

5 April 2023

RC drilling delivers the most significant intercept to date, 31m at 3.37 g/t Au

Highlights

- Reverse Circulation drilling at the high-grade Northwest Zone has returned the most significant intercept to date from all Kokoseb drilling:
 - o KRC067: 31m at 3.37 g/t Au from 77m
- Significant mineralised shoot potentially identified at NW Zone by key deep intersect:
 - o KRC074: 34m at 1.81 g/t Au from 204m
- Other significant intercepts in line with previous drilling, including:

o KRC060: 31m at 1.11 g/t Au from 88m

KRC062: 14m at 1.60 g/t Au from 159m

KRC066: 11m at 1.53 g/t Au from 162m

o KRC069: 14m at 1.22 g/t Au from 63m

o KRC070: 21m at 1.14 g/t Au from 182m

o KRC071: 33m at 1.10 g/t Au from 103m

KRC072: 15m at 1.80 g/t Au from 97m

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report results from a further fifteen reverse circulation (**RC**) drill holes – KRC060 to KRC072 and KRC074 and KRC075 – completed at the Kokoseb Gold Project (**Kokoseb**), situated on the Company's Damaran Gold Project located in Namibia. These drill holes are all infill and depth extensional holes located at the Central and NW Zones.

Best results include 31m at 3.37 g/t Au in hole KRC067, which is the most significant intercept returned to date at Kokoseb, 34m at 1.81 g/t Au in hole KRC074, demonstrating continuity of the high-grade zone at depth and 15m at 1.80 g/t Au in hole KRC072.

At the end of March 2023, 93 RC holes for 18,689 metres have been drilled at Kokoseb...

Wia's Chairman, Andrew Pardey, commented:

"Two of these latest significant intercepts at Kokoseb are extremely important. Firstly, 31m at 3.37 g/t Au at a shallow depth is the best intercept returned to date at Kokoseb and further demonstrates the significant potential for an open-pittable resource. Secondly, drill hole KRC074 has intersected a depth extension of a high-grade plunging shoot, that has been difficult to identify due to the wide drill spacing between sections."

"The geological understanding of the host context at Kokoseb is increasing rapidly, hence the level of detail now demonstrated on the interpreted geological sections and plans. This knowledge is valuable for input into the coming mineral resource estimate, that is still expected during the second quarter of 2023, and for the success of next series of exploration drilling, along strike and on extension zones."

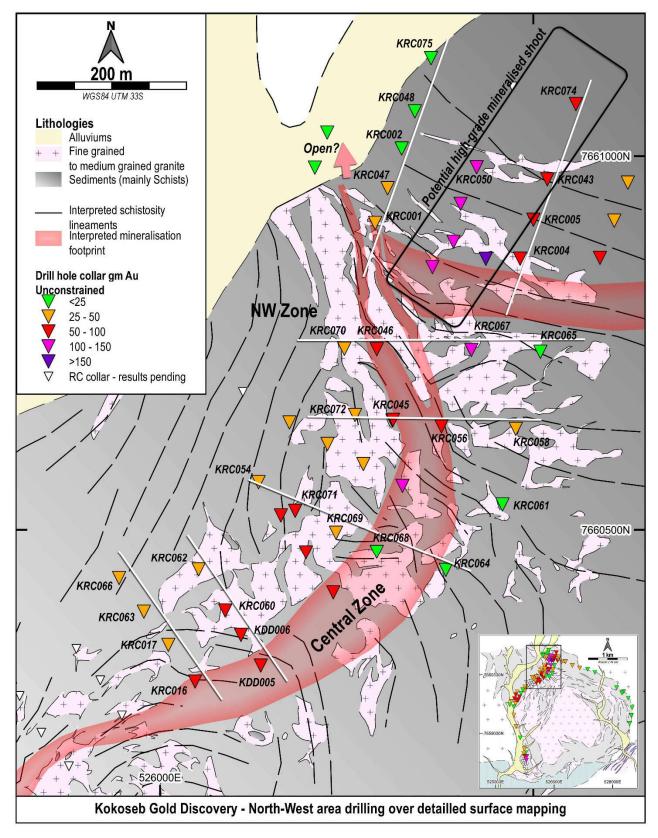


Figure 1 – Focus on the NW and Central zones of Kokoseb; location of drill holes reported in this announcement over detailed surface geology – interpreted surface mineralisation footprint

The link between the northern and western trends hosts significant high-grade gold intercepts, interpreted in two sub parallel and steeply dipping zones

Drill hole **KRC067** has returned the best mineralised significant intercept to date at Kokoseb of **31m** at **3.37** g/t Au from 70m (Figure 2). This drill section includes drill holes **KRC065** and **KRC070** and previously reported KRC046 where two steeply dipping mineralised zones are interpreted, being constrained between a swarm of granitic bodies. The drill holes had to be planned as scissors to correctly interpret the area (same for the next section south). Significant intercepts returned on the section included:

4m at 0.88 g/t Au from 234m (KRC065)
31m at 3.37 g/t Au from 77m (KRC067)
8m at 0.74 g/t Au from 112m (KRC067)
7m at 0.82 g/t Au from 134m (KRC067)
6m at 0.94 g/t Au from 163m (KRC070)
21m at 1.14 g/t Au from 182m (KRC070)

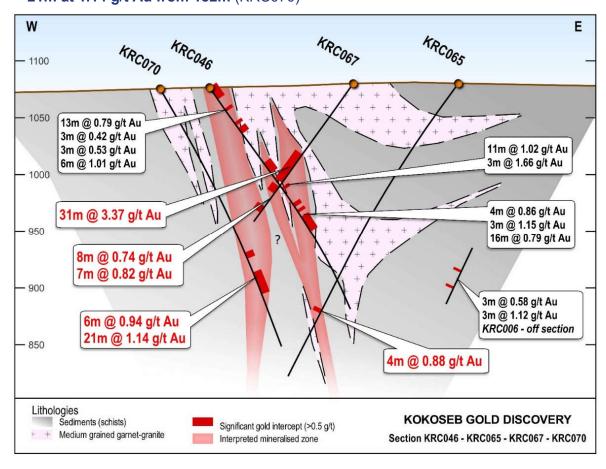


Figure 2 – Drill section including KRC065, KRC067 and KRC070 (intercepts in red are reported in this announcement and in black, previously reported)¹

The next drill section south, located at 100m, includes drill hole **KRC072** and previously reported drill holes KRC044, KRC045, KRC056 and KRC058 (Figure 3). The two mineralised zones are also well interpreted on this section and start showing changes in dip and a variation in thickness. Indeed, progressing further to the South corresponds to what is called "the Central zone" where only one main mineralised zone is intersected at a moderate dip towards the west (see the next drill sections reported below in this announcement).

¹ See ASX announcements 15 March 2023 for further information on previously reported results of RC drilling.

Drill hole KRC072 has returned the following significant intercepts:

15m at 1.80 g/t Au from 97m 4m at 0.89 g/t Au from 118m

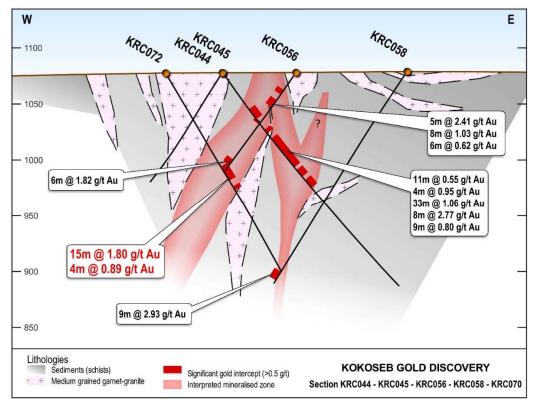


Figure 3 – Drill section including KRC072 (intercepts in red are reported in this announcement and in black, previously reported)²

Continuity of the high-grade NW zone at depth – potential mineralised shoot highlighted

Drill hole **KRC074** was drilled to test mineralisation 100m down dip of previous drill hole KRC043 and 200m vertical depth (Figure 4). The mineralisation was intersected as a significant unconstrained zone of 49m at 1.42 g/t Au from 204m depth, including the following significant intercepts:

34m at 1.81 g/t Au from 204m

7m at 0.65 g/t Au from 246m

This mineralised intersection is significant because it has been drilled on a section 100m east of one of the best drill sections previously reported at Kokoseb³, that includes drill holes KDD008, KDD012, KRC003 and KRC050. The same mineralised zone intersected in that drill section had previously returned significant intercepts, including 20m at 2.13 g/t Au (KRC050)⁴, 27m at 1.71 g/t Au (KRC003)⁵ and 27m at 1.67 g/t Au (KDD008)⁶, defining a coherent and continuous mineralised shoot in a Northeastern direction (see on map Figure 1).

² See ASX announcements 15 March 2023 for further information on previously reported results of RC drilling.

³ See previous ASX announcement 15 March 2023.

⁴ See ASX announcement 15 March 2023.

⁵ See AX announcement 17 October 2022.

⁶ See ASX announcement 7 June 2022.

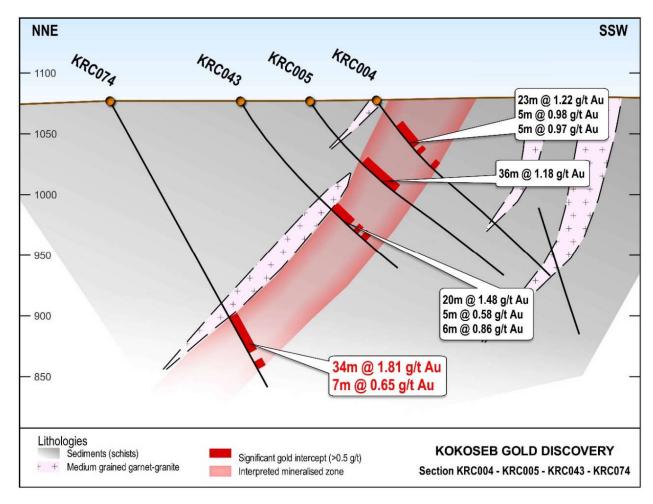


Figure 4 – Drill section including KRC074 (intercepts in red are reported in this announcement and in black, previously reported)⁷

On the western side of the drill section, which includes KRC050, drill hole **KRC075** tested for mineralisation at depth, with no significant intercepts returned. The drill hole was completed down dip under previous drill holes KRC001, KRC002, KRC047 and KRC048. Several granitic bodies were intersected, suggesting that mineralisation here is either partially cut and offset, or has changed direction.

Surface interpretations suggest a continuity of mineralised zones towards a northerly direction in the area (Figure 1), which will be followed up with further RC drilling.

The Central Zone continues to return regular gold mineralised intercepts in a thick moderately west dipping envelope

The next three drill sections tested the same mineralised zone along strike, in the Central zone (Figures 5, 6 and 7). Drill holes reported in this announcement either infilled between previous sections or completed existing sections down dip. The actual coverage of the zone is now completed at a regular approximately 100m spacing between sections, and 50m between drill holes on sections.

Mineralisation is interpreted as a single main zone, which includes the significant intercepts and some lower gold grade mineralisation over +/-50m total width. Dip is moderate towards the west, undulating between the granitic bodies which have intruded the system. Both the mineralised zone and the granitic intrusion are strongly controlled by schistosity.

⁷ See ASX announcements 17 October 2022 and 15 March 2023 for further information on previously reported results of RC drilling.

Significant intercepts returned in this Central Zone include the following:

3m at 0.81 g/t Au from 70m (KRC060)
7m at 0.60 g/t Au from 77m (KRC060)
31m at 1.11 g/t Au from 88m (KRC060)
4m at 0.68 g/t Au from 110m (KRC062)
4m at 0.70 g/t Au from 124m (KRC062)
10m at 0.63 g/t Au from 135m (KRC062)
14m at 1.60 g/t Au from 159m (KRC062)
11m at 1.29 g/t Au from 145m (KRC063)
3m at 0.81 g/t Au from 19m (KRC064)
11m at 0.53 g/t Au from 162m (KRC066)

3m at 0.77 g/t Au from 8m (KRC068) 6m at 1.03 g/t Au from 15m (KRC068) 3m at 1.16 g/t Au from 34m (KRC068) 4m at 0.97 g/t Au from 48m (KRC069) 5m at 1.32 g/t Au from 55m (KRC069) 14m at 1.22 g/t Au from 63m (KRC069) 5m at 0.96 g/t Au from 78m (KRC071) 5m at 0.95 g/t Au from 89m (KRC071) 33m at 1.10 g/t Au from 103m (KRC071)

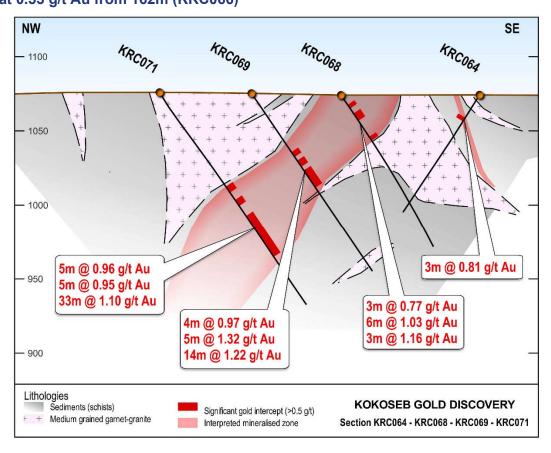


Figure 5 - Drill section including KRC064, KRC068, KRC069 and KRC071

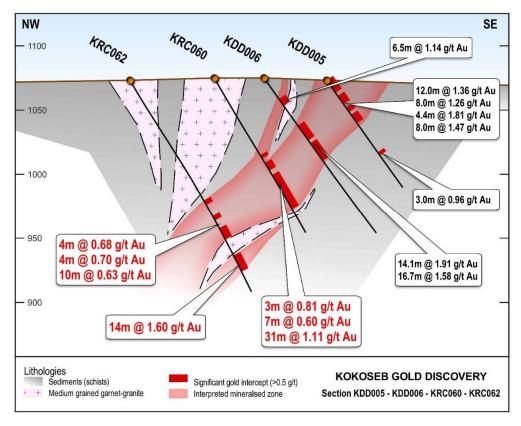


Figure 6 – Drill section including KRC060 and KRC062 (intercepts in red are reported in this announcement and in black, previously reported)⁸

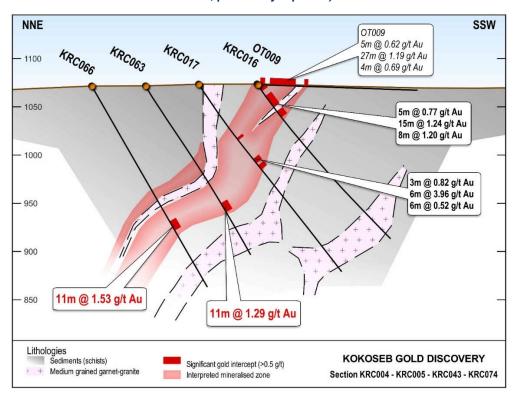


Figure 7 – Drill section including KRC063 and KRC066 (intercepts in red are reported in this announcement and in black, previously reported; trench intercepts in italic)⁹

⁸ See ASX announcements 27 July 2022 for further information on previously reported results of RC drilling.

⁹ See ASX announcements 7 June 2022 and 17 November 2022 for further information on previously reported results of RC drilling.

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

Contact details

Andrew Pardey Chairman +61 8 9381 5686

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Project located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of WiaGold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

About Wia's Namibia Projects

Since 2018, the Company has successfully consolidated a large land position on the Damaran belt in central Namibia (the **Damaran Project**), which is strategically located along key regional structures. The Damaran Project, which hosts the Kokoseb gold discovery, consists of 12 tenements with a total area of over 2,700km² held under joint venture (Wia 80%) with the state-owned mining company, Epangelo and a local Namibian group.

The location of the Company's Namibian Projects is shown in Figure 8.

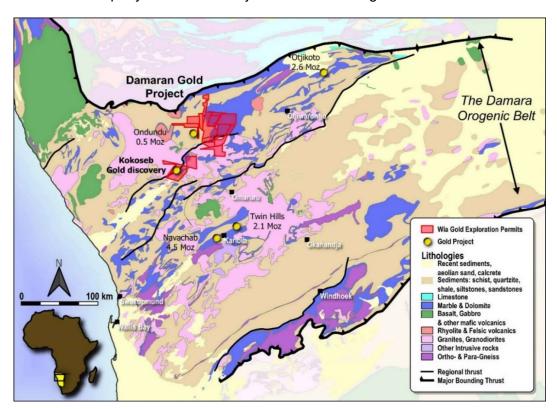


Figure 8 - Location of Wia's Namibia Projects

Appendix 1. Kokoseb – Location of RC drillholes

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KRC060	526087	7660391	1075	140	-60	145
KRC061	526459	7660534	1076	210	-55	270
KRC062	526052	7660446	1073	190	-60	145
KRC063	525978	7660390	1072	207	-60	143
KRC064	526383	7660446	1074	100	-55	270
KRC065	526509	7660738	1080	300	-55	270
KRC066	525945	7660434	1072	240	-60	143
KRC067	526417	7660740	1080	150	-55	270
KRC068	526290	7660470	1074	120	-55	120
KRC069	526236	7660496	1075	145	-55.3	124.3
KRC070	526247	7660742	1076	252	-60	90
KRC071	526181	7660525	1076	175	-60	118
KRC072	526261	7660653	1078	206	-60	89
KRC074	526557	7661069	1077	269	-60	197
KRC075	526363	7661131	1077	282	-60	197

Appendix 2. RC drill holes gold assays, using a cut-off grade of 0.2 g/t gold and max 2m consecutive internal waste material

Hole ID	From (m)	To (m)	Gold g/t
KRC060	59	60	0.228
KRC060	60	61	0.092
KRC060	61	62	0.096
KRC060	62	63	0.474
KRC060	66	67	1.95
KRC060	67	68	0.434
KRC060	68	69	0.173
KRC060	69	70	0.473
KRC060	70	71	0.735
KRC060	71	72	1.105
KRC060	72	73	0.576
KRC060	73	74	0.2
KRC060	77	78	0.561
KRC060	78	79	0.481
KRC060	79	80	0.228
KRC060	80	81	0.724
KRC060	81	82	0.335
KRC060	82	83	0.737
KRC060	83	84	1.15
KRC060	84	85	0.212
KRC060	85	86	0.25
KRC060	86	87	0.179
KRC060	87	88	0.398
KRC060	88	89	1.34
KRC060	89	90	0.256
KRC060	90	91	1.345
KRC060	91	92	3.82
KRC060	92	93	0.364
KRC060	93	94	2.7
KRC060	94	95	0.698
KRC060	95	96	0.169
KRC060	96	97	0.567
KRC060	97	98	0.591

Hole ID	From (m)	To (m)	Gold g/t
KRC060	98	99	0.972
KRC060	99	100	1.65
KRC060	100	101	0.822
KRC060	101	102	0.271
KRC060	102	103	2.41
KRC060	103	104	1.58
KRC060	104	105	1.815
KRC060	105	106	0.699
KRC060	106	107	1.395
KRC060	107	108	1.79
KRC060	108	109	1.88
KRC060	109	110	0.482
KRC060	110	111	0.621
KRC060	111	112	0.99
KRC060	112	113	0.462
KRC060	113	114	0.54
KRC060	114	115	0.448
KRC060	115	116	0.742
KRC060	116	117	0.474
KRC060	117	118	1.725
KRC060	118	119	0.776
KRC061	31	32	0.497
KRC061	32	33	0.005
KRC061	33	34	0.343
KRC061	120	121	0.296
KRC061	121	122	0.072
KRC061	122	123	0.483
KRC062	107	108	0.223
KRC062	108	109	0.046
KRC062	109	110	0.043
KRC062	110	111	1.34
KRC062	111	112	0.032
KRC062	112	113	0.391

Hole ID	From (m)	To (m)	Gold g/t
KRC062	113	114	0.953
KRC062	114	115	0.068
KRC062	115	116	0.054
KRC062	116	117	0.334
KRC062	117	118	0.205
KRC062	118	119	0.282
KRC062	119	120	0.134
KRC062	120	121	0.266
KRC062	121	122	0.044
KRC062	122	123	0.372
KRC062	123	124	0.233
KRC062	124	125	0.57
KRC062	125	126	1.03
KRC062	126	127	0.112
KRC062	127	128	1.1
KRC062	128	129	0.332
KRC062	133	134	0.226
KRC062	134	135	0.185
KRC062	135	136	0.954
KRC062 KRC062	136 137	137 138	0.033 0.31
KRC062 KRC062	138 139	139 140	2.46 0.477
KRC062	140	140	0.699
KRC062	141	141	0.019
KRC062	141	143	0.019
KRC062	143	143	0.718
KRC062	144	145	0.599
KRC062	158	159	0.489
KRC062	159	160	1.395
KRC062	160	161	4.21
KRC062	161	162	0.685
KRC062	162	163	0.792
KRC062	163	164	8.54
KRC062	164	165	0.243
KRC062	165	166	0.038
KRC062	166	167	0.657
KRC062	167	168	2.71
KRC062	168	169	0.843
KRC062	169	170	0.539
KRC062	170	171	0.541
KRC062	171	172	0.388
KRC062	172	173	0.772
KRC062	173	174	0.274
KRC063	92	93	0.213
KRC063	93	94	0.454
KRC063	94	95	0.462
KRC063	95	96	0.283
KRC063	96	97	0.23
KRC063	97	98	0.118
KRC063	98	99	0.355
KRC063	103	104	0.225
KRC063	104	105	0.009
KRC063	105	106	0.2
KRC063	106	107	0.202
KRC063	107	108	0.729
KRC063	108	109	0.885
KRC063	125	126	0.283
KRC063	126	127	0.04
KRC063	127	128	0.4

Hole ID	From (m)	To (m)	Gold g/t
KRC063	128	129	0.129
KRC063	129	130	0.326
KRC063	130	131	0.414
KRC063	131	132	0.221
KRC063	132	133	0.326
KRC063	133	134	0.752
KRC063	134	135	0.247
KRC063	135	136	0.05
KRC063	136	137	0.059
KRC063	137	138	0.276
KRC063	138	139	0.163
KRC063	139	140	0.606
KRC063	140	141	1.07
KRC063	145	146	0.653
KRC063	146	147	1.175
KRC063	147	148	1.155
KRC063	148	149	1.38
KRC063	149	150	3.72
KRC063	150	151	0.351
KRC063	151	152	0.626
KRC063	152	153	0.204
KRC063	153	154	1.03
KRC063	154	155	0.639
KRC063	155	156	3.29
KRC063	156	157	0.363
KRC063	157	158	0.224
KRC064	19	20	0.645
KRC064	20	21	0.711
KRC064	21	22	1.065
KRC064 KRC064	26 27	27 28	0.428 0.095
KRC064	28	29	0.102
KRC064	29	30	1.045
KRC065	234	235	0.538
KRC065	235	236	1.095
KRC065	236	237	1.01
KRC065	237	238	0.863
KRC065	238	239	0.375
KRC065	239	240	0.141
KRC065	240	241	0.267
KRC065	241	242	0.545
KRC066	124	125	0.35
KRC066	125	126	0.416
KRC066	126	127	0.043
KRC066	127	128	0.241
KRC066	128	129	0.516
KRC066	129	130	0.357
KRC066	130	131	0.179
KRC066	131	132	0.319
KRC066	162	163	0.536
KRC066	163	164	0.868
KRC066	164	165	0.199
KRC066	165	166	0.114
KRC066	166	167	7.35
KRC066	167	168	1.775
KRC066	168	169	2.57
KRC066	169	170	0.09
KRC066	170	171	1.175
KRC066	171	172	1.53
KRC066	172	173	0.587

Hole ID	From (m)	To (m)	Gold g/t
KRC066	173	174	0.222
KRC066	174	175	0.013
KRC066	175	176	0.406
KRC066	176	177	4.6
KRC066	177	178	1.775
KRC066	178	179	0.293
KRC067	77	78	0.901
KRC067	78	79	0.158
KRC067	79	80	1.79
KRC067	80	81	29
KRC067	81	82	9.34
KRC067	82	83	6.24
KRC067	83	84	5.55
KRC067	84	85	4.61
KRC067	85	86	3.16
KRC067	86	87	2.48
KRC067	87	88	0.539
KRC067	88	89	1.365
KRC067	89	90	2.83
KRC067	90	91	2.15
KRC067	91	92	2.18
KRC067	92	93	2.04
KRC067	93	94	1.13
KRC067	94	95	1.705
KRC067	95	96	1.45
KRC067	96	97	2.71
KRC067	97	98	2.6
KRC067	98	99	1.07
KRC067	99	100	1.92
KRC067	100	101	1.71
KRC067	101	102	1.125
KRC067	102	103	0.627
KRC067	103	104	1.44
KRC067	104	105	8.55
KRC067	105	106	0.409
KRC067	106	107	1.155
KRC067	107	108	2.63
KRC067	112	113	0.771
KRC067	113	114	1.15
KRC067	114	115	0.106
KRC067	115	116	0.771
KRC067	116	117	0.666
KRC067	117	118	0.104
KRC067	118	119	0.615
KRC067	119	120	1.7
	120	121	0.132
KRC067 KRC067	121 125	122	0.237
KRC067	125	126 127	0.286 0.1
KRC067	126	127	0.1
KRC067	127	129	0.421
KRC067	129	130	3.32
KRC067	133	134	0.288
KRC067	134	135	0.698
KRC067	135	136	0.698
KRC067	136	137	1.16
KRC067	137	138	1.16
KRC067	137	139	0.647
KRC067	139	140	0.48
KRC067	140	140	1.23
KNC007	140	141	1.23

Hole ID	From (m)	To (m)	Gold g/t
KRC067	141	142	0.144
KRC067	142	143	0.008
KRC067	143	144	0.39
KRC067	144	145	0.034
KRC067	145	146	0.49
KRC067	146	147	0.51
KRC068	1	2	0.321
KRC068	2	3	1.465
KRC068	3	4	1.03
KRC068	<u>4</u> 5	5	0.234
KRC068 KRC068	6	6 7	0.018 0.294
KRC068	7	8	0.056
KRC068	8	9	0.888
KRC068	9	10	0.789
KRC068	10	11	0.621
KRC068	11	12	0.309
KRC068	12	13	0.062
KRC068	13	14	0.144
KRC068	14	15	0.201
KRC068	15	16	0.7
KRC068	16	17	0.429
KRC068	17	18	0.436
KRC068	18	19	2.47
KRC068	19	20	1.43
KRC068	20	21	0.703
KRC068	21	22	0.148
KRC068	22	23	0.279
KRC068	23	24	0.391
KRC068	24	25	1.08
KRC068	25	26	0.335
KRC068	33	34	0.362
KRC068	34	35	0.756
KRC068	35	36	0.472
KRC068 KRC069	36 42	37 43	2.25 0.402
KRC069	43	44	0.402
KRC069	44	45	0.774
KRC069	48	49	0.598
KRC069	49	50	1.775
KRC069	50	51	0.84
KRC069	51	52	0.683
KRC069	52	53	0.168
KRC069	53	54	0.015
KRC069	54	55	0.448
KRC069	55	56	1.58
KRC069	56	57	1.4
KRC069	57	58	1.705
KRC069	58	59	1.15
KRC069	59	60	0.77
KRC069	60	61	0.322
KRC069 KRC069	61	62 63	0.349
KRC069	62 63	64	0.308 3.91
KRC069	64	65	0.92
KRC069	65	66	1.175
KRC069	66	67	0.494
KRC069	67	68	0.888
KRC069	68	69	1.13
KRC069	69	70	1.805

Hole ID	From (m)	To (m)	Gold g/t
KRC069	70	71	0.743
KRC069	71	72	0.974
KRC069	72	73	0.065
KRC069	73	74	3
KRC069	74	75	0.74
KRC069	75	76	0.679
KRC069	76	77	0.534
KRC069	77	78	0.103
KRC069	78	79	0.274
KRC069	82	83	0.447
KRC069	83	84	0.012
KRC069	84	85	0.01
KRC069	85	86	0.237
KRC070	144	145	0.238
KRC070	145	146	0.442
KRC070	146	147	0.47
KRC070	147	148	0.229
KRC070	148	149	0.239
KRC070	162	163	0.368
KRC070	163	164	0.543
KRC070	164	165	0.38
KRC070	165	166	1.11
KRC070	166	167	2.13
KRC070	167 168	168	0.467
KRC070 KRC070	169	169 170	0.996 0.246
KRC070	170	170	0.458
KRC070	171	172	0.438
KRC070	172	173	0.043
KRC070	173	174	0.81
KRC070	174	175	0.107
KRC070	175	176	0.305
KRC070	176	177	0.137
KRC070	177	178	0.035
KRC070	178	179	0.256
KRC070	179	180	0.419
KRC070	180	181	0.239
KRC070	181	182	0.273
KRC070	182	183	1.475
KRC070	183	184	1.025
KRC070	184	185	0.893
KRC070	185	186	1.135
KRC070	186	187	0.121
KRC070	187	188	0.173
KRC070	188	189	1.925
KRC070	189	190	1.13
KRC070	190	191	0.266
KRC070	191	192	4.63
KRC070	192	193	0.553
KRC070	193	194	1.655
KRC070	194	195	1.46
KRC070	195	196	3.12
KRC070	196	197	0.212
KRC070	197	198	0.573
KRC070	198	199	0.382
KRC070 KRC070	199	200 201	0.383
	200		1.9
KRC070 KRC070	201 202	202 203	0.381 0.502
KRC070	207	203	0.302
KNC070	207	200	0.27

Hole ID	From (m)	To (m)	Gold g/t
KRC070	208	209	0.199
KRC070	209	210	0.483
KRC070	210	211	0.112
KRC070	211	212	0.2
KRC070	212	213	0.197
KRC070	213	214	0.43
KRC070	214	215	0.325
KRC070	215	216	0.37
KRC070	216	217	0.4
KRC071	78	79	0.593
KRC071	79	80	0.113
KRC071	80	81	1.875
KRC071	81	82	0.797
KRC071	82	83	1.445
KRC071	83	84	0.055
KRC071 KRC071	84	85 86	0.319
KRC071	85 86	86 87	0.304 0.077
KRC071	86 87	88	0.077
KRC071	88	89	0.306
KRC071	89	90	0.519
KRC071	90	91	2.23
KRC071	91	92	0.161
KRC071	92	93	0.814
KRC071	93	94	1.02
KRC071	94	95	0.225
KRC071	100	101	0.288
KRC071	101	102	0.261
KRC071	102	103	0.333
KRC071	103	104	1.37
KRC071	104	105	1.25
KRC071	105	106	0.074
KRC071	106	107	1.16
KRC071	107	108	0.457
KRC071	108	109	0.215
KRC071	109	110	1.965
KRC071	110	111	0.242
KRC071	111	112	0.757
KRC071 KRC071	112	113	0.852
KRC071	113 114	114 115	0.496 5.02
KRC071	115	116	2.57
KRC071	116	117	2.58
KRC071	117	118	0.483
KRC071	118	119	0.531
KRC071	119	120	0.882
KRC071	120	121	1.4
KRC071	121	122	0.26
KRC071	122	123	0.649
KRC071	123	124	0.861
KRC071	124	125	0.351
KRC071	125	126	1.155
KRC071	126	127	1.755
KRC071	127	128	1.55
KRC071	128	129	0.976
KRC071	129	130	1.05
KRC071	130	131	0.453
KRC071	131	132	1.02
KRC071	132	133	1.645
KRC071	133	134	0.563

KRC071 134 135 0.631 KRC071 135 136 1.235 KRC071 136 137 0.446 KRC071 138 139 0.32 KRC072 73 74 0.737 KRC072 75 76 0.133 KRC072 75 76 0.133 KRC072 77 78 0.217 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 81 82 0.146 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 83 89 0.37 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 94 95 0.238 KRC	Hole ID	From (m)	To (m)	Gold g/t
KRC071 136 137 0.446 KRC071 137 138 0.324 KRC071 138 139 0.32 KRC072 73 74 0.737 KRC072 75 76 0.133 KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC07	KRC071	134	135	0.631
KRC071 137 138 0.324 KRC071 138 139 0.32 KRC072 73 74 0.737 KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 76 77 0.498 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 94 95 0.238 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 97 98 3 KRC072 <th>KRC071</th> <th>135</th> <th>136</th> <th>1.235</th>	KRC071	135	136	1.235
KRC071 138 139 0.32 KRC072 73 74 0.737 KRC072 74 75 0.332 KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 83 89 0.37 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 94 95 0.238 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 <th>KRC071</th> <th>136</th> <th>137</th> <th>0.446</th>	KRC071	136	137	0.446
KRC072 73 74 0.737 KRC072 74 75 0.332 KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 77 78 0.217 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 83 84 0.416 KRC072 83 84 0.416 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 97 98 3 KRC072 97 98 9 0.194 KRC072 99 100 1.285	KRC071	137	138	0.324
KRC072 74 75 0.332 KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 77 78 0.217 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 97 98 3 KRC072 97 98 3 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072	KRC071	138	139	0.32
KRC072 75 76 0.133 KRC072 76 77 0.498 KRC072 77 78 0.217 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 90 91 0.301 KRC072 95 96 0.041 KRC072 95 96 0.041 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 101 102 0.474 KRC072	KRC072	73	74	0.737
KRC072 76 77 0.498 KRC072 77 78 0.217 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 81 82 0.146 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 95 96 0.041 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 98 99 0.194 KRC072 100 101 0.806 KRC072 102 103 0.539 KRC072 <th>KRC072</th> <th>74</th> <th>75</th> <th>0.332</th>	KRC072	74	75	0.332
KRC072 77 78 0.217 KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 97 0.11 KRC072 96 97 0.11 0.00 KRC072 98 99 0.194 KRC072 98 99 0.194 KRC072 100 101 0.806 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23	KRC072	75	76	0.133
KRC072 78 79 0.062 KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 89 90 0.262 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072	KRC072	76	77	0.498
KRC072 79 80 0.511 KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072	KRC072	77	78	0.217
KRC072 80 81 0.557 KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KR	KRC072	78	79	0.062
KRC072 81 82 0.146 KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 106 107 2.12 KR	KRC072	79	80	0.511
KRC072 82 83 0.207 KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585	KRC072	80	81	0.557
KRC072 83 84 0.416 KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 100 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 107 2.12 KRC072 108 109 0.585 KRC072 108 109 0.585 KRC072 110	KRC072	81	82	0.146
KRC072 88 89 0.37 KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 100 101 0.806 KRC072 100 101 0.806 KRC072 100 101 0.806 KRC072 100 101 0.0806 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 6.23 KRC072 107 108 3.15 KRC072 108 109 0.585	KRC072	82	83	0.207
KRC072 89 90 0.262 KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 101 102 0.474 KRC072 101 102 0.474 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 6.23 KRC072 108 109 0.585 KRC072 108 109 0.585 KRC072 110 111 0.302 KRC072 111 112 1.775	KRC072	83	84	0.416
KRC072 90 91 0.301 KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 101 0.806 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 6.23 KRC072 107 108 3.15 KRC072 109 110 1.05 KRC072 109 110 1.05 KRC072 111 112 1.775 KRC072 113 114 0.09 <	KRC072	88	89	0.37
KRC072 94 95 0.238 KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 6.23 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 111 112 1.775 KRC072 113 114 0.09	KRC072	89	90	0.262
KRC072 95 96 0.041 KRC072 96 97 0.11 KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 105 106 6.23 KRC072 105 106 6.23 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178	KRC072	90	91	0.301
KRC072 96 97 0.11 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 108 109 0.585 KRC072 110 111 0.302 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.178 <	KRC072	94	95	0.238
KRC072 97 98 3 KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 103 104 0.114 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.42 KRC072 115 116 0.42	KRC072	95	96	0.041
KRC072 98 99 0.194 KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 108 109 0.585 KRC072 110 111 0.302 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.42 KRC072 115 116 0.42 KRC072 118 119 0.558	KRC072	96	97	0.11
KRC072 99 100 1.285 KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.42 KRC072 115 116 0.42 KRC072 118 119 0.558 KRC072 118 119 0.558	KRC072	97	98	3
KRC072 100 101 0.806 KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.42 KRC072 115 116 0.42 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 118 119 0.558	KRC072	98	99	0.194
KRC072 101 102 0.474 KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 115 116 0.42 KRC072 115 116 0.42 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 <	KRC072	99	100	1.285
KRC072 102 103 0.539 KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 KRC072 120 121 0.99 <	KRC072	100	101	0.806
KRC072 103 104 0.114 KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 112 113 0.3 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 KRC072 120 121 0.99 KRC072 121 122 1.05 <t< th=""><th>KRC072</th><th>101</th><th>102</th><th>0.474</th></t<>	KRC072	101	102	0.474
KRC072 104 105 5.34 KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 115 116 0.42 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 121 122 1.05 KRC072 121 122 1.05 KRC072 121 122 0.446	KRC072	102	103	0.539
KRC072 105 106 6.23 KRC072 106 107 2.12 KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231 </th <th>KRC072</th> <th>103</th> <th>104</th> <th>0.114</th>	KRC072	103	104	0.114
KRC072 106 107 2.12 KRC072 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 113 114 0.09 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 121 122 1.05 KRC072 121 122 0.446 KRC074 168 169 0.231	KRC072	104	105	5.34
KRC072 107 108 3.15 KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 118 119 0.558 KRC072 118 119 0.558 KRC072 120 121 0.99 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	105	106	6.23
KRC072 108 109 0.585 KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	106	107	2.12
KRC072 109 110 1.05 KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	107	108	3.15
KRC072 110 111 0.302 KRC072 111 112 1.775 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	108	109	0.585
KRC072 111 112 1.775 KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	109	110	1.05
KRC072 112 113 0.3 KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	110	111	0.302
KRC072 113 114 0.09 KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	111	112	1.775
KRC072 114 115 0.178 KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	112	113	0.3
KRC072 115 116 0.42 KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	113	114	0.09
KRC072 116 117 0.315 KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	114	115	0.178
KRC072 117 118 0.092 KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	115	116	0.42
KRC072 118 119 0.558 KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	116	117	0.315
KRC072 119 120 0.973 KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	117	118	0.092
KRC072 120 121 0.99 KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	118	119	0.558
KRC072 121 122 1.05 KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	119	120	0.973
KRC072 122 123 0.446 KRC074 168 169 0.231	KRC072	120	121	0.99
KRC074 168 169 0.231	KRC072	121	122	1.05
	KRC072	122	123	0.446
VDC074 450 470 0.010	KRC074	168	169	0.231
KKLU/4 169 170 0.048	KRC074	169	170	0.048
KRC074 170 171 0.031	KRC074	170	171	0.031
KRC074 171 172 0.817	KRC074			
KRC074 182 183 0.237	KRC074			
KRC074 183 184 0.076				

Hole ID	From (m)	To (m)	Gold g/t
KRC074	184	185	0.012
KRC074	185	186	0.232
KRC074	186	187	0.018
KRC074	187	188	0.039
KRC074	188	189	0.381
KRC074	204	205	0.819
KRC074	205	206	1.98
KRC074	206	207	2.13
KRC074	207	208	3.53
KRC074	208	209	2.58
KRC074	209	210	3.82
KRC074	210	211	2.28
KRC074	211	212	2.36
KRC074	212	213	1.385
KRC074	213	214	0.61
KRC074	214	215	0.551
KRC074	215	216	4.01
KRC074	216	217	3.22
KRC074	217	218	1.84
KRC074	218	219	1.215
KRC074	219	220	2.67
KRC074	220	221	2.52
KRC074	221	222	1.125
KRC074	222	223	1.915
KRC074	223	224	1.92
KRC074	224	225	1.135
KRC074	225	226	1.925
KRC074	226	227	2.99
KRC074	227	228	1.275
KRC074	228	229	1.485
KRC074	229	230	1.64
KRC074	230	231	1.49
KRC074	231	232	2.75
KRC074	232	233	0.497
KRC074	233	234	1.405
KRC074	234	235	1.125
KRC074	235	236	0.363
KRC074	236	237	0.337
KRC074	237	238	0.52
KRC074	238	239	0.351
KRC074	239	240	0.202
KRC074	240	241	0.462
KRC074	241	242	0.577
KRC074	242	243	1.245
KRC074	243	244	0.162
KRC074	244	245	0.367
KRC074	245	246	0.484
KRC074	246	247	1.03
KRC074	247	248	0.567
KRC074	248	249	0.362
KRC074	249	250	0.578
KRC074	250	251	1.035
KRC074	251	252	0.41
KRC074	252	253	0.54

Appendix 3. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was completed using a dedicated RC rig. Drillholes were angled at either -55° or -60° from surface, the dip depending on the depth of the target. RC sampling was undertaken along the entire length of the drill holes. Samples were collected from the rig cyclone which directly provides a bagged sample, to avoid any further manipulation; samples are typically 1m length and a circa 2-4kg weight. A duplicate sample was retained on site for future reference.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	RC drilling was carried out using a 140mm face sampling hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded. RC samples quality and recovery was excellent, with dry samples and consistent weight obtained.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 All drill holes were logged in the field by Company Geologists. On the RC holes, lithologies, alteration, minerals were recorded. Samples chips are collected and sorted into chip trays for future geological references. Drill holes were logged in full. Logging was

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg. The sampling technique is considered industry standard and effective for this style of drilling. Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. RC samples were assayed using method Au-AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RC drill holes reported here were planned on a set grid with spacing varying between 100m and 200m, depending on the sections. They should be considered as early-stage exploration holes and will require further infill.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	The measures taken to ensure sample security.	Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No reviews or audits have been conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

	•	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by WiaGold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the

Criteria	JORC Code explanation	Commentary
		tenements.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery.
Geology	Deposit type, geological setting and style of mineralisation.	Kokoseb mineralisation is hosted by sediments (biotite-schists) which have been intruded by several granitic phases. The gold anomaly appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	see tables in the appendix.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material.
Relationshi p between mineralisati on widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	 Results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known so intercepts are reported as they appear from the sampling.

Criteria	JORC Code explanation	Commentary
intercept lengths	lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All samples with assays have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data is being reported at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to the text in the announcement for information on follow-up and/or next work programs.