

GT1 MINERAL RESOURCES INCREASED TO 14.4MT

HIGHLIGHTS

- Maiden Mineral Resource Estimate of 4.5 Mt at 1.01% Li₂0 and 110 ppm Ta₂0₅ over the first 1.5km strike of the McCombe Deposit, part of the 20km-wide Root Lithium Project in Northwest Ontario, Canada.
- Significant potential for further Mineral Resource growth along strike and down dip at the McCombe Deposit, and across the larger Root project area
- Increase in Mineral Resources to 14.4 million tonnes across two of GT1's 100% owned lithium Projects in Ontario
- Further diamond drilling will continue in parallel to the current programs running at Morrison and Root Bay
- McCombe, Morrison and Root Bay now forming 20km corridor of prospective ground for further resource development and currently undergoing drill testing
- Field exploration to commence over expanded exploration area to identify additional priority targets

Green Technology Metals Limited (**ASX: GT1**) (**GT1** or the **Company**), a Canadian-focused multi-asset lithium business, is pleased to announce a maiden Mineral Resource Estimate for its 100% owned **Root Project**, located approximately 200km west of the flagship Seymour Project in Ontario, Canada.

Project	Tonnes (Mt)	Li ₂ 0 (%)	Ta₂0₅ (ppm)
Root Project			
McCombe			
Inferred	4.5	1.01	110
Total	4.5	1.01	110
Seymour Project ¹			
North Aubry			
Indicated	5.2	1.29	161
Inferred	2.6	0.90	120
South Aubry			
Inferred	2.1	0.50	90
Total	9.9	1.04	137
Combined Total	14.4	1.03	128

Table 1: Combined Lithium Mineral Resource - 0.2% Li₂O cut-off.

¹For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, Interim Seymour Mineral Resource Doubles to 9.9Mt.

"This is just the beginning for the Root Project and we are very pleased with the outcome of our maiden Mineral Resource Estimate at Root incorporating just 5 months exploration at our McCombe deposit with further extension potential.

GT1 has now commenced drilling at two additional target areas, Morrison and Root Bay, which have both continued to intercept significant spodumene mineralisation. We remain focussed on delivering further high-grade resource growth over 2023″

- GT1 Chief Executive Officer, Luke Cox

Root Mineral Resource Estimate Summary

The maiden Mineral Resource Estimate (**MRE**) for the Root Lithium project is **4.5 million tonnes** @ **1.01%** Li₂O and 110 ppm Ta_2O_5 (all inferred) and incorporates drilling from the McCombe deposit that commenced in August 2022, totalling 89 holes for 14,883m.

The McCombe pegmatite has been classified as LCT-type, spodumene-subtype pegmatite based on its abundance of spodumene and highly evolved K-feldspar chemistry. The McCombe pegmatite consists of a cluster of dykes that outcrop on surface and strike east west to northeast-south-west and gently dip to the south to southeast.

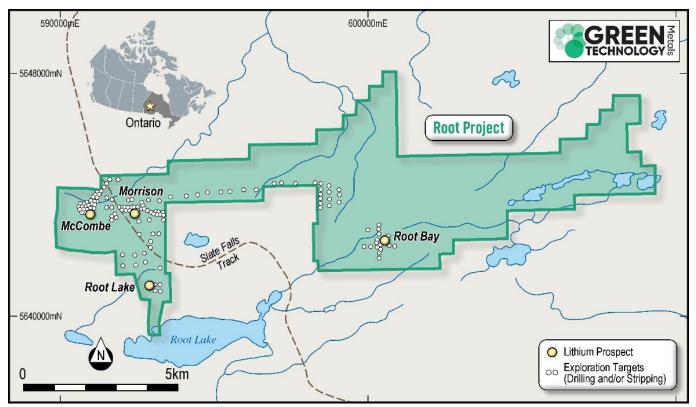


Figure 1: Root Lithium Project

The MRE has been constrained within a pit shell generated through the Micromine Pit Optimiser module. Pegmatite tonnes and grade are reported above a 0.2% Li₂0 cut-off within the pit shell on a dry basis.

	2023 MRE	
Grade cut-off (% Li₂0)	Tonnes (Mt)	Li ₂ 0 (%)
0.0	4.6	1.01
0.2	4.5	1.01
0.4	4.2	1.07
0.6	3.6	1.15

Table 2: Root 2023 MRE Grade-Tonnage Data

The McCombe lithium deposit is currently the most advanced LCT pegmatite at the Root project and is located on the west side of the tenement package. The deposit has a total strike extent of approximately 1,500m and has been drilled to a down dip depth of over 250m.

Further extensional and infill drilling is required to improve the MRE confidence for further economic assessment as well as to further increase resource tonnage and in addition, studies to support necessary modifying factors, waste characterisation, metallurgical recoveries, and geotechnical assessments are required to be conducted in concert with the infill drilling.

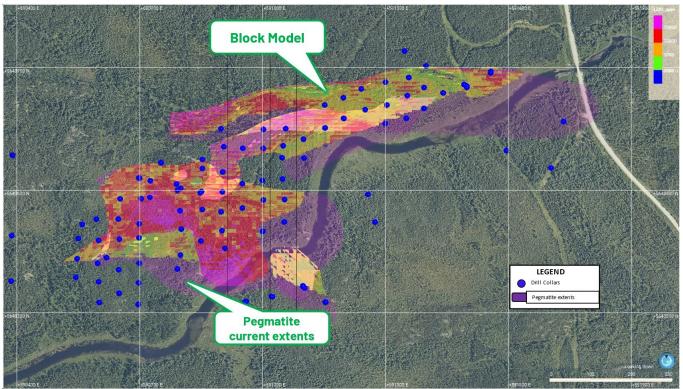


Figure 2: McCombe plan view showing block model (multi colour), Pegmatite current extents (purple) and collar locations (blue).

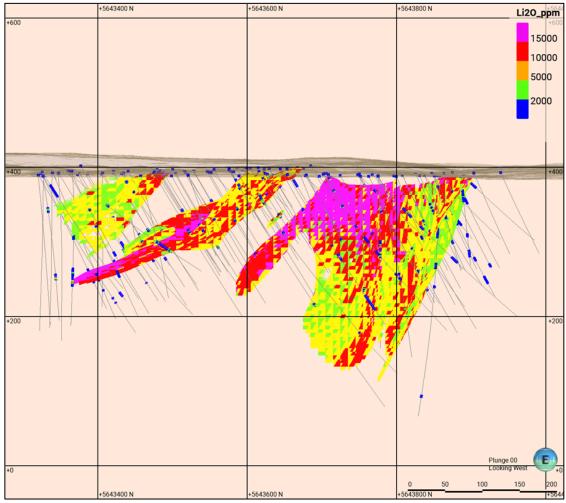
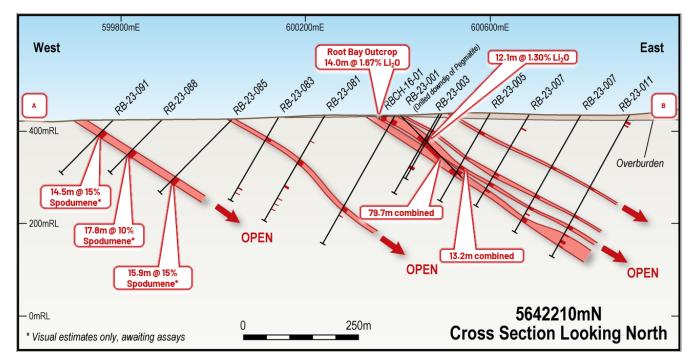


Figure 3: Westerly View of Block model coloured by Li_2O


Further Resource Growth Potential

Exploration at the Root project has initially focused on four target areas; McCombe, Morrison, Root Bay and Root Lake. However, a large area surrounding these targets remains underexplored and highly prospective for new LCT pegmatite target areas.

Maiden diamond drilling by GT1 commenced at the project only five months ago and initially focused on the McCombe deposit which has successfully generated a 4.5Mt maiden resource. Drilling has more recently expanded to include Morrison and Root Bay which has returned high-grade intercepts and demonstrated significant potential for ongoing resource expansion at the Root Lithium Project.

No drilling from the Morrison or Root Bay projects has been incorporated into the MRE for McCombe.

Figure 4: Cross section through Root Bay Pegmatites

Refer to announcement: Thick High grade Lithium Assays returned from Maiden Root Bay Drilling, 31 March 2023

The McCombe deposit remains open to the east and likely joins the Morrison pegmatites along strike forming +3km of mineralised resource potential. Further diamond drilling will continue to be undertaken in parallel to the current programs running at Morrison and Root Bay.

GT1 plans to utilise the upcoming field season to expand the exploration area to the northern half of Root which was acquired in 2022 and consists of 2993 Hectares (29.9km²) of prime lithium real estate within the Lake St. Joseph greenstone belt within the Uchi Domain.

Root Mineral Resource Estimate Details

Regional Geology

This region lies to the south of Sudbury and is dominated by metasedimentary rocks that form the Laurentian Highlands. The Penokean Hills, a fold belt, and the Cobalt Plain, an embayment, constitute the Southern Province which is a narrow region approximately 1.8 to 2.4 billion years old extending approximately from Sault Ste. Marie in the west to Kirkland Lake in the east.

Local Geology

The Root Lake Lithium Project is located the boundary between the Uchi Domain and the English River sub-province is defined by the Sydney Lake – Lake St. Joseph Fault, a steeply dipping brittle-ductile fault zone over 450km along strike and 1 – 3km wide (Stott and Corfu, 1991, Percival and Easton, 2007). It is estimated that the fault had accommodated 30km dextral, transcurrent displacement and 2.5km of south side up normal movement (Stone, 1981; Percival and Easton, 2007).

The English River Terrane is an east-west trending sub-province composed of highly metamorphosed sedimentary rock, including turbiditic sediments and oxide iron formations, abundant granitoid batholiths, mafic to ultramafic plutons and rare felsic to intermediate metavolcanic rock (Breaks, 1991).

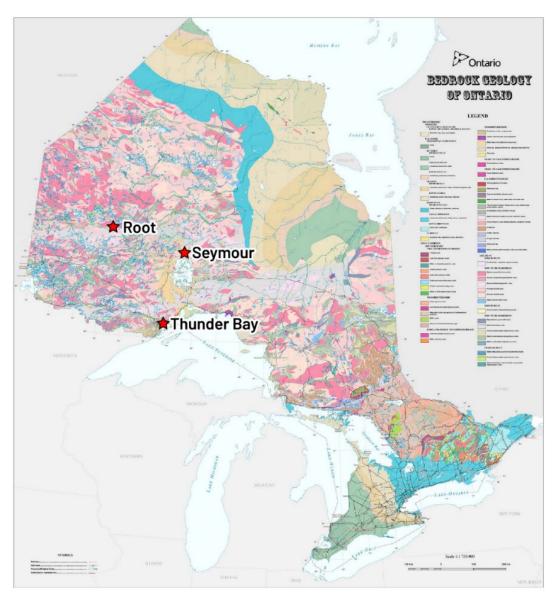


Figure 5: Root and Seymour Property Locations and Geology

Bedrock Geology

McCombe, Morrison and Root Bay project areas bedrock consist primarily of metavolcanic rocks of the Lake St. Joseph greenstone belt within the Uchi Domain, while the Root Lake pegmatite is within metasedimentary rocks of the English River Terrane (Smyk et al., 2008; Puumala, 2009).

Property Geology

The Root property is covered in a veneer of patchy glacial deposits comprising shallow gravelly soils, boulder till and in places thick moraines. In low-lying areas the bedrock is also obscured by lakes and swamps with the Roadhouse River transecting the southern portion of the McCombe deposit and western Morrison pegmatites.

The local bedrock consists primarily of Archean metavolcanics and intercalated sediments with later cross-cutting felsic intrusions to the east of the McCombe pegmatites. East-west or northeast, steep or moderately dipping lithium bearing pegmatites crosscut the meta-volcanics and sediments.

Pegmatites

Four spodumene bearing pegmatite groups are found on GT1's Root Lake land holdings, McCombe, Morrison and Root Bay and Root Lake.

The **McCombe** pegmatites is a combination of several spodumene-bearing granitic pegmatites located on the northwest side of the property. The dykes are exposed over 200m along strike length and vary from east-west to northeast orientations. Dips are the south and southeast and vary from 30-40 degrees to 60-70 degrees. Pegmatite width vary from 2-15m wide.

The **Morrison** Lake pegmatite is located on the northwest side of the property, 1.7km southeast from the McCombe pegmatite. The pegmatite trends east-west, dips moderately-steeply to the south, is exposed along strike over 195m and is 6.5m wide.

The **Root Bay** pegmatite is located on the south-eastern side of the property. It is exposed approximately 60m along strike, is 10m wide and follows the presumed trace of the Lake.

The **Root Lake** pegmatite is located on the southwestern side of the property, south of the McCombe and Morrison pegmatites. The pegmatite is based on an occurrence from a single drill hole. The 168.55m drill hole intersected 7 spodumene-bearing and spodumene-absent granite pegmatite intervals between 0.15-1.22m thick within quartz biotite schists and metagreywackes (Ontario Assessment File Database 52J13NE0009, 1956).

Sampling and sub-sampling techniques

In 2016 Ardiden drilled a total of 8 diamond NQ holes and took one channel sample to test the historic McCombe pegmatites identified by earlier historic drill programs. Ardiden confirmed the presence of the pegmatites but no further work at McCombe was undertaken.

Green Technology Metals Ltd have drilled 116 holes within the McCombe project area, a further 34 holes into the neighbouring Morrison prospect for a total of 25,334,93m as of 10 March 2023 and 14 holes in Root Bay for a total of 8,584.0m as of 23 March 2023.

The bulk of the core is NQ diameter core with some BQTK Ardiden. All recent drilling is NQ diameter core Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh)(includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20.A proportion of the mineralised pulps were retested by an independent laboratory, ACTLABS, ThunderBay. The sample preparation process is considered representative of the whole core sample.

Drilling Techniques

HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. 11 holes were drilled by Ardiden using BQTK core. The holes were drilled used a standard barrel configuration and the core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.

Database Integrity

Data was imported into the database directly from source geology logs and laboratory csv files. The data was then passed through a series of validation checks before final acceptance of the data for downstream use.

Site Visits

A site visit was undertaken by the Competent Person (John Winterbottom) between 14 to 15 March 2023; general site layout, drilling sites, logging practices, and diamond drilling operations were viewed. GT1 store diamond core in a dedicated facility at Thunder Bay. The storage facility was visited on 13 March and several holes reviewed and compared to logging.

Geological interpretation

There is sufficient confidence in the geological interpretation of the deposit in most areas; there are some areas of uncertainty at the outer limits of the deposit where drill spacing is sparse. Nathan pegmatite, for example, is situated on the eastern flank of the McCombe deposit but currently lacks sufficient drill density to be included as part of the MRE and, whilst it has been modelled, has not been classified for consideration in McCombe's mineral inventory. Interpretation was made directly from pegmatites noted in geological logs and with confirmation through core photographs.

Dimensions

The McCombe deposit has a total strike extent of approximately 1,500m and has been drilled to a down dip depth of over 250m. McCombe's pegmatites varying in strike direction from east-west to southwest-northeast and all dip towards the south or southeast at varying degrees of inclination ranging from 40 to 70 degrees.

Estimation and modelling techniques

An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential biproduct or deleterious elements (Ta₂O₅, Fe, K, S). Elements other than Li₂O have not been included in the Mineral Resource figures as they have no economic value. All estimates were made to parent blocks. Leapfrog Edge version 2022.1.1 software was used for estimation, statistical and geostatistical data analysis.

Estimation Methodology

The McCombe block model used block sizes 10mE x 10mN x 5.0mRL unrotated. Due to the variability of the spatial orientation of the McCombe pegmatites an optimal block size that suited each pegmatite was not possible. Blocks were sub blocked to ensure they faithfully captured the pegmatite volumes.

Moisture

All tonnages are reported on a dry basis.

Cut-off parameters

The McCombe Mineral Resource is reported using open-pit mining constraints.

The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li₂O cut-off grade. The optimised open pit shell was generated using:

- \$4/t mining cost
- \$15.19/t processing costs
- Mining loss of 5% with no mining dilution
- 55 degree pit slope angles
- 75% Product Recovery

Modifying Factors

Bulk density

1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96.

Rock Type	Length	Bulk Density
Pegmatite	94.58	2.70
Felsic	10.49	2.76
Sediment	238.39	3.03
Basalt	133.95	2.97
Overburden*	0	2.20
* Eatimated	•	•

* Estimated

McCombe pegmatite bulk density measurements averaged 2.70.

No other modifying factors have been considered.

KEY CONTACTS

Investors	Media
Luke Cox	Jacinta Martino
Chief Executive Officer	Investor Relations and Media
info@greentm.com.au	ir@greentm.com.au
+61 8 6557 6825	+61 430 147 046

Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's 100% owned Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 9.9 Mt @ 1.04% Li₂O (comprised of 5.2 Mt at 1.29% Li₂O Indicated and 4.7 Mt at 0.76% Li₂O Inferred).¹ and Root has an Inferred Mineral Resource Estimate of 4.5 Mt @ 1.01% Li₂O . Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 23 June 2022, *Interim Seymour Mineral Resource Doubles to 9.9Mt*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Mineral Resource Estimation is based on information reviewed by Mr John Winterbottom (Member AIG). Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Winterbottom consents to the inclusion of the data in the form and context in which it appears in this release. Mr Winterbottom is the General Manager of Technical Service for the Company and holds securities in the Company.

No new information

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 23 June 2022. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GTI's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX A: JORC CODE, 2012 EDITION – Table 1 Report

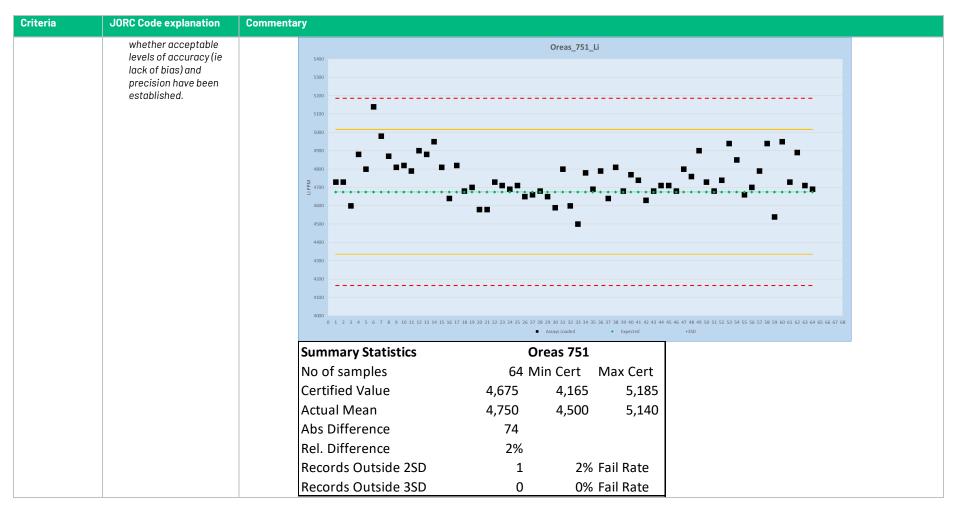
Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary	Commentary					
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such a down hole gamma sondes, or handheld 	 Capital Lithiun current MRE as requirements of In 2016 Ardider earlier historic Green Technol prospect for a 	n and CME drilled nume s drill hole spatial locati of JORC 2012. n drilled a total of 8 diar c drill programs. Ardider logy Metals Ltd have dri total of 25,334,93m as	on, sampling and nond NQ holes an n confirmed the p Iled 116 holes witl	l preparation prac d took one chanr presence of the p hin the McCombe	ctices or assaying and nel sample to test the egmatites but no furt project area, a furthe	I QAQC protocols coul historic McCombe pe her work at McCombe er 34 holes into the ne	d be verified to the gmatites identified by was undertaken. ighbouring Morrison
	XRF instruments, etc These examples		Di	rilling Used in Ap	ril 2023 Mineral F	Resource Estimate		
	should not be taken of limiting the broad meaning of sampling		Ardiden	GTM	Total	Ardiden	GTM	Total
	 Include reference to measures taken to 		Holes			1	leters	
	ensure sample	Year	DDH	DDH	DDH	DDH	DDH	DDH
	representivity and th appropriate calibration of any	2016	5	0	5	322	0	322
	measurement tools of systems used.	or 2022		82	82	0	13101.93	13101.93
	• Aspects of the determination of	2023		34	34	0	6320	6320
	mineralisation that c Material to the Public		5	116	121	322	19421.93	19743.93
	Report. In cases where 	Proportion	4%	96%	100%	2%	98%	100%
	'industry standard' work has been done this would be relative simple (eg 'reverse circulation drilling wo used to obtain 1 m	ely rejected due to spatial						

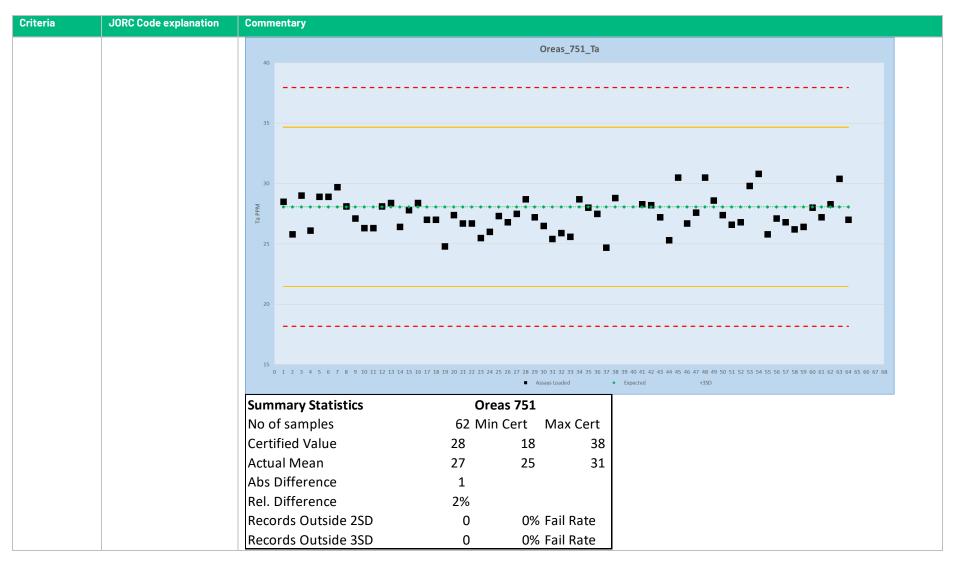
Green Technology Metals

Criteria	JORC Code explanation	Commentary
	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 89 holes were used to inform the Mineral Resource update of which 84 were drilled by GT1. Drilling was contracted to G4 drilling using a NQ, standard configuration coring equipment producing 4.76cm diameter core. Historic Grab Samples Grab samples were not used in the MRE Historic Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with OAQC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups. One tag from a triple tag book was inserted in the sample bag. As recorded, procedures were consistent with normal industry practices. Channel samples were used to aid the pegmatite interpretation but were not used in the estimate.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 HQ drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock. 11 holes were drilled by Ardiden using BQTK core. Hole were drilled used a standard barrel configuration. Core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship 	 No core was recovered through the overburden, glacial cover, HQ section of the hole, typically the top 5m of the hole. Core recovery through the primary rock and mineralised pegmatite zones was over 97% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run.



Criteria	JORC Code explanation	Commentary
	exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock. Logging is qualitative in nature based on visual estimates of mineral species and geological features.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted 	 The bulk of the core is NQ diameter core with some BQTK Ardiden. All recent drilling is NQ diameter core. Each ½ core sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh)(includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, ThunderBay. The sample preparation process is considered representative of the whole core sample.

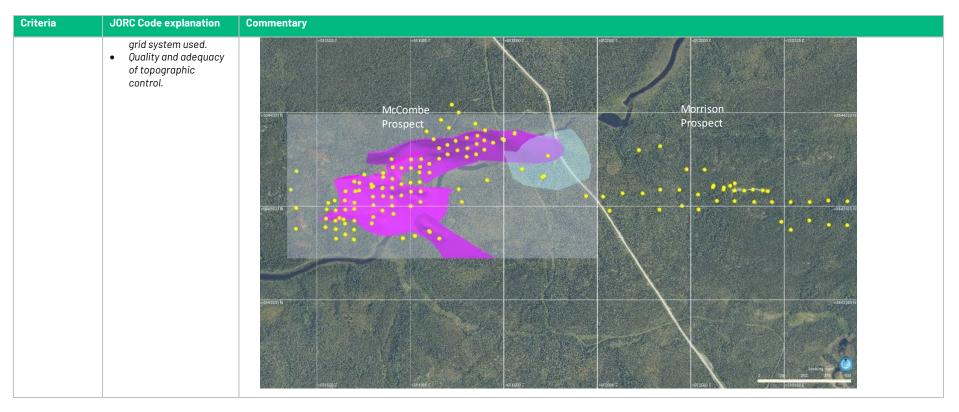
Criteria	JORC Code explanation	Commentary
	 for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality The nature, quality	 GT1 followed the same sample assay test suite and methods as well QAQC as described in the previous section for Seymour, with insertion into each sample batch with rates no less than 1:20 for certified reference material and blanks. Lithium QAQC control data were acceptable although a slight negative blas was observed in standards around 1% Li. This issue has been addressed with AGAT laboratories with several batches repeated and is now not considered material to the estimate.



JORC Code explanation	Commentary						
			Oreas_753	I_Li			
	11200						
	11100						
	10900						
	10800						
	10700						
	10600		-		-		
	10400						
	10300						
		•••••••••••••••••••••••••••••••••••••••	••••••				
	10000			· · · ·			
	9900						
	9800						
	9700						
	9600						
	9600				•		
	9500 9400 9300				•		
	9500	201234567894173494783	56553455658545565854556585 Assays loaded	70 77 3 4 50 7 8 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 4 % 8 8 8 8	905 D D 3-050 D 8-90011213/061		3007.4-7.75599.0112-11017-0-0-23
	9500 9400 9300 9200 0 1 2 3 4 5 6 7 8 910 11 7 3 4 9 6 7 8 92 2 2 2 4 2 4 2 4 2		Assays Loaded		990 D 2 3 4 9 9 D 2 4 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10	517.515.91111111111111111111111111111111	มสามเฉลาตราย
	9500 9400 9300 012345678910111344907022349028 Summary Statistics	0	Assays Loaded	◆ Expected	996 523-4996 5840111113000	NIX NY FILMIU JI BARBARI JI KAZA	20033020993012418056428
	9500 9400 9300 9200 0123456789101234490789022249028 Summary Statistics No of samples	0 130 M	■Assays Loaded reas 753 lin Cert Mai	• Expected	990 D.D. 9-0-90 D.84011112131001	RIJAKERT INTUTEROFERIJJERIJ I JAZO	
	9500 9400 9300 01234567891011114901490122749028 Summary Statistics No of samples Certified Value	0 130 M 10,179	 Assays Loaded reas 753 1in Cert Ma: 9,489 	• Expected x Cert 10,869	90 5.2 3-4 90 7.8 summerora	KIZKIYATIIIU TI BOTBITI KUMATI LUM	2003502899301021100356738
	Summary Statistics No of samples Certified Value Actual Mean	0 130 M 10,179 9,962	 Assays Loaded reas 753 1in Cert Ma: 9,489 	• Expected	90 52 3 4 90 5 8 9 THILING	ASJANS PET INTUTED OF STATISTICS OF STATISTICS	
	Summary Statistics No of samples Certified Value Actual Mean Abs Difference	0 130 M 10,179 9,962 216	 Assays Loaded reas 753 1in Cert Ma: 9,489 	• Expected x Cert 10,869	990 D 2 3 4 9 9 D 2 4 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10	517 (51 511 0110) 110 (615 931/1/5493 91/2/75	200530.00271005210052288
	Summary Statistics No of samples Certified Value Actual Mean Abs Difference Rel. Difference	0 130 M 10,179 9,962 216 2%	• Assays Loaded Treas 753 1in Cert Ma: 9,489 7,620	• Expected x Cert 10,869 10,600	90 5.2 3 4 90 5 8 90 11 11 11 10 11		200555289930112110056238
	Summary Statistics No of samples Certified Value Actual Mean Abs Difference	0 130 M 10,179 9,962 216	 Assays Loaded reas 753 1in Cert Ma: 9,489 	• Expected x Cert 10,869 10,600 Rate	990 523-030 5840000000	NIX NI FUNITO IL SUBMINI O PUPA ALZO	

eria	JORC Code explanation	Commentary					
					Blank_Li		
		100					
		80					
		60					
		40					
		20					
		s.			•		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**************************************	0112131415167845655545	578565234567897773	**************************************	
		-20					
		-40					
		-40					
		-60					
		-80					
		-100					
		-100			Assays Loaded	• Expected	
		Summary Statistics	3SD				
		No of samples	130 Min Cert	Max Cert			
		Certified Value		-			
		Actual Mean -	90 - 5,55	55 56			
		Abs Difference	90				
		<u> </u>					
		Tantalum whilst	certified by OREAS	in the standard	ls used by GT1 wa	as not the primary element of con	sideration and therefore is not i

Criteria	JORC Code explanation	Commentary					
		26 24 22 22		Oreas_753_	.Ta		
		18 16 11 2 3 4 5 6 7 8 910 11 21 4 50 7 8 90 22 2 2 4 9 02 2 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4 9 02 4		5 75 50 12 3 4 6 3 5 6 7 8 3 7 8 3 7 7 8 3 7 7 8 3 7 7 8 3 7 7 8 3 7 7 8 3 7 7 7 7	01773/49/0778%02.8.3.8.%26.8.8 • Depeted	99 1/2 3-0 96 / 0-9-1 11/11/11/11/11/11/11/11/11/11/11/11/11	
		Summary Statistics	Orea	as 753			
		No of samples		Cert N	lax Cert		
		Certified Value	20	16	24		
		Actual Mean	20	17	24		
		Abs Difference	0				
		Rel. Difference	2%				
		Records Outside 2SD	7		ail Rate		
		Records Outside 3SD	2	2% Fa	ail Rate		



eria JORC Code explanation	Commentary	
		Oreas_752_Li
	Summary Statistics	3 4 5 6 7 8 9 Assays Loaded +3SD 3SD
	No of samples	8 Min Cert Max Cert
		070 6,440 7,700
		200 6,960 7,370
		130
		2%
	Records Outside 2SD	0 0% Fail Rate
	Records Outside 3SD	0 0% Fail Rate
	 results also did not indicate any si The bulk of the samples were disp GT1 undertook 1,530 water immers 	atched to AGAT laboratories Thunder Bay, Ontario sion (Archimedes) bulk density tests on ½ NQ core billets.
	The following average figures were the corresponding blocks within the corresponding blocks within the correspondence blocks within the correspondence blocks within the correspondence blocks within the correspondence blocks.	e determined for each of the major rock types found within the modelled area and applied as an average he model:

Criteria	JORC Code explanation	Commentary			
		Table 1 McCombe Bu	ılk Densities		
		Rock Type	Length	Bulk Density	
Verification of sampling and assaying••• <td></td> <td>Pegmatite</td> <td>94.58</td> <td>2.70</td> <td></td>		Pegmatite	94.58	2.70	
		Felsic	10.49	2.76	
		Sediment	238.39	3.03	
		Basalt	133.95	2.97	
sampling and assaying Location of	 holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality 	 Bay core facility visually conspic intercepts and Geological logs errors. Drill and surfact Western Austra All original assa No adjustment respectively. 	y to inspect the core firsthand cuous at higher Li grades. High spodumene content. and supporting data are uploa e sample data is retained in a alia. ay certificates are retained on to laboratory assay data was r	I. Spodumene, the princip or grades were generally c aded directly to the datab purpose-built SQL databa the companies secure Or made. Oxide conversions	were calculated for Li2O and Ta2O5 using factors of 2.153 and 1.2211 one15 (for Root); waypoint averaging or dGPS was performed when possibl
data points	of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the	 Surface to ensu GT1 employed a with readings d 	re accurate elevation data for a calibrated Reflex SprintIQ No	r the drillholes. rth Seeking Gyroscopic to	ocal topographic surface. All drill collars have been draped onto the LIDAR bol on all 2022 and 2023 drill holes and surveyed the holes in their entirety pical azimuth accuracy of +/-0.75 degrees and +/-0.15 degrees for dip.

Criteria	JORC Code explanation	Commentary
		It collars are picked up and stored in the database in North American Datum of 1983 (NAD83) Zone 15 horizontal and geometric control datum projection for the United States.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications 	 Drill spacing at McCombe was variable ranging from 50 x 50 to 50 x 100 with some more sparsely drilled areas of the deposit. The drill spacing is sufficient to support the inferred level of Mineral Resource classification applied to the estimate. Im compositing was applied to the McCombe Mineral Resource update based on a review of sample interval lengths. Insufficient drilling was been conducted at Root Bay to date to provide sufficient geological and grade continuity appropriate for a mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation applied. • Whether sample compositing has been applied.	Histogram of Interval Length
		600 600 600 600 600 600 600 600
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures 	 GT1 drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.

Criteria	J	ORC Code explanation	Commentary
		is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	•	The measures taken to ensure sample security.	• All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivery to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	No independent audits or reviews have been undertaken on this Mineral Resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along 	 Green Technology Metals (ASX:GT1) owns 100% interest in the Ontario Lithium Projects (Seymour, Root and Wisa). A 1.5% NSR exists over the Root project where 0.5% is held by Primero Holdings, a subsidiary of NRW Holdings Group and 1% is held by Lithium Royalty Corp. The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (285 total claims) with a total claim area of 5,377 ha. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51968. PAT-51976. PAT-51976 and PAT-51977). All Cell Claims are in good standing.

Green Technology Metals

Criteria	JORC Code explanation	Commentary
	with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgmen t and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.06% Lib.0.7 drill holes (1.042.26m total) within the McCombe Deposit and Root Lake Prospect yielding low lithium assays. According to Muligan (1965), Capital Lithium Mines Ltd. reported to Muligan that they drilled at least 55 holes totalling 10468 BBm in 1956. They delineated 4 pegmatite zones and announced a non-compliant NI 41-101 reserve calculation of 2.297 million tons at 1.3% Lis0. However, none of that information is available on the government database. In 1956, Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morison prospect recording 3.96m at 2.63% Lip0. In 1957, Consolidated Morrison Exploration southwest of the McCombe Deposit that did not intersect pegmatite. In 1957, There Brothers Mining Exploration southwest of the Moc Dithental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Root Lithium Project to locate pyrrhotite mineralization In 1977, Northwest Geophysics: Limited on behalf of Continental Mining Exploration conducted a magnetometer survey for sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a mapping and sampling program over the same area, mapped anew pegmatite dike and sampled a graphitic schist assaying 0.03% Cu and 0.1% Zn. In 1998, Harold A. Watts prospected, trenched and sampled spodumen-bearing pegmatites with the Morrison Prospect assaying up to 5.91% Lip0. In 2005, Landore Resources Canada inc. created a reconnaissance survey, mapping and sampling project mostly within the McCombe Deposit. Lin 2008, Rockex Ltd, on behalf of Robert Allan Ross stripped and trenched 40 trenches for iron, gold and base metals associated with
		 In 2011, Geo Data Solutions GDS Inc. on behalf of Rockex Ltd. flew a high-resolution helicopter borne aeromagnetic survey intersecting a small port the south-central claims owned by GM1. In 2012, Stares Contracting on behalf of Golden Dory Resources Corporation conducted a ground magnetic survey near the Morrison Prospect to loc magnetic contrasts between pegmatites and metasedimentary units. They also conducted a prospecting (lithium) and soil sampling (gold) program the Rook Lake Prospect and east of the Morrison Prospect. Highest Li assays within GM1 claims was 0.0037% Li₂0 and a gold soil assay of 52ppb Au In 2016, the previous owner conducted a drilled 7 diamond drill holes (469m total) within the McCombe deposit. Highest assay was 1m at 3.8% Li₂0. A drilled down dip intersected 70m at 1.7% Li₂0. An outcrop sampling within the Morrison and Root Bay Prospects yielded 0.04% Li₂0. Channel sample

Criteria	JORC Code explanation	Commentary
		Property which intersects a very small portion of the patented claims held by GM1, just west of the McCombe Deposit.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Regional Geology: The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake - Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 - 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite. Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane. Ore Geology: The McCombe Pegmatite is internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldspar-rich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, equigranular to grophyritic pot
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea 	 In 2016 Ardiden drilled a total of 8 diamond N0 holes and took one channel sample to test the historic McCombe pegmatites identified by earlier historic drill programs. Ardiden confirmed the presence of the pegmatites but no further work at McCombe was undertaken. Green Technology Metals Ltd have drilled 116 holes within the McCombe project area, a further 34 holes into the neighbouring Morrison prospect for a total of 25,334.93m as of 10 March 2023 and 14 holes in Root Bay for a total of 8,584m as of 23 March 2023. All historic holes from the 50's were excluded from the MRE due to unverifiable spatial location data and QAQC validation. 3 Ardiden holes were rejected due to spatial location or hole orientation concerns. Channel samples were not used in the grade estimation of the MRE 121 holes were used to constrain the Mineral Resource update of which 116 were drilled by GT1. Drilling was contracted to 64 drilling using a N0, standard configuration coring equipment producing 4.76cm diameter core. 89 were used to interpolate grade into the block model, 5 of which were drilled by Ardiden in 2016. No visual estimates have been used in the delineation of the MRE
	level in metres) of	Holes Meters

Criteria	JORC Code explanation	Commentary
	 the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the 	• Dri
	case.	HoleID
		RL-16-01A
		RL-16-03
		RL-16-04
		RL-16-05

Year	DDH		DDH	DDH	DDH	DDH	DDH
2016		5	0	5	322	0	322
2022			82	82	0	13101.93	13101.93
2023			34	34	0	6320	6320
Grand Total		5	116	121	322	19421.93	19743.93
Proportion	4%		96%	100%	2%	98%	100%

Drilling Used in 10 April 2023 Mineral Resource Estimate

• McCombe MRE Drill Collars for the 89 holes used to interpolate the model grades were as follows:

HoleID	Easting	Northing	RL	Dip	Azimuth	Depth
RL-16-01A	590,792	5,643,600	398	- 45	357	75
RL-16-03	590,725	5,643,582	394	- 45	-	72
RL-16-04	590,726	5,643,623	398	- 45	-	41
RL-16-05	590,853	5,643,552	393	- 45	-	80
RL-16-07	590,848	5,643,594	396	- 45	-	54
RL-22-001	590,698	5,643,630	398	- 59	359	60
RL-22-002	590,704	5,643,578	394	- 62	1	72
RL-22-003	590,699	5,643,517	394	- 58	359	102
RL-22-004	590,698	5,643,483	395	- 61	358	144

Green Technology Metals

Criteria	JORC Code
----------	-----------

riteria	JORC Code	Commentary						
	explanation							
		RL-22-005	590,699	5,643,421	394	- 60	360	147
		RL-22-006	590,800	5,643,605	398	- 59	1	120
		RL-22-007	590,799	5,643,549	393	- 61	360	117
		RL-22-008	590,802	5,643,504	392	- 61	0	162
		RL-22-009	590,799	5,643,441	394	- 61	3	186
		RL-22-010	590,792	5,643,407	392	- 61	359	150
		RL-22-011	590,792	5,643,406	392	- 86	89	180
		RL-22-013	590,903	5,643,644	397	- 61	360	132
		RL-22-014	590,902	5,643,596	396	- 59	2	129
		RL-22-015	590,952	5,643,702	392	- 61	1	93
		RL-22-016A	590,899	5,643,546	394	- 61	3	156
		RL-22-017	590,951	5,643,556	397	- 59	348	120
		RL-22-018	591,002	5,643,702	390	- 61	2	90
		RL-22-019	591,002	5,643,575	396	- 60	3	120
		RL-22-020	591,001	5,643,499	388	- 61	359	150
		RL-22-021	590,901	5,643,500	397	- 60	3	150
		RL-22-022	590,648	5,643,529	394	- 59	1	152
		RL-22-023	590,700	5,643,630	398	- 61	3	189
		RL-22-024	590,642	5,643,428	392	- 60	3	150
		RL-22-025	590,851	5,643,597	396	- 60	1	141
		RL-22-027	590,853	5,643,653	397	- 59	359	108
		RL-22-028	591,123	5,643,856	391	- 60	316	150
		RL-22-029	590,850	5,643,475	392	- 60	1	227
		RL-22-033	590,600	5,643,476	395	- 58	5	162
		RL-22-035	590,650	5,643,480	397	- 59	1	162
		RL-22-037	590,598	5,643,421	392	- 60	1	180
		RL-22-038	591,050	5,643,709	390	- 60	1	141
		RL-22-039	590,600	5,643,375	392	- 60	357	201

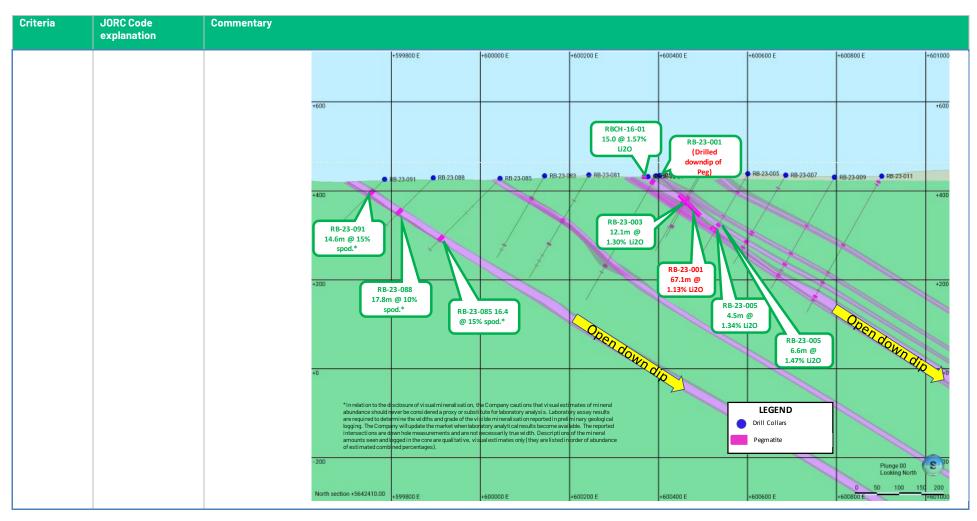
orio	JORC Code	
eria	JURCLOUE	

Criteria	JORC Code explanation	Commentary						
		RL-22-040	591,048	5,643,679	389	- 62	0	126
		RL-22-041	590,649	5,643,405	391	- 59	0	210
		RL-22-387	590,652	5,643,578	394	- 60	356	123
		RL-22-461	590,951	5,643,616	394	- 60	1	107
		RL-22-490	591,053	5,643,521	389	- 60	8	201
		RL-22-499	591,100	5,643,725	389	- 61	1	120
		RL-22-501	591,153	5,643,752	388	- 60	2	201
		RL-22-505	591,198	5,643,775	388	- 59	359	210
		RL-22-521	590,547	5,643,432	391	- 59	360	180
		RL-22-526	590,698	5,643,373	390	- 60	1	180
		RL-22-529	591,152	5,643,808	389	- 59	320	150
		RL-22-530	591,197	5,643,826	390	- 59	322	150
		RL-22-531	591,241	5,643,847	391	- 61	321	150
		RL-22-532	591,199	5,643,775	388	- 85	320	231
		RL-22-533	591,153	5,643,752	388	- 86	313	204
		RL-22-534	591,251	5,643,797	388	- 61	320	201
		RL-22-535	591,300	5,643,864	391	- 60	322	150
		RL-22-536	591,304	5,643,808	390	- 60	320	180
		RL-22-537	591,299	5,643,763	388	- 58	322	201
		RL-22-538	590,619	5,643,435	392	- 45	302	102
		RL-22-539	590,619	5,643,435	392	- 70	300	117
		RL-22-540	591,357	5,643,875	392	- 59	322	150
		RL-22-540	591,357	5,643,831	389	- 59	322	130
		RL-22-542	591,351	5,643,776	388	- 59	318	252
		RL-22-543	591,351	5,643,776	388	- 74	323	252
		RL-22-548	591,394	5,643,851	389	- 60	321	192
		RL-22-549	591,394	5,643,800	388	- 59	319	249
		RL-22-550	591,441	5,643,838	389	- 59	313	150

JORC Code explanation	Commentary							
	RL-22-571	591,735	5,643,768	391	- 49	1	273	
	RL-23-044	591,054	5,643,576	397	- 60	1	381	
	RL-23-353	591,939	5,643,553	393	- 61	359	221	
	RL-23-442	590,908	5,643,457	388	- 74	3	168	
	RL-23-452	590,905	5,643,706	392	- 60	1	201	
	RL-23-454	590,898	5,643,750	391	- 60	320	180	
	RL-23-480	591,002	5,643,748	390	- 59	1	201	
	RL-23-544A	591,021	5,643,340	393	- 61	319	225	
	RL-23-545	591,099	5,643,364	395	- 60	321	225	
	RL-23-546	590,957	5,643,327	388	- 59	321	210	
	RL-23-553	591,441	5,643,838	389	- 46	318	120	
	RL-23-554	591,057	5,643,750	389	- 45	1	150	
	RL-23-556	591,103	5,643,360	395	- 60	12	222	
	RL-23-558	591,099	5,643,365	395	- 82	314	210	
	RL-23-560	591,257	5,643,589	388	- 57	335	351	
	RL-23-561	591,103	5,643,360	395	- 45	354	225	
	RL-23-567	591,557	5,643,890	388	- 44	350	129	
	RL-23-568C	591,499	5,643,851	388	- 75	348	132	
	RL-23-569	591,499	5,643,855	388	- 45	353	120	
	RL-23-570	591,557	5,643,886	388	- 83	350	120	
	RL-23-572	591,705	5,643,654	390	- 60	2	240	
	RL-23-573	591,153	5,643,326	394	- 80	13	201	
	RL-23-575	591,492	5,643,858	388	- 88	131	324	
	RL-23-576	591,595	5,643,696	388	- 55	4	270	

Criteria	JORC Code explanation	Commentary
	explanation	
		HoleId Easting Northing RL Dip Azi Depth From To Interval Sodoursen Permatike
		RB-23-001* 600,403 5,642,412 434 -45 90 204 60.9 128.0 67.1 10 113
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		RB-23-001 600,403 5,642,412 434 1-45 90 204 174.3 179.6 5.3 5 1.34
		RB-23-003 600,493 5,642,405 439 1-60 270 201 67.4 79.5 12.1 10 1.30
		Re 2-2-005 600,01 5,642,406 438 -60 2,65 210 43.4 49,0 3,6 1 0.07
		Re22005 600,01 5,624,06 438 -60 265 210 129 215.8 6.6 15 1.47
		R8-23-005 600,601 5,642,406 438 6-0 265 210 140.5 145.0 4.5 20 13
		R8-23-005 600,601 5,642,406 438 60 265 210 149.0 151.1 2.1 15 1 09
		R8-23-007 600,686 5,642,401 435 66 271 231 1473 156.6 9.3 6
		R8-23-007 600,686 5,642,401 435 60 271 231 170.9 177.4 6.6 20
		R8-23-007 600,686 5,642,401 435 60 271 231 187.4 190.4 3.0 15
		R8-23-007 600,686 5,642,401 435 60 271 231 199,5 202.1 2.5 10
		R8-23-009 600,795 5,642,399 430 61 270 288 124.6 127.2 2.6 7
		R8-23-009 600,795 5,642,399 430 61 270 288 195.5 198.9 3.4 15
		R8-23-009 60,795 5,642,399 430 61 270 288 222.9 28.1 5.2 10
		RB-23-009 600,795 5,642,399 430 61 270 288 250.6 258.5 7.9 9
		R8-23-011 600,901 5,642,392 432 -60 282 353 12.8 17.0 4.2 15
		R8-23-011 600,901 5,642,392 432 -60 282 353 176.7 179.3 2.6 5
		R8-23-011 600,901 5,642,392 432 60 282 353 274.1 278.1 4.1 15
		R8-23-011 600,901 5,642,392 432 60 282 353 310.0 314.1 4.1 -
		R8-23-014 600,394 6,642,449 434 61 272 320 8.5 21.8 13.2 15
		R8-23-014 600,394 6,642,449 434 61 272 320 227.8 236.0 8.2 15
		R8-23-016 600,496 5,642,451 437 61 273 162 57.8 69.0 11.3 10
		R8-23-016 600,496 5,642,451 437 61 273 162 7.5. 78.8 3.2 7
		R8-23-016 600,496 5,642,451 437 -61 273 162 131.4 138.3 6.8 1
		R8-23-044 600,597 5,642,495 435 60 271 129 18.4 23.5 5.1 3
		R8-23-044 600,597 5,642,495 435 60 271 129 73.4 81.2 7.8 -
		R8-23-081 600,243 5,642,448 435 60 270 267 112.8 117.3 4.6 7
		R8-23-081 600,243 5,642,448 435 60 270 267 119.7 123.8 4.1 10
		R8-23-081 600,243 5,642,448 435 60 270 267 176.8 181.7 4.9 8
		R8-23-083 600,144 5,642,449 434 60 272 213 54.8 61.4 6.5 15
		R8-23-083 600,144 5,642,449 434 60 272 213 179.0 181.4 2.4 5
		R8-23-085 600,044 5,642,449 428 45 269 228 181.1 197.6 16.4 15
		R8-23-088 599,894 5,642,449 429 45 270 200 9.9.4 117.2 17.8 10
		R8-23-091 599,785 5,642,444 422 -45 270 200 33.0 47.6 14.6 15
		* In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral am and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). * In relation to the disclosure of visual mine the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory analysis are required to the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analysis causay results are required to reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual

Criteria	JORC Code explanation	Commentary
		only (they are listed in order of abundance of estimated combined percentages). Hole RB-23-001 was not drilled tangential to strike and the intervals quoted are not representative of, or similar to, the pegmatite true widths intercepts.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Iength weighted averages and all resource estimates are tonnage weighted averages Grade cut-offs have not been incorporated. No metal equivalent values are quoted.



Criteria	JORC Code explanation	Commentary
Relationship	used for any reporting of metal equivalent values should be clearly stated. • These	 McCombe holes drilled by GT1 attempt to pierce the mineralised pegmatite approximately perpendicular to strike, and therefore, most of the downhole
herditorship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Recomposition of the initial period in a minimum answer period in atternation. Root Bay intercepts are reported as downhole depths and are generally drilled tangential to pegmatite strike and dip except for hole RB-23-001 which was drilled downdip of the initial pegmatite to confirm downdip mineralisation continuity. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These	 The appropriate maps are included in the announcement for the McCombe deposit. The Root Bay cross section is noted below:

Criteria	JORC Code explanation	Commentary
	should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high	Root Bay In relation to analysis. Labor market when la amounts seen tangential to s	 McCombe Pegmatite downhole interval summary with associated assay results are listed in Appendix A Root Bay pegmatite intercepts are noted again here: * In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laborator analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). Hole RB-23-001 was not drilled to strike and the intervals quoted are not representative of, or similar to, the pegmatite true widths intercepts and are reported here merely to demonstrate downdimineralisation continuity. 											
	grades and/or widths should be practiced to		Easting	Northing	RL	Dip	Azi	Depth	From	То	Interval	Visual Spodumene Estimate*	Pegmatite Li2O %	
	avoid misleading reporting of	RB-23-001*	600,403	5,642,412	434	- 45	90	204	60.9	128.0	67.1	10	1.13	
	Exploration	RB-23-001*	600,403	5,642,412	434	- 45	90	204	60.9	128.0	67.1	10	1.13	
	Results.	RB-23-001*	600,403	5,642,412	434	- 45	90	204	162.0	169.3	7.3	10	1.44	
		RB-23-001*	600,403	5,642,412	434	- 45	90	204	174.3	179.6	5.3	5	1.34	
		RB-23-003	600,493	5,642,405	439	- 60	270	201	67.4	79.5	12.1	10	1.30	
		RB-23-005	600,601	5,642,406	438	- 60	265	210	45.4	49.0	3.6	1	0.07	
		RB-23-005	600,601	5,642,406	438	- 60	265	210	129.2	135.8	6.6	15	1.47	
		RB-23-005	600,601	5,642,406	438	- 60	265	210	140.5	145.0	4.5	20	1.34	
		RB-23-005	600,601	5,642,406	438	- 60	265	210	149.0	151.1	2.1	15	1.09	
		RB-23-007	600,686	5,642,401	435	- 60	271	231	147.3	156.6	9.3	6		
		RB-23-007	600,686	5,642,401	435	- 60	271	231	170.9	177.4	6.6	20		
		RB-23-007	600,686	5,642,401	435	- 60	271	231	187.4	190.4	3.0	15		
		RB-23-007	600,686	5,642,401	435	- 60	271	231	199.5	202.1	2.5	10		
		RB-23-009	600,795	5,642,399	430		270	288	124.6	127.2	2.6	7		
		RB-23-009	600,795	5,642,399	430	- 61	270	288	195.5	198.9	3.4	15		
		RB-23-009	600,795	5,642,399	430	- 61	270	288	222.9	228.1	5.2	10		
		RB-23-009	600,795	5,642,399	430	- 61	270	288	250.6	258.5	7.9			
		RB-23-011	600,901	5,642,392	432	- 60	282	353	12.8	17.0	4.2	15		
		RB-23-011	600,901	5,642,392	432 432	- 60 - 60	282 282	353 353	176.7 274.1	179.3	2.6 4.1	5		
		RB-23-011 RB-23-011	600,901 600,901	5,642,392 5,642,392	432	- 60	282	353	310.0	278.1 314.1	4.1	- 15		
		RB-23-011	600,394	5,642,449	432	- 61	202	320		21.8	13.2	- 15		

RB-23-014	600,394	5,642,449	434	- 61	272	320	227.8	236.0	8.2	15	
RB-23-016	600,496	5,642,451	437	- 61	273	162	57.8	69.0	11.3	10	
RB-23-016	600,496	5,642,451	437	- 61	273	162	75.6	78.8	3.2	7	
RB-23-016	600,496	5,642,451	437	- 61	273	162	131.4	138.3	6.8	1	
RB-23-044	600,597	5,642,495	435	- 60	271	129	18.4	23.5	5.1	3	
RB-23-044	600,597	5,642,495	435	- 60	271	129	73.4	81.2	7.8	-	
RB-23-081	600,243	5,642,448	435	- 60	270	267	112.8	117.3	4.6	7	
RB-23-081	600,243	5,642,448	435	- 60	270	267	119.7	123.8	4.1	10	
RB-23-081	600,243	5,642,448	435	- 60	270	267	176.8	181.7	4.9	8	
RB-23-083	600,144	5,642,449	434	- 60	272	213	54.8	61.4	6.5	15	
RB-23-083	600,144	5,642,449	434	- 60	272	213	179.0	181.4	2.4	5	
RB-23-085	600,044	5,642,449	428	- 45	269	228	181.1	197.6	16.4	15	
RB-23-088	599,894	5,642,449	429	- 45	270	200	99.4	117.2	17.8		
RB-23-091	599,785	5,642,444	422	- 45	270	200	33.0	47.6	14.6		

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 GTI completed a high resolution Heliborne Magnetic geophysical survey over the property in July 2022. The survey was undertaken by Propsectair using their Robinson R-44 and EC120B helicopters. Survey details, 1,201 line-km, 50m line spacing, direction 179 degrees to crosscut pegmatite strike, 50m altitude. Control lines were flown perpendicular to these lines at 500m spacing. Images have been received Total Magnetics. Images have been received Total Magnetics. Images have been received Total Magnetics. Interpretation was completed by Southern Geoscience

JORC Code explanation	Commentary
	For the provide sample of the completed 14 holes for 8.485m at Root Bay, located approximately 10 km east from the McCombe deposit. Ardiden sampled pegmatite outcrop in the Root Bay area in 2016 with the best results from a 15.0m wide channel sampled (RBCH-16-01) averaging 1.57% Lico.
 elegy Metele	

Criteria	JORC Code explanation	Commentary
		Additional drilling was drilled tangential to the pegmatite strike and intersected several other stacked thin pegmatites with visual spodumene. 3 holes, RB23- 091, RB-23-88 and RB-23-85 were drilled 500m west of the channel sample, described above, and intersected a 10m wide (estimated true width) LCT pegmatite with visual spodumene in both holes, assay results are still pending.
		+600 -600 <th< th=""></th<>
		RBCH-16-01 15.0 @ 1.57% L2O RB-23-001 (Drilled downdip of peg) RB-23-005 RB-23-008 RB-23-088 RB-23-088 RB-23-081 RB-23-005 RB-23-007 RB-23-007 RB-23-007
		400 RB-23-091 14.6m @ 15% spod.*
		*0 *In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should rever be considered a proxy or substitute for laboratory analysis. Laboratery assay results are required to determine the widths and grade of the visible mineralisation reported in prefininary geological logging. The Company wil update the market when laboratory analytical results become available. The reported intersections are dywn hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages).
		-200 North section +5642410.00 +59980D E +60000D E +60020D E +60020D E +60040D E +60060D E +60060D E +60060D E +60060D E +60060D E +60060D E
		Further, drilling is planned along strike to the north and south of the current line of drilling to confirm the continuity of the pegmatites identified to date.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Infill drilling at the McCombe deposit to improve the deposits resource confidence. Commencement of detailed mining studies Further exploration and extension of the Root Bay pegmatites discovered to date.

Section 3 Estimation and Reporting of Mineral Resources – (McCombe deposit only. Not relevant to the Root Bay deposit)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 A site visit to the Root area was undertaken by the Competent Person (John Winterbottom) between 14th and 15th March 2023; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. 	 There is sufficient confidence in the geological interpretation of the McCombe deposit in most areas; there are some areas of uncertainty at the outer limits of the deposit where drill spacing is sparse. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Alternative geological interpretation would have a minimal effect on the resource estimate. Pegmatite intrusions were used to constrain the mineral resource estimation.

Green Technology Metals

Criteria	JORC Code explanation	Commentary
	 The factors affecting continuity both of grade and geology. 	
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The deposit consists of 6 LCT pegmatite units of varying thicknesses and attitudes. The McCombe deposit has a total strike extent of approximately 1500m and has been drilled to a down dip depth of over 250m. McCombes pegmatites varying in strike direction from east-west to southwest-northeast and all dip towards the south or southeast at varying degrees of inclination ranging from 40 to 70 degrees.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s)	 An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential bi-product or deleterious elements (Ta2O5, K, Fe, S). Geological units were first interpreted in Leapfrog 2022.1.1 software from geological logs and core photography references.
comiques	applied and key	• Each pegmatite was assigned its own domain and drill intercepts flagged with the corresponding domain name.
	assumptions, including	 Pegmatite and overburden wireframes were exported from Leapfrog and then imported into Micromine for estimation.
	treatment of extreme	• Wireframes were also generated for the enclosing country rock including, the glacial overburden, felsic intrusives and the greenstone sediments and basalt
	grade values,	units.
	domaining,	 Data was composited to 1m length to geological contacts and exploratory data analysis was performed each of the pegmatite units.

Li20 showed poor correlation with the other elements of interest.

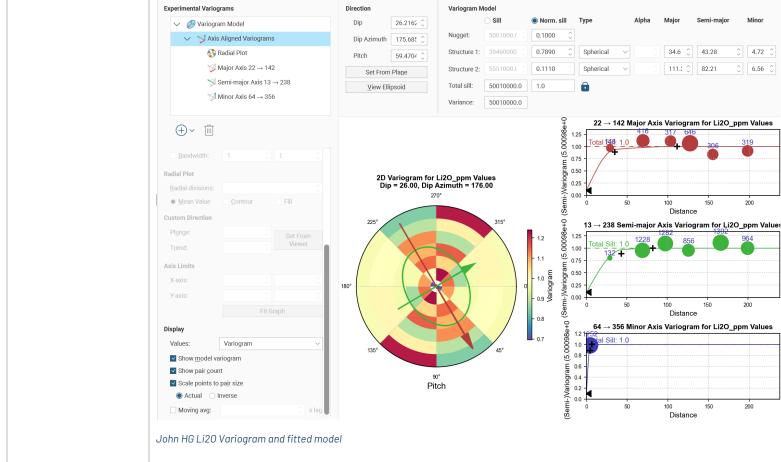
Field Name	Li20 ppm	Ta205 ppm	Rb20 ppm	Cs20 ppm	Ca ppm	Fe ppm	Mg ppm	K ppm	S ppm
Correlation Matrix									
Li20 ppm	100%								
Ta205 ppm	7%	100%							
Rb20 ppm	19%	-7%	100%						
Cs20 ppm	9%	1%	58%	100%					
Ca ppm	-26%	-45%	-29%	-4%	100%				
Fe ppm	-18%	-47%	-27%	4%	91%	100%			
Mg ppm	-22%	-48%	-25%	9%	89%	91%	100%		
K ppm	5%	-16%	86%	44%	-31%	-29%	-28%	100%	
S ppm	-12%	-21%	-15%	-7%	48%	54%	35%	-14%	100%

Green Technology Metals

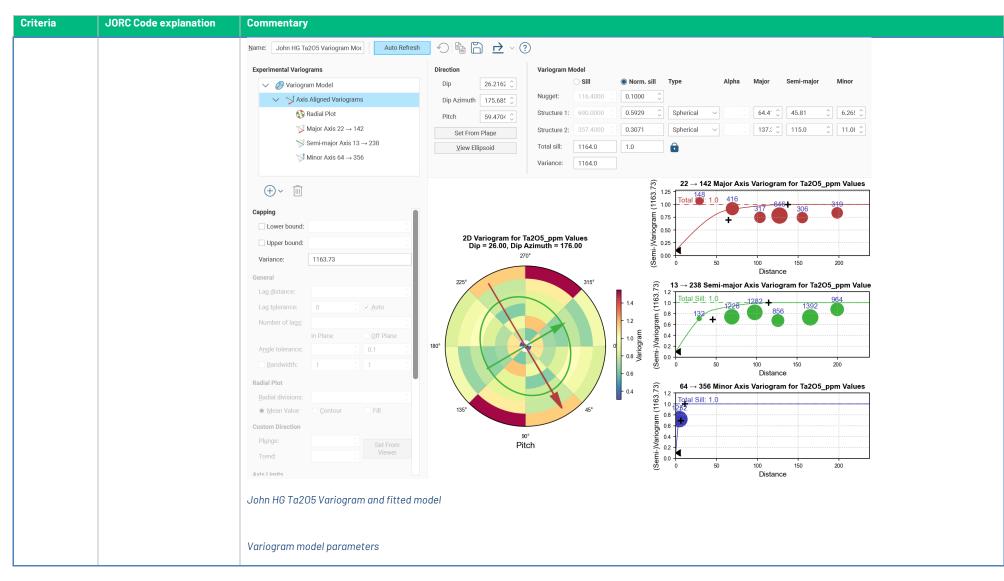
Criteria	JORC Code explanation	Commentary
Criteria	 JORC Code explanation Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Commentary Data statistics was evaluated for each element within each domain including mean, coefficient of variation and grade distribution. Most domains showed a log normal distribution. John Pegmatite, the thickest unit, showed a bimodal distribution of Li₂O. A high grade sub-domain was generated in an attempt to better confine the two populations. A 0.5% Li₂O envelope was created within the John Pegmatite using Leapfrog numerical modelling to better sub-domain the higher grade zones within the pegmatite. Histograms below demonstrate that the sub-domaining was reasonably effective in achieving this objective.
		• • • • • • • • • • • • • • • • • • •

Criteria	JORC Code explanation	Commentary

Criteria	JORC Code explanation	Commentary
		 Variography was carried out to define the variogram models for the Ordinary Kriging (OK) interpolation. Top cut Top cut analysis was carried out to identify extreme outliers, using a combination of plots, and histograms and coefficient of variation. No top cuts have been applied to estimated elements. Instead, outlier values were clamped at 50% of the variogram range above the identified outlier cut-off for each element within each domain.


Criteria	JORC Code explanation	Commentary							
					99.8 99.5 99 90 90 90 90 90 90 90 90 90 90 90 90		Log Probability of		
		Summary Sta	tistics McCom	gh Grade (HG)S be Pegmatites					
				Pegmatite -	Pegmatite - John	John HG		Li20_ppm Pegmatite- Breanne	
		Vertices:	481	2,167	2,822	2,539	408	3,403	
		Triangles:	958	4,330	5,640	5,078	816	6,802	
		Volume:	39,585	480,490	914,020	628,260	13,515	1,157,000	

riteria	JORC Code explanation	Commentary	/					
		Area:	54,543	273,680	356,080	230,020	14,268	669,830
		Parts:	1	2	1	1	1	1
		Closed:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
		Consistent:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
		Manifold:	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
		Number of points:	23	162	64	268	18	150
		Number of Values:	23	162		268	18	150
		Min Value:	257	160			415	77
		Lower Quartile:	483	1,270			2,613	258
		Median:	4,284	7,319			7,313	1,938
		Upper Quartile:	10,753	18,592	2,725	17,836	15,551	13,849
		Max Value:	25,422	40,556			21,528	32,72
		Clamped	N/A	35000	18000	30000	N/A	25000
		Mean:	6,297	10,778	3,155	12,835	8,848	6,891
		Cut: Mean	6,297	10,778	3,155	12,835	8,848	6,891
		Declustered Mean	5,960	8,965	2,480	11,607	7,518	6,54
		Std Deviation:	7,199	10,122	5,092	7,406	7,094	8,521
		Variance:	51,821,300	102,444,000			50,320,800	72,608,700



Variography Variograms models were constructed for each element estimated for each pegmatite domain. Variogram model parameters have been summarised in Table 11. Domains that had poorer data support used variograms from the better supported pegmatites orientated to each pegmatite's orientation. Estimation searches were aligned to variogram directions. Name: John HG Li20 Variogram Model Auto Refresh I and Ref

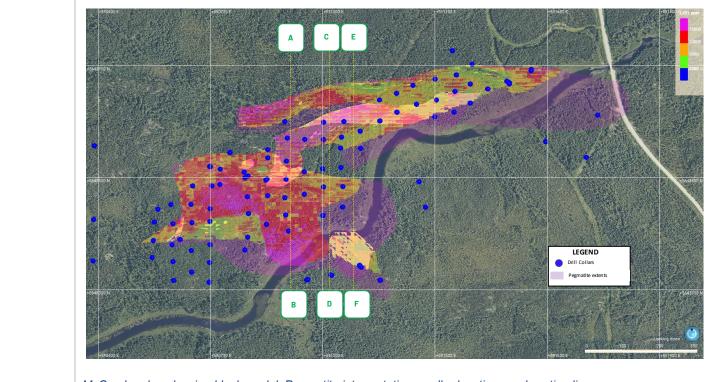
Green Technology Metals

Criteria	JORC Code explanation	Commentary														
		General		Direction				Stru	cture 1				Sti	ructure 2		
		Variogram Name	Dip	Dip Azimuth	Pitch	Normalised Nugget	Normalised sill	Structure	Major	Semi-major	Minor	Normalised sill	Structure	Major	Semi-major	Minor
		Fe_ppm Pegmatite - Amy	41	216	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Fe_ppm Pegmatite - Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Fe_ppm Pegmatite - John HG	26	176	59	0.10	0.66	Spherical	55	112	5	0.24	Spherical	129	116	7
		Fe_ppm Pegmatite - John Fe_ppm Pegmatite	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		- Luke Fe_ppm Pegmatite	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		- Nathan Fe_ppm	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		K_ppm Pegmatite - Amy	49	217	16	0.10	0.38	Spherical	9	39	5	0.52	Spherical	67	67	7
		K_ppm Pegmatite - Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		K_ppm Pegmatite - John HG K_ppm Pegmatite	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		- John K_ppm Pegmatite	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		- Luke K_ppm Pegmatite	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		- Nathan K_ppm Pegmatite-	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Breanne Li20_ppm	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		Pegmatite - Amy Li20_ppm	49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	87	51	7
		Pegmatite - Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4

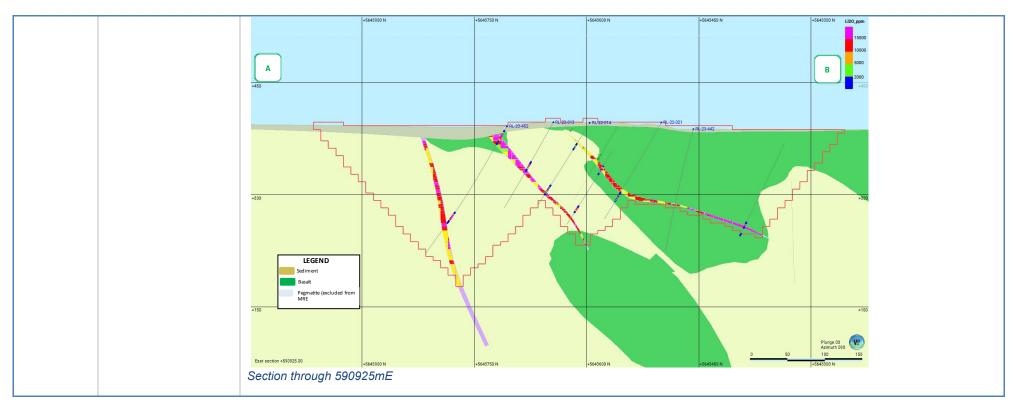
Criteria	JORC Code explanation	Commentary														
		Li20_ppm	1	1	1		1		1	1	1			1	1	1
		Pegmatite - John														
		HG	26	176	59	0.10	0.79	Spherical	35	43	5	0.11	Spherical	111	82	7
		Li20_ppm	20	170	00	0.10	0.70	ophonou	00	10	Ŭ	0.11	ophonodi		02	,
		Pegmatite - John	26	176	66	0.19	0.29	Spherical	34	27	7	0.52	Spherical	120	138	10
		Li20_ppm														
		Pegmatite - Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Li20_ppm														
		Pegmatite -														
		Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Li20_ppm														
		Pegmatite-														
		Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		Mg_ppm														
		Pegmatite -														
		Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		S_ppm Pegmatite														
		- Amy	49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	87	51	7
		S_ppm Pegmatite														
		- Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		S_ppm Pegmatite														
		- John HG	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		S_ppm Pegmatite									_					_
		- John	26	176	59	0.10	0.60	Spherical	64	42	5	0.30	Spherical	137	115	7
		S_ppm Pegmatite	07	455	17	0.14			50			o (o		150	100	
		- Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		S_ppm Pegmatite	27	170	0.0	0.1/	o / /		50	10	0	0 (0		150	100	,
		- Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		S_ppm Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		Ta205_ppm	09	109	0	0.10	0.03	Spherical	04	00	2	0.07	Spherical	104	102	5
		Pegmatite - Amy	49	217	16	0.10	0.44	Spherical	37	42	5	0.46	Spherical	67	51	7
		Ta205_ppm	43	217	10	0.10	0.44	Spherical	57	72	J	0.40	Spherical	07	JI	/
		Pegmatite -														
		Andrea	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Ta205_ppm		,		0.11	0.11	ephonodi				0.12	ephonodi	100	100	
		Pegmatite - John									1					1
		HG	26	176	59	0.10	0.59	Spherical	64	46	6	0.31	Spherical	137	115	11
		Ta205_ppm	1			1				1				1		
		Pegmatite - John	26	176	66	0.19	0.29	Spherical	34	27	7	0.52	Spherical	120	138	10
		Ta205_ppm			1											1
		Pegmatite - Luke	67	157	17	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4

Criteria	JORC Code explanation	Commentary														
		Ta205_ppm Pegmatite - Nathan	27	170	22	0.14	0.44	Spherical	50	46	2	0.42	Spherical	150	100	4
		Ta205_ppm Pegmatite- Breanne	69	169	8	0.10	0.03	Spherical	64	80	2	0.87	Spherical	104	102	5
		• The McCombe block optimal block size th														

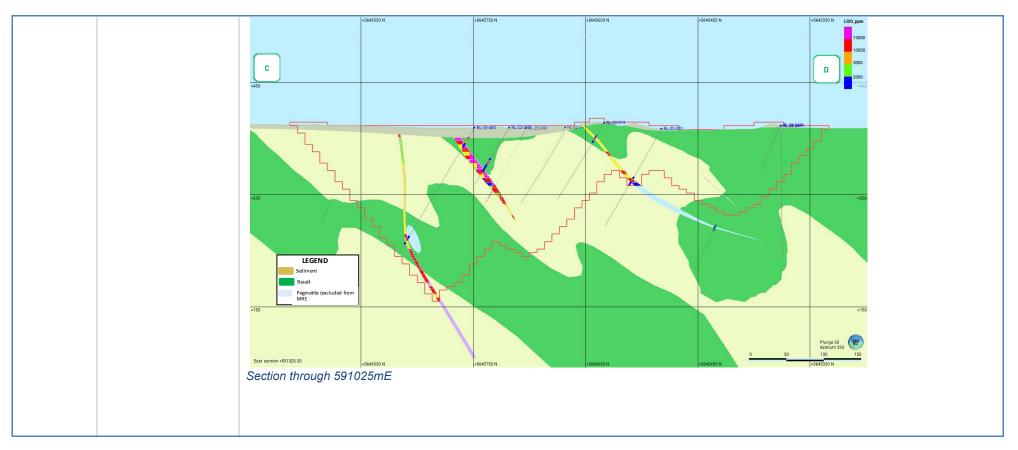
Criteria	JORC Code explanation	Commentary				
		😵 Edit Octree Block Mo	del - McCombe Octree Block Model		X	
		Grid Triggers a	nd Evaluations			
		Blocks	х	Y	z	
		Parent block size:	10 ्	10 🗘	5 🗘	
		Sub-block coun <u>t</u> :	8 ~	32 ~	32 ~	
		Minimum size:	1.25	0.3125	0.15625	
		Extents				
		<u>B</u> ase point:	590505.00	5643245.00	512.50	
		Boundary size:	1510.00	790.00	485.00	
		Azimuth:	0.00	degrees	Enclose Object V	
		Dip:	0.00	degrees	Set Angles From \sim	
		Pi <u>t</u> ch:	0.00	degrees		
		Size in blocks:	151 × 79 × 97 = 1,157,113			
		Name: McCombe 0	ctree Block Model			
				[
		?			<u>Cancel</u> <u>O</u> K	
						1
		Block Model Extents and F	Run Criteria – McCombe			



JORC Code explanation	Commentary		
	was applied to all the pegma	sure blocks are filled i d 20m with applied ani itite blocks. Blocks out he pit optimisation sho	
	Estimation Run	% of Reported McCombe Total Tonnes	
	Run 1	98%	
	Run 2	2%	
	Total	100%	
	Estimated averages for bi pr	roduct and deleterious	ng detailed metallurgical testwork. elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and	roduct and deleterious oduct and deleterious e	elements for McCombe are tabulated below.
	Estimated averages for bi pr Approximate figures for bipro Bi-product and elements	roduct and deleterious oduct and deleterious d deleterious \$US4000 pit design	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and elements Reported within above 0.2% Li ₂ 0	roduct and deleterious oduct and deleterious e deleterious \$US4000 pit design I cut-off nents reported to 2	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and elements Reported within above 0.2% Li ₂ 0 Deleterious elem	roduct and deleterious oduct and deleterious e deleterious \$US4000 pit design I cut-off nents reported to 2	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and elements Reported within above 0.2% Li ₂ 0 Deleterious elem significant figure	roduct and deleterious oduct and deleterious a deleterious \$US4000 pit design I cut-off nents reported to 2 es	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and elements Reported within above 0.2% Li ₂ 0 Deleterious elem significant figuro Tonnes (Mt)	roduct and deleterious oduct and deleterious e deleterious \$US4000 pit design ocut-off nents reported to 2 es 4.5	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and elements Reported within above 0.2% Li ₂ O Deleterious elem significant figure Tonnes (Mt) Li ₂ O %	roduct and deleterious oduct and deleterious deleterious \$US4000 pit design 1 cut-off nents reported to 2 es 4.5 1.01	elements for McCombe are tabulated below.
	Estimated averages for bipro Approximate figures for bipro Bi-product and a elements Reported within above 0.2% Li ₂ O Deleterious elem significant figure Tonnes (Mt) Li ₂ O % Ta ₂ O ₅ ppm	roduct and deleterious oduct and deleterious e deleterious \$US4000 pit design ocut-off nents reported to 2 es 4.5 1.01 106	elements for McCombe are tabulated below.


• Validation

Validation was carried out in several ways, including visual inspection in plan and cross-section comparing block estimates to composite values, Swath plots and model and composite statistical comparison.



McCombe plan showing block model, Pegmatite interpretations, collar locations and section lines



Criteria	JORC Code explanation	Commentary
		<figure><figure></figure></figure>
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages are estimated on a dry basis
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The McCombe Mineral Resource is reported using open-pit mining constraints. The open-pit Mineral Resource is only the portion of the resource that is constrained within a US\$4,000 / t SC6 optimised shell and above a 0.2% Li ₂ 0 cut-off grade. The optimised open pit shell was generated using: S4/t mining cost \$15.19/t processing costs Mining loss of 5% with no mining dilution 55 degree pit slope angles 75% Product Recovery

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining	 The April 2023 Mineral Resource Estimate is reported above 0.2% Li₂O cut-off. The cut-off is based on lowest potential grade at which a saleable product might be extracted using a conventional DMS and / or flotation plant and employing a TOMRA Xray sorter (or equivalent) on the plant feed. A number of pegmatites outcrop at surface thus the mineral resource is likely to be extracted using a conventional drill and blast, haul and dump mining fleet.
Metallurgical factors or assumptions	 assumptions made. The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not 	No metallurgical work has been carried on the McCombe mineralised pegmatites to date.

Criteria	JORC Code explanation	Commentary
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental 	Waste rock characterization work has not begun at McCombe to date.
Bulk density	 assumptions made. Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the 	 1,599 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96.

method used, whether way or dry, in the resources is the samples. • The bulk density for bulk material must back the deposition of the samples. • The bulk density for bulk material must back the deposition of differences within the deposition of differences within the deposition. • Discuss assumptions for bulk density for bulk material for the different materials. • Discuss assumptions for bulk density for bulk density. • Discuss assumptions for bulk density for bulk densik density for bulk density for bulk densit	Criteria	JORC Code explanation	Commentary			
Rock Type Length Bulk Density		 wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of 		paratus		
			Rock Type Pegmatite	Length 94.58	Bulk Density 2.70	

Criteria	JORC Code explanation	Commentary							
		Felsic	10.49	2.76					
		Sediment	238.39	3.03					
		Basalt	133.95	2.97					
		Overburden*	0	2.20					
		* Estimated							
		volumetrically neglig	is available for th Jible ranging in de	he largely glacial cove epths from 0 to24m a	d 2.70. er over the deposit due to the difficulty in recovering this material in the drilling process. This material is and averaging around 5m. An assumed bulk density of 2.2 was used for overburden. sity and Li2O grade (Correlation Coefficient 58%) and so an assumed average pegmatite bulk density was				

Criteria	JORC Code explanation	Commentary
		<figure></figure>
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence 	 The Mineral Resources have been classified Inferred based on drill spacing and geological continuity and modifying factor confidence levels. The Resource model uses a classification scheme based upon drill hole spacing plus block estimation parameters, including kriging variance, number of composites in search ellipsoid informing the block cell and average distance of data to block centroid. The results of the Mineral Resource Estimation reflect the views of the Competent Person.

Criteria	JORC Code explanation	Commentary										
	in tonnage/grade estimations, reliability		Indicated				Inferred			Total		
	of input data, confidence in continuity of geology and metal		Deposit	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)
	values, quality, quantity		McCombe	0	0	0	4.5	1.01	110	4.5	1.01	110
	and distribution of the data).		Total	0	0	0	4.5	1.01	110	4.5	1.01	110
	• Whether the result appropriately reflects the Competent Person's view of the deposit.		 Mineral Resource produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (JORC 2012) Figures constrained to US\$4,000 open pit shell and reported above a 0.2% cut-off grade. Numbers in the mineral resource table have been rounded. 									
								McCombe				
					Cut	Off Grade (%Li	20	Tonnes (Mt)	Grade (% Li2 O)			
					0%			4.6	1.01			
					0.2%	6		4.5	1.01			
					0.4%	6		4.2	1.07			
					0.6%	6		3.6	1.15			
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No audits	No audits or reviews have been undertaken by GT1									
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of		ve accuracy of nent relates to									

Criteria	JORC Code explanation	Commentary
	statistical or	
	geostatistical	
	procedures to quantify the relative accuracy of	
	the resource within	
	stated confidence	
	limits, or, if such an	
	approach is not deemed appropriate, a	
	qualitative discussion	
	of the factors that	
	could affect the relative	
	accuracy and	
	confidence of the estimate.	
	The statement should	
	specify whether it	
	relates to global or local	
	estimates, and, if local, state the relevant	
	tonnages, which should	
	be relevant to technical	
	and economic	
	evaluation.	
	Documentation should include assumptions	
	made and the	
	procedures used.	
	These statements of	
	relative accuracy and confidence of the	
	estimate should be	
	compared with	
	production data, where	
	available.	

Appendix B

Interpreted Pegmatite Downhole Intercepts

RL-16-01A						
10 01/1	0.0	5.0	5.0	Overburden	-	-
RL-16-01A	5.0	25.2	18.3	Extrusive	329	0
RL-16-01A	25.2	33.9	1.0	Pegmatite	12,515	99
RL-16-01A	33.9	75.0	37.2	Extrusive	125	2
RL-16-02	0.0	6.0	6.0	Overburden	-	-
RL-16-02	6.0	10.0	2.5	Extrusive	2,287	8
RL-16-02	10.0	21.4	0.9	Pegmatite	10,640	102
RL-16-02	21.4	26.5	3.5	Extrusive	1,693	1
RL-16-03	0.0	6.0	6.0	Overburden	-	-
RL-16-03	6.0	52.5	22.3	Extrusive	113	0
RL-16-03	52.5	61.5	1.0	Pegmatite	12,485	81
RL-16-03	61.5	72.0	8.7	Extrusive	215	1
RL-16-04	0.0	2.0	2.0	Overburden	-	-
RL-16-04	2.0	18.0	14.1	Extrusive	147	0
RL-16-04	18.0	32.0	0.9	Pegmatite	10,533	92
RL-16-04	32.0	41.0	7.2	Extrusive	121	0
RL-16-05	0.0	6.0	6.0	Overburden	-	-
RL-16-05	6.0	68.4	30.4	Extrusive	45	0
RL-16-05	68.4	76.1	0.9	Pegmatite	10,346	113
RL-16-05	76.1	80.0	2.5	Extrusive	596	0
RL-16-07	0.0	4.0	4.0	Overburden	-	-
RL-16-07	4.0	28.0	22.1	Extrusive	525	0
RL-16-07	28.0	35.3	1.1	Pegmatite	2,049	133
RL-16-07	35.3	41.0	5.7	Extrusive	-	-
RL-16-07	41.0	46.1	1.0	Pegmatite	11,391	70
RL-16-07	46.1	54.0	6.3	Extrusive	112	0
RL-22-001	0.0	2.3	2.1	Overburden	-	
RL-22-001	2.3	11.8	2.8	Sediment	811	1
RL-22-001	11.8	24.2	0.9	Pegmatite	17,687	71
RL-22-001	24.2	60.0	2.9	Sediment	106	0
RL-22-002	0.0	11.3	11.3	Overburden	-	-
RL-22-002	11.3	42.2	0.7	Sediment	111	0
RL-22-002	42.2	57.5	0.7	Pegmatite	12,022	104
RL-22-002	57.5	72.0	0.6	Mafic	62	104
RL-22-002	0.0	5.7	5.7	Overburden		-
RL-22-003	5.7	72.0	2.9	Sediment	41	0
RL-22-003	72.0	83.5	1.0	Pegmatite	20,350	113
RL-22-003 RL-22-003	83.5	83.5 102.0	2.6	Sediment	20,350	4
				Overburden	21	4
RL-22-004 RL-22-004	0.0	3.0 12.3	3.0 0.6	Sediment	-	-
RL-22-004 RL-22-004	12.3	12.3	0.8	Mafic	-	-
		-				
RL-22-004 RL-22-004	17.8	80.3 80.5	0.7	Sediment Mafic	3 44	0
	80.3		0.2	Mafic	3,444	1 79
RL-22-004	80.5	87.4	0.7	Pegmatite	14,139	
RL-22-004 RL-22-005	87.4	144.0	0.6	Sediment	21	0
	0.0	3.5	1.8	Overburden	-	-
RL-22-005	3.5	90.8	2.9	Sediment	58	0
RL-22-005	90.8	100.7	0.8	Pegmatite	2,462	130
RL-22-005	100.7	106.5	1.6	Sediment	91	0
RL-22-005	106.5	135.8	2.7	Mafic	8	0
RL-22-005	135.8	136.7	0.8	Pegmatite	279	46
RL-22-005	136.7	147.0	2.4	Mafic	16	1
RL-22-006	0.0	5.0	4.6	Overburden	-	-
RL-22-006	5.0	21.7	0.6	Sediment	504	1
RL-22-006	21.7	31.2	0.8	Pegmatite	15,360	107

RL-22-006 72.8 75.5 0.8 Pegnatite 1,545 RL-22-007 5.0 5.0 0.0 75.6 RL-22-007 5.0 64.9 2.9 Sediment 611 RL-22-007 74.7 117.0 2.8 Sediment 15.122 RL-22-007 74.7 117.0 2.8 Sediment 15.8 RL-22-008 15.8 71.5 0.0 Sediment 18.050 RL-22-008 87.3 97.3 0.0 Sediment 306 RL-22-008 87.3 97.1 0.3 Pegnatite 2.504 RL-22-008 91.3 92.1 0.3 Sediment 9 RL-22-009 92.1 102.0 Sediment - R RL-22-009 92.1 103.0 2.7 Mafic - RL-22-009 93.0 9.2 Sediment - R RL-22-009 93.0 13.0 2.7 Mafic - R	Ta2O5 ppm	Li2O ppm	Lithology	Interval	То	From	HoleId
Rl-22.007 0.0 5.0 S.0 Overburden I Rl-22.007 5.0 64.9 2.9 Sediment 61 Rl-22.007 74.7 117.0 2.8 Sediment 72 Rl-22.008 0.0 15.8 17.5 Overburden - Rl-22.008 15.8 7.15 0.7 Sediment 136.0 Rl-22.008 87.3 87.3 0.7 Sediment 306 Rl-22.008 87.3 91.3 0.6 Sediment 389 Rl-22.008 92.1 161.0 0.6 Sediment - Rl-22.009 1.2 1.2 Overburden - - Rl-22.009 1.2 3.0 R.4 3.0 Mafic - Rl-22.009 1.2 1.2 Sediment 1.175 - Rl-22.009 9.4 1.30 A.7 Mafic - Rl-22.009 13.0 1.86.0 3.0 Sediment -	106	1,545	Pegmatite	0.8	75.5	72.8	RL-22-006
R1-22.007 5.0 64.9 7.47 0.0 Pegmatite 15.122 R1-22.007 7.47 17.0 2.8 Sediment 7.2 R1-22.008 15.8 17.5 0.7 Sediment 10.8 R1-22.008 15.8 7.15 0.7 Sediment 13.0 R1-22.008 87.3 9.7 Sediment 3.06 Sediment 3.06 R1-22.008 87.3 9.1.3 0.6 Sediment 3.06 R1-22.008 9.1.3 9.2.1 0.10 Sediment	0	94	Sediment	0.7	120.0	75.5	RL-22-006
R1-22-007 64.9 74.7 0.9 Pegmaite 15,122 R1-22-008 0.0 15.8 12.5 Overburden - R1-22-008 15.8 71.5 0.7 Sediment 108 R1-22-008 87.3 80.3 0.8 Pegmatite 18,050 R1-22-008 87.3 97.3 0.7 Sediment 306 R1-22-008 87.3 91.3 0.6 Sediment 2,04 R1-22-008 91.3 92.1 16.0 0.6 5ediment - R1-22-009 9.0 1.2 1.2 Overburden - - R1-22-009 3.0 8.44 3.0 Mafic - - R1-22-009 9.4 123.0 2.8 Sediment 2.00 - R1-22-019 9.4 123.0 2.7 Mafic - - R1-22-010 10.7 8 0.6 Mafic - - R1-22-010 <	-	-	Overburden	5.0	5.0	0.0	RL-22-007
RI-22-007 74.7 117.0 2.8 Sediment 72 RI-22-008 0.0 15.8 12.5 Overburden - RI-22-008 71.5 80.3 0.7 Sediment 108 RI-22-008 87.3 87.3 0.7 Sediment 306 RI-22-008 87.3 87.3 0.1 Pegmatite - RI-22-008 91.3 92.1 0.6 Sediment 39 RI-22-008 91.3 92.1 0.6 Sediment - RI-22-009 1.2 133.0 2.9 Sediment - RI-22-009 84.4 9.17 2.2 Sediment 1.07 RI-22-009 94.4 13.0 2.8 Sediment - RI-22-009 94.4 13.0 2.7 Maric - RI-22-010 9.0 107.8 0.6 Maric 33 RI-22-010 10.7 8.6 Maric - RI-22-010 <td>0</td> <td>61</td> <td>Sediment</td> <td>2.9</td> <td>64.9</td> <td>5.0</td> <td>RL-22-007</td>	0	61	Sediment	2.9	64.9	5.0	RL-22-007
RL-22-007 74.7 117.0 2.8 Sediment 72 RL-22-008 15.8 71.5 0.7 Sediment 108 RL-22-008 87.3 87.3 0.7 Sediment 306 RL-22-008 87.3 87.3 0.7 Sediment 389 RL-22-008 87.3 91.3 0.6 Sediment 389 RL-22-008 91.3 92.1 0.3 Pegmatite 2,504 RL-22-008 91.2 162.0 0.6 Sediment 9 RL-22-009 9.0 1.2 0.2 Overburden - RL-22-009 3.0 84.4 3.0 Mafic - RL-22-009 9.4 13.0 2.8 Sediment 1.175 RL-22-009 9.4 13.0 2.7 Mafic - RL-22-009 9.4 13.0 2.7 Mafic - RL-22-010 0.7 8 Sediment 7.94 RL-22-010<	87	15,122	Pegmatite	0.9	74.7	64.9	RL-22-007
R1-22-008 0.0 15.8 12.5 Overburden Image: second	2	72	-	2.8	117.0	74.7	RL-22-007
R1-22-008 15.8 71.5 80.3 0.7 Sediment 10.80 R1-22-008 87.3 87.3 0.7 Sediment 306 R1-22-008 87.3 91.3 0.6 Sediment 389 R1-22-008 91.3 0.61 Sediment 389 R1-22-008 92.1 162.0 0.66 Sediment 9 R1-22-009 3.0 84.4 3.0 Marce - R1-22-009 84.0 1.0 Marce - - R1-22-009 84.4 3.0 Marce - - R1-22-009 84.4 3.0 Marce - - R1-22-009 94.4 13.0 Z.8 Sediment 1.0 R1-22-010 13.5 130.5 Z.7 Marce - R1-22-010 13.5 135.7 O.6 Marce 7.97 R1-22-010 135.7 135.7 O.6 Pegmatite 7.94 <	-	-		12.5	15.8	0.0	
R1-22-008 71.5 80.3 0.7.8 Pegmatite 18,050 R1-22-008 87.3 87.3 0.1 Pegmatite - R1-22-008 87.3 91.3 0.6 Sediment 389 R1-22-008 91.3 92.1 0.3 Pegmatite 2,504 R1-22-009 91.3 92.1 0.6 Sediment 9 R1-22-009 0.0 1.2 1.2 Overburden - R1-22-009 33.0 84.4 3.0 Mafic - R1-22-009 91.7 99.4 0.9 Pegmatite 5,346 R1-22-009 91.7 130.5 2.7 Mafic - R1-22-009 130.5 130.5 2.7 Mafic 33 R1-22-010 10.7 80.6 Mafic 33 R1-22-010 135.1 135.7 0.6 Mafic 13 R1-22-010 135.1 135.7 0.6 Pegmatite 7.947 R1-22-010	1	108		0.7	71.5	15.8	
R1-22-008 80.3 87.3 0.7 Sediment 306 R1-22-008 87.3 91.3 0.6 Sediment 39 R1-22-008 91.3 0.6 Sediment 2,504 R1-22-008 92.1 162.0 0.6 Sediment 9 R1-22-009 0.0 1.2 0.2 Overburden - R1-22-009 3.0 84.4 3.0 Mafic - R1-22-009 3.0 84.4 3.0 Mafic - R1-22-009 91.7 99.4 0.9 Pegmatite 5,346 R1-22-009 91.3 130.5 2.7 Mafic - R1-22-010 10.0 9.0 3.2 Overburden - R1-22-010 10.7 8 114.7 0.8 Pegmatite 7.947 R1-22-010 135.1 150.0 0.6 Mafic 111 R1-22-010 135.7 150.0 0.6 Mafic 114 <tr< td=""><td>109</td><td></td><td></td><td></td><td>-</td><td></td><td></td></tr<>	109				-		
R1-22-008 87.3 97.3 0.01 Pegmatite 1 R1-22-008 91.3 92.1 0.3 Pegmatite 2,504 R1-22-008 91.3 92.1 0.3 Pegmatite 2,504 R1-22-009 0.0 1.2 1.2 Overburden - R1-22-009 3.0 84.4 3.0 Mafic - R1-22-009 83.0 84.4 3.0 Mafic - R1-22-009 84.4 3.0 Mafic - R R1-22-009 94.4 13.0 2.8 Sediment 1.07 R1-22-009 93.0 130.5 2.7 Mafic - R1-22-010 10.7 80.6 Mafic 33 R1-22-010 10.7 80.6 Mafic 141 R1-22-010 135.1 135.7 0.6 Pegmatite 7.947 R1-22-010 135.1 135.7 0.6 Mafic 41 R1-22-011 30.6 </td <td>105</td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>	105	,					
International Original Original Original Original RL-22-008 91.3 92.1 0.3 Pegmatite 2,504 RL-22-008 92.1 162.0 0.6 Sediment 9 RL-22-009 0.0 1.2 1.2 Overburden - RL-22-009 33.0 84.4 3.0 Mafic - RL-22-009 33.0 84.4 3.0 Mafic - RL-22-009 91.7 99.4 0.9 Pegmatite 5,346 RL-22-009 13.5 130.5 2.7 Mafic - RL-22-009 13.5 130.5 2.7 Mafic - RL-22-010 0.0 9.0 3.2 Overburden - RL-22-010 10.7 114.7 0.8 Pegmatite 7,947 RL-22-010 135.1 155.7 0.6 Pegmatite 7,947 RL-22-010 135.7 150.0 0.6 Mafic - <	-						
RI-22-008 91.3 92.1 103.0 Pegmatite 2,504 RI-22-009 90.0 1.2 1.2 Overburden - RI-22-009 33.0 84.4 3.0 Mafic - RI-22-009 31.7 99.4 0.9 Pegmatite 5,366 RI-22-009 91.7 123.0 2.8 Sediment 2.00 RI-22-009 99.4 123.0 2.8 Sediment - RI-22-009 192.0 130.5 2.7 Mafic - - RI-22-010 10.5 186.0 3.0 Sediment - - RI-22-010 10.78 114.7 0.8 Pegmatite 7,947 - RI-22-010 135.1 135.7 0.6 Mafic - - RI-22-010 135.1 135.7 0.6 Pegmatite 477 - RI-22-011 9.0 97.1 2.9 Mafic - - RI-22-011	4		-				
RI-22-008 92.1 162.0 0.6 Sediment 9 RI-22-009 1.2 33.0 2.9 Sediment - RI-22-009 33.0 84.4 3.0 Mafic - RI-22-009 33.0 84.4 91.7 2.2 Sediment 1,175 RI-22-009 91.7 99.4 0.9 Pegmatite 5,346 RI-22-009 130.5 130.5 2.7 Mafic - RI-22-009 130.5 136.0 3.0 Sediment - RI-22-010 10.0 9.0 3.2 Overburden - RI-22-010 10.7.8 166.0 Mafic 133 RI-22-010 135.1 135.7 0.6 Pegmatite 7,947 RI-22-010 135.7 150.0 0.6 Mafic - RI-22-010 135.7 150.0 0.6 Mafic - RI-22-011 130.6 132.4 0.7 Pegmatite 417 <	82						
RI-22-009 0.0 1.2 1.2 Overburden - RI-22-009 3.0 84.4 3.0 Mafic - 1 RI-22-009 84.4 91.7 2.2 Sediment 1,175 1 RI-22-009 94.4 123.0 2.8 Sediment 200 1 RI-22-009 130.5 130.5 2.7 Mafic - 1 RI-22-009 130.5 136.0 3.0 Sediment - 1 RI-22-010 9.0 107.8 0.6 Mafic 33 1 RI-22-010 135.7 135.7 0.6 Pegmatite 7,947 1 RI-22-010 135.7 150.0 0.6 Mafic 111 1 RI-22-011 135.7 150.0 0.6 Mafic 1 1 RI-22-011 9.0 97.1 2.9 Mafic - 1 RI-22-011 130.6 132.4 0.7 Pegmatite		,	-				
Rl-22-009 1.2 33.0 2.9 Sediment - 1 Rl-22-009 83.0 84.4 3.0 Mafic - 1 Rl-22-009 91.7 99.4 0.9 Pegmatite 5,346 1 Rl-22-009 91.3 130.5 2.7 Mafic - 1 Rl-22-009 13.0 130.5 2.7 Mafic - 1 Rl-22-010 0.0 9.0 3.2 Overburden - 1 Rl-22-010 10.7 8 0.6 Mafic 33 1 Rl-22-010 135.1 135.7 0.6 Pegmatite 7,947 1 Rl-22-010 135.7 150.0 0.6 Mafic 11 1 Rl-22-010 135.7 150.0 0.6 Mafic - 1 Rl-22-011 130.6 132.4 0.7 Pegmatite 417 1 Rl-22-011 132.4 180.0 2.9 S	0	9					
RL-22-009 33.0 84.4 3.0 Mafic - RL-22-009 91.7 99.4 0.9 Pegmatite 5,346 RL-22-009 91.7 99.4 0.28 Sediment 200 RL-22-009 123.0 130.5 2.8 Sediment - RL-22-009 130.5 186.0 3.0 Sediment - RL-22-010 0.0 9.0 3.2 Overburden - RL-22-010 107.8 114.7 0.8 Pegmatite 7,947 RL-22-010 135.1 135.7 0.6 Pegmatite 254 RL-22-010 135.7 150.0 0.6 Mafic 11 RL-22-011 9.0 9.7.1 2.9 Mafic - RL-22-011 9.0 9.7.1 2.9 Mafic - RL-22-011 132.4 180.0 2.9 Sediment 2.7 RL-22-011 132.4 180.0 2.9 Sediment 2.7	-	-					
International and the second	-	-					
RL-22-009 91.7 99.4 0.9 Pegmatite 5,346 RL-22-009 123.0 130.5 2.7 Mafic - RL-22-009 130.5 186.0 3.0 Sediment - RL-22-010 0.0 9.0 3.2 Overburden - RL-22-010 107.8 114.7 0.8 Pegmatite 7,947 RL-22-010 135.1 135.7 0.6 Pegmatite 7,947 RL-22-010 135.7 150.0 0.6 Mafic 11 RL-22-011 35.7 150.0 0.6 Mafic - RL-22-011 30.6 2.8 Sediment 47 R RL-22-011 9.0 97.1 2.9 Mafic - R RL-22-011 30.6 132.4 0.7 Pegmatite 417 R RL-22-012 0.0 0.3 0.3 Overburden - R RL-22-013 5.2 64.0 2.8	-	-	Mafic	3.0	84.4	33.0	RL-22-009
RI-22-009 99.4 123.0 2.8 Sediment 2.00 RI-22-009 130.5 130.5 2.7 Mafic - - RI-22-009 130.5 186.0 3.0 Sediment - - RI-22-010 0.0 9.0 3.2 Overburden - - RI-22-010 107.8 114.7 0.8 Pegmatite 7,947 RI-22-010 135.1 135.7 0.6 Pegmatite 7,947 RI-22-010 135.7 150.0 0.6 Mafic 41 RI-22-011 9.0 97.1 2.9 Mafic - RI-22-011 9.0 97.1 2.9 Mafic - RI-22-011 130.6 132.4 0.7 Pegmatite 417 RI-22-011 132.4 180.0 2.9 Sediment 27 RI-22-012 0.3 111.0 2.9 Mafic - RI-22-013 5.2 64.0 2.8	3				-		
RI-22-009 123.0 130.5 2.7 Mafic - RI-22-009 130.5 186.0 3.0 Sediment - RI-22-010 0.0 9.0 3.2 Overburden - RI-22-010 9.0 107.8 0.6 Mafic 33 RI-22-010 114.7 0.8 Pegmatite 7,947 RI-22-010 135.1 135.7 0.6 Pegmatite 254 RI-22-010 135.7 150.0 0.6 Mafic 41 RI-22-011 0.0 9.0 7.5 Overburden - RI-22-011 9.0 97.1 2.9 Mafic - RI-22-011 9.0 9.2 9 Sediment 47 RI-22-011 132.4 180.0 2.9 Sediment - RI-22-012 0.3 111.0 2.9 Mafic - RI-22-013 5.2 64.0 2.8 Sediment 58 RI-22-013	170	5,346	Pegmatite	0.9	99.4	91.7	RL-22-009
RL-22-009 130.5 186.0 3.0 Sediment - RL-22-010 0.0 9.0 107.8 0.6 Mafic 33 RL-22-010 107.8 114.7 0.8 Pegmatite 7,947 RL-22-010 114.7 135.1 0.7 Mafic 171 RL-22-010 135.1 135.7 0.6 Pegmatite 254 RL-22-010 135.7 150.0 0.6 Mafic 41 RL-22-011 9.0 9.7.1 2.9 Mafic - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 7.20 132.0 2.8 Sediment 43 <td>0</td> <td>200</td> <td>Sediment</td> <td>2.8</td> <td>123.0</td> <td>99.4</td> <td>RL-22-009</td>	0	200	Sediment	2.8	123.0	99.4	RL-22-009
Rl-22-010 0.0 9.0 107.8 0.6 Mafic 3.3 Rl-22-010 107.8 114.7 0.8 Pegmatite 7,947 Rl-22-010 114.7 135.1 0.7 Mafic 171 Rl-22-010 135.1 135.7 0.6 Pegmatite 254 Rl-22-010 135.7 150.0 0.6 Mafic 41 Rl-22-011 0.0 9.0 7.5 Overburden Rl-22-011 9.0 97.1 2.9 Mafic Rl-22-011 9.0 97.1 2.9 Mafic Rl-22-011 9.0 0.3 0.3 0.28 Sediment 2.7 Rl-22-012 0.0 0.3 0.3 Overburden - Rl-22-013 0.0 5.2 5.2 Overburden - Rl-22-013 5.2 64.0 2.8 Sediment 43 - Rl-22-014 0.0	-	-	Mafic	2.7	130.5	123.0	RL-22-009
Number of the second		-	Sediment	3.0	186.0	130.5	RL-22-009
RL-22-010 107.8 114.7 0.8 Pegmatite 7,947 RL-22-010 114.7 135.1 0.7 Mafic 171 1 RL-22-010 135.1 135.7 0.6 Pegmatite 254 1 RL-22-010 135.7 150.0 0.6 Mafic 41 1 RL-22-011 9.0 9.7.1 2.9 Mafic - 1 RL-22-011 9.0 97.1 2.9 Mafic - 1 RL-22-011 9.0 97.1 130.6 2.8 Sediment 417 1 RL-22-011 132.4 180.0 2.9 Sediment 2.7 1 RL-22-012 0.0 0.3 0.3 Overburden - 1 1 RL-22-013 5.2 64.0 2.8 Sediment 58 1 RL-22-013 5.2 64.0 2.8 Sediment 1.32 1 RL-22-013 6.2 3.9	-	-	Overburden	3.2	9.0	0.0	RL-22-010
RL-22-010 114.7 135.1 0.7 Mafic 171 RL-22-010 135.1 135.7 0.6 Pegmatite 254 RL-22-010 135.7 150.0 0.6 Mafic 41 RL-22-011 0.0 9.0 7.5 Overburden - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-014 3.0 3.9 1.7 Overburden -	0	33	Mafic	0.6	107.8	9.0	RL-22-010
RL-22-010 114.7 135.1 0.7 Mafic 171 RL-22-010 135.1 135.7 0.6 Pegmatite 254 RL-22-010 135.7 150.0 0.6 Mafic 41 RL-22-011 0.0 9.0 7.5 Overburden - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-014 3.0 3.9 1.7 Overburden -	119	7,947	Pegmatite	0.8	114.7	107.8	RL-22-010
RL-22-010 135.1 135.7 0.6 Pegmatite 254 RL-22-010 135.7 150.0 0.6 Mafic 41 RL-22-011 0.0 9.0 7.5 Overburden - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Sediment 27 RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 3.9 35.5 0.7 Sediment 139 R	0	171	-	0.7			RL-22-010
RL-22-010 135.7 150.0 0.6 Mafic 41 RL-22-011 0.0 9.0 7.5 Overburden . RL-22-011 9.0 97.1 2.9 Mafic . RL-22-011 97.1 130.6 2.8 Sediment 477 RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.3 111.0 2.9 Mafic . RL-22-013 0.0 5.2 5.2 Overburden . RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 3.9 55.5 0.7 Sediment 13.9 <t< td=""><td>199</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	199						
RL-22-011 0.0 9.0 7.5 Overburden . RL-22-011 9.0 97.1 2.9 Mafic . RL-22-011 97.1 130.6 2.8 Sediment 477 RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden . RL-22-013 0.0 5.2 5.2 Overburden . RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 3.9 36.2 0.7 Sediment 11,297 RL-22-014 3.9 5.5 0.7 Sediment 13.8	0						
RL-22-011 9.0 97.1 2.9 Mafic - RL-22-011 9.0 97.1 130.6 2.8 Sediment 47 RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-014 70.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 35.5 75.0 0.7 Mafic	-						
RL-22-011 97.1 130.6 2.8 Sediment 47 RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 3.9 36.2 0.7 Sediment 112.97 RL-22-014 3.9 5.5 0.7 Sediment 309 RL-22-014 3.9 5.5 0.7 Mafic - <tr< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></tr<>		-					
RL-22-011 130.6 132.4 0.7 Pegmatite 417 RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 5.2 64.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,281 RL-22-014 36.2 38.9 0.6 Pegmatite 13,281 RL-22-014 102.0 110.4 0.7 Pegmatite 13,281	-	-					
RL-22-011 132.4 180.0 2.9 Sediment 27 RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,297 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 0.7 Sediment 309 R RL-22-014 102.0 110.4 0.7 Pegmatite 13,181	0						
RL-22-012 0.0 0.3 0.3 Overburden - RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,09 RL-22-014 36.2 75.0 0.7 Mafic - RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 12,233 </td <td>161</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	161		-				
RL-22-012 0.3 111.0 2.9 Mafic - RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,09 RL-22-014 36.2 75.0 0.7 Mafic - RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,281 RL-22-015 0.0 10.9 10.8 Overburden -	0	27					
RL-22-013 0.0 5.2 5.2 Overburden - RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,09 RL-22-014 36.2 38.9 0.6 Pegmatite 13,207 RL-22-014 36.2 102.0 1.3 Sediment 309 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 10.8 Overburden - RL-22-015 0.0 10.9 2.5 Sediment 322 </td <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>RL-22-012</td>	-	-				0.0	RL-22-012
RL-22-013 5.2 64.0 2.8 Sediment 58 RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,09 RL-22-014 36.2 38.9 0.7 Sediment 309 RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,281 RL-22-015 0.0 10.9 2.5 Sediment 322 RL-22-015 10.9 2.8.9 2.3 Sediment	-	-	Mafic	2.9	111.0	0.3	RL-22-012
RL-22-013 64.0 72.0 0.7 Pegmatite 17,213 RL-22-013 72.0 132.0 2.8 Sediment 43 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.6 Pegmatite 13,09 RL-22-014 36.2 55.5 0.7 Sediment 309 RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,281 RL-22-014 102.0 10.8 Overburden - RL-22-015 0.0 10.9 2.8 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233	-	-	Overburden	5.2	5.2	0.0	RL-22-013
RL-22-013 72.0 132.0 2.8 Sediment 4.3 RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 36.2 38.9 0.7 Sediment 309 RL-22-014 36.2 75.0 0.7 Mafic - RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,22 RL-22-014 10.0 10.9 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 62 RL-22-015 92.0 93.0 1.0 - - <td>0</td> <td>58</td> <td>Sediment</td> <td>2.8</td> <td>64.0</td> <td>5.2</td> <td>RL-22-013</td>	0	58	Sediment	2.8	64.0	5.2	RL-22-013
RL-22-014 0.0 3.9 1.7 Overburden - RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 35.5 75.0 0.7 Mafic - RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,281 RL-22-014 102.0 10.9 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 62 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - <td>131</td> <td>17,213</td> <td>Pegmatite</td> <td>0.7</td> <td>72.0</td> <td>64.0</td> <td>RL-22-013</td>	131	17,213	Pegmatite	0.7	72.0	64.0	RL-22-013
RL-22-014 3.9 36.2 0.7 Sediment 143 RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,22 RL-22-015 0.0 10.9 2.5 Sediment 322 RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 67.3 2.8 Sediment	0	43	Sediment	2.8	132.0	72.0	RL-22-013
RL-22-014 36.2 38.9 0.6 Pegmatite 11,297 RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,22 RL-22-015 0.0 10.9 2.5 Sediment 322 RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 67.3 73.6 0.9 Pegmatite	-	-	Overburden	1.7	3.9	0.0	RL-22-014
RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 92.0 93.0 1.0 - - RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 73.6 130.2 2.7 Sediment 326	0	143	Sediment	0.7	36.2	3.9	RL-22-014
RL-22-014 38.9 55.5 0.7 Sediment 309 RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 92.0 93.0 1.0 - - RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 73.6 130.2 2.7 Sediment 326	89			0.6	38.9	36.2	
RL-22-014 55.5 75.0 0.7 Mafic - RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 5.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 130.2 133.8 0.6 Pegmatite <t< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0						
RL-22-014 75.0 102.0 1.3 Sediment 150 RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 67.3 73.6 0.9 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-017 0.0 2.7 2.7 Overburden	-						
RL-22-014 102.0 110.4 0.7 Pegmatite 13,181 RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 67.3 73.6 0.9 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-017A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden<	0	150					
RL-22-014 110.4 129.0 2.5 Sediment 322 RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 67.3 73.6 0.9 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Overburden	112						
RL-22-015 0.0 10.9 10.8 Overburden - RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 67.3 73.6 0.9 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Overburden			-				
RL-22-015 10.9 28.9 2.3 Sediment 283 RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 8.1 67.3 2.8 Sediment 224 RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Overburden -	0	322					
RL-22-015 28.9 42.3 0.8 Pegmatite 12,233 RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - RL-22-016A 0.0 8.1 8.1 Overburden RL-22-016A 8.1 67.3 2.8 Sediment 224 - RL-22-016A 8.1 67.3 2.8 Sediment 224 - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 - RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 - RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 - RL-22-016A 133.8 156.0 2.6 Mafic 284 - RL-22-017 0.0 2.7 2.7 Overburden - - RL-22-017 2.7 53.9 2.8 Mafic 253 - <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	-					
RL-22-015 42.3 92.0 2.8 Sediment 62 RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 8.1 67.3 2.8 Sediment 224 RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Sediment 326 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253	0						
RL-22-015 92.0 93.0 1.0 - - RL-22-016A 0.0 8.1 8.1 Overburden - - RL-22-016A 8.1 67.3 2.8 Sediment 224 - RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 - RL-22-016A 73.6 130.2 2.7 Sediment 326 - RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 - RL-22-016A 133.8 156.0 2.6 Mafic 284 - RL-22-017 0.0 2.7 2.7 Overburden - - RL-22-017 2.7 53.9 2.8 Mafic 253 - RL-22-017 53.9 60.0 0.8 Pegmatite 12,856 -	109		-				
RL-22-016A 0.0 8.1 8.1 Overburden - RL-22-016A 8.1 67.3 2.8 Sediment 224 RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	1	62	Sediment	2.8	92.0	42.3	RL-22-015
RL-22-016A 8.1 67.3 2.8 Sediment 224 RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	-	-		1.0	93.0	92.0	RL-22-015
RL-22-016A 67.3 73.6 0.9 Pegmatite 15,696 RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	-	-	Overburden	8.1	8.1	0.0	RL-22-016A
RL-22-016A 73.6 130.2 2.7 Sediment 326 RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	0	224	Sediment	2.8	67.3	8.1	RL-22-016A
RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	80	15,696	Pegmatite	0.9	73.6	67.3	RL-22-016A
RL-22-016A 130.2 133.8 0.6 Pegmatite 14,624 RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	0	326		2.7	130.2	73.6	RL-22-016A
RL-22-016A 133.8 156.0 2.6 Mafic 284 RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	99	14,624		0.6	133.8	130.2	RL-22-016A
RL-22-017 0.0 2.7 2.7 Overburden - RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	0						
RL-22-017 2.7 53.9 2.8 Mafic 253 RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	-						
RL-22-017 53.9 60.0 0.8 Pegmatite 12,856	0	252					
	89						
	0	215					
RL-22-017 91.8 120.0 2.9 Sediment -	-						
RL-22-018 0.0 17.3 17.3 Overburden - RL-22-018 17.3 51.8 0.7 Mafic 144	- 0	-					

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-018	51.8	64.5	0.9	Pegmatite	11,320	116
RL-22-018	64.5	90.0	0.8	Sediment	127	1
RL-22-019	0.0	23.1	2.6	Mafic	264	0
RL-22-019	23.1	26.7	0.9	Pegmatite	10,749	83
RL-22-019	26.7	120.0	2.9	Sediment	82	0
RL-22-020	0.0	5.1	4.9	Overburden	-	-
RL-22-020	5.1	78.0	0.7	Sediment	69	0
RL-22-020	78.0	82.8	0.8	Pegmatite	11,786	101
RL-22-020	82.8	150.0	0.7	Sediment	35	0
RL-22-020	0.0	4.0	4.0	Overburden	-	-
RL-22-021	4.0	111.3	0.7	Mafic	26	0
RL-22-021	111.3	111.5	0.9	Pegmatite	8,362	151
	111.5	118.7	0.9	Mafic	240	151
RL-22-021					- 240	-
RL-22-022	0.0	3.5	3.5	Overburden		
RL-22-022	3.5	47.4	2.7	Mafic	67	0
RL-22-022	47.4	61.4	0.8	Pegmatite	13,478	97
RL-22-022	61.4	150.0	2.9	Mafic	34	0
RL-22-022	150.0	152.3	2.3		-	-
RL-22-023	0.0	3.3	3.3	Overburden	-	-
RL-22-023	3.3	12.4	1.8	Sediment	648	0
RL-22-023	12.4	25.5	0.8	Pegmatite	13,873	93
RL-22-023	25.5	76.6	2.7	Sediment	142	0
RL-22-023	76.6	78.3	1.2	Felsic	-	-
RL-22-023	78.3	108.4	2.9	Sediment	-	-
RL-22-023	108.4	111.5	2.2	Felsic	-	-
RL-22-023	111.5	120.0	2.8	Sediment	-	-
RL-22-023	120.0	189.0	69.0		-	-
RL-22-025	0.0	3.0	3.0	Overburden	-	-
RL-22-025	3.0	29.8	2.4	Mafic	44	0
RL-22-025	29.8	30.1	0.2	Amphibolite	4,779	12
RL-22-025	30.1	37.8	0.2	Pegmatite	10,533	123
RL-22-025	37.8	47.8	0.9	Mafic	2,569	5
						85
RL-22-025	47.8 49.7	49.7 71.0	0.8	Pegmatite Mafic	4,787 243	0
RL-22-025					- 245	-
RL-22-025	71.0	103.0	2.9	Sediment	-	
RL-22-025	103.0	104.0	1.0	Felsic	-	-
RL-22-025	104.0	137.8	2.9	Mafic	-	-
RL-22-025	137.8	141.0	2.8	Felsic	-	-
RL-22-027	0.0	3.4	3.4	Overburden	-	-
RL-22-027	3.4	4.2	0.8	Pegmatite	2,777	102
RL-22-027	4.2	4.7	0.5	Sediment	5,339	25
RL-22-027	4.7	15.6	0.9	Pegmatite	15,314	64
RL-22-027	15.6	26.0	0.8	Mafic	878	0
RL-22-027	26.0	27.0	1.0	Felsic	932	0
RL-22-027	27.0	64.5	2.8	Mafic	8	0
RL-22-027	64.5	66.0	1.5	Felsic	-	-
RL-22-027	66.0	78.4	2.9	Mafic	-	-
RL-22-027	78.4	80.2	1.8	Felsic	-	-
RL-22-027	80.2	88.2	2.5	Mafic	-	-
RL-22-027	88.2	89.0	0.9	Felsic	-	-
RL-22-027	89.0	90.9	1.0	Mafic	-	-
RL-22-027	90.9	93.6	1.8	Felsic	-	-
RL-22-027	93.6	108.0	2.9	Mafic	-	-
RL-22-027	0.0	6.4	6.4	Overburden		
RL-22-029	6.4	9.1	2.5	Mafic	-	-
		9.1 19.7		Felsic	-	-
RL-22-029	9.1		2.8			-
RL-22-029	19.7	30.9	2.4	Mafic	-	-
RL-22-029	30.9	32.1	1.2	Felsic	-	-
RL-22-029	32.1	75.0	3.0	Mafic	-	-
RL-22-029	75.0	80.1	2.6	Felsic	-	-
RL-22-029	80.1	91.6	2.0	Mafic	365	1
RL-22-029	91.6	92.9	0.6	Pegmatite	456	204
RL-22-029	92.9	94.4	0.7	Mafic	2,711	1
RL-22-029	94.4	95.6	0.6	Felsic	3,863	0
						0

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-029	106.4	112.3	0.8	Pegmatite	10,858	101
RL-22-029	112.3	141.5	2.6	Felsic	241	0
RL-22-029	141.5	151.8	2.7	Mafic	-	-
RL-22-029	151.8	156.1	2.4	Felsic	-	-
RL-22-029	156.1	210.0	3.0	Mafic	-	-
RL-22-029	210.0	226.7	16.7		-	-
RL-22-032	0.0	6.0	6.0	Overburden	-	-
RL-22-032	6.0	141.0	3.0	Mafic	-	-
RL-22-033	0.0	2.9	2.9	Overburden	-	-
RL-22-033	2.9	8.0	0.8	Pegmatite	14,141	58
RL-22-033	8.0	162.0	2.9	Mafic	7	0
RL-22-035	0.0	3.2	3.2	Overburden	-	-
RL-22-035	3.2	66.5	2.8	Mafic	32	0
RL-22-035	66.5	79.2	1.0	Pegmatite	12,758	78
RL-22-035	79.2	162.0	2.9	Mafic	23	0
RL-22-037	0.0	2.0	2.0	Overburden	-	-
RL-22-037	2.0	40.1	2.7	Sediment	193	0
RL-22-037	40.1	43.9	0.9	Pegmatite	8,210	71
RL-22-037	43.9	97.8	2.8	Sediment	196	0
RL-22-037	97.8	138.0	2.9	Mafic	-	-
RL-22-037	138.0	153.4	2.9	Sediment	-	-
RL-22-037	153.4	180.0	3.0	Mafic	-	-
RL-22-037	0.0	15.0	15.0	Overburden	-	-
RL-22-038	15.0	69.9	0.7	Sediment	-	
RL-22-038	69.9	73.4	0.6	Felsic	-	
RL-22-038	73.4	81.5	0.0	Sediment	986	1
RL-22-038	81.5	90.0	0.8		11,820	108
RL-22-038	90.0	141.0	0.8	Pegmatite Mafic	11,820	0
		6.0		Overburden	- 149	-
RL-22-039	0.0		6.0		-	-
RL-22-039	6.0	16.1	2.8	Sediment	-	-
RL-22-039	16.1	34.8	2.8	Mafic	-	-
RL-22-039	34.8	60.6	2.9	Sediment	-	-
RL-22-039	60.6	71.2	2.7	Mafic	-	-
RL-22-039	71.2	80.2	2.6	Sediment	-	-
RL-22-039	80.2	111.6	2.6	Mafic	93	0
RL-22-039	111.6	112.8	0.6	Pegmatite	69	82
RL-22-039	112.8	127.0	2.3	Mafic	182	0
RL-22-039	127.0	136.5	2.6	Sediment	-	-
RL-22-039	136.5	137.8	1.2	Mafic	-	-
RL-22-039	137.8	200.0	3.0	Sediment	-	-
RL-22-039	200.0	201.0	1.0	Mafic	-	-
RL-22-040	0.0	15.0	15.0	Overburden	-	-
RL-22-040	15.0	99.5	2.9	Mafic	20	0
RL-22-040	99.5	107.8	1.1	Pegmatite	4,917	108
RL-22-040	107.8	117.5	1.8	Sediment	2,899	5
RL-22-040	117.5	126.0	2.9	Mafic	-	-
RL-22-041	0.0	8.4	8.4	Overburden	-	-
RL-22-041	8.4	87.6	3.0	Sediment	-	-
RL-22-041	87.6	98.1	1.9	Mafic	1,077	1
RL-22-041	98.1	114.0	1.0	Pegmatite	10,714	121
RL-22-041	114.0	138.6	2.5	Sediment	145	0
RL-22-041	138.6	201.0	3.0	Mafic	-	-
RL-22-041	201.0	210.0	9.0		-	-
RL-22-042	0.0	7.9	7.9	Overburden	-	-
RL-22-042	7.9	41.5	2.9	Sediment	-	-
RL-22-042	41.5	156.0	3.0	Mafic	-	-
RL-22-043	0.0	2.4	2.4	Overburden	-	-
RL-22-043	2.4	141.0	3.0	Mafic	-	-
RL-22-045	0.0	3.0	3.0	Overburden	-	-
RL-22-045	3.0	5.5	2.5	Mafic	-	-
RL-22-045	5.5	31.6	2.9	Sediment	-	-
RL-22-045	31.6	162.0	3.0	Mafic	-	-
RL-22-047	0.0	5.9	5.9	Overburden	-	-
RL-22-047	5.9	148.4	3.0	Sediment	-	-
	148.4	178.5	2.9	Mafic		

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-047	178.5	204.0	2.2	Sediment	86	2
RL-22-387	0.0	11.4	11.4	Overburden	-	-
RL-22-387	11.4	31.8	2.4	Mafic	307	0
RL-22-387	31.8	41.5	0.9	Pegmatite	11,540	81
RL-22-387	41.5	123.0	2.9	Mafic	23	0
RL-22-461	0.0	4.8	4.8	Overburden	-	-
RL-22-461	4.8	5.5	0.7	Mafic	-	-
RL-22-461	5.5	8.4	0.8	Pegmatite	7,725	102
RL-22-461	8.4	107.0	2.9	Mafic	81	0
RL-22-475	0.0	5.5	5.5	Overburden	-	-
RL-22-475	5.5	28.3	2.9	sediment	-	-
RL-22-475	28.3	43.0	2.7	mafic	-	-
RL-22-475	43.0	53.2	2.6	Sediment	-	-
RL-22-475	53.2	99.1	2.9	Mafic	-	-
RL-22-475	99.1	109.7	2.8	Sediment	-	-
RL-22-475	109.7	120.0	2.8	Mafic	-	-
RL-22-490	0.0	3.0	3.0	Overburden	-	-
RL-22-490	3.0	61.7	2.8	Mafic	105	0
RL-22-490	61.7	66.0	0.8	Pegmatite	11,799	132
RL-22-490	66.0	122.3	2.8	Mafic	123	0
RL-22-490	122.3	124.5	1.2	Felsic		-
RL-22-490	122.5	162.0	2.9	Mafic	-	-
RL-22-490	162.0	176.5	2.9	Shear	-	-
RL-22-490	176.5	170.5	2.5	Mafic	-	-
RL-22-490	191.2	195.0	2.5	Felsic	-	_
RL-22-490	191.2	198.5	2.6	Shear	-	-
RL-22-490	198.5	201.0	2.5	Felsic		
RL-22-490	0.0	12.4	11.6	Overburden		
RL-22-497	12.4	12.4	2.5	Mafic		
			2.3	Felsic	-	-
RL-22-497	19.6 25.5	25.5 124.0	3.0	Mafic	-	-
RL-22-497	25.5				-	
RL-22-499	0.0	14.8	14.8	Overburden		
RL-22-499	14.8	90.6	2.9	Mafic	20	0
RL-22-499	90.6	97.7	1.0	Pegmatite	13,050	132
RL-22-499	97.7	114.0	2.5	Sediment	416	0
RL-22-499	114.0	120.0	6.0	0	-	-
RL-22-501	0.0	9.0	9.0	Overburden	-	-
RL-22-501	9.0	53.7	2.8	Sediment	59	0
RL-22-501	53.7	53.9	0.2	Pegmatite	1,386	10
RL-22-501	53.9	56.3	0.9	Sediment	1,709	3
RL-22-501	56.3	62.1	0.7	Pegmatite	12,339	113
RL-22-501	62.1	150.4	2.6	Sediment	72	0
RL-22-501	150.4	155.0	0.9	Pegmatite	5,143	109
RL-22-501	155.0	171.2	2.5	Sediment	229	1
RL-22-501	171.2	181.2	2.7	Felsic	-	-
RL-22-501	181.2	201.0	2.9	Mafic	-	-
RL-22-505	0.0	5.9	5.9	Overburden	-	-
RL-22-505	5.9	12.0	3.0	Felsic	-	-
RL-22-505	12.0	118.8	2.9	Mafic	79	0
RL-22-505	118.8	123.2	0.8	Pegmatite	11,294	128
RL-22-505	123.2	169.3	2.7	Mafic	122	0
RL-22-505	169.3	170.4	1.1	Felsic	-	-
RL-22-505	170.4	210.0	3.0	Mafic	-	-
RL-22-521	0.0	7.4	7.4	Overburden	-	-
RL-22-521	7.4	15.2	1.4	Sediment	263	0
RL-22-521	15.2	16.3	0.6	Pegmatite	415	130
RL-22-521	16.3	58.1	2.7	Mafic	42	0
RL-22-521	58.1	59.0	0.9	Felsic	-	-
RL-22-521	59.0	66.1	2.7	Mafic	-	-
RL-22-521	66.1	131.2	2.9	Sediment	-	-
RL-22-521	131.2	131.8	0.6	Mafic	-	-
RL-22-521	131.8	136.7	2.4	Sediment	-	-
RL-22-521	136.7	147.8	2.6	Felsic	-	-
RL-22-521	147.8	151.1	1.9	Mafic	-	-

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-521	160.9	180.0	2.9	Mafic	-	-
RL-22-522	0.0	10.5	10.5	Overburden	-	-
RL-22-522	10.5	44.2	2.7	Sediment	7	0
RL-22-522	44.2	44.3	0.1	Pegmatite	243	60
RL-22-522	44.3	50.1	1.7	Sediment	54	1
RL-22-522	50.1	53.4	1.1	Felsic	108	2
RL-22-522	53.4	53.6	0.2	Pegmatite	327	81
RL-22-522	53.6	56.8	1.6	Felsic	120	3
					120	1
RL-22-522	56.8	67.7	2.6	Sediment		
RL-22-522	67.7	67.8	0.1	Pegmatite	157	54
RL-22-522	67.8	69.8	1.0	Sediment	180	3
RL-22-522	69.8	131.6	3.0	Felsic	-	-
RL-22-522	131.6	140.9	2.8	Sediment	-	-
RL-22-522	140.9	147.4	2.3	Felsic	-	-
RL-22-522	147.4	153.4	2.7	Sediment	-	-
RL-22-522	153.4	154.7	1.3	Felsic	-	-
RL-22-522	154.7	175.6	2.8	Sediment	-	-
RL-22-522	175.6	177.1	1.3	Felsic	-	-
RL-22-522	175.0	192.5	2.9	Sediment		
					-	-
RL-22-522	192.5	193.1	0.6	Felsic	-	-
RL-22-522	193.1	201.0	2.7	Sediment	-	-
RL-22-524	0.0	6.0	6.0	Overburden	-	-
RL-22-524	6.0	105.0	3.0	Sediment	-	-
RL-22-524	105.0	180.0	2.8	Felsic	51	2
RL-22-524	180.0	201.0	3.0	Sediment	-	-
RL-22-525	0.0	4.5	4.5	Overburden	-	-
RL-22-525	4.5	56.7	2.9	sediment	-	-
RL-22-525	56.7	58.9	1.6	Felsic	-	-
	58.9	94.6	2.8		-	-
RL-22-525				Sediment	-	-
RL-22-525	94.6	97.5	1.4	Felsic	-	-
RL-22-525	97.5	102.5	1.5	Sediment	-	-
RL-22-525	102.5	108.5	2.6	Felsic	-	-
RL-22-525	108.5	112.9	2.3	Sediment	-	-
RL-22-525	112.9	114.6	1.0	Felsic	-	-
RL-22-525	114.6	116.4	1.8	sediment	-	-
RL-22-525	116.4	119.4	2.1	Felsic	-	-
RL-22-525	119.4	136.2	2.8	sediment	-	-
RL-22-525	136.2	137.0	0.7	Felsic	-	-
RL-22-525	137.0	138.6	0.9	sediment	-	-
RL-22-525	138.6	139.5	0.9	Felsic	-	
					_	
RL-22-525	139.5	198.6	2.9	sediment	-	-
RL-22-525	198.6	200.1	1.5	Felsic	-	-
RL-22-525	200.1	208.3	2.5	sediment	-	-
RL-22-525	208.3	211.4	1.6	Felsic	-	-
RL-22-525	211.4	225.0	2.6	sediment	-	-
RL-22-526	0.0	8.9	8.9	Overburden	-	-
RL-22-526	8.9	12.3	2.9	Sediment	-	-
RL-22-526	12.3	18.2	2.8	Felsic	-	-
RL-22-526	18.2	21.1	2.7	Sediment	-	-
RL-22-526	21.1	21.8	0.7	Felsic	-	-
					_	
RL-22-526	21.8	39.7	2.8	Sediment		-
RL-22-526	39.7	42.8	1.9	Felsic	-	-
RL-22-526	42.8	58.0	2.8	Sediment	-	-
RL-22-526	58.0	61.6	1.8	Felsic	-	-
RL-22-526	61.6	82.3	2.8	Sediment	-	-
RL-22-526	82.3	86.3	2.0	Felsic	-	-
RL-22-526	86.3	120.4	2.7	Sediment	356	0
RL-22-526	120.4	122.5	0.8	Pegmatite	736	129
RL-22-526	122.5	171.8	2.8	Sediment	84	0
RL-22-526	171.8	172.0	0.2	Pegmatite	159	250
RL-22-526	171.8	172.0	2.5	Sediment	5	230
					-	-
RL-22-527	0.0	3.0	3.0	Overburden		-
RL-22-527	3.0	9.5	2.8	Sediment	-	-
RL-22-527	9.5	10.4	0.8	Felsic	-	-
	10.4	18.9	2.5	Sediment	-	-

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-527	18.9	20.8	1.9	Felsic	-	-
RL-22-527	20.8	22.8	1.6	Sediment	-	-
RL-22-527	22.8	24.1	1.1	Felsic	-	-
RL-22-527	24.1	32.2	2.7	Sediment	-	-
RL-22-527	32.2	33.0	0.8	Lost Core	-	-
RL-22-527	33.0	42.4	2.9	Sediment	-	-
RL-22-527	42.4	50.5	2.7	Felsic	-	-
RL-22-527	50.5	58.8	2.6	Sediment	-	-
RL-22-527	58.8	68.3	2.6	Felsic	-	-
RL-22-527	68.3	83.5	2.8	Sediment	-	-
RL-22-527	83.5	83.8	0.3	Lost Core	-	-
RL-22-527	83.8	87.4	2.6	Sediment	-	-
RL-22-527	87.4	88.2	0.8	Lost Core	-	-
RL-22-527	88.2	130.1	2.9	Sediment	-	-
RL-22-527	130.1	151.8	2.8	Mafic	-	-
RL-22-527	151.8	151.0	1.2	Lost Core		-
RL-22-527	151.0	165.1	3.0	Mafic	-	-
RL-22-527 RL-22-527	165.1 169.9	169.9	2.5	Sediment Mafic	-	-
		170.4	0.5	Mafic	-	-
RL-22-527	170.4	174.8	2.3	Sediment	-	-
RL-22-527	174.8	192.6	2.7	Felsic	21	0
RL-22-527	192.6	193.3	0.7	Pegmatite	114	120
RL-22-527	193.3	200.1	1.8	Felsic	94	3
RL-22-527	200.1	200.2	0.1	Pegmatite	267	162
RL-22-527	200.2	230.9	2.9	Felsic	11	0
RL-22-527	230.9	236.8	2.9	Sediment	-	-
RL-22-527	236.8	241.0	2.4	Mafic	-	-
RL-22-527	241.0	249.0	2.8	Sediment	-	-
RL-22-528	0.0	3.0	3.0	Overburden	-	-
RL-22-528	3.0	125.0	3.0	Sediment	-	-
RL-22-528	125.0	201.0	3.0	Mafic	-	-
RL-22-529	0.0	3.9	3.9	Overburden	-	-
RL-22-529	3.9	73.9	2.8	Mafic	106	0
RL-22-529	73.9	80.4	0.9	Pegmatite	2,304	108
RL-22-529	80.4	142.5	2.7	Mafic	65	0
RL-22-529	142.5	144.0	1.5	Lost Core	-	-
RL-22-529	144.0	150.0	3.0	Mafic	-	-
RL-22-530	0.0	9.0	9.0	Overburden	-	-
RL-22-530	9.0	46.7	2.9	Mafic	18	0
RL-22-530	46.7	47.0	0.2	Pegmatite	618	50
RL-22-530	47.0	51.7	2.2	Mafic	316	1
RL-22-530	51.7	52.2	0.5	Pegmatite	263	86
RL-22-530	52.2	56.7	1.2	Mafic	399	0
RL-22-530	56.7	57.0	0.3	Pegmatite	553	1
	57.0	62.2	1.3	Mafic		0
RL-22-530 RL-22-530	62.2	62.2	0.5	Felsic	673 1,759	1
						2
RL-22-530	64.0	64.5	0.5	Mafic	3,853	
RL-22-530	64.5	67.7	0.8	Pegmatite	223	100
RL-22-530	67.7	106.2	2.7	Mafic	287	0
RL-22-530	106.2	111.4	2.4	Felsic	-	-
RL-22-530	111.4	150.0	3.0	Mafic	-	-
RL-22-531	0.0	6.1	6.1	Overburden	-	-
RL-22-531	6.1	9.2	2.7	Mafic	-	-
RL-22-531	9.2	22.6	2.2	Felsic	194	0
RL-22-531	22.6	28.8	0.8	Pegmatite	13,215	132
RL-22-531	28.8	104.5	2.9	Felsic	62	0
RL-22-531	104.5	131.9	2.9	Mafic	-	-
RL-22-531	131.9	150.0	3.0	Felsic	-	-
RL-22-532	0.0	90.1	3.0	Mafic	40	1
RL-22-532	90.1	101.8	0.3	Pegmatite	9,120	110
RL-22-532	101.8	113.0	0.3	Sediment	5,477	4
RL-22-532	113.0	133.7	0.3	Pegmatite	10,842	94
RL-22-532	133.7	156.0	1.7	Sediment	3,270	0
RL-22-532	156.0	176.8	0.4	Pegmatite	8,344	80
	176.8	231.0	2.8	Mafic	121	1

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-533	0.0	5.6	5.6	Overburden	-	-
RL-22-533	5.6	63.0	3.0	Sediment	-	-
RL-22-533	63.0	87.3	3.0	Felsic	-	-
RL-22-533	87.3	111.8	2.9	Mafic	-	-
RL-22-533	111.8	118.2	2.4	Felsic	-	-
RL-22-533	118.2	153.0	2.7	Mafic	182	0
RL-22-533	153.0	162.6	1.0	Pegmatite	6,046	106
RL-22-533	162.6	201.0	2.8	Mafic	297	1
RL-22-533	201.0	201.0	3.0	Walle		-
RL-22-534	0.0	6.0	6.0	Overburden		
RL-22-534	6.0	117.0	2.8	Mafic	178	1
RL-22-534	117.0	120.5	0.8	Pegmatite	9,279	108
RL-22-534	120.5	136.8	2.2	Felsic	252	-
RL-22-534	136.8	201.0	3.0	Mafic	-	-
RL-22-535	0.0	3.2	3.2	Overburden	-	-
RL-22-535	3.2	3.7	0.5	Mafic	-	-
RL-22-535	3.7	4.5	0.9	Felsic	-	-
RL-22-535	4.5	15.3	2.7	Mafic	-	-
RL-22-535	15.3	16.8	1.5	Felsic	-	-
RL-22-535	16.8	30.8	2.1	Mafic	292	1
RL-22-535	30.8	36.3	0.3	Pegmatite	10,055	138
RL-22-535	36.3	142.8	2.8	Mafic	38	0
RL-22-535	142.8	144.0	1.2	Felsic	37	1
RL-22-535	144.0	150.0	2.0	Mafic	57	0
RL-22-536	0.0	6.3	6.3	Overburden	-	-
RL-22-536	6.3	91.9	2.9	Felsic	301	1
RL-22-536	91.9	96.1	0.9	Pegmatite	2,267	94
RL-22-536	96.1	127.6	2.6	Felsic	123	0
	127.6	127.0	2.6	Mafic	-	-
RL-22-536					-	-
RL-22-536	138.8	162.2	2.9	Felsic	-	-
RL-22-536	162.2	176.7	2.9	Mafic	-	-
RL-22-536	176.7	180.0	2.8	Felsic	-	-
RL-22-537	0.0	6.3	6.3	Overburden	-	-
RL-22-537	6.3	172.4	2.9	Mafic	91	0
RL-22-537	172.4	175.9	0.9	Pegmatite	11,330	130
RL-22-537	175.9	201.0	2.7	Mafic	158	1
RL-22-538	0.0	7.2	7.2	Overburden	-	-
RL-22-538	7.2	28.2	2.8	Sediment	-	-
RL-22-538	28.2	38.2	1.8	Felsic	1,193	0
RL-22-538	38.2	42.8	0.7	Pegmatite	9,192	72
RL-22-538	42.8	102.0	2.8	Sediment	48	0
RL-22-539	0.0	6.0	6.0	Overburden	-	-
RL-22-539	6.0	53.2	2.8	Sediment	258	0
RL-22-539	53.2	55.4	0.7	Pegmatite	2,947	95
	55.4				1,446	
RL-22-539		59.2 75.1	0.9	Sediment Felsic	,	1
RL-22-539	59.2			Felsic	37	-
RL-22-539	75.1	117.0	3.0	Sediment		
RL-22-540	0.0	3.0	3.0	Overburden	-	-
RL-22-540	3.0	32.6	2.7	Felsic	51	1
RL-22-540	32.6	39.1	0.9	Pegmatite	6,719	105
RL-22-540	39.1	150.0	2.7	Felsic	35	0
RL-22-541	0.0	10.0	9.2	Overburden	-	-
RL-22-541	10.0	79.5	2.8	Felsic	66	0
RL-22-541	79.5	83.8	0.9	Pegmatite	10,195	121
RL-22-541	83.8	180.0	2.9	Felsic	47	0
RL-22-542	0.0	7.9	7.9	Overburden	-	-
RL-22-542	7.9	51.5	2.9	Sediment	-	-
RL-22-542	51.5	114.9	2.9	Mafic	8	0
RL-22-542	114.9	114.5	1.0	Pegmatite	194	1
RL-22-542	115.9	146.9	2.4	Mafic	159	0
RL-22-542	146.9	151.1	0.9	Pegmatite	1,907	104
RL-22-542	151.1	210.7	2.8	Sediment	112	0
RL-22-542	210.7	212.0	1.3	Mafic	-	-
RL-22-542	212.0	219.0	2.7	Sediment	-	-
RL-22-542	219.0	252.0	3.0	Mafic	-	-

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-22-543	0.0	7.7	7.7	Overburden	-	-
RL-22-543	7.7	57.4	2.9	Sediment	-	-
RL-22-543	57.4	61.4	2.2	Felsic	-	-
RL-22-543	61.4	137.6	2.9	Sediment	8	0
RL-22-543	137.6	139.3	0.4	Pegmatite	281	2
RL-22-543	139.3	187.5	2.7	Mafic	528	0
RL-22-543	187.5	195.5	1.0	Pegmatite	8,387	97
RL-22-543	195.5	249.0	2.8	Mafic	149	0
RL-22-543	249.0	252.0	3.0		-	-
RL-22-547	0.0	4.5	4.5	Overburden	-	-
RL-22-547	4.5	45.5	2.9	Sediment	-	-
RL-22-547	45.5	57.3	2.8	Felsic	-	-
RL-22-547	57.3	67.0	2.7	Sediment	-	-
RL-22-547	67.0	79.9	2.7	Felsic	-	-
RL-22-547	79.9	92.3	2.7	Sediment	-	-
RL-22-547	92.3	126.0	3.0	Felsic	-	-
RL-22-548	0.0	3.0	3.0	Overburden	-	-
RL-22-548	3.0	6.7	2.6	Mafic	-	-
RL-22-548	6.7	14.0	2.5	Felsic	-	-
RL-22-548	14.0	64.8	2.9	Mafic	-	-
RL-22-548	64.8	70.0	1.1	Felsic	481	1
RL-22-548	70.0	70.0	0.7	Pegmatite	4,352	103
RL-22-548	74.0	96.8	2.6	Felsic	4,552 99	105
RL-22-548	96.8	131.1	2.0	Mafic	4	0
RL-22-548	131.1	132.5	0.8	Pegmatite	38	1
RL-22-548	132.5	163.3	2.5	Mafic	25	0
						0
RL-22-548 RL-22-548	163.3 167.3	167.3 192.0	0.8	Pegmatite Mafic	30 9	0
		9.0	9.0		-	-
RL-22-549	0.0			Overburden		
RL-22-549	9.0	124.3	2.9	Felsic	63	0
RL-22-549	124.3	128.6	0.9	Pegmatite	9,380	96
RL-22-549	128.6	220.9	2.9	Felsic	47	0
RL-22-549	220.9	249.0	2.9		-	-
RL-22-550	0.0	3.6	3.6	Overburden	-	-
RL-22-550	3.6	97.5	2.9	Felsic	25	0
RL-22-550	97.5	101.7	0.7	Pegmatite	9,272	152
RL-22-550	101.7	150.0	2.7	Felsic	59	0
RL-22-551	0.0	7.7	7.7	Overburden	-	-
RL-22-551	7.7	35.6	2.9	Sediment	-	-
RL-22-551	35.6	39.5	2.4	Felsic	-	-
RL-22-551	39.5	99.7	3.0	Sediment	-	-
RL-22-551	99.7	102.2	2.1	Felsic	-	-
RL-22-551	102.2	126.0	3.0	Sediment	-	-
RL-23-452	0.0	6.0	6.0	Overburden	-	-
RL-23-452	6.0	10.2	1.1	Mafic	2,321	1
RL-23-452	10.2	22.8	1.0	Pegmatite	16,087	142
RL-23-452	22.8	90.3	2.7	Mafic	137	4
RL-23-452	90.3	104.1	2.8	Sediment	-	-
RL-23-452	104.1	137.7	2.7	Mafic	279	0
RL-23-452	137.7	149.1	0.8	Pegmatite	13,205	120
RL-23-452	149.1	201.0	2.8	Sediment	51	0
RL-23-454	0.0	24.0	24.0	Overburden	-	-
RL-23-454	24.0	71.3	2.8	Mafic	167	0
RL-23-454	71.3	77.7	0.9	Pegmatite	15,329	89
RL-23-454	77.7	180.0	2.9	Mafic	57	0
RL-23-480	0.0	16.1	14.0	Overburden	44	0
RL-23-480	16.1	27.3	0.3	Pegmatite	8,424	110
RL-23-480	27.3	92.1	2.8	Mafic	41	0
RL-23-480	92.1	100.8	2.5	Felsic	-	-
RL-23-480	100.8	159.9	2.9	Mafic	-	-
RL-23-480	159.9	172.9	1.9	Felsic	342	0
RL-23-480	172.9	178.0	0.3	Pegmatite	12,019	152
RL-23-480	172.0	185.9	1.3	Felsic	1,177	2
RL-23-480	185.9	201.0	3.0	Sediment	_,_, , , _	-
+00	200.0	201.0	5.5	Jeanneine		

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-23-544	2.0	12.0	2.8	Mafic	-	-
RL-23-544A	0.0	2.0	2.0	overburden	-	-
RL-23-544A	2.0	159.4	2.9	mafic	21	0
RL-23-544A	159.4	162.8	0.9	Pegmatite	15,467	111
RL-23-544A	162.8	225.0	2.7	Mafic	54	1
RL-23-545	0.0	1.9	1.9	Overburden	-	-
RL-23-545	1.9	70.3	2.9	Mafic	-	-
RL-23-545	70.3	83.3	1.0	Pegmatite	6,739	67
RL-23-545	83.3	159.0	2.8	Mafic	90	0
RL-23-545	159.0	160.1	0.9	Pegmatite	145	60
RL-23-545	160.1	225.0	2.8	Mafic	14	2
RL-23-546	0.0	3.0	3.0	Overburden	-	-
RL-23-546	3.0	62.6	3.0	Mafic	-	-
RL-23-546	62.6	67.8	2.4	Felsic	-	-
RL-23-546	67.8	149.4	2.8	Mafic	26	0
RL-23-546	149.4	152.3	0.8	Pegmatite	17,202	115
RL-23-546	152.3	210.0	2.7	Mafic	89	1
RL-23-553	0.0	3.6	3.6	Overburden	-	-
RL-23-553	3.6	31.5	2.9	Felsic	-	-
RL-23-553	31.5	37.1	2.2	Mafic	-	-
RL-23-553	37.1	80.0	2.5	Felsic	52	0
RL-23-553	80.0	85.0	1.0	Pegmatite	170	26
RL-23-553	85.0	87.7	0.9	Sediment	819	28
RL-23-553	87.7	89.6	1.0	Pegmatite	183	139
RL-23-553	89.6	120.0	2.7	Felsic	66	1
RL-23-554	0.0	18.5	18.5	Overburden	-	-
RL-23-554	18.5	20.9	2.5	Mafic	-	-
RL-23-554	20.9	31.6	2.1	Felsic	402	1
RL-23-554	31.6	39.9	0.9	Pegmatite	18,168	113
RL-23-554	39.9	126.8	2.8	Sediment	51	0
RL-23-554	126.8	130.1	0.8	Pegmatite	5,615	110
RL-23-554	130.1	150.0	2.5	Sediment	86	0
RL-23-555	0.0	4.5	4.5	Overburden	-	-
RL-23-555	4.5	68.8	2.9	Mafic	-	-
RL-23-555	68.8	171.9	3.0	Sediment	-	-
RL-23-555	171.9	182.1	2.6	Mafic	-	-
RL-23-555	182.1	210.0	2.9	Sediment	-	-
RL-23-556	0.0	3.3	2.8	Overburden	-	-
RL-23-556	3.3	55.0	2.8	Mafic	142	0
RL-23-556	55.0	58.0	1.0	Pegmatite	13,970	140
RL-23-556	58.0	127.9	2.7	Mafic	111	0
RL-23-556	127.9	129.1	0.5	Pegmatite	410	136
RL-23-556	129.1	222.0	2.9	Mafic	25	0
RL-23-557	0.0	3.0	3.0	Overburden	-	-
RL-23-557	3.0	210.0	3.0	Mafic	-	-
RL-23-558	0.0	1.5	1.5	Overburden	-	-
RL-23-558	1.5	85.8	2.7	Mafic	51	0
RL-23-558	85.8	89.0	0.9	Pegmatite	302	251
RL-23-558	89.0	135.3	2.6	Mafic	97	0
RL-23-558	135.3	136.6	0.6	Pegmatite	316	294
RL-23-558	136.6	150.1	1.1	Mafic	2,023	2
RL-23-558	150.1	152.4	0.8	Pegmatite	5,672	185
RL-23-558	152.4	210.0	2.8	mafic	103	0
RL-23-561	0.0	1.5	1.5	Overburden	-	-
RL-23-561	1.5	65.7	2.8	Mafic	154	0
RL-23-561	65.7	69.5	0.7	Pegmatite	1,378	134
RL-23-561	69.5	114.6	2.7	Mafic	82	0
RL-23-561	114.6	155.9	2.7	Sediment	138	0
RL-23-561	155.9	157.9	0.9	Pegmatite	1,336	151
RL-23-561	157.9	172.1	1.0	Sediment	719	1
RL-23-561	172.1	174.0	0.9	Pegmatite	576	92
RL-23-561	174.0	225.0	2.8	Mafic	242	0
RL-23-560	0.0	13.5	13.5	Overburden	-	-
RL-23-560	13.5	275.5	2.9	Mafic	17	0
RL-23-560	275.5	279.8	0.6	Pegmatite	10,631	120

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-23-560	279.8	351.0	2.9	Mafic	41	0
RL-22-571	0.0	5.4	5.4	Overburden	-	-
RL-22-571	5.4	69.2	2.7	Sediment	136	0
RL-22-571	69.2	71.5	0.8	Pegmatite	6,093	102
RL-22-571	71.5	95.6	2.0	Sediment	286	0
RL-22-571	95.6	100.7	0.7	Felsic	246	0
RL-22-571	100.7	157.7	2.8	Sediment	17	0
RL-22-571	157.7	158.4	0.6	Pegmatite	75	102
RL-22-571	158.4	198.5	2.6	Sediment	30	0
RL-22-571	198.5	207.0	2.8	felsic		
RL-22-571	207.0	216.5	2.0	Sediment	-	-
RL-22-571	216.5	222.7	2.5	Felsic	-	-
RL-22-571	222.7	235.4	2.7	Sediment	-	-
RL-22-571	235.4	273.0	2.9	Felsic		
RL-23-559	0.0	6.0	6.0	Overburden	-	-
RL-23-559	6.0	37.1	2.9	Mafic	-	-
RL-23-559	37.1	44.2	2.5	Felsic	-	-
RL-23-559	44.2	64.5	2.8	Mafic	-	-
RL-23-559	64.5	72.0	2.7	Felsic	-	-
RL-23-559	72.0	120.0	3.0	Mafic	-	-
RL-23-567	0.0	8.2	8.2	Overburden	-	-
RL-23-567	8.2	10.6	0.9	Sediment	881	1
RL-23-567	10.6	13.5	0.8	Pegmatite	7,833	114
RL-23-567	13.5	129.0	2.8	Sediment	77	1
RL-23-568	0.0	5.4	5.4	Overburden	-	-
RL-23-568	5.4	30.0	2.9	Sediment	-	-
RL-23-568C	0.0	7.7	7.7	Overburden	-	-
RL-23-568C	7.7	50.2	2.7	Sediment	82	0
RL-23-568C	50.2	56.0	1.0	pegmatite	881	120
RL-23-568C	56.0	108.7	2.8	Sediment	33	0
RL-23-568C	108.7	120.8	2.7	felsic	-	-
RL-23-568C	120.8	132.0	2.9	Sediment	-	-
RL-23-569	0.0	8.0	8.0	Overburden	-	-
RL-23-569	8.0	14.0	2.3	felsic	-	-
RL-23-569	14.0	33.0	2.4	Sediment	-	-
RL-23-569	33.0	36.8	1.0	Pegmatite	-	-
RL-23-569	36.8	68.3	2.1	sediment	-	-
RL-23-569	68.3	72.5	2.3	felsic	-	-
RL-23-569	72.5	94.3	2.8	Sediment	-	-
RL-23-569	94.3	107.5	2.7	felsic	-	-
RL-23-569	107.5	120.0	2.9	Sediment	-	-
RL-23-570	0.0	5.8	5.8	Overburden	-	-
RL-23-570	5.8	15.2	1.8	Sediment	237	0
RL-23-570	15.2	17.9	0.9	Pegmatite	18,177	127
RL-23-570	17.9	28.0	1.0	Sediment	930	1
RL-23-570 RL-23-570	28.0	30.8	0.8	Pegmatite	300	97
RL-23-570 RL-23-570	30.8	60.6	2.6	¥.	108	97
				Sediment		
RL-23-570	60.6	66.8	2.5	Mafic	-	-
RL-23-570	66.8	77.9	2.5	Sediment	7	0
RL-23-570	77.9	81.6	0.9	Felsic	27	0
RL-23-570	81.6	90.6	2.4	Sediment	5	0
RL-23-570	90.6	92.4	1.8	Felsic	-	-
RL-23-570	92.4	100.2	2.5	Sediment	7	0
RL-23-570	100.2	102.0	0.9	Felsic	27	0
RL-23-570	102.0	107.5	0.9	Sediment	75	0
RL-23-570	107.5	108.5	0.5	Felsic	32	1
-	108.5	114.3	2.1	Sediment	7	0
RL-23-570	114.3	120.0	2.8	Felsic	-	-
RL-23-570 RL-23-570		6.5	5.6	Overburden	-	-
RL-23-570	0.0		5.5			0
RL-23-570 RL-23-572	0.0		28	Feisic		
RL-23-570 RL-23-572 RL-23-572	6.5	112.5	2.8	Felsic Pegmatite	1	
RL-23-570 RL-23-572 RL-23-572 RL-23-572	6.5 112.5	112.5 129.4	2.2	Pegmatite	175	1
RL-23-570 RL-23-572 RL-23-572 RL-23-572 RL-23-572	6.5 112.5 129.4	112.5 129.4 183.0	2.2 2.6	Pegmatite Felsic	175 858	1
RL-23-570 RL-23-572 RL-23-572 RL-23-572	6.5 112.5	112.5 129.4	2.2	Pegmatite	175	1

HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-23-575	0.0	6.3	6.3	Overburden	-	-
RL-23-575	6.3	29.1	2.9	Sediment	-	-
RL-23-575	29.1	32.8	2.4	Felsic	-	-
RL-23-575	32.8	43.7	2.8	Sediment	-	-
RL-23-575	43.7	44.7	1.0	Felsic	-	-
RL-23-575	44.7	62.1	2.4	Sediment	164	2
RL-23-575	62.1	73.0	0.9	Pegmatite	4,739	143
RL-23-575	73.0	77.3	1.1	Sediment	316	2
RL-23-575	77.3	79.2	0.7	Pegmatite	182	105
RL-23-575	79.2	95.2	2.3	Sediment	60	1
RL-23-575	95.2	118.3	2.4	Felsic	52	0
RL-23-575	118.3	119.3	1.0	Pegmatite	157	68
RL-23-575	119.3	140.5	2.1	Felsic	85	0
RL-23-575	140.5	142.3	1.1	Sediment	-	-
RL-23-575	142.3	151.8	1.7	Felsic	64	1
RL-23-575	151.8	155.3	1.9	Mafic	-	-
RL-23-575	155.3	165.1	2.8	Felsic	-	-
RL-23-575	165.1	257.7	3.0	Mafic	-	-
RL-23-575	257.7	280.0	2.9	Felsic	-	-
RL-23-575	280.0	297.5	2.4	Mafic	7	0
RL-23-575	297.5	297.9	0.4	Pegmatite	28	1
RL-23-575	297.9	324.0	2.8	Mafic	1	0
RL-23-575	0.0	4.4	4.4	Overburden	-	-
RL-23-576	4.4	105.2	2.7	Felsic	55	0
RL-23-576	105.2	105.2	0.3	Pegmatite	271	95
RL-23-576	105.2	129.0	1.9	Felsic	325	0
			0.2			74
RL-23-576 RL-23-576	129.0 129.6	129.6 170.2	2.2	Pegmatite Felsic	213 147	0
	129.0				12,498	171
RL-23-576		173.5	0.3	Pegmatite	,	
RL-23-576	173.5	214.3	2.6	Felsic	54	0
RL-23-576	214.3	270.0	2.8	Sediment	-	-
RL-23-044	0.0	0.6	0.6	Overburden	-	-
RL-23-044	0.6	18.9	2.5	Mafic	232	0
RL-23-044	18.9	22.5	0.8	Pegmatite	13,594	104
RL-23-044	22.5	189.2	2.9	Mafic	29	0
RL-23-044	189.2	198.7	2.8	sediment	-	-
RL-23-044	198.7	215.9	2.3	mafic	121	0
RL-23-044	215.9	223.0	0.9	Pegmatite	5,437	111
RL-23-044	223.0	381.0	2.9	Mafic	13	0
RL-23-403	0.0	3.0	3.0	Overburden	-	-
RL-23-403	3.0	13.6	2.8	Sediment	-	-
RL-23-403	13.6	30.8	2.7	Mafic	-	-
RL-23-403	30.8	120.0	2.9	Sediment	-	-
RL-23-566	0.0	3.0	3.0	Overburden	-	-
RL-23-566	3.0	21.5	2.8	Sediment	-	-
RL-23-566	21.5	210.0	2.8	Mafic	-	-
RL-23-574	0.0	0.6	0.6	Overburden	-	-
RL-23-574	0.6	198.0	2.8	Mafic	62	2
RL-23-562	0.0	3.0	3.0	Overburden	-	-
RL-23-562	3.0	251.0	2.8	Sediment	-	-
RL-23-563	0.0	3.0	3.0	Overburden	-	-
RL-23-563	3.0	31.8	3.1	Mafic	-	-
RL-23-563	31.8	145.5	2.8	Sediment	-	-
RL-23-563	145.5	198.0	2.7	Mafic	-	-
RL-23-573	0.0	3.5	2.6	Overburden	-	-
RL-23-573	3.5	51.2	2.8	Mafic	81	0
RL-23-573	51.2	52.8	0.8	Pegmatite	4,478	262
RL-23-573	52.8	142.7	2.8	Mafic	68	0
RL-23-573	142.7	143.8	0.6	Pegmatite	220	70
RL-23-573	143.8	201.0	2.9	Mafic	202	0
RL-23-442	0.0	6.0	6.0	Overburden	-	-
RL-23-442	6.0	81.7	2.8	Mafic	-	-
RL-23-442	81.7	83.7	1.1	Pegmatite	-	-
RL-23-442	83.7	94.5	1.1	Mafic	-	-
	94.5	95.0	0.5	Pegmatite	-	-

	1					
HoleId	From	То	Interval	Lithology	Li2O ppm	Ta2O5 ppm
RL-23-442	95.0	98.2	1.1	Mafic	-	-
RL-23-442	98.2	98.9	0.8	Pegmatite	-	-
RL-23-442	98.9	100.5	1.4	Mafic	-	-
RL-23-442	100.5	102.0	0.8	Pegmatite	-	-
RL-23-442	102.0	128.3	2.5	Mafic	-	-
RL-23-442	128.3	129.7	0.7	Pegmatite	-	-
RL-23-442	129.7	168.0	2.7	Mafic	-	-
RL-23-564	0.0	4.5	4.5	Overburden	-	-
RL-23-564	4.5	204.0	3.0	Mafic	-	-
RL-23-565	0.0	3.6	3.6	Overburden	-	-
RL-23-565	3.6	26.0	2.8	Mafic	-	-
RL-23-565	26.0	93.1	2.9	Sediment	-	-
RL-23-565	93.1	98.1	2.4	Mafic	-	-
RL-23-565	98.1	201.0	3.0	Sediment	-	-