

BONANZA REE ASSAY RESULTS AT MINOS

UP TO 4.67% TREO & 2.23 % MREO

Highlights

- Assay results return <u>exceptional</u> high-grade clay hosted REE mineralisation in Minos trend
- Up to 40m thick zone of TREO enrichment in weathering profile
- Outstanding REE clay hosted intersections include:
 - 26m @ 4,767ppm TREO and 1,894ppm MREO from 46m (LLAC128) including
 - o **1m @ 46,721ppm TREO and 22,255ppm MREO** from 48m
 - o **5m @ 16,706ppm TREO** from 48m
 - o **7m @ 5,597ppm MREO** from 48m
 - 40m @ 1,047ppm TREO from 14m (LLAC149) including
 - o **14m @ 1,647ppm TREO and 380 ppm MREO** from 14m
 - 33m @ 1,250ppm TREO from 23m (LLAC091) including
 - o **13m @ 2,143ppm TREO and 461ppm MREO** from 25m
 - 29m @ 1,366ppm TREO from 22m (LLAC119) including
 - o **17m @ 1,771ppm TREO and 365ppm MREO** from 32m
 - > 33m @ 1,155ppm TREO from 25m (LLAC151)
- High grade MREO zone up to 45% of total TREO
- High grade MREO (>300ppm) horizontal layer within broader TREO zone confirmed
- Remaining Phase 1 Minos REE assay results (21 holes) expected early May 2023

Indiana Resources Limited (**ASX: IDA**) ('Indiana' or the 'Company') is pleased to announce that it has received assay results from a further 48 Air Core (AC) holes from the drilling program completed in December 2022 at the Minos REE Prospect within Indiana's 100% owned 5,713 km² Central Gawler Craton Exploration Project (**CGCP**) in South Australia (Figure 8).

Results returned <u>extremely high-grade clay hosted TREO and MREO</u> and confirmed the extent of REE mineralisation at Minos which <u>remains open in all directions</u> (Tables 1 & 2, Figures 1 to 3).

The December AC program comprised 72 holes completed for a total of 3,251m (ASX release 22 December 2022) and assays from the first 3 holes were received in January (ASX release dated 23 January 2023). Assays for the remaining 21 holes that tested for extensions across strike are pending and are expected to be received within the next few weeks.

502,704,819 Shares on Issue A\$0.05 Share Price 25.13M Market Cap

Executive Chair **Bob Adam**Non-executive Director **David Ward**Non-executive Director

Bronwyn Barnes

Kate Stoney CFO & Company Secretary **CONTACT US**

+61 (8) 6241 1870 info@indianaresources.com.au www.indianaresources.com.au Unit 9, 22 Ware Street, Thebarton SA 5031

Company Comment – Executive Chairman Bronwyn Barnes:

"These outstanding results confirm the significant thickness and extent of the clay hosted REE mineralisation at Minos and include bonanza high grade TREO and MREO intersections. The results also confirm the presence of a horizontal high grade MREO layer developed within the broader TREO zone. I look forward to receiving results from the remaining 21 holes which were designed to extend the Minos REE Prospect north and south across strike."

Commentary

The December AC program comprised 72 holes (LLAC080 to LLAC151) completed for a total of 3,251m. A total of 48 AC holes (LLAC086 to LLAC093 and LLAC112 to LLAC151) were completed in the central Minos trend (Sections A-A' to H-H') whilst a further 24 holes were completed in northern (18 holes, LLAC094 to LLAC111) and southern extensions (6 holes, LLAC080 to LLAC085) to Section C-C' testing the across strike extent of REE mineralisation (Figure 2).

Results have been received for the 48 AC holes in the central Minos trend/corridor with a number of holes intersecting very high grade REE mineralisation up to 46,721ppm (4.67%) TREO and 22,255ppm (2.23%) MREO (Tables 1 and 2). LLAC0128 intersected bonanza grade clay hosted mineralisation (Figures 1 to 3) including:

- 5 metres @ 16,706 ppm TREO from 48 metres and
- 7 metres @ 5,597ppm MREO from 48 metres

Generally, intercepts in all holes (Tables 3 and 4) confirmed the continuity of REE mineralisation along the section of the corridor tested by the AC programme (Figures 1 to 7). AC drilling is required between sections G-G' and H-H' (Figure 2) as drilling in this area was not completed due to a significant event rainfall restricting site access. Mineralisation is open in all directions.

All AC holes intersected a regolith profile including soil/calcrete, ferricrete, clay and saprolite above strongly weathered/oxidised granitic basement. Assay results (Tables 1 to 4, Figures 1 to 7) indicate a sub horizontal zone of significant REE enrichment that extends from about 20 metres below surface to depths of up to 75 metres. REE Assays were by mixed acid digest.

A horizontal zone of MREO enrichment defined by a 300ppm contour (Figure 1 and 4 to 7) has been confirmed in most confirming significant remobilisation of REE has occurred in the weathering profile. The zone of MREO enrichment is located within the saprolite/clay zone, up to 14 metres thick and at depths of about 20 to 80 metres below surface. Significant intercepts (Figure 2, Tables 3 and 4) in addition to those reported above include:

- 33 metres @ 1,250ppm TREO (23% MREO) from 33 metres (LLAC091)
- 25 metres @ 1,511ppm TREO (25% MREO) from 38 metres (LLAC113)
- 20 metres @ 1109ppm TREO (24% MREO) from 21 metres (LLAC117)
- 29 metres @ 1,366ppm TREO (20% MREO) from 22 metres (LLAC119)
- 22 metres @ 1,458ppm TREO (31% MREO) from 26 metres (LLAC130)
- 38 metres @ 840ppm TREO (29% MREO) from 22 metres (LLAC140)
- 16 metres @ 1,389ppm TREO (27% MREO) from 29 metres (LLAC142)
- 24 metres @ 1,376ppm TREO (27% MREO) from 27 metres (LLAC143)

Infill AC drilling is required to evaluate the distribution of the TREO and MREO enrichment zones and identify the extent of the high-grade mineralisation contained within each zone. The lateral extent of the REE mineralisation remains to be fully tested by AC drilling.

The TREO/MREO enriched saprolite/clay layer of the weathering profile consists of predominantly clay minerals plus lesser remnant quartz and feldspar grains. In order to determine the distribution of REE between the dominant clay fraction and the remnant quartz/feldspar fraction two holes (LLAC087 and LLAC085) were sampled at one metre intervals (30m to 40m and 44m to 70m respectively). The 36 samples were screened, and the two fractions submitted for REE analysis. Assays expected early May.

Table 1: TREO Highlights >= 5000 ppm

Hole ID	From (m)	To (m)	Length (m)	TREO ppm	%	MREO ppm	%
LLAC114	54	55	1	8838	0.88	3908	0.39
LLAC127	54	55	1	5540	0.55	1375	0.14
LLAC128	48	49	1	46721	4.67	22255	2.23
	49	50	1	13771	1.38	5916	0.59
	50	51	1	11067	1.11	4879	0.49
	51	52	1	5732	0.57	2175	0.22
	52	53	1	6237	0.62	2007	0.20
LLAC130	27	28	1	6908	0.69	2593	0.26

Table 2: MREO Highlights >= 1000 ppm

Hole ID	From (m)	To (m)	Length (m)	TREO ppm	%	MREO ppm	%
LLAC081	38	39	1	4431	0.44	1086	0.11
	44	45	1	3868	0.39	1375	0.14
LLAC089	33	34	1	2996	0.30	1305	0.13
LLAC091	29	30	1	4282	0.43	1179	0.12
LLAC113	30	31	1	3888	0.39	1118	0.11
	50	51	1	4349	0.43	2074	0.21
LLAC114	54	55	1	8838	0.88	3908	0.39
LLAC121	32	33	1	4438	0.44	1464	0.15
LLAC127	54	55	1	5540	0.55	1375	0.14
LLAC128	48	49	1	46721	4.67	22255	2.23
	49	50	1	13771	1.38	5916	0.59
	50	51	1	11067	1.11	4879	0.49
	51	52	1	5732	0.57	2175	0.22
	52	53	1	6237	0.62	2007	0.20
	63	64	1	2985	0.30	1181	0.12
LLAC129	50	51	1	3457	0.35	1061	0.11
LLAC130	27	28	1	6908	0.69	2593	0.26
	28	29	1	3331	0.33	1125	0.11

Upcoming News Flow

April 2023 – Results from Heli/TEM Survey – Harris Greenstone Domain

April/May 2023 – Drill sample sizing and assay as precursor to metallurgical test work

April/May 2023 - Identify zones of REE enrichment for follow up AC programs

May 2023 – AC gold assay results

May 2023 – Drill sample sizing assay results

June 2023 – Phase 2 REE AC drilling

Technical information included in this announcement has previously been provided to the market in releases dated:

4th August 2020 Indiana to Acquire South Australia Gold Projects

28th September 2020
14th June 2022
2nd August 2022
10th August 2022

8th September 2022 High-grade Rare Earth Mineralisation Confirmed Strike Zone Extended to Over 4.5km

19th September 2022 Final Assays confirm Significant REE Discovery – Central Gawler Craton

1st December 2022 REE Aircore Drilling Underway – Minos

14th December 2022 Multiple New REE Exploration Targets Identified
 22nd December 2022 Completion of REE AC & Gold RC Drilling – Minos
 23rd January 2023 New Significant REE Discovery South of Minos

Ends

This announcement is authorised for release to the market by the Executive Chairman of Indiana Resources Limited with the authority from the Board of Directors.

For further information, please contact:

Bronwyn Barnes Kate Stoney

Executive Chairman Company Secretary T: +61 (0) 417 093 256 T: +61 (0) 408 909 588

To find out more, please visit <u>www.indianaresources.com.au</u>

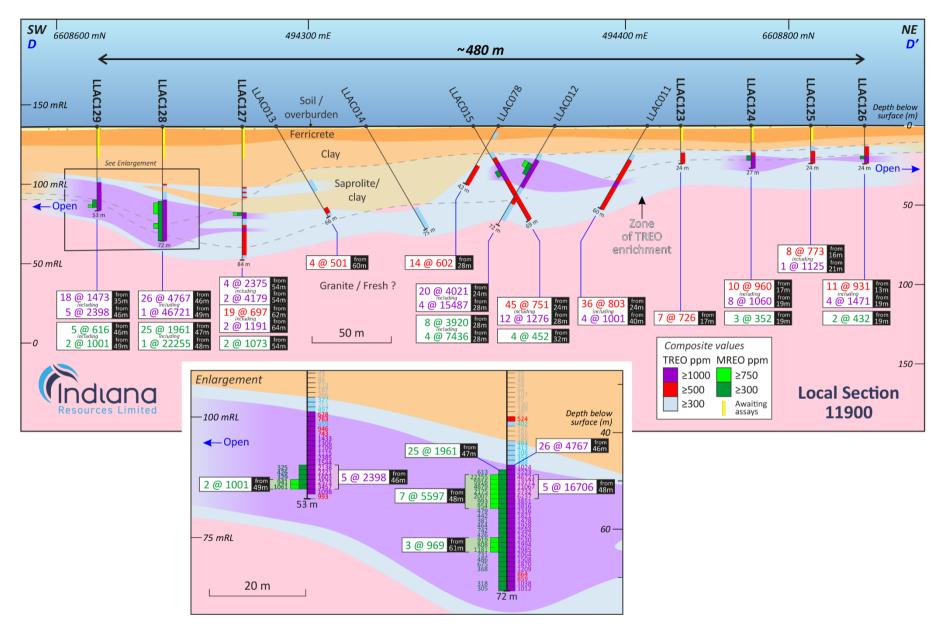


Figure 1: Minos REE Prospect Cross Section D-D'

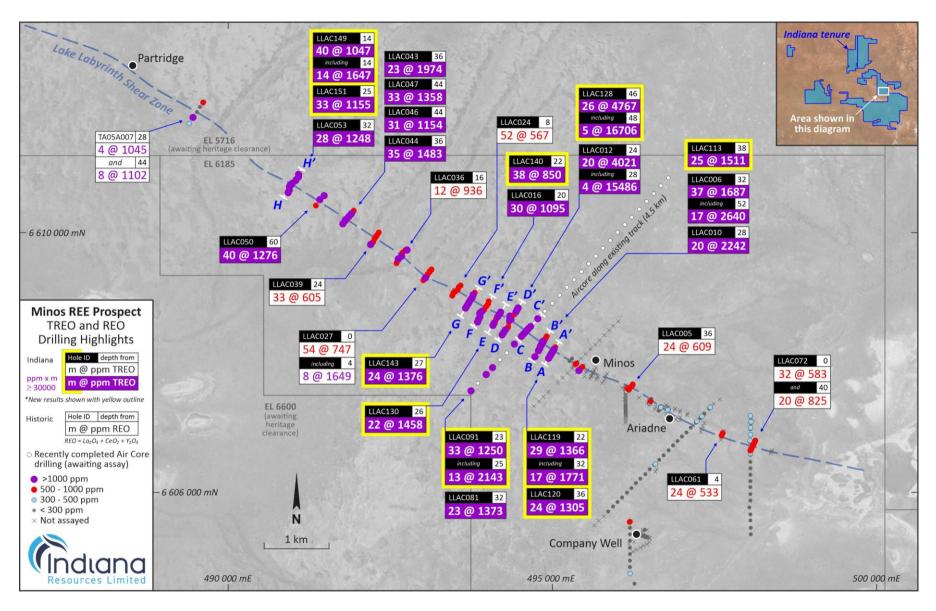


Figure 2: Minos REE Prospect Overview - TREO Highlights

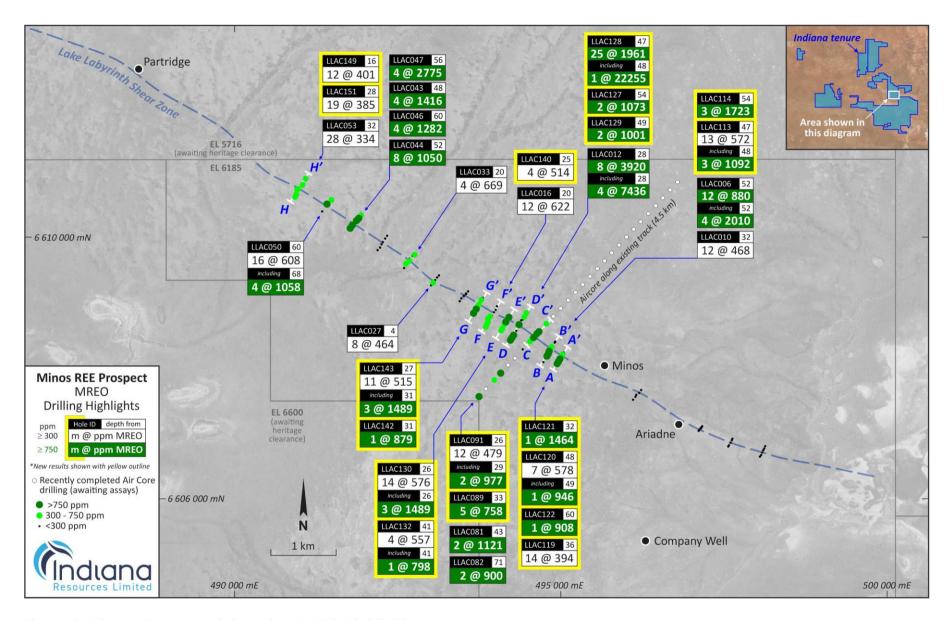
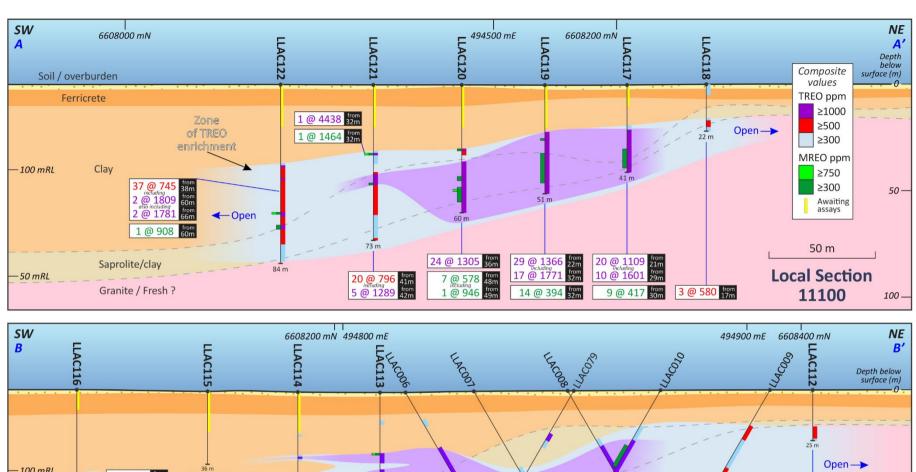



Figure 3: Minos REE Prospect Overview MREO Highlights

-100 mRL ABANDONED 3 @ 896 from 42m 3 @ 968 from 48m 50 -**←**Open 20 @ 2242 from 28m 16 @ 2639 from 32m 6 @ 641 from 18m 37 @ 1687 from 32m 17 @ 2640 from 52m 9@873 12 @ 468 from 32m 6 @ 2738 5@1349 50 m 4 @ 7039 from 52m 3 @ 4634 from 54m 12 @ 1284 from 48m 25@1511 -50 mRL 8 @ 1570 from 52m **Local Section** 12 @ 880 from 52m 4 @ 2010 from 52m 12 @ 817 from 66m 2 @ 1043 from 66m 3 @ 1703 from 54m 13 @ 572 4@1544 100 -4 @ 542 from 52m 1 @ 3908 from 54m 3 @ 1092 20 @ 1170 from 32m 11300

Figure 4: Minos REE Prospect Cross Sections A-A' and B-B'

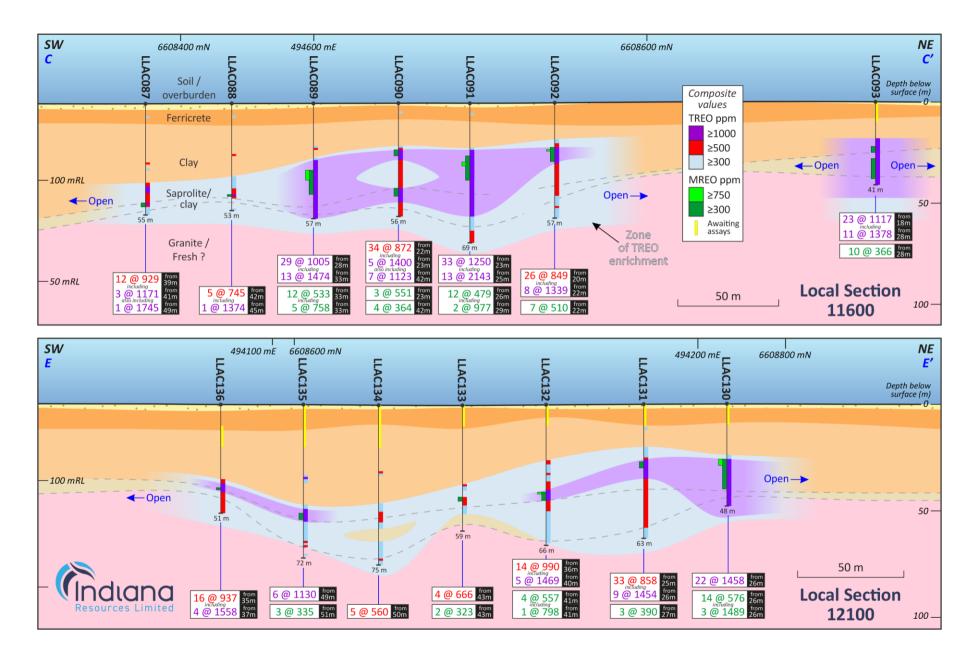


Figure 5: Minos REE Prospect Cross Sections C-C' and E-E'

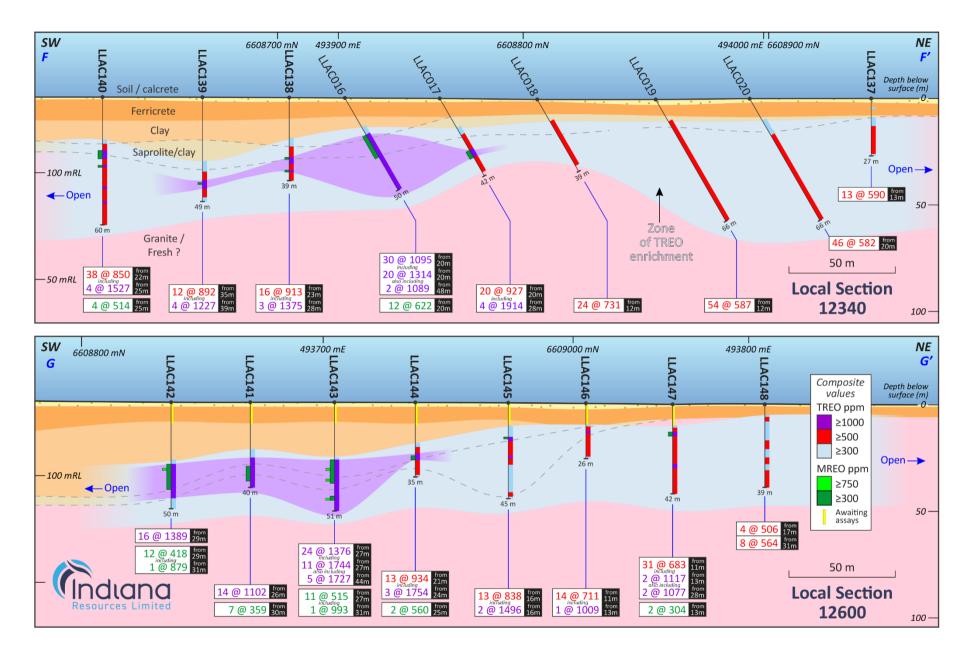


Figure 6: Minos REE Prospect Cross Sections F-F' and G-G'

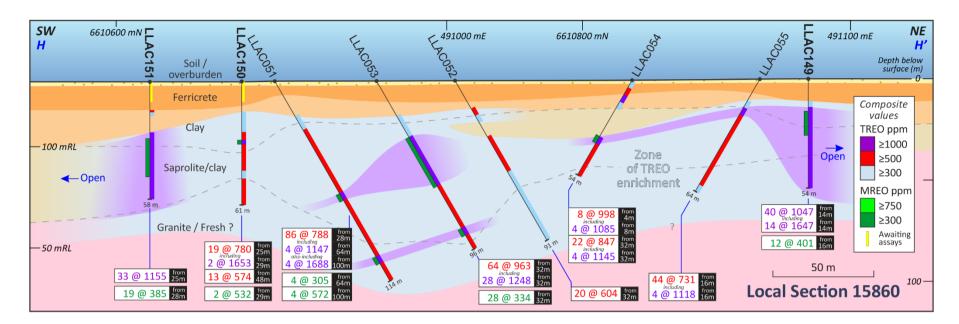


Figure 7: Minos REE Prospect Cross Section H-H'

Background

The Gawler Craton has recently attracted significant interest for its ionic absorption/clay-hosted rare earth element exploration opportunities. IDA completed a review of historic Reverse Circulation (RC) and AC drilling that identified elevated REE in several areas including Minos (refer release dated 14 June 2022).

Subsequent analysis of sample pulps, retained from previous gold AC drilling completed in 2021, for the TREO suite identified significant zones of clay hosted TREO mineralisation (refer ASX announcements dated 2nd & 10th August 2022, and 8th & 19th September 2022).

lonic absorption, clay-hosted REE mineralisation is derived from weathering of underlying basement rocks that are subsequently enriched in the regolith profile, forming a shallow, continuous, subhorizontal zone.

The source of IDA's REE is not well understood at this stage. IDA however currently holds the view that the REE mineralisation within the Central Gawler Project occurs in the weathered profile (regolith) associated with the alkaline Hiltaba Granite and gneissic basement rocks which are enriched in REE and are prevalent in the extensive northern portion of the Indiana's tenure.

Significant previous results (refer to previous ASX releases detailed above) include:

- 37 metres @ 1,687ppm TREO (24.9% Magnet REO) from 32 metres (LLAC006)
- 12 metres @ 1,284ppm TREO (25.8% Magnet REO) from 48 metres (LLAC007)
- 20 metres @ 1,170ppm TREO (16.1% Magnet REO) from 32 metres (LLAC008)
- 20 metres @ 2,242ppm TREO (14.7% Magnet REO) from 28 metres (LLAC010)
- 20 metres @ 4,021ppm TREO (41.9% Magnet REO) from 24 metres (LLAC012)
- 30 metres @ 1,095ppm TREO (32.5% Magnet REO) from 20 metres (LLAC016)
- 19 metres @ 2,280ppm TREO (27.7% Magnet REO) from 36 metres (LLAC043)
- 31 metres @ 1,607ppm TREO (29.1% Magnet REO) from 40 metres (LLAC044)
- 24 metres @ 1,002ppm TREO (36.5% Magnet REO) from 44 metres (LLAC045)
- 31 metres @ 1,154ppm TREO (31.8% Magnet REO) from 44 metres (LLAC046)
- 33 metres @ 1,358ppm TREO (38.1% Magnet REO) from 44 metres (LLAC047)
- 40 metres @ 1,276ppm TREO (28.1% Magnet REO) from 48 metres (LLAC050)
- 86 metres @ 788ppm TREO (28.5% Magnet REO) from 28 metres (LLAC051)
- 64 metres @ 963ppm TREO (27.5% Magnet REO) from 32 metres (LLAC053)
- 8 metres @ 999ppm TREO (26.5% Magnet REO) from 4 metres (LLAC054)
- 24 metres @ 1086ppm TREO (31.7% Magnet REO) from 40 metres (LLAC056)
- 23 metres @ 1373ppm TREO (24.6% Magnet REO) from 32 metres (LLAC081)
- 17 metres @ 1619ppm TREO (28.3% Magnet REO) from 64 metres (LLAC082)

Some Facts About Rare Earth Elements

Rare earths are Critical for the Electric Revolution

The group of metals referred to as rare earth elements (REE) comprises the 15 elements of the lanthanide series. Metals in the lanthanide series are: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu). In addition, yttrium (Y) and scandium (Sc) are often grouped with the lanthanides and referred to as REE.

- **REO** are Rare Earths Oxides oxides of the rare earth's elements. Grades of rare earths oxides are commonly quoted as parts per million (ppm) or percent (%) of TREO where:
- **TREO** is the sum of the oxides of the so-called heavy rare earths elements (HREO) and the so-called light rare earths elements (LREO).
- **HREO** is the sum of the oxides of the heavy rare earth elements: Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. The HREO are less common than the LREO and are generally of higher value.
- LREO is the sum of the oxides of the light rare earth elements: La, Ce, Pr, Nd and Sm.
- **CREO** is a set of oxides the US Department of Energy, in December 2011 defined as critical due to their importance to clean energy requirements and their supply risk. They are Nd, Dy, Eu, Y and Tb.
- **MREO** is a set of oxides that are referred to as the Magnetic Rare Earth Oxides. They are Nd, Pr, Dy, Tb, Gd, Ho and Sm.

Permanent magnets for EVs and wind turbines require four key REEs: Neodymium, Praseodymium, Dysprosium and Terbium. These account for 94% of the total REO market by value*. These rare-earth magnets are 10 times the strength for the same weight as conventional magnets, and there is currently no known substitute.

Global production dominated by China since the late 1990s. China currently produces 94% of permanent rare earth magnets.

*Source: S& P Global: Market Intelligence

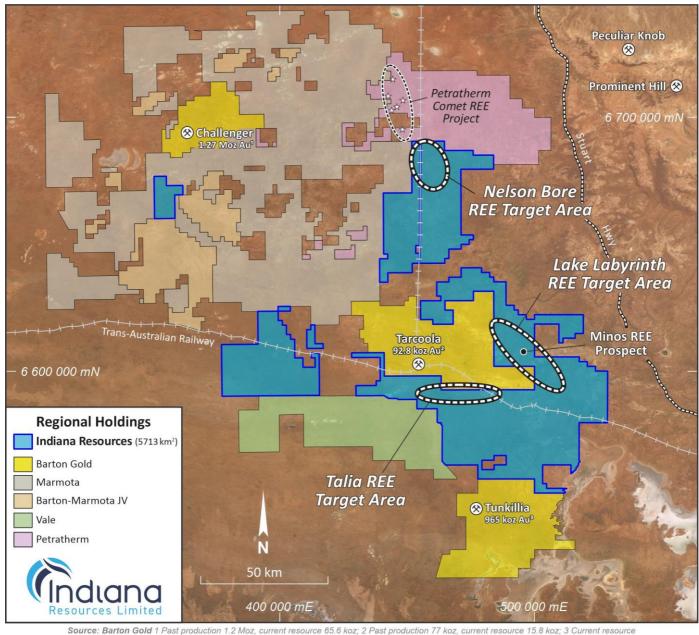


Figure 8: Indiana's Central Gawler Craton Exploration project Area and adjacent competitor's holdings

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr David Ward, a Competent Person who is a Director of the Company. Mr Ward is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Ward consents to the inclusion of the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements.

Forward Looking Statements

Indiana Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Indiana Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it. This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimate.

Table 3: Significant TREO Results >= 500 ppm

						MREO %			h Value MRE			Nd2O3 +
Hole ID	From	То	Length	TREO ppm	MREO ppm	of TREO	Nd2O3 ppm	Pr6O11 ppm	Tb4O7 ppm	Dy2O3 ppm	% of MREO	PR6O11 9 of TREO
AC080, L	LAC081 c	and LL	AC082 resu	ults previously re	eleased 23 rd Ja	nuary 2023	PP	PP		PP		0
LAC080	12	19	7	763	150	20%	77	21	2	14	76%	13%
incl	13	15	2	1420	246	17%	113	29	5	31	72%	10%
	34	57	23	734	152	21%	96	29	1	5	86%	17%
incl	48	51	3	1047	292	28%	187	54	2	8	86%	23%
LAC081	11	12	1	500	112	22%	65	18	1	7	82%	17%
	32	55	23	1373	338	25%	208	69	2	10	86%	20%
incl	35	47	12	1994	508	25%	315	106	3	13	86%	21%
LAC082	18	19	1	680	91	13%	54	17	1	4	83%	10%
	60	61	1	528	89	17%	50	16	1	6	83%	13%
	64	81	17	1619	458	28%	281	90	3	15	85%	23%
LAC083				,	g Results							
LAC084					g Results							
LAC085					g Results	1				1		
LAC086	48	50	2	1019	211	21%	128	47	1	8	88%	17%
	64	78	14	674	173	26%	102	31	2	8	82%	20%
LAC087	29	30	1	601	210	35%	127	42	1	7	85%	28%
	39	51	12	929	231	25%	146	52	1	4	88%	21%
incl	41	44	3	1171	233	20%	147	58	1	3	89%	17%
incl	49	50	1	1745	691	40%	447	138	3	14	87%	33%
LAC088	25	26	1	625	110	18%	68	27	1	3	89%	15%
	42	47	5	745	240	32%	151	44	2	7	85%	26%
incl	45	46	1	1374	523	38%	335	91	3	15	85%	31%
LAC089	22	23	1	601	140	23%	86	30	1	5	87%	19%
	28	57	29	1005	312	31%	190	58	2	11	84%	25%
incl	28	41	13	1474	465	32%	289	88	3	13	85%	26%
LAC090	22	56	34	872	230	26%	138	41	2	11	83%	21%
incl	23	28	5	1400	424	30%	262	77	3	16	85%	24%
incl	42	49	7	1123	318	28%	185	55	3	18	82%	21%
LAC091	23	56	33	1250	287	23%	174	52	2	12	84%	18%
incl	25	38	13	2143	461	22%	282	85	4	18	84%	17%
	63	69	6	549	147	27%	88	25	1	7	83%	21%
LAC092	20	46	26	849	265	31%	158	48	2	12	83%	24%
incl	22	30	8	1339	480	36%	290	87	4	19	83%	28%
	51	52	1	588	159	27%	95	28	1	8	83%	21%
LAC093	18	41	23	1117	286	26%	173	49	2	13	83%	20%
incl	28	39	11	1378	358	26%	215	59	3	17	82%	20%
LAC094					g Results							
LAC095					g Results							
LAC096					g Results							
LAC097					g Results							
LAC098				Awaiting	g Results							
LAC099				Awaiting	g Results							
LAC100				Awaiting	g Results							
LAC101				Awaiting	g Results							
LAC102					g Results		·					
LAC103				Awaiting	g Results							
LAC104					g Results							
LAC105				Awaiting	g Results							
LAC106				Awaiting	g Results							
LAC107					g Results							
LAC108					g Results						•	
LAC109					g Results							
LAC110					g Results							
LAC111					g Results							
LAC112	18	24	6	641	151	24%	88	27	1	8	83%	18%
LAC113	30	35	5	1349	335	25%	213	79	1	7	90%	22%
-	38	63	25	1511	392	26%	237	99	2	9	89%	22%
LAC114	32	33	1	1275	295	23%	164	81	2	9	87%	19%
	43	52	9	873	124	14%	76	22	1	5	85%	11%
incl	50	52	2	1493	185	12%	115	35	i	6	85%	10%
	54	60	6	2738	936	34%	623	198	4	15	90%	30%
incl	54	57	3	4634	1703	37%	1140	366	6	25	90%	33%
LAC115					doned	/0					. 370	, 00,0
LAC116	42	45	3	896	119	13%	70	26	1	5	85%	11%
incl	43	44	1	1022	106	10%	62	25	i	4	86%	8%
11101	48	51	3	968	146	15%	85	31	i	7	85%	12%
incl	48	49	1	1501	171	11%	102	43	i	5	89%	10%
11 101	66	78	12	817	177	22%	102	33	i	7	84%	17%
		68	2	1043	263	25%	160	49	2	10	84%	20%
incl												
incl LAC117	66 21	41	20	1109	269	24%	155	50	3	14	82%	18%

								Hia	h Value MRE	0		Nd2O3 +
Hole ID	From	То	Length	TREO ppm	MREO ppm	MREO % of TREO	Nd2O3	Pr6O11	Tb4O7	Dy2O3	% of	PR6O11 %
		00			005		ppm	ppm	ppm	ppm	MREO	of TREO
incl LLAC118	29 17	39 20	10	1601 580	395 123	25% 21%	230 72	74 25	3	19 6	83% 84%	19% 17%
LLAC119	22	51	29	1366	280	20%	170	69	1	5	88%	17%
incl	32	49	17	1771	365	21%	222	89	2	7	87%	18%
LLAC120	30	33	3	953	204	21%	125	43	1	7	86%	18%
incl	30 36	31 60	2 4	1571 1305	344 324	22% 25%	211 199	73 76	2 2	10 6	86% 87%	18% 21%
incl	36	39	3	1555	237	15%	147	47	1	7	85%	12%
incl	42	54	12	1584	437	28%	266	108	2	7	88%	24%
incl	59	60	1	1137	257	23%	162	56	1	5	87%	19%
LLAC121	32 41	33 61	1 20	4438 796	1464 185	33% 23%	988 113	306 41	5 1	26 5	90% 86%	29% 19%
incl	42	47	5	1289	242	19%	143	59	i	6	87%	16%
	72	73	1	683	160	23%	98	30	1	6	84%	19%
LLAC122	38	75	37	745	192	26%	115	37	1 1	8 7	84%	20%
incl incl	38 44	39 45	1	1421 1065	213 251	15% 24%	132 131	43 51	2	11	86% 77%	12% 17%
incl	60	62	2	1809	600	33%	384	129	3	15	88%	28%
incl	66	68	2	1781	475	27%	270	117	3	15	85%	22%
LLAC123	17	24	7	726	200	28%	119	35	2	10	83%	21%
LLAC124 incl	17 19	27 27	10 8	960 1060	258 281	27% 27%	153 167	44 48	2 3	12 14	82% 82%	21% 20%
LLAC125	16	24	8	773	204	26%	123	36	2	9	83%	20%
incl	21	22	1	1125	276	25%	166	46	3	12	82%	19%
LLAC126	13	24	11	931	226	24%	137	39	2	11	83%	19%
incl LLAC127	19 38	23 39	1	1471 502	338 51	23% 10%	207 26	58 14	3 1	14	83% 89%	18% 8%
LLACIZI	41	42	i	794	228	29%	152	42	i	6	88%	24%
	44	45	1	566	152	27%	79	26	2	17	81%	19%
in al	54	58	4	2375	613	26%	371	117	5	23	84%	21%
incl	54 62	56 81	2 19	4174 697	1073 168	26% 24%	655 103	209 32	7 1	37 6	85% 85%	21% 19%
lincl	64	66	2	1191	298	25%	180	54	2	13	84%	20%
LLAC128	36	37	1	524	59	11%	32	14	1	5	88%	9%
inal	46 48	72 53	26 5	4767 16706	1894 7447	40% 45%	1183 4701	357 1376	12 47	54 203	85% 85%	32% 36%
incl LLAC129	35	53	18	1473	324	22%	195	65	2	11	84%	18%
incl	46	51	5	2398	616	26%	373	130	4	17	85%	21%
LLAC130	26	48	22	1458	454	31%	275	81	4	19	83%	24%
incl LLAC131	26 25	42 58	16 33	1692 858	539 181	32% 21%	327 108	97 33	2	22 8	83% 83%	25% 16%
incl	26	35	9	1454	252	17%	151	48	2	10	84%	14%
LLAC132	26	28	2	521	138	26%	80	26	1	7	83%	20%
	32	33	1	565	135	24%	74	23	2	10	80%	17%
incl	36 40	50 45	14 5	990 1469	290 489	29% 33%	175 297	53 93	2	11 15	83% 84%	23% 27%
LLAC133	37	38	1	680	98	14%	61	18	1	4	85%	12%
	43	47	4	666	261	39%	162	46	2	9	84%	31%
LLAC134	31	32	1	523	132	25%	71	23	2	12	82%	18%
	50 72	55 73	5 1	560 733	139 142	25% 19%	84 92	24 31	1	7 2	83% 89%	19% 17%
LLAC135	34	35	1	1124	254	23%	139	42	3	21	80%	16%
	49	55	6	1130	274	24%	168	51	2	10	85%	19%
	64	65	1	568 513	120	21%	72	24	1 1	4	85%	17%
LLAC136	66 35	67 51	1 16	513 937	113 143	22% 15%	68 87	23 23	1	7	85% 83%	18% 12%
incl	37	41	4	1558	180	12%	111	30	2	8	84%	9%
LLAC137	13	26	13	590	159	27%	95	29	1	7	83%	21%
LLAC138	23	39	16	913	216	24%	130	39	2	10	83%	18%
incl incl	28 34	31 35	3 1	1375 1856	292 371	21% 20%	173 232	49 79	3 2	15 9	82% 87%	16% 17%
LLAC139	35	47	12	892	217	24%	128	39	2	10	82%	19%
incl	39	43	4	1227	275	22%	162	49	3	12	82%	17%
LLAC140	22 25	60 29	38	850 1527	244 514	29% 34%	145 311	45 99	2 4	10 17	83% 84%	22% 27%
incl incl	25 32	33	4 1	1408	389	34% 28%	236	73	3	17	84%	27%
incl	42	43	1	1036	284	27%	169	51	2	13	83%	21%
incl	49	50	1	1081	222	21%	119	34	3	19	79%	14%
LLAC141	26 29	40	14	1102	288 370	26%	180 230	54	2	10 12	85%	21%
LLAC142 LLAC143	27	45 51	16 24	1389 1376	370	27% 27%	230	69 64	3	18	85% 83%	22% 21%
incl	27	38	11	1744	515	30%	309	84	5	25	82%	23%
incl	44	49	5	1727	393	23%	243	77	3	15	86%	19%
LLAC144	21	34	13	934	233	25%	146	43	1	7	85%	20%
incl	24	27	3	1754	442	25%	278	83	3	12	85%	21%

						MREO %		Hig	h Value MRE)		Nd2O3 +
Hole ID	From	То	Length	TREO ppm	MREO ppm	of TREO	Nd2O3	Pr6O11	Tb4O7	Dy2O3	% of	PR6O11 %
						oi iklo	ppm	ppm	ppm	ppm	MREO	of TREO
LLAC145	16	29	13	838	210	25%	126	38	2	9	84%	20%
incl	16	18	2	1496	310	21%	199	55	2	10	86%	17%
incl	25	26	1	1091	245	22%	143	49	2	11	84%	18%
	42	44	2	628	165	26%	95	32	2	9	83%	20%
LLAC146	11	25	14	711	164	23%	96	33	1	7	84%	18%
incl	13	14	1	1009	190	19%	115	41	1	6	86%	16%
LLAC147	11	42	31	683	182	27%	106	35	2	8	83%	21%
incl	13	15	2	1117	304	27%	191	58	2	9	85%	22%
incl	28	30	2	1077	282	26%	177	55	2	8	86%	22%
LLAC148	6	8	2	597	147	25%	86	30	1	6	84%	19%
	17	21	4	506	136	27%	79	26	1	7	83%	21%
	25	28	3	550	139	25%	80	28	1	7	84%	20%
	31	39	8	564	147	26%	86	30	1	6	84%	20%
LLAC149	14	54	40	1047	254	24%	154	52	2	10	86%	20%
incl	14	28	14	1647	380	23%	238	81	2	11	87%	19%
LLAC150	25	44	19	780	227	29%	135	40	2	10	82%	22%
incl	29	31	2	1653	532	32%	335	85	4	22	84%	25%
	48	61	13	574	163	28%	96	32	1	6	83%	22%
LLAC151	14	15	1	560	103	18%	49	13	2	12	74%	11%
	25	58	33	1155	317	27%	186	64	3	14	84%	22%
incl	28	49	21	1327	371	28%	220	74	3	15	84%	22%
incl	52	53	1	1049	264	25%	149	56	2	13	84%	20%

Table 4: Significant MREO Results >= 300 ppm

								Hig	h Value MRE	0		Nd2O3 +
Hole ID	From	То	Length	TREO ppm	MREO ppm	MREO % of TREO	Nd2O3 ppm	Pr6O11 ppm	Tb4O7 ppm	Dy2O3 ppm	% of MREO	PR6O11 % of TREO
LLAC080,	LLAC081	and LL	AC082 resi	ults previously r	eleased 23 rd Ja	nuary 2023						
LLAC080	48	49	1	1198	352	29%	225	64	2	10	86%	24%
LLAC081	37	45	8	2366	638	27%	396	136	3	15	86%	22%
incl	38	39	1	4431	1086	25%	672	245	5	22	87%	21%
incl	43	45	2	3240	1121	35%	692	250	6	23	87%	29%
LLAC082	67	81	14	1709	509	30%	312	100	3	1 <i>7</i>	85%	24%
incl	71	73	2	2597	900	35%	559	195	5	22	87%	29%
LLAC083					g Results							
LLAC084					g Results							
LLAC085				Awaitin	g Results							
LLAC086				N								
LLAC087	49	51	2	1336	533	40%	341	107	3	12	87%	33%
LLAC088	45	46	1	1374	523	38%	335	91	3	15	85%	31%
LLAC089	33	45	12	1372	553	40%	343	103	4	17	84%	32%
incl	33	38	5	1875	758	40%	477	144	4	19	85%	33%
LLAC090	23	26	3	1639	551	34%	344	101	4	19	85%	27%
	42	46	4	1210	364	30%	219	66	3	16	83%	23%
LLAC091	26	38	12	2213	479	22%	293	88	4	18	84%	17%
incl	29	31	2	3846	977	25%	611	189	6	28	85%	21%
LLAC092	22	29	7	1387	510	37%	310	94	4	19	84%	29%
incl	23	24	1	1997	787	39%	490	153	5	23	85%	32%
LLAC093	22	25	3	1241	304	24%	188	55	2	11	84%	20%
	28	38	10	1413	366	26%	220	61	3	17	82%	20%
LLAC094					g Results							
LLAC095					g Results							
LLAC096					g Results							
LLAC097					g Results							
LLAC098					g Results							
LLAC099					g Results							
LLAC100					g Results							
LLAC101					g Results							
LLAC102					g Results							
LLAC103					g Results							
LLAC104					g Results							
LLAC105					g Results							
LLAC106	-				g Results							
LLAC107		Awaiting Results										
LLAC108	1	Awaiting Results										
LLAC109	1	Awaiting Results										
LLAC110	1	Awaiting Results										
LLAC111	-	Awaiting Results										
LLAC112		NSI 2000 1110 1007 1710 1007 1110 1110 1110							10	0177	0.47	
LLAC113	30	31		3888	1118	29%	743	250	4	19	91%	26%
	40	41	10	1833	303	17%	170	90	1	7	89%	14%
inal	47 48	60 51	13 3	1842 2709	572 1092	31%	348 718	144 236	2 4	13 23	89%	27% 35%
incl	40	51	3	2/07	1072	40%	/10	236	4	23	90%	33%

						MDEO 97		Hig	h Value MRE)		Nd2O3 +
Hole ID	From	То	Length	TREO ppm	MREO ppm	MREO % of TREO	Nd2O3	Pr6O11	Tb4O7	Dy2O3	% of MREO	PR6O11 % of TREO
LLAC114	54	57	3	4634	1703	37%	ppm 1140	ppm 366	ppm 6	ppm 25	90%	33%
incl	54	55	1	8838	3908	44%	2718	785	12	49	91%	40%
LLAC115	0.	- 00			doned	,0	27.10	7 00		.,	7.70	.070
LLAC116					SI							
LLAC117	30	39	9	1657	417	25%	242	79	4	19	83%	19%
LLAC118				N	SI							
LLAC119	25	26	1	1607	362	23%	206	121	1	4	92%	20%
	32	46	14	1895	394	21%	238	98	2	8	88%	18%
LLAC120	30	31	1	1571	344	22%	211	73	2	10	86%	18%
	43	45	2	1629	316	19%	202	72	1	4	88%	17%
inal	48 49	55 50	7	1776 2840	578 946	33% 33%	346 552	146 263	3 4	11 15	87% 88%	28% 29%
incl LLAC121	32	33	1	4438	1464	33%	988	306	5	26	90%	27%
LLACIZI	46	47	1	2200	523	24%	304	145	2	9	88%	20%
LLAC122	60	61	1	2551	908	36%	602	185	4	20	89%	31%
LL/ (O122	66	68	2	1781	475	27%	270	117	3	15	85%	22%
LLAC123				N								
LLAC124	19	22	3	1108	352	32%	210	59	3	16	82%	24%
LLAC125		•		N	SI						•	•
LLAC126	19	21	2	1907	432	23%	267	74	3	17	84%	18%
LLAC127	54	56	2	4174	1073	26%	655	209	7	37	85%	21%
LLAC128	47	72	25	4916	1961	40%	1225	370	12	55	85%	32%
incl	48	55	7	13028	5597	43%	3523	1042	35	153	85%	35%
incl	61	64	3	2503	969	39%	584	209	6	26	85%	32%
LLAC129	46	51	5	2398	616	26%	373	130	4	17	85%	21%
incl	49	51	2	3015	1001	33%	599	218	6	27 23	85%	27%
LLAC130	26 26	40 29	14 3	1784 4134	576 1489	32% 36%	350 928	104 282	5 10	23 44	84% 85%	25% 29%
LLAC131	27	30	3	2603	390	15%	238	76	3	14	85%	12%
LLAC132	41	45	4	1535	557	36%	339	108	4	17	84%	29%
incl	41	42	1	1991	798	40%	485	161	5	22	84%	32%
LLAC133	43	45	2	831	323	39%	201	57	2	11	84%	31%
LLAC134			ı		SI		-					
LLAC135	51	54	3	1262	335	27%	207	64	2	11	85%	21%
LLAC136	39	40	1	2106	312	15%	198	55	2	11	85%	12%
LLAC137				N	SI							
LLAC138	28	29	1	1407	327	23%	196	55	3	15	82%	18%
	34	35	1	1856	371	20%	232	79	2	9	87%	17%
LLAC139	40	41	1	1730	385	22%	227	68	4	17	82%	17%
LLAC140	25	29	4	1527	514	34%	311	99	4	17	84%	27%
11 4 61 41	32	33	1	1408	389	28%	236	73	3	13	83%	22%
LLAC141 LLAC142	30 29	37 41	7 12	1343 1544	359 418	27% 27%	227 262	68 79	3	10 13	86%	22% 22%
incl	31	32	12	3257	879	27% 27%	262 565	79 175	3 4	13	85% 87%	22%
LLAC143	27	38	11	1744	515	30%	309	84	5	25	82%	23%
incl	31	32	1	2576	993	39%	600	145	10	51	81%	29%
incl	36	37	1	2831	801	28%	465	126	9	49	81%	21%
	44	46	2	3057	675	22%	422	137	4	23	87%	18%
incl	45	46	1	3673	796	22%	499	164	5	26	87%	18%
LLAC144	25	27	2	2047	560	27%	351	105	3	15	85%	22%
LLAC145	16	17	1	1852	334	18%	215	60	2	10	86%	15%
LLAC146					SI							
LLAC147	13	15	2	1117	304	27%	191	58	2	9	85%	22%
LLAC148				N	SI							
LLAC149	16	28	12	1662	401	24%	250	84	3	12	87%	20%
LLAC150	29	31	2	1653	532 385	32%	335 229	85	4	22	84%	25%
LLAC151	28	47	19	1368		28%		77	3	16	84%	22%

Notes

Downhole composite allowing for 2m of internal dilution Analysis by Mixed Acid Digest & ICP.

Reported intersections are downhole lengths – true widths are unknown at this stage.

Coordinates by GPS, positional accuracy approximately ±3m.

Table 5: Collar Details

Hole ID	Drill Type	MGA East	MGA North	RL	Total Depth	Dip	Azimuth	Note
LLAC080	AC	493984	6607816	135	57	-90	0	Reported 23 rd January 2023
LLAC081	AC	494081	6607921	136	56	-90	0	Reported 23 rd January 2023
LLAC082	AC	493749	6607563	135	81	-90	0	Reported 23 rd January 2023
LLAC083	AC	493853	6607684	135	56	-90	0	Awaiting Results
LLAC084	AC	494193	6608046	137	69	-90	0	Awaiting Results
LLAC085	AC	494298	6608151	137	75	-90	0	Awaiting Results
LLAC086	AC	494418	6608284	137	78	-90	0	Reported in this release
LLAC087	AC AC	494527	6608403	138 138	55	-90 -90	0	Reported in this release
LLAC088 LLAC089	AC	494557 494586	6608435 6608465	138	53 57	-90 -90	0	Reported in this release Reported in this release
LLAC089 LLAC090	AC	494586	6608498	138	56	-90 -90	0	Reported in this release
LLAC090	AC	494637	6608525	138	69	-90	0	Reported in this release
LLAC092	AC	494669	6608555	138	57	-90	0	Reported in this release
LLAC093	AC	494779	6608675	139	41	-90	0	Reported in this release
LLAC094	AC	494887	6608792	139	33	-90	0	Awaiting Results
LLAC095	AC	494999	6608915	139	21	-90	0	Awaiting Results
LLAC096	AC	495114	6609038	139	21	-90	0	Awaiting Results
LLAC097	AC	495225	6609160	139	36	-90	0	Awaiting Results
LLAC098	AC	495337	6609278	140	18	-90	0	Awaiting Results
LLAC099	AC	495448	6609402	139	15	-90	0	Awaiting Results
LLAC100	AC	495560	6609522	140	10	-90	0	Awaiting Results
LLAC101	AC	495672	6609640	140	16	-90	0	Awaiting Results
LLAC102	AC	495780	6609762	139	19	-90	0	Awaiting Results
LLAC103	AC	495894	6609881	138	24	-90	0	Awaiting Results
LLAC104	AC	496008	6610005	138	33	-90	0	Awaiting Results
LLAC105	AC	496118	6610125	138	30	-90	0	Awaiting Results
LLAC106	AC	496225	6610238	137	18	-90	0	Awaiting Results
LLAC107	AC	496344	6610363	137	30	-90	0	Awaiting Results
LLAC108	AC	496453	6610483	137	12	-90	0	Awaiting Results
LLAC109	AC	496564	6610603	136	22	-90	0	Awaiting Results
LLAC110	AC	496675	6610725	136	13	-90	0	Awaiting Results
LLAC111	AC	496789	6610846	136	10	-90	0	Awaiting Results
LLAC112	AC	494918	6608404	140	25	-90 -90	0	Reported in this release
LLAC113 LLAC114	AC AC	494810 494791	6608219 6608183	139	63 60	-90 -90	0	Reported in this release Reported in this release
LLAC114 LLAC115	AC	494791	6608147	139	36	-90	0	Reported in this release
LLAC116	AC	494735	6608089	140	78	-90	0	Reported in this release
LLAC117	AC	495030	6608205	140	41	-90	0	Reported in this release
LLAC118	AC	495049	6608237	140	22	-90	0	Reported in this release
LLAC119	AC	495010	6608172	140	51	-90	0	Reported in this release
LLAC120	AC	494989	6608139	140	60	-90	0	Reported in this release
LLAC121	AC	494970	6608102	140	73	-90	0	Reported in this release
LLAC122	AC	494947	6608065	140	84	-90	0	Reported in this release
LLAC123	AC	494419	6608740	137	24	-90	0	Reported in this release
LLAC124	AC	494442	6608778	137	27	-90	0	Reported in this release
LLAC125	AC	494460	6608811	137	24	-90	0	Reported in this release
LLAC126	AC	494476	6608841	137	24	-90	0	Reported in this release
LLAC127	AC	494279	6608501	136	84	-90	0	Reported in this release
LLAC128	AC	494252	6608459	136	72	-90	0	Reported in this release
LLAC129	AC	494230	6608424	136	53	-90	0	Reported in this release
LLAC130	AC	494207	6608776	136	48	-90	0	Reported in this release
LLAC131	AC	494186	6608743	136	63	-90	0	Reported in this release
LLAC132	AC	494160	6608705	136	66	-90	0	Reported in this release
LLAC133	AC	494142	6608670	135	59	-90	0	Reported in this release
LLAC134	AC	494122	6608636	135	75	-90	0	Reported in this release
LLAC135	AC	494105	6608605	136	72	-90	0	Reported in this release
LLAC136	AC	494088	6608570	136	51	-90	0	Reported in this release Reported in this release
LLAC137 LLAC138	AC	494023	6608943 6608705	135	27	-90	0	
LLAC138 LLAC139	AC AC	493888 493868	6608705	135 135	39 49	-90 -90	0	Reported in this release Reported in this release
LLAC139 LLAC140	AC	493868	6608625	136	60	-90 -90	0	Reported in this release
LLAC140	AC	493684	6608868	134	40	-90	0	Reported in this release
LLAC141 LLAC142	AC	493665	6608836	134	50	-90	0	Reported in this release
LLAC142 LLAC143	AC	493706	6608901	134	51	-90	0	Reported in this release
LLAC144	AC	493723	6608935	134	35	-90	0	Reported in this release
LLAC145	AC	493748	6608971	134	45	-90	0	Reported in this release
LLAC146	AC	493769	6609001	134	26	-90	0	Reported in this release
LLAC147	AC	493783	6609040	133	42	-90	0	Reported in this release
LLAC148	AC	493809	6609075	133	39	-90	0	Reported in this release
		491091	6610896	133	54	-90	0	Reported in this release
LLAC149	AC							
LLAC149 LLAC150	AC AC	490949	6610654	132	61	-90	0	Reported in this release

Notes:

Coordinates by GPS, positional accuracy approximately ±3m.

ANNEXURE 1:

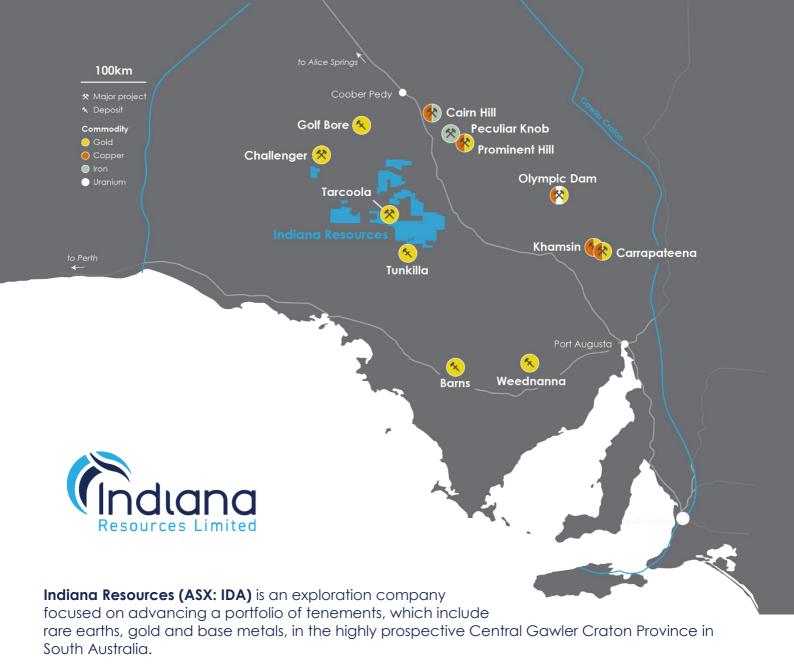
The following Tables are provided to ensure compliance with JORC Code (2012) edition requirements for the reporting of the Exploration Results at the Central Gawler Project.

SECTION 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	All aircore/slimline RC samples were collected every metre from a cyclone directly into a green plastic bag. Samples for laboratory testing comprised mostly 4m samples which were collected using a scoop from each 1m sample to produce a 4m composite sample. Non 4m samples usually were collected if the drill hole finished in a number not divisible by 4. Sample representivity was ensured by a combination of standard company procedures regarding quality control. Standard were used in a ratio of 3 samples per 100. Average sample weight was ~2kg Drill hole sampling technique used is considered as industry standard for this type of drilling. 4m composite samples were collected for the complete drill hole by using a scoop from each 1m bag to produce a ~2kg composite sample. Samples analysed for Au by Bureau Veritas in Adelaide using laboratory method FA001, 40g Fire assay AAS. LLAC001 - 079 assayed for RE elements by Bureau Veritas in Adelaide using laboratory methods LB100, LB101 & LB102. An aliquot of sample is accurately weighed and fused with lithium metaborate at high temperature in a Pt crucible. The fused glass is then digested in nitric acid. Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y & Yb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. Sc has been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Nitric, Hydrochloric and Perchloric Acids. Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, Y & Yb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. Sc has been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. Sc has been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. Sc has been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore/slimline RC drilling utilising an AC Drill rig with an 500cfm/250psi on-board compressor for aircore and an auxiliary compressor for slimline RC drilling. A 3.5-inch aircore bit was used for aircore holes and an RC hammer for slimline RC drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Bag weights and sizes observed and assessed as representing suitable recoveries. Drilling capacity suitable to ensure representivity and maximise recovery. There is no known relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All intervals were geologically logged to an appropriate level for exploration purposes. Logging considered qualitative in nature. All drillholes have been logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Drill samples were collected dry with limited wet samples. Drilling was generally terminated in cases of continual wet samples. Sample wetness recorded at time of logging. Quality control procedures include submission of CRMs, and blanks with each batch of samples.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. 	Sample preparation techniques, where listed, were considered appropriate for the respective sample types. Sub-sampling stages were considered appropriate for exploration. The sample size is considered industry standard for this type of mineralisation and the grain size of the material being sampled. Significant intersections verified by Company personnel. No twinning of holes has been undertaken.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Primary data entered to digital, validated, and verified offsite. Data stored physically and digitally under company protocols. Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to-stoichiometric conversion factors. Element Conversion Factor Oxide Ce 1.2284 CeO2 Dy 1.1477 Dy2O3 Er 1.1435 Er2O3 Eu 1.1579 Eu2O3 Gd 1.1526 Gd2O3 Ho 1.1455 Ho2O3 La 1.1728 La2O3 Lu 1.1371 Lu2O3 Nd 1.1664 Nd2O3 Pr 1.2082 Pr6O11 Sc 1.5338 Sc2O3 Sm 1.1596 Sm2O3 Tb 1.1762 Tb4O7 Tm 1.1421 Tm2O3 Y 1.2699 Y2O3 Yb 1.1387 Yb2O3
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Collar locations were picked up using handheld GPS with accuracy of ±3m. Holes were routinely down hole surveyed and are being assessed for accuracy. The grid system for the Central Gawler Gold Project is GDA94 /MGA Zone 53. Prospect RL control from DGPS data (estimated accuracy ± 0.2m) and GPS (estimated accuracy +-3m). Regional RL control from either: available DTM from airborne surveys or estimation of local RL from local topographic data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drill hole spacing is highly variable, ranging from 20m drill hole spacing on 100m spaced drill sections to 400m spaced holes on regional traverses. Data spacing and results are insufficient for resource estimate purposes. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration drilling is either oriented vertically or angled through mineralisation, with no known bias to the sampling of structures assessed to this point. At this early stage of exploration, the certainty of the mineralisation thickness, orientation and geometry is unknown. No sampling bias is considered to have been introduced by the drilling orientation.
Sample security	The measures taken to ensure sample security.	Indiana's sample chain of custody is managed by Indiana. Samples for the Central Gawler Project are stored on site and delivered to the Bureau Veritas laboratory in Adelaide by an Indiana contractor.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been noted to date.

SECTION 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)


Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Central Gawler Project is located in the Gawler Craton, South Australia. The Project is approximately 650 kilometres north-west of Adelaide. Access to the tenements is via unsealed road near Kingoonya, west of Glendambo, on the Stuart Highway. The tenements are in good standing. No Mining Agreement has been negotiated.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration over the area has been carried out by many companies over several decades for a range of commodities. Companies and the work completed includes but is not limited to: • Endeavour Resources – gold – RC and DD drilling • MIM – gold and base metals - surface geochemistry, airborne and surface based geophysical surveys and AC and RC drilling • Grenfell Resources – gold – AC, RC and DD drilling • Range River Gold – gold – surface geochemistry and RC drilling • Minotaur Exploration – IOCG, gold – gravity, AC and RC drilling • CSR – gold – RAB drilling • Kennecott – nickel - auger drilling • Mithril – nickel – ground geophysics, AC and RC drilling • PIMA Mining – gold – surface geochemistry, RAB drilling • Santos – gold, tin – RAB and DD drilling • Tarcoola Gold – gold – RAB drilling • Aberfoyle/Afmeco – uranium, base metals – AC and rotary mud drilling • SADME/PIRSA – regional drill traverses – AC, RC and DD drilling
Geology	Deposit type, geological setting and style of mineralisation.	It is thought that the regolith hosted REE enrichment originates through weathering of underlying rocks (granite, gneiss).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All hole collar locations, depths, azimuths and dips are provided within the body of this report for information material to the understanding of the exploration results. All relevant information has been included.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No top-cuts have been applied when reporting results. Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to-stoichiometric conversion factors. Weighted averages for the REO mineralisation were calculated using a cut-off grade of 500 ppm REO. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Reported intersections are downhole lengths – true widths are unknown at this stage. Mineralisation is thoughts to be generally intersected roughly perpendicular to true-width, however true widths are unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a 	Refer to figures and tables in body of text.

Criteria	JORC Code explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant and relevant intercepts have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data is shown in figures and in text.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	A discussion of further exploration work is outlined in the body of the text. All relevant diagrams and inferences have been illustrated in this report.

Indiana's ground position in the Gawler Craton covers 5,713km²– with the Company's tenements strategically located between the historic gold mining centres of Tunkillia (965,000 ounce gold resource) and Tarcoola (15,800 ounce gold resource).

With a historical focus on gold, Indiana is progressing plans for a targeted Rare Earth Elements (REE) drilling programme. The Company benefits by its strategic positioning in a tightly held region, known for gold but with exciting REE opportunities.

The Company has a highly experienced management team, led by Executive Chair, Bronwyn Barnes. Indiana has a tightly held register with benefits from strong support from major shareholders who are aligned with the Company's growth story.

