	27	28	10350	0.18	92
RMG001	109	110	239	0.01	27	RMG003	28	29	3240	0.07	42
RMG001	110	111	169	0.01	26	RMG003	29	30	1755	0.02	25
RMG001	111	112	830	<0.01	24	RMG003	30	31	763	0.01	20
RMG001	112	113	14350	0.2	56	RMG003	31	32	2310	0.04	21
RMG001	113	114	8320	0.27	50	RMG003	32	33	1795	0.01	20
RMG001	114	115	2390	0.1	29	RMG003	33	34	5330	0.09	27
RMG001	115	116	938	0.02	32	RMG003	34	35	13650	0.12	35
RMG001	116	117	511	<0.01	24	RMG003	35	36	14150	0.19	35
RMG001	117	118	426	<0.01	28	RMG003	36	37	7560	0.08	31
RMG001	118	119	4200	0.06	65	RMG003	37	38	4200	0.09	45
RMG001	119	120	1235	0.06	23	RMG003	38	39	4340	0.08	129
RMG001	120	121	1025	0.03	21	RMG003	39	40	3070	0.03	26
RMG001	121	122	728	0.02	15	RMG003	40	41	2070	0.03	21
RMG001	122	123	936	0.03	14	RMG003	41	42	4610	0.08	42
RMG001	123	124	336	0.01	20	RMG003	42	43	12500	0.24	77
RMG001	124	125	205	<0.01	22	RMG003	43	44	7490	0.12	46
RMG001	125	126	262	<0.01	21	RMG003	44	45	7680	0.08	39
RMG001	126	127	566	<0.01	21	RMG003	45	46	6500	0.16	53
RMG001	127	128	358	<0.01	19	RMG003	46	47	2700	0.06	52
RMG001	128	129	11150	0.17	32	RMG003	47	48	3340	0.14	46
RMG001	129	130	403	<0.01	32	RMG003	48	49	1825	0.04	54
RMG001	130	131	261	0.01	25	RMG003	49	50	545	0.01	63
RMG001	131	132	2950	0.04	40	RMG003	50	51	610	0.01	88
RMG001	132	133	8070	0.11	43	RMG003	51	52	1425	0.03	57
RMG001	133	134	4610	0.56	38	RMG003	52	53	6290	0.13	132

	From	То	Cu	Au	Со		From	То	Cu	Au	Со
Hole ID	m	m	ppm	g/t	ppm	Hole ID	m	m	ppm	g/t	ppm
RMG001	134	135	3600	0.27	358	RMG003	53	54	3030	0.03	53
RMG001	135	136	22000	0.52	62	RMG003	54	55	2310	0.06	36
RMG001	136	137	54400	3.41	122	RMG003	55	56	1165	0.01	74
RMG001	137	138	1580	0.06	38	RMG003	56	57	1710	0.02	49
RMG001	138	139	3340	0.05	90	RMG003	57	58	684	<0.01	27
RMG001	139	140	2450	0.14	59	RMG003	58	59	951	0.03	99
RMG001	140	141	369	<0.01	34	RMG003	59	60	1635	0.03	180
RMG001	141	142	2210	0.03	32	RMG003	60	61	3450	0.06	145
RMG001	142	143	392	<0.01	32	RMG003	61	62	2500	0.02	28
RMG001	143	144	1170	0.03	28	RMG003	62	63	1360	0.02	36
RMG001	144	145	1420	0.03	25	RMG003	63	64	1970	0.03	99
RMG001	145	146	3510	0.07	37	RMG003	64	65	1235	0.03	103
RMG001	146	147	1200	0.02	68	RMG003	65	66	595	0.02	53
RMG001	147	148	791	0.02	28	RMG003	66	67	783	0.02	24
RMG001	148	149	1065	0.01	31	RMG003	67	68	1285	0.03	58
RMG001	149	150	369	<0.01	34	RMG003	68	69	443	0.02	43
RMG001	150	151	365	<0.01	34	RMG003	69	70	274	0.01	33
RMG001	151	152	1500	0.01	31	RMG003	70	71	958	0.02	93
RMG001	152	153	262	0.01	34	RMG003	71	72	1700	0.02	211
RMG001	153	154	565	0.02	28	RMG003	72	73	1435	0.04	44
RMG001	154	155	282	<0.01	18	RMG003	73	74	378	0.02	30
RMG001	155	156	127	<0.01	60	RMG003	74	75	94	0.01	28
RMG001	156	157	218	0.01	20	RMG003	75	76	123	0.01	37
RMG001	157	158	666	0.03	42	RMG003	76	77	160	0.01	32
RMG001	158	159	1420	0.03	41	RMG003	77	78	211	0.01	16
RMG001	159	160	350	0.02	35	RMG003	78	79	141	0.01	17
RMG002	0	1	4600	0.08	45	RMG003	79	80	412	0.01	31

Renegade Exploration Limited

Level 7, 333 Adelaide Street Brisbane QLD 4000 Australia ASX:RNX

ABN 92 114 187 978 Phone 1300 525 118 www.renegadeexploration.co m

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected at 1 m intervals into large green bags, a cyclone attached cone splitter, split off a representative sample into a calico bag for each metre The average sample weight was 2-4 kg. Samples were pulverized to produce a 30 g charge for multi-acid digest (ME-ICP61) and fire assay for gold (Au-AA25). Over range Cu samples (>1 %) were reanalysed using the Cu-OG62 method.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Reverse Circulation (RC) drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 RC bags were visually assessed for adequate and consistent recovery by a geologist at the rig site. Any poor recoveries and or wet samples were documented. No relationship exists between sample recovery and grade, hence no

Criteria	JORC Code explanation	Commentary
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	bias is expected.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill chips were all geologically logged, recording relevant data using a set template to log geological intervals. All data was codified to a set company codes systems. The company believes that this offers sufficient detail for the purpose of interpretation and further studies. All logging included lithological features, sulphide % and type if present, alteration and descriptions of chips. 100% of the drill chips were logged.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Cone splitter was attached to the cyclone for sampling purposes. Sample preparation is consistent with industry standards. Field QC procedures involve the use of certified reference material assay standards, blanks, duplicates, replicates for company QC measures, and laboratory standards, replicate assaying and barren washes for laboratory QC measures. The insertion rate of these averaged better than 1:30. A blank was inserted every 30 samples before the insertion of the standard OREAS 22h standard was used. Duplicate samples were included at a ratio of approximately 1:30. The sample size is appropriate for the material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assaying and laboratory procedures are considered as being appropriate for reporting copper and gold ore mineralization, according to industry best practice. No assay results were obtained outside of the laboratory. A total of three standard materials were used, 522, 523, 906 from OREAS. Blanks were inserted every 30 m along with a standard. duplicates included at a rate of 1:30.
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data 	 Significant mineralization intersections were verified by alternative company personnel. No twinned holes were drilled. All data was collected initially on paper logging sheets, codified to the

Criteria	JORC Code explanation	Commentary
and assaying	verification, data storage (physical and electronic) protocols.Discuss any adjustment to assay data.	company's templates.No adjustments have been made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hand-held GPS. All surveys were MGAS zone 54 (GDA). Topographic control is sufficient for this stage of exploration.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing was planning a 50 m and where appropriate 25m was planned N/A No sample compositing occurred. All samples were taken from the hole at 1 m intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No bias attributable to orientation of sampling upgrading of results has been identified as the expected supergene mineralization is thought to be shallowly dipping to the north. NA
Sample security	• The measures taken to ensure sample security.	 Standard sample security protocols were observed. The calico bags were collected into white polly weave bags and secured using zip ties. The white poly weave bags were taken either directly to the Lab for analysis or to a secure Renegade storage facility.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been completed to date

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The company owns 23.03 % of the Carpentaria JV properties in QLD namely EPM 8588, 8586, 1280, 12597, and 12561. These tenements are located on the Mitakoodi people's traditional land. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical exploration was undertaken by Mount Isa Mining, a Glencore Company according to the terms of the Joint Venture.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The mineralization style targeted is an Iron-Oxide-Copper-Gold (IOCG) system, recognized on a number of deposits in the Eastern Fold Belt of the mount Isa Inlier.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to tables 1 and 2 All information is included
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade 	 Intercepts were reported using the length weighted average technique. High-grade intercepts within broad low-grade intervals have been separated as "included" results.

Criteria	JORC Code explanation	Commentary
	 results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No metal equivalents have been used.
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation is thought to be shallowly dipping as per the diagram. Mineralization geometry is not clearly defined to date.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Figures in text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Representative reporting of low and high grades has been effected within this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Further drilling, geological mapping, geochemical rock sampling, and geophysics is planned for exploration at Mongoose.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	To be determined.Figures in text.