

Scale of the Yinnetharra Project continues to grow

Highlights:

- The Yinnetharra Lithium Project covers a very large area of 575km² in a newly emerging Lithium district within the Gascoyne region of Western Australia
- The Malinda Prospect sits within the Yinnetharra Lithium Project and hosts **>50 mapped pegmatites** some of which have already been drilled and demonstrates:
 - $_{\odot}$ thick lithium mineralised intercepts e.g. YNRD005 55.6m @ 1.12% Li_2O
 - o lithium mineralisation from surface and to a depth of 350m below surface and
 - o significant strike to the mineralised pegmatites e.g. M1 >950m mineralised strike
 - three drill rigs on site, >50 holes pending assays
- New drilling intercepts (6 holes) include;
 - 28.9m @ 1.11% Li₂O from 122 metres in YNEX003
 - o 17m @ 1.13% Li₂O from 61 metres in YNRD028
- New spodumene bearing pegmatites discovered at Jamesons Prospect¹, 20km along strike to the west of the Malinda Prospect, with a large number of other pegmatite targets yet to be explored
- The Malinda Lithium Prospect footprint is very large and still relatively untested
- The Yinnetharra Project footprint as a whole is comparable to other tier one lithium projects in Western Australia
- Additional lithium prospective tenure secured and pending approval on the northern boundary of the existing Yinnetharra Project

Red Dirt Metals Limited (ASX: RDT) ("**Red Dirt**" or the "**Company**") is pleased to announce an update for exploration activities at its 100% owned Yinnetharra Lithium Project ("**Yinnetharra**" or the "**Project**") in the Gascoyne region of Western Australia. The total tenement holding at the Yinnetharra Lithium Project is now ~575km² including pending tenements.

The Company continues to rapidly expand the scale of Yinnetharra. Drilling in the last month has added to the footprint of the Malinda Lithium Prospect. Beyond Malinda, initial regional field mapping has now discovered spodumene bearing pegmatites¹ 20km WNW of the Malinda at the Jamesons Prospect (Figure 1).

Commenting on the results Executive Chairman, David Flanagan said;

"Coarse spodumene along strike in the right geology over a wide area is very encouraging. The recent identification of spodumene at the Jamesons Prospect opens up a whole new area and we are on track to get heritage clearance and rigs on the ground later this year. The team are continuing to explore new areas daily across the Yinnetharra Project and we are all excited by their great work.

"With more than 4,500 Malinda samples in the lab being processed, we are due for a steady flow of results back over the next 6 to 12 weeks. We have high expectations as to the potential scale of Yinnetharra."

¹ This is based solely on visual inspection of rock chip samples, which are yet to be assayed and analysed. The presence of Spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation until confirmed by chemical assay. Visual observations are no substitute for chemical assays. It is not possible to estimate the percentage of lithium mineralisation by visual estimates and this will be determined by laboratory results. Spodumene abundance within rock chip sample is estimated to be 20-40%, assays pending. To date the Company has completed 94 holes for 20,150 metres at the Yinnetharra Lithium Project. This announcement relates to four Reverse Circulation (RC) drill holes and two diamond drill holes. The Company is currently awaiting assays from >50 holes from the Project, all from the Malinda Prospect.

Multiple rigs are on site at the Malinda Lithium Prospect rapidly advancing the scale of known lithium bearing pegmatites (Figure 2), with a dedicated regional geology team exploring the tenure uncovering further lithium pegmatite fields in this exciting new Lithium province in Western Australia (see figures 3 and 4).

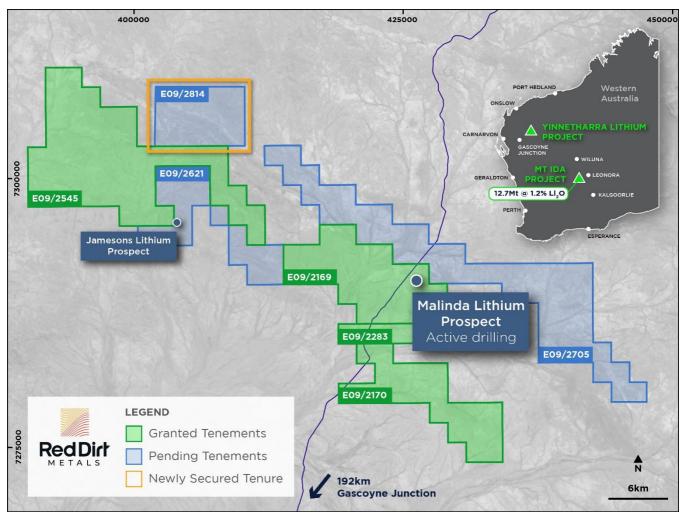


Figure 1: Yinnetharra plan showing general location of drilling at the Malinda Prospect, newly discovered Jamesons Prospect and the newly applied for tenement.

New Tenement Application E09/2814

The Company has acquired a first in line right to E09/2814, for cash consideration of \$125,000. Red Dirt has an exploration agreement in place with the Yinggarda people and the tenement is expected to be granted within the next six months. The tenement is host to prospective geology and in proximity to regionally important structures.

Excellent Further Results from the Malinda Prospect

Red Dirt has identified in excess of 50 mapped pegmatites within the Malinda Prospect, however the initial campaign is focussing on extensional drilling at the M1, M47, M36 and M42 pegmatites.

The M1 pegmatite dips -20 to -60 degrees to the south, is open to the east and at depth and has now been intercepted over a strike length of greater than 950 metres and a down dip extent of greater than 350 metres. Drilling has now been completed on a 160 x 80 metre spacing with the mineralised pegmatite being very consistent over this range. Narrow unmineralized pegmatite zones have also been identified with a consistent -20 to -40 degree east plunge, but recent drilling has shown that mineralisation is present above and below these zones. Further heritage surveys are being undertaken in April and May to further extend the pegmatite east and at depth. Hole YNRD026 drilled up plunge of the spodumene zone, hence no significant assay.

The M47, M36 and M42 pegmatites have a -20 to -60 degree to moderate dip to the south and are open in all directions. Drilling is being completed on 160 x 40 metre spacing with mineralised pegmatite being consistent over this range. Narrow unmineralised pegmatite zones have been identified with a consistent -20 to -40 degree east plunge, but recent drilling has shown that mineralisation is present above and below these zones. Hole YNRD009 experienced significant core loss in the mineralised zones, the grades reported are likely to have understated actual grade of the pegmatite.

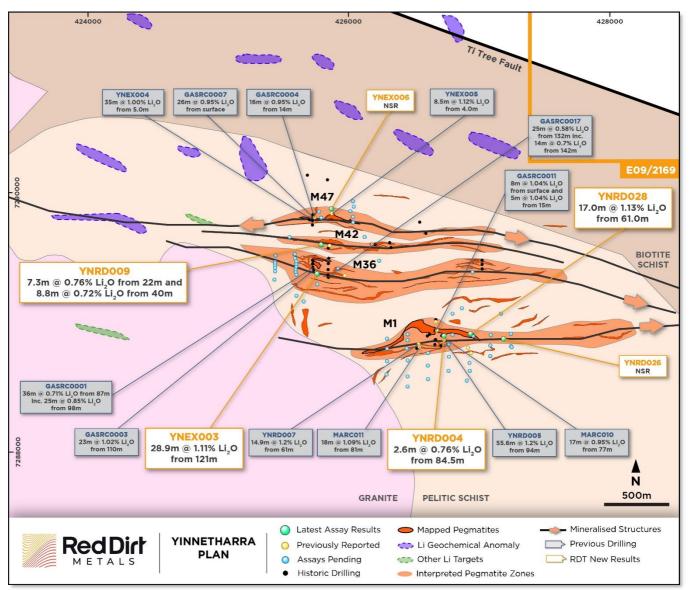


Figure 2: Plan showing drilling at Malinda.

Results from the Jamesons Prospect

Initial field mapping and rock chipping undertaken by Red Dirt has led to the discovery of spodumene bearing pegmatites in outcrop roughly 20km to the west of the Malinda Prospect. Spodumene has been identified visually by the geologists on site with the rock chip being shown having roughly 20-40% spodumene abundance. The rock chip samples have been despatched to the laboratory for chemical analysis. Discovery of unmapped endowment of spodumene over such extensive areas is further evidence the tenement package having high prospectivity for lithium mineralisation. These are new high priority targets for drilling.

The J5 pegmatite from which the coarse spodumene was identified is one of more than 20 pegmatites identified to date at the Jamesons Prospect. The J5 pegmatite is the only pegmatite with observed spodumene, however there are numerous instances of fine spodumene in the region.

This discovery highlights the excellent potential of the Yinnetharra Project. The Jamesons Prospect remains on a pending tenement, with work underway to allow for further exploration to commence upon the tenement being granted.

Photo 1: Photo of rock chip from Jamesons Prospect with very coarse spodumene (examples circled). Spodumene abundance within rock chip estimated to be 20-40%, assays pending. The presence of spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation until confirmed by chemical assay. It is not possible to estimate the percentage of lithium mineralisation by visual estimates and this will be determined by laboratory results, location of this is: 404124/7296094 GDA94 Z50.

Hole_ID		From	То	Width (m)	Li₂O %	Ta₂O₅ ppm
YNRD026	NSR					
YNRD028		61	78	17	1.13	70
YNEX003		121	149.9	28.9	1.11	54
YNEX006	NSR					
YNRD004		84.5	87.1	2.57	0.76	75
YNRD009		17	18	1	0.97	0.97
	and	22	29.3	7.3	0.76	149
	and	40	48.8	8.8	0.72	106

 Table 1: Assay results received reported in this release for the Yinnetharra project.

Photo 2: Photo of outcropping spodumene bearing pegmatite from the Jamesons Prospect. The location of this is 404124/7296094 GDA94 Z50.

Yinnetharra Project Comparisons

A total of 128 drill holes have now been drilled at Yinnetharra exploring for lithium mineralisation in pegmatites. In addition widespread regional soil geochemistry, rock chip sampling and surface mapping has also been completed as part of delivering further targets for drilling. Collectively this work has now defined targets considered prospective for lithium mineralisation. An important part of this work is that the lithium prospective footprint held by the Company is very large by industry standards (Figure 1, Figure 3 and Figure 4). The presence of pegmatites with or without spodumene does not however confirm the presence of lithium and the Company provides no forecast or guarantee as to if and when a resource estimate may be present at Yinnetharra.

A substantial campaign of exploration is underway with the Company targeting completion of more than 400 drill holes and 90,000 metres before September 2023.

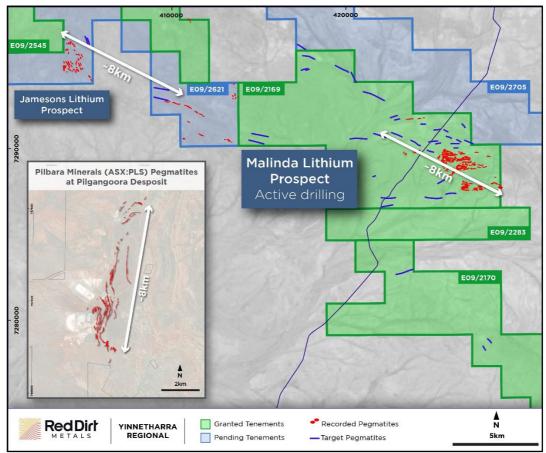


Figure 3: Plan showing Yinnetharra Project Li footprint in comparison with the Pilbara Minerals Limited Pilgangoora Li footprint.

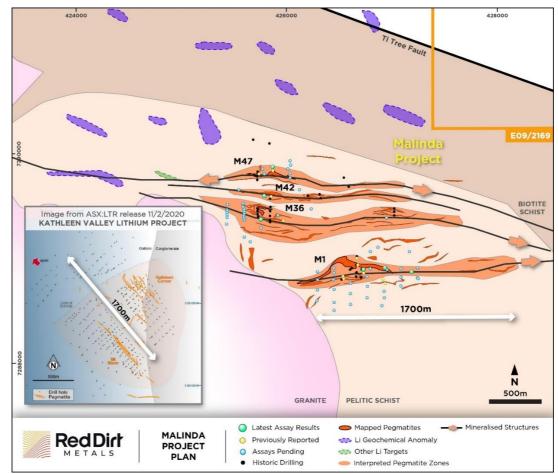


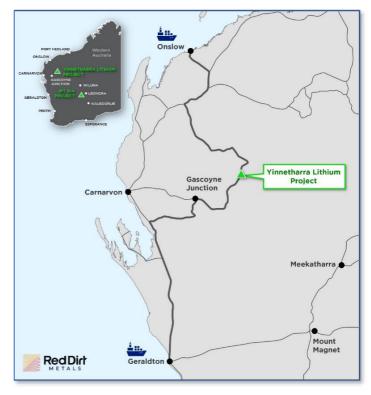
Figure 4: Plan showing Malinda Li footprint in comparison with the Liontown Resources Limited Kathleen Valley Li footprint.

Authorised for lodgement by the Board of Red Dirt Metals Limited.

For further information, please contact:

Red Dirt Metals Limited

David Flanagan, Chairman +61 8 6109 0104 info@reddirtmetals.com.au


About Red Dirt Metals

Red Dirt Metals (ASX: RDT) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With a strong balance sheet and an experienced team driving the exploration and development workstreams, Red Dirt is rapidly advancing its Mt Ida Lithium Project towards production. The Mt Ida Lithium Project has a global Mineral Resource Estimate of 12.7Mt @ 1.2% Li₂O and holds a critical advantage over other lithium developers with existing Mining Leases and heritage agreements in place. To capitalise on the prevailing buoyant lithium market, Red Dirt is pursuing a rapid development pathway to unlock maximum value for shareholders, whilst at the same time undertaking drilling activities to expand the footprint of the Mineral Resource.

Red Dirt also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company is currently undergoing an extensive 400 drill hole campaign to be completed throughout 2023.

Investor/Media enquiries

Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Red Dirt Metals Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Refer to www.reddirtmetals.com.au for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Red Dirt in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.reddirtmetals.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Red Dirt management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Red Dirt, that could cause actual results to differ materially from such statements. Red Dirt makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing Rules.

Appendix 1: Table showing drill hole details completed by Red Dirt at the Yinnetharra Project:

Hole_ID	East_MGA	North_MGA	MGA_RL	EOH depth	Dip	Azi
YDRD004	426904	7288551	322	486.93	-57.38	358.54
YDRD005	426231	7289463	320	438.63	-57.82	0.87
YNEX014	425591	7289203	320	287.23	-26.14	1.71
YRRD025	427083	7288735	319	354	-75.27	3.45
YRRD026	427245	7288808	323	300	-80.13	353.48
YRRD027	426765	7288620	319	306	-76.31	351.28
YRRD028	427165	7289065	323	252	-57.09	358.96
YRRD029	427245	7288808	323	186	-63.99	98.09
YRRD030	427086	7288894	319	252	-56.34	1.92
YRRD031	426031	7289763	320	222	-55.7	178.16
YRRD032	426031	7289803	320	192	-54.95	184.72
YRRD033	426031	7289885	320	195	-56.46	186.59
YRRD034	426031	7289923	320	234	-55.74	180.94
YDRD001	425431	7289323	320	150.67	-54.75	1.44
YDRD002	425751	7289283	320	246.2	-54.65	0.54
YDRD003	425910	7289404	320	358.2	-55.15	0.64
YNEX001	426924	7288757	322	354.8	-56	330
YNEX002	425962	7289350	322	357	-50	0
YNEX003	425751	7289365	322	177.6	-50	340
YNEX004	425727	7289793	323	90.7	-80	180
YNEX005	425863	7289824	322	64.5	-50	180
YNEX006	425863	7289865	322	201.96	-50	180
YNEX007	425538	7289646	322	277.3	-50	0
YNEX008	426121	7289662	322	244.8	-50	0
YNEX009	425650	7289150	322	403.8	-50	0
YNEX010	425769	7289843	323	195.3	-50	310
YNEX011	425782	7289801	323	200.85	-58.63	309.93
YNEX012	426012	7289847	324	241.2	-55.77	177.59
YNEX013	425591	7289363	320	196	-55.3	2.33
YNRD001	426663	7288933	322	63.7	-62	0
YNRD002	426663	7288933	322	119.9	-72	325
YNRD003	426657	7288991	325	258.5	-50	180
YNRD004	426722	7288891	323	118.6	-50	310
YNRD005	426723	7288853	322	223	-62	20
YNRD006	426531	7288796	322	200	-60	350
YNRD007	426527	7288824	322	288.6	-56	350
YNRD008	426902	7288795	322	216.7	-51	0
YNRD009	425785	7289590	322	300.7	-55	0
YNRD010	425843	7289580	323	112	-60	0
YNRD011	425591	7289463	322	108	-55	0
YNRD012	425591	7289443	322	138	-55	0
YNRD013	425591	7289423	322	174	-55	0
YNRD014	425591	7289403	322	200	-55	0

YNRD015	425591	7289383	322	228	-55	0
YNRD016	425584	7289489	322	48	-55.23	1.67
YNRD017	425585	7289512	322	114	-54.76	359.72
YNRD018	425431	7289463	322	216	-55.77	1.94
YNRD019	425431	7289443	322	120	-55.02	2.74
YNRD020	425431	7289423	322	192	-55.92	359.69
YNRD021	425431	7289403	322	200	-55.11	1.41
YNRD022	425431	7289383	322	120	-55.47	0.29
YNRD023	425436	7289507	322	96	-55.44	3.99
YNRD024	426946	7289382	325	90	-56.12	13.47
YNRD025	426951	7288887	321	150	-54.94	333.53
YNRD026	427181	7288873	319	156	-56.49	2.05
YNRD027	427083	7288815	319	220	-56.39	359.87
YNRD028	426924	7288908	318	200	-56.2	3.47
YRRD001	426924	7288686	321	294	-55.05	5.68
YRRD002	426792	7288895	320	132	-54.06	3.8
YRRD003	426764	7288821	321	250	-55.64	10.98
YRRD004	426764	7288732	321	294	-55.17	1.98
YRRD005	427242	7288904	321	252	-55.05	358.39
YRRD006	427243	7288812	323	264	-55.28	0.4
YRRD007	426606	7288762	321	252	-55.18	357.93
YRRD008	426602	7288664	320	252	-56.21	358.44
YRRD009	426444	7288702	321	264	-55.24	350.58
YRRD010	426445	7288795	321	250	-55.96	5.89
YRRD011	426446	7288861	321	252	-55.14	4.42
YRRD012	426448	7288580	318	222	-55.41	0.86
YRRD013	426447	7288901	321	120	-55.741	2.05
YRRD014	426445	7288498	320	222	-55.77	1.44
YRRD015	426287	7288868	321	198	-54.83	359.73
YRRD016	426287	7288790	321	90	-56.09	17.02
YRRD017	426286	7288694	319	150	-54.56	5.19
YRRD018	426286	7288591	316	168	-54.98	10.71
YRRD019	426605	7288559	321	250	-56.34	358.6
YRRD020	426791	7289063	320	204	-56.07	358.67
YRRD021	426868	7289101	320	180	-56.09	358.02
YRRD022	426765	7288620	318	336	-56.18	2.02
YRRD023	426925	7288620	318	330	-54.51	355.98
YRRD024	427083	7288735	318	300	-54.39	4.19

Appendix 2: Table showing Previous Lithium results from the Yinnetharra Project by the previous holder:

Hole_ID		From	То	Width (m)	Li₂O %	Ta₂O₅ ppm
GASRC0001		87	123	36	0.71	57
GASRC0002		16	23	7	0.46	52
GASRC0003		105	108	3	0.38	26
	and	110	133	23	1.02	55
GASRC0004		0	1	1	0.75	76
	and	14	30	16	0.95	142
GASRC0007		0	26	26	0.95	59
GASRC0009		106	108	2	1.49	30
	and	121	126	5	0.39	97
GASRC0011		0	8	8	1.04	47
	and	15	20	5	1.04	67
GASRC0016		117	120	3	1.26	74
GASRC0017		23	24	1	0.63	106
	and	115	118	3	0.8	18
	and	132	157	25	0.58	77
MARC003		6	12	6	0.52	127
MARC009		97	98	1	0.31	68
	and	105	106	1	0.32	5
MARC010		71	72	1	0.49	24
	and	77	94	17	0.95	54
MARC011		81	99	18	1.09	41

JORC Code, 2012 Edition

Table 1; Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Diamond (DD) and reverse circulation (RC) drilling has been carried out by Red Dirt Metals at the Yinnetharra project RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0,3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the Project. Historic drilling referenced has been carried out by Segue Resources and Electrostate (prior holder) Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling is being carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig and is HQ or NQ diameter. RC drilling is carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig Some RC precollars have been completed, diamond tails are not yet completed on these holes Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling

Criteria	Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were recorded as being mostly dry Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta₂O₅
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1 and PXD using a multishot tool Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	 Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	The measures taken to ensure sample security	 Samples are prepared onsite under supervision of Red Dirt Metals staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on E09/2169 The tenement is in good standing There are no heritage issues
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	Deposit type, geological setting and style of mineralisation.	 The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rare-earth pegmatites have been identified and mined on small scales
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are	 No metal equivalents are used Significant intercepts are calculated with a nominal cut-off grade of 0.5% Li₂O

Criteria		Commentary
	usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 The pegmatites are interpreted as dipping moderately to steeply toward the south Further drilling is required to confirm the true orientation of the pegmatites across multiple lined
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill collars, and significant intercepts have been reported in the appendix
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 POW's have been submitted to give RDT access to drill a further 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement (work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms).