Significant Clay-hosted Rare Earths Intersected at Peak Charles

HIGHLIGHTS:

- Significant clay-hosted rare earth elements have been intersected in maiden reconnaissance aircore drilling on E74/695 at Peak Charles
- Grades up to 1890ppm Total Rare Earth Oxides (TREO)
- High grade Magnet Rare Earth oxides encountered up to 35.3% of TREO grade
- Critical Rare Earth oxides were observed up to 41% of TREO grade
- REE mineralised clays encountered up to 20m thick
- All holes at Pyramid Road and the northern end of Ned's Corner Road that successfully drilled past the calcrete and hard clay top into the clay zone below have mineralisation greater than 300ppm TREO
- The first pass reconnaissance drill program highlights the strong potential upside for further targeted TREO drilling at the Pyramid – Ned's Corner Road Prospect
- The TREO target area based on current drilling data is roughly 15 km x 12 km

NEXT STEPS:

- Plan follow-up drilling program to establish continuity of the Pyramid Road, Ned's Corner Road and possibly the Northern Track prospects clay zone
- Assess and model drilling data and assay results
- Process and interpretate recently acquired airborne geophysical data
- Land access liaison with private landowners/occupiers
- Interpret and integrate newly acquired datasets to identify exploration targets on the entire Peak Charles Project tenement package to be tested with reconnaissance additional drilling

"Moho is excited by this first pass untargeted exploration program which has shown consistent high-grade clay hosted REE results. Moho believes the identified target zone of 15 x 12km thus far, with further room for growth across the tenement package, puts the company in a positive position in the REE market in Australia." - Mr Ralph Winter, Managing Director

ASX:MOH Address Office 3 / 9 Loftus Street West Leederville, WA, 6007 T +61 (08) 9481 0389 +61 (08) 9463 6103 E admin@mohoresources.com.au W mohoresources.com.au

Corporate Directory

NON EXECUTIVE CHAIRMAN Terry Streeter

MANAGING DIRECTOR & COMPANY SECRETARY Ralph Winter

NON EXECUTIVE DIRECTOR Shane Sadleir

NON EXECUTIVE DIRECTOR Adrian Larking

20 April 2023

Moho Resources Ltd (**Moho** or the **Company**) is pleased to advise that the assay results have been received for the first pass aircoredrilling program at its Peak Charles Project in WA and confirm the presence of clay-hosted rare earth elements (REE) mineralisation.

Moho's 100% owned Peak Charles Project (Figure 1) is an 874km² contiguous tenement package located approximately 88 km northwest of Esperance, Western Australia. The project comprises three granted exploration licenses (E74/695, E63/2162, E63/2163) and two pending exploration license applications (E74/694- and E74/766). The Peak Charles Project was acquired through a deal with Whistlepipe Exploration Pty Ltd (*ASX announcement; MOHO EXPANDS NICKEL & GOLD SEARCH IN WA, 25 October 2021*). Although the original target commodities for the Peak Charles Project were Ni-Cu sulphide and gold, the project has now shown potential for large scale, clay-hosted REE mineralisation.

Figure 1: Moho's Peak Charles Project in relation to other companies exploring for REE (on Google Earth image)

The Peak Charles Project tenements adjoin the Grass Patch tenements of OD6 Metals Ltd. OD6 reported recently high-grade clay REE on their regional reconnaissance drilling at Grass Patch Project (OD6 ASX announcement 24 March 2023).

REE, particularly neodymium (Nd) and praseodymium (Pr), are becoming increasingly important in the global economy, with uses including advanced electronics, permanent magnets in electric motors and electricity generators and battery technologies. Currently, clay-hosted REE deposits are primarily economically extracted in China, with a number of other projects being explored elsewhere in the world including Western Australia.

Peak Charles Project Drill Hole locations

The first phase 81-hole reconnaissance aircore drill program at E 74/695 was designed to further understand the geological setting of the project area, follow up historic surface gold mineralisation and to test for clay-hosted REE mineralisation. Limited land access at the time restricted drilling to road reserves and existing tracks at a 200m hole spacing and drilled to refusal (average depth 22.6m).

All assays were undertaken using an Aqua Regia ICP-MS package for multi elements with 12 RE-element add on. The location of all drill holes with assays >300ppm TREO are highlighted in Figure 2.

Figure 2: Moho's Peak Charles Project Aircore Drillhole location plan showing drillholes with >300ppm TREO (on Google Earth image)

Significant TREO Intersections

Drill assays have returned significant Total Rare Earth Oxide (TREO) grades using a >600 ppm and >300ppm cut-off grade - refer Tables 1 and 2 below. Of note are the high percentages of Magnetic Rare Earth Oxides (Mag REO) and Critical Rare Earth Oxides (CREO) [See notes on page 5]encountered at the Northern Track, Pyramid Road and the northern part of the Ned's Corner Road Prospects.

Hole ID	From	То	Interval	Total REO	Magnet REO	Critical REO
	(m)	(m)	(m)	(ppm)	(% of TREO)	(% of TREO)
PPAC039	24	26	2	1220	19.5	17.1
PPAC044	50	53	3	1134	20.9	18.0
PPAC054	30	32	2	864	14.8	14.0
PPAC055	36	38	2	863	19.5	16.3
PPAC048	16	19	3	858	17.6	14.3
PPAC064	26	28	2	766	27.8	23.4
PPAC047	20	22	2	727	28.0	26.0
PPAC052	30	34	4	703	25.5	23.1
PPAC074	24	26	2	699	19.8	16.2
PPAC075	34	36	2	673	16.8	13.7
PPAC065	26	28	2	626	20.1	19.0
PPAC075	30	32	2	616	20.7	16.7
PPAC059	40	41	1	609	20.3	16.2
PPAC043	38	40	2	604	23.5	21.9

Table 1. Rare Earth Oxides significant intercepts with > 600ppm cut-off grade, sorted by TREO, high to low.

Table 2. Rare Earth Oxides - significant intercepts with > 300ppm cut-off grade, sorted by TREO*Interval, high to low.

Hole ID	From	То	Interval	Total REO	TREO*M	Magnet REO	Critical REO
	(m)	(m)	(m)	(ppm)	(gram-m)	(% of TREO)	(% of TREO)
PPAC076	42	62	20	391	7822	23.2	20.3
PPAC054	28	48	16	480	7686	20.9	20.5
PPAC039	16	28	12	573	6879	12.4	9.9
PPAC052	28	36	8	569	4553	23.6	21.7
PPAC048	12	19	7	576	4031	16.2	12.8
PPAC075	30	38	8	504	4030	25.9	21.2
PPAC064	28	37	6	643	3856	23.4	21.2
	20	32	10	264	2642	23.4	10.6
PPAC044	34	44	10	304	3042	22.3	18.0
PPAC044	50	53	3	1134	3401	21.2	18.3
PPAC073	60	68	8	386	3090	24.4	22.0
PPAC043	34	40	6	491	2943	19.9	17.9
PPAC053	32	38	6	399	2395	22.9	21.2

PPAC041	46	52	6	382	2292	26.3	24.5
PPAC065	26	30	4	499	1994	20.2	19.2
PPAC059	30	34	4	461	1846	29.1	25.6
PPAC013	14	18	4	455	1820	14.6	11.3
PPAC055	36	38	2	863	1726	19.5	16.3
PPAC045	24	28	4	365	1460	20.5	17.1
PPAC074	24	26	2	699	1399	19.8	16.2
PPAC079	18	22	4	324	1294	19.7	16.0
PPAC036	26	30	4	310	1240	17.7	14.3
PPAC058	54	57	3	359	1077	35.3	32.1
PPAC050	22	24	2	445	890	21.2	17.9
PPAC068	0	2	2	437	875	29.2	41.0
PPAC047	30	32	2	423	846	20.8	17.3
PPAC006	0	2	2	389	779	25.8	32.9
PPAC060	28	30	2	384	768	19.2	17.3
PPAC045	30	32	2	368	735	20.3	17.3
PPAC074	20	22	2	349	699	19.8	18.3
PPAC051	0	2	2	333	666	28.7	35.1
PPAC065	32	34	2	330	660	21.9	20.5
PPAC075	26	28	2	320	641	22.9	18.2
PPAC002	0	2	2	315	631	25.7	35.0
PPAC016	0	2	2	306	612	24.1	30.2
PPAC059	40	41	1	609	609	20.3	16.2
PPAC017	16	17	1	566	566	20.2	16.5
PPAC054	58	59	1	507	507	18.5	17.0
PPAC046	26	27	1	460	460	21.2	18.1
PPAC027	22	23	1	379	379	17.7	13.5
PPAC038	34	35	1	340	340	16.1	12.6

Note:

Rare earth elements are all metals which have similar properties. Due to this they are often found together in geologic deposits. These are often referred to as "rare earth oxides" due to being typically sold as oxide compounds. **TREO (Total Rare Earth Oxide) =** La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 +

Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3

TREO*Interval = TREO grade (ppm) multiplied by the Interval length (m)

MREO (Magnet Rare Earth Oxide) = Dy2O3 + Nd2O3 + Pr6O11 + Tb4O7 [Magnet Rare Earth Oxides often used to make magnets used in technological applications.]

CREO (Critical Rare Earth Oxide) = Dy2O3 + Eu2O3 + Nd2O3 + Tb4O7 + Y2O3 [Critical Rare Earth Oxides have significant importance in use in clean energy.]

% Mag REO = (Magnetic REO / TREO) *100

% Critical REO = (Critical REO / TREO) *100

Northern Track Prospect

Drilling at the Northern Track prospect was hampered by the hard top layer of calcrete and paleo channel clays which often couldn't 't be penetrated with the aircore blade. The southern few holes also encountered a thick paleo channel with swelling clays and lignite, however drillholes PPAC073 to PPAC063 intersected mineralised clays up to 20m >300ppm TREO.

Pyramid Road Prospect

Drilling at the Pyramid Road prospect was more successful than at the Northern Track with most holes penetrating past the hard top layer of calcrete and paleo channel clays. All drill holes that were drilled past the hard top layer encountered significant mineralisation >300ppm TREO within the clay zone above the granite basement (Fig 3). Moho is confident that holes that did not reach the clay zone would also likely been mineralised above 300ppm TREO.

Figure 3: Pyramid Road Prospect Aircore Drillhole Section. (Vertical exaggeration 10X)

Ned's Corner Prospect

Drilling at the Ned's Corner Road prospect was similar to that at Pyramid Road. With most holes penetrating past the hard top layer of calcrete and paleo channel clays. The drill holes from the northern section of Ned's Corner Road (PPAC035 to PPAC043) that were drilled past the hard top layer encountered mineralisation >300ppm TREO within the clay zone above the granite basement (Fig 4). Moho is confident that holes that did not reach the clay zone would also likely have been mineralised above 300ppm TREO. It is also possible that this intersected mineralised clay zone is part of the same clay zone intersected at Pyramid Road. Further to the south (PPAC027 to PPAC034) the intersected clay zone only contained low grade TREO mineralisation.

Figure 4: Ned's Corner Road Prospect Aircore Drillhole Section. (Vertical exaggeration 10X)

Southern Track Prospect

Drilling at the Southern Track prospect revealed a poorly developed clay zone with minor mineralisation >300ppm TREO, with a number of holes completed within several metres in the granite basement.

Airborne Geophysical Survey

Moho recently completed geophysical airborne magnetic and radiometric survey across the Peak Charles tenement package. The survey is expected to provide important detailed aeromagnetic data which will be used in conjunction with drilling and assay data to refine geophysical and geochemical targets for future exploration programs.

The survey consisted of 10,339 line-kilometres of gradiometer magnetics and radiometric surveying at 100m line spacing, greatly improving the existing aeromagnetic data undertaken at a 400m line spacing. The data processing and interpretation is underway and will assist in defining exploration targets.

NEXT STEPS:

- Plan follow-up drilling program to establish the continuity of the Pyramid Road, Ned's Corner Road and possibly the Northern Track prospects clay zones
- Assess and model drilling data and assay results
- Process and interpret the airborne geophysical data
- Land access liaison with private landowners/occupiers
- Interpret and integrate newly acquired datasets to identify exploration targets on the entire Peak Charles Project tenement package to be tested with additional reconnaissance drilling

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results and Exploration Targets is based on information compiled by Mr. Wouter Denig. Mr. Denig is a Member of Australian Institute of Geoscientists (MAIG) and Moho Resource's Chief Geologist and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Denig consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

ABOUT MOHO RESOURCES LTD

Moho Resources Ltd is an Australian mining company which listed on the ASX in November 2018. The Company is actively exploring for nickel, PGEs and gold at Silver Swan North, Manjimup and Burracoppin in WA and Empress Springs in Queensland.

Moho's Board is chaired by Mr Terry Streeter, a well-known and highly successful West Australian businessman with extensive experience in funding and overseeing exploration and mining companies, including Jubilee Mines NL, Western Areas NL and current directorships in Corazon Resources, Emu Nickel and Fox Resources.

Moho has a strong and experienced Board lead by Managing Director Ralph Winter, Shane Sadleir a geoscientist, as Non-Executive Director and Adrian Larking a lawyer and geologist, as Non-Executive Director.

Moho's Chief Geologist Wouter Denig and Senior Exploration Geologist Nic d'Offay are supported by leading industry consultant geophysicist Kim Frankcombe (ExploreGeo Pty Ltd) and experienced consultant geochemists Richard Carver (GCXplore Pty Ltd). Dr Jon Hronsky (OA) provides high level strategic and technical advice to Moho.

ENDS

The Board of Directors of Moho Resources Ltd authorised this announcement to be given to ASX.

For further information please contact:

Ralph Winter, Managing Director T: +61 435 336 538 E: ralph@mohoresources.com.au

Table 3. Drilling Details

	Northing	Easting	RL	Azi	Dip	End of
HULCID	MGA9	4-51	(m)	(degrees)	(degrees)	hole (m)
PPAC001	6316071	316372	269	0	-90	17
PPAC002	6316166	316548	269	0	-90	22
PPAC003	6316262	316723	269	0	-90	5
PPAC004	6316357	316899	269	0	-90	25
PPAC005	6316453	317075	267	0	-90	24
PPAC006	6316548	317250	266	0	-90	8
PPAC007	6316644	317426	264	0	-90	4
PPAC008	6316740	317602	263	0	-90	4
PPAC009	6316835	317777	260	0	-90	18
PPAC010	6316931	317953	258	0	-90	16
PPAC011	6317026	318129	255	0	-90	19
PPAC012	6317122	318304	253	0	-90	29
PPAC013	6317217	318480	252	0	-90	18
PPAC014	6317313	318656	252	0	-90	5
PPAC015	6317409	318831	251	0	-90	5
PPAC016	6317504	319007	249	0	-90	9
PPAC017	6317600	319183	247	0	-90	17
PPAC018	6317695	319359	248	0	-90	4
PPAC019	6317791	319534	249	0	-90	8
PPAC020	6317887	319710	252	0	-90	10
PPAC021	6317982	319886	252	0	-90	12
PPAC022	6318078	320061	253	0	-90	12
PPAC023	6318173	320237	254	0	-90	5
PPAC024	6318269	320413	255	0	-90	5
PPAC025	6318364	320588	256	0	-90	9
PPAC026	6318460	320764	253	0	-90	13
PPAC027	6322525	323383	264	0	-90	23
PPAC028	6322724	323359	263	0	-90	14
PPAC029	6322922	323335	263	0	-90	24
PPAC030	6323121	323311	262	0	-90	30
PPAC031	6323319	323287	260	0	-90	15
PPAC032	6323518	323263	259	0	-90	21
PPAC033	6323716	323238	258	0	-90	33
PPAC034	6323915	323214	258	0	-90	32
PPAC035	6324113	323190	258	0	-90	8
PPAC036	6324312	323166	258	0	-90	31
PPAC037	6324511	323142	257	0	-90	9
PPAC038	6324709	323118	255	0	-90	35
PPAC039	6324908	323094	254	0	-90	33
PPAC040	6325106	323069	253	0	-90	8
PPAC041	6325305	323045	253	0	-90	55
PPAC042	6325503	323021	254	0	-90	11
PPAC043	6325702	322997	254	0	-90	47
PPAC044	6329324	318346	245	0	-90	53

PPAC045	6329254	318534	243	0	-90	32
PPAC046	6329185	318721	240	0	-90	27
PPAC047	6329115	318909	239	0	-90	33
PPAC048	6329045	319096	240	0	-90	19
PPAC049	6328975	319284	238	0	-90	4
PPAC050	6328906	319471	237	0	-90	31
PPAC051	6328836	319658	237	0	-90	4
PPAC052	6328811	319853	236	0	-90	36
PPAC053	6328822	320052	237	0	-90	41
PPAC054	6328833	320252	237	0	-90	59
PPAC055	6328845	320452	238	0	-90	56
PPAC056	6328856	320651	240	0	-90	7
PPAC057	6328867	320851	242	0	-90	6
PPAC058	6328879	321051	242	0	-90	57
PPAC059	6328890	321250	241	0	-90	41
PPAC060	6328901	321450	240	0	-90	31
PPAC061	6328913	321650	239	0	-90	7
PPAC062	6328924	321849	238	0	-90	5
PPAC063	6328935	322049	240	0	-90	4
PPAC064	6328947	322249	243	0	-90	35
PPAC065	6328958	322448	245	0	-90	39
PPAC066		-		Not drilled		
PPAC067	6334032	324152	238	0	-90	11
PPAC068	6334232	324142	238	0	-90	24
PPAC069	6334431	324132	240	0	-90	6
PPAC070	6334631	324122	240	0	-90	6
PPAC071	6334831	324112	241	0	-90	8
PPAC072	6335031	324102	241	0	-90	6
PPAC073	6335230	324092	243	0	-90	83
PPAC074	6335430	324082	246	0	-90	34
PPAC075	6335630	324072	247	0	-90	65
PPAC076	6335830	324062	252	0	-90	75
PPAC077	6336029	324052	254	0	-90	11
PPAC078	6336229	324042	255	0	-90	37
PPAC079	6336429	324032	256	0	-90	26
PPAC080	6336629	324022	256	0	-90	7
PPAC081	6336828	324012	256	0	-90	6
PPAC082	6337028	324002	258	0	-90	32

Table 4: Rare Earth Oxides allsignificant intercepts >300ppm TREO

num (m) (m) (pm) (p	HoleiD	From	То	Interval	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6O11	Sm2O3	Tb4O7	Tm2O3	Y2O3	Yb2O3	TREO	ScO3
PMC000 Q Q Q Q <th>потего</th> <th>(m)</th> <th>(m)</th> <th>(m)</th> <th>(ppm)</th>	потего	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
PACOM 0 2 130 8 12 130 16 16 16 16	PPAC002	0	2	2	98.5	7.1	3.6	2.3	8.8	1.4	62.8	0.4	57.1	15.4	10.5	1.4	0.5	42.6	2.9	315.4	19.8
PMC010 16 18 2 201 1.0 <th1.0< th=""> 1.0</th1.0<>	PPAC006	0	2	2	130.3	8.5	4.2	2.7	10.4	1.6	77.4	0.5	70.6	19.8	12.7	1.6	0.6	44.6	3.6	389.3	15.8
PrAc019 16 18 2 2 18 3 0 18 2 2 18 3 0 1 0 3 0 1 3 3 0 1 3 3 1 3 3 2 3 1 1 1 2 3 1 2 3 1 2 3 1 1 2 3 1 2 2 3 1 2 2 3 1 2 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 </td <td>PPAC013</td> <td>14</td> <td>16</td> <td>2</td> <td>204.1</td> <td>0.7</td> <td>0.2</td> <td>0.5</td> <td>1.7</td> <td>0.1</td> <td>136.2</td> <td>0.0</td> <td>37.5</td> <td>15.9</td> <td>3.6</td> <td>0.2</td> <td>0.0</td> <td>2.6</td> <td>0.1</td> <td>403.6</td> <td>1.6</td>	PPAC013	14	16	2	204.1	0.7	0.2	0.5	1.7	0.1	136.2	0.0	37.5	15.9	3.6	0.2	0.0	2.6	0.1	403.6	1.6
PMAC01 0 2 2 1 1.5 1.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.6 3.5 1.7 1.6 3.5 1.7 1.6 3.5 1.7 1.6 3.5 1.7 1.6 3.5 1.7 1.6 3.5 1.7	PPAC013	16	18	2	259.2	1.1	0.3	0.7	2.6	0.2	153.9	0.0	56.3	22.0	5.6	0.3	0.0	4.0	0.2	506.5	1.9
PMACQ1 1 1 28 1 2 0.0 4.1 0.0 4.2 2.2 2.8 1 7.1 0.4 586 4.2 PMACQ2 2 2 3 1 0.02 1.5 0.0 4.1 0.0 4.1 0.0 1.0 0.0 4.1 0.0 0.0 1.0 0.0	PPAC016	0	2	2	113.1	5.4	2.6	1.9	7.3	1.0	63.0	0.3	52.3	15.0	9.0	1.1	0.3	31.6	2.0	305.9	16.3
PRACCU 22 23 1 20.4 0.5 0.1 0.6 1.1 0.0 4.81 1.84 3.8 0.0 0.0 1.0 0.1 </td <td>PPAC017</td> <td>16</td> <td>17</td> <td>1</td> <td>283.6</td> <td>2.2</td> <td>0.7</td> <td>1.4</td> <td>4.0</td> <td>0.3</td> <td>146.1</td> <td>0.1</td> <td>82.2</td> <td>29.2</td> <td>8.4</td> <td>0.5</td> <td>0.1</td> <td>7.1</td> <td>0.4</td> <td>566.4</td> <td>34.2</td>	PPAC017	16	17	1	283.6	2.2	0.7	1.4	4.0	0.3	146.1	0.1	82.2	29.2	8.4	0.5	0.1	7.1	0.4	566.4	34.2
PMCC03 26 2 1.2 0.8 0.2 0.7 1.1 0.1 0.40 1.8.1 3.8 0.2 0.0 1.4 0.1 0.0 1.3 0.1 0.0 1.3 0.1 0.0 1.3 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 1.3 0.0 1.3 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	PPAC027	22	23	1	202.4	0.5	0.1	0.6	1.4	0.1	101.3	0.0	48.1	18.4	3.8	0.1	0.0	1.6	0.1	378.6	4.2
PPACC03 28 30 2 11 3.1 0.2 84.2 0.0 48.4 15.1 5.7 0.3 0.0 3.0 0.2 34.0 34.8 PPAC038 44 35 1 17.15 0.7 0.0 0.0 187.4 0.0 187.4 0.0 187.4 0.0 187.4 0.0 187.4 0.0 187.4 0.0 187.4 0.0 187.4 0.0 0.0 0.0 28.8 1.0 0.0 0.0 28.9 1.0 0.1 0.0 0.0 28.9 1.0 1.0 0.0 0.0 28.9 0.0 1.0 1.0 0.0 28.9 0.0 1.0 1.0 0.0 4.0 3.0 0.0 3.0 3.0 3.0 0.0 1.0	PPAC036	26	28	2	152.7	0.8	0.2	0.7	1.9	0.1	95.6	0.0	34.0	13.1	3.8	0.2	0.0	1.7	0.1	304.9	2.2
PACC03 14 1.1 1.1 1.1 0.1 0.1 0.1 0.1 0.0 0.2 0.0 0.2. 0.0 0.1 0.0<	PPAC036	28	30	2	154.4	1.3	0.3	1.1	3.1	0.2	84.2	0.0	44.8	15.1	5.7	0.3	0.0	3.9	0.2	314.9	4.8
PPACC03 16 20 22 20 0.3 0.1 0.0 0.0 1.78 8.8 1.6 0.1 0.0 0.6 0.0 373.1 3.4 PPAC03 18 20 22 23 <th< td=""><td>PPAC038</td><td>34</td><td>35</td><td>1</td><td>171.5</td><td>0.7</td><td>0.2</td><td>0.6</td><td>2.1</td><td>0.1</td><td>104.3</td><td>0.0</td><td>39.2</td><td>14.7</td><td>4.4</td><td>0.2</td><td>0.0</td><td>2.3</td><td>0.1</td><td>340.3</td><td>1.4</td></th<>	PPAC038	34	35	1	171.5	0.7	0.2	0.6	2.1	0.1	104.3	0.0	39.2	14.7	4.4	0.2	0.0	2.3	0.1	340.3	1.4
PPACC03 12 22.8.8 0.2 0.0 0.3 0.7 0.0 25.0.4 0.0 28.8 1.1 2.0 0.1 0.0 0.4 0.0 52.5 3.1 PPAC035 22 24 2 28.4 1.6 0.4 1.0 0.1 0.0 0.4 0.0 0.5 0.1 0.55 0.1 0.55 0.1 0.0 0.4 0.0 0.5 0.1 0.12 0.1 0.0 0.5 0.1 0.15 0.1 <	PPAC039	16	18	2	155.6	0.3	0.1	0.3	0.7	0.0	187.1	0.0	17.8	8.9	1.6	0.1	0.0	0.6	0.0	373.1	3.4
PPACC03 2 2 2 4 0.2 1.6 0.4 1.4 3.4 0.2 23.7 0.0 1.5 0.1 0.0 0.6 0.0 3469 25.0 PPAC039 2.4 2.6 2.8 1.5 0.4 1.4 0.2 28.3 0.0 1.5 1.1 0.0 0.0 0.0 0.0 0.0 1.4 0.2 1.1 1.22.0 1.1	PPAC039	18	20	2	228.8	0.2	0.0	0.3	0.7	0.0	250.4	0.0	28.8	14.1	2.0	0.1	0.0	0.4	0.0	525.9	3.1
PACOB 22 24 2 2824 1.6 0.4 1.4 3.4 0.2 20.3 0.0 5.6 21.6 7.0 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.5 0.0 4.6 1.0 4.5 0.0 0.0 4.5 0.0 0.0 4.5 0.0 0.0 4.5 0.0 0.0 4.5 0.0 0.0 4.5 0.0 0.0 4.5 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td>PPAC039</td> <td>20</td> <td>22</td> <td>2</td> <td>164.4</td> <td>0.2</td> <td>0.1</td> <td>0.3</td> <td>0.6</td> <td>0.0</td> <td>149.5</td> <td>0.0</td> <td>19.6</td> <td>10.0</td> <td>1.5</td> <td>0.1</td> <td>0.0</td> <td>0.6</td> <td>0.0</td> <td>346.9</td> <td>2.6</td>	PPAC039	20	22	2	164.4	0.2	0.1	0.3	0.6	0.0	149.5	0.0	19.6	10.0	1.5	0.1	0.0	0.6	0.0	346.9	2.6
PACO39 24 26 2 612.8 7.5 2.1 1.5 1.3 1.0 288 0.1 168.9 59.7 2.3 1.7 0.2 2.5 1.1 120.0 21.5 PPAC019 26 28 2 1.35 0.5 112.4 0.0 46.8 17.2 6.3 0.0 0.1 1.1 0.5 43.0 35.0 PPAC01 46 450 2 1.4 0.2 1.5 0.5 0.1 0.0 0.4 0.1 1.0 0.0 0.4 0.1 <	PPAC039	22	24	2	282.4	1.6	0.4	1.4	3.4	0.2	203.7	0.0	56.1	21.6	7.0	0.4	0.0	4.5	0.2	583.0	7.9
PPAC03 26 28 2 192.5 1.9 0.5 1.4 3.5 0.3 112 0.0 46.3 17.2 6.3 0.4 0.1 6.7 0.3 390.4 5.3 PPAC011 46 48 20 2.33 0.0 1.01 0.01 1.15 0.07 0.1 1.15 0.5 43.0 3.6 3.8 PPAC01 54 20 2.145.2 2.4 0.3 1.0 2.0 0.1 0.1 1.0 0.0 4.1 9.4 0.0 3.0 0.2 1.3 2.0 0.0 4.2 1.0 4.2 0.0 4.2 0.0 1.0	PPAC039	24	26	2	612.8	7.5	2.1	5.2	13.0	1.0	298.5	0.1	168.9	59.7	22.3	1.7	0.2	25.9	1.1	1220.1	21.7
PPACON1 46 48 52 238.0 3.0 1.0 2.6 5.9 0.5 7.0.1 2.1.1 9.7 0.7 0.1 1.1.5 0.5 435.0 3.6 PPACON1 48 50 52 2 124.8 4.3 1.6 3.6 8.4 0.7 10.4 2.76 12.9 0.9 0.2 1.77 0.9 402.1 4.3 PPAC081 3.6 2.8 1.1 3.2 0.2 67.0 1.319 5.2 0.3 0.0 3.9 0.2 3.0.3 1.5 PPAC043 3.6 2.8 2.2 2.0.7 4.1 4.6 0.4 0.1 1.05.5 3.1 1.30 0.0 0.4 0.8 0.0 1.2 1.55 0.3 0.0 4.0 3.3 1.4 0.3 1.64 0.3 1.4 1.3 1.0 1.4 1.4 0.3 1.03 1.1 1.1 1.1 0.1 1.5	PPAC039	26	28	2	192.5	1.9	0.5	1.4	3.5	0.3	112.4	0.0	46.8	17.2	6.3	0.4	0.1	6.7	0.3	390.4	5.8
PPAC041 S0 S2 145. 2.4 0.8 2.2 4.8 0.4 5.9 0.1 17.3 8.0 0.5 0.1 9.0 0.4 308.8 3.7 PPAC041 5.0 5.2 2.1 2.1 1.3 0.6 8.4 0.7 1042 0.1 9.2 2.7 0.9 0.2 1.7 0.9 0.21 1.3 0.6 1.3 0.6 1.3 0.6 1.1 9.3 0.6 0.1 9.3 0.0 3.9 0.2 1.7 0.6 0.6 0.6 1.4 0.4 0.6 1.4 0.1 1.55 1.4 0.4 0.8 0.0 1.4 0.0 5.0 1.8 6.7 0.4 0.1 5.6 0.4 0.0 0.4 0.8 0.0 0.2 1.7.7 0.4 0.1 5.6 0.4 0.0 0.4 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0	PPAC041	46	48	2	238.0	3.0	1.0	2.6	5.9	0.5	70.1	0.1	70.1	21.3	9.7	0.7	0.1	11.5	0.5	435.0	3.6
PPAC041 S0 S2 2 1248 4.3 1.6 3.6 8.4 0.7 10.2 0.1 9.42 7.7 12.9 0.9 0.2 1.77 0.9 402.1 4.3 PPAC043 36 38 2 30.4 2.5 0.9 3.0 2.6 9.7 3.1 1.8 PPAC043 38 40 2 269.7 4.1 1.4 4.6 8.9 0.6 1.1 1.5. 31.4 1.9.9 0.0 2.2 1.7.5 0.8 604.1 2.5 PPAC044 34 36 3.8 2 1.06 1.0 3.4 0.3 10.8 0.0 6.5 0.4 0.0 3.8.9 1.6 1.0 3.4 0.3 10.8 0.0 6.5 1.0 3.4 0.3 10.0 5.8 2.0 8.5 0.1 1.5 0.7 2.0 1.5 1.7 0.5 0.1 6.5 1.4 3.3	PPAC041	48	50	2	145.2	2.4	0.8	2.2	4.8	0.4	59.9	0.1	57.9	17.3	8.0	0.5	0.1	9.0	0.4	308.8	3.7
PPAC043 34 36 2 11 0.3 1.1 0.3 1.2 0.4 0.4 0.1 7.53 2.2 0.3 0.0 3.9 0.2 330.3 1.5 PPAC043 38 40 2 269.7 4.1 1.4 4.6 8.9 0.6 1.1 105.5 31.4 1.3.9 0.9 0.2 17.5 0.8 66.4 34.3 0.3 34.8 4.6 PPAC043 38 40 2 166.5 1.4 0.4 0.8 0.0 2.9 1.5 6.5 0.3 0.0 4.4 4.0 4.3 0.3 348.3 4.0 1.5 0.0 5.0 1.5 0.0 4.0 7.7 0.0 1.1 5.0 1.0 3.8 0.0 6.2 2.0 7.7 0.0 1.1 6.4 0.3 3.0 4.4 1.1 0.1 1.5 0.7 7.52 6.5 PPAC044 50	PPAC041	50	52	2	124.8	4.3	1.6	3.6	8.4	0.7	104.2	0.1	94.2	27.6	12.9	0.9	0.2	17.7	0.9	402.1	4.3
PPAC08 36 18 2 3054 2.5 0.9 3.0 5.4 0.14 0.11 7.5.3 2.29 9.6 0.6 0.1 9.3 0.6 537.3 1.8 PPAC08 38 40 2 26.7 4.1 1.4 0.6 8.9 0.6 10.5 3.14 1.39 0.9 0.2 1.7.5 0.8 6.51 0.3 0.00 4.3 0.30 0.8 0.4 0.5 3.18 1.65 0.3 0.00 4.3 1.35 0.6 0.4 0.3 0.30 7.20 9.8 0.6 0.01 7.2 0.4 0.30 0.33 0.3 1.3 0.3 1.3 0.3 <td>PPAC043</td> <td>34</td> <td>36</td> <td>2</td> <td>189.3</td> <td>1.1</td> <td>0.3</td> <td>1.3</td> <td>2.6</td> <td>0.2</td> <td>69.7</td> <td>0.0</td> <td>42.4</td> <td>13.9</td> <td>5.2</td> <td>0.3</td> <td>0.0</td> <td>3.9</td> <td>0.2</td> <td>330.3</td> <td>1.5</td>	PPAC043	34	36	2	189.3	1.1	0.3	1.3	2.6	0.2	69.7	0.0	42.4	13.9	5.2	0.3	0.0	3.9	0.2	330.3	1.5
PPAC043 38 40 2 269. 4.1 1.4 4.6 89 0.0 11.5 31.4 11.9 0.0 0.2 17.5 0.0 43.0 0.3 0.3 0.2 91.1 0.0 52.5 18.5 6.5 0.3 0.0 4.3 0.3 98.0 7.2 PPAC044 36 38 4.0 2 120.0 1.9 0.5 1.0 3.8 0.3 10.2 2.0 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.1 5.5 0.4 0.11 0.5 0.1	PPAC043	36	38	2	305.4	2.5	0.9	3.0	5.4	0.4	101.4	0.1	75.3	22.9	9.6	0.6	0.1	9.3	0.6	537.3	1.8
PPAC04 34 35 2 166.5 1.4 0.4 0.8 3.0 0.2 94.1 0.0 5.25 18.5 6.5 0.3 0.0 4.3 0.3 34.9 4.6 PPAC044 38 40 2 170.3 2.2 0.7 1.1 4.2 0.3 108.4 0.0 55.9 2.29 8.5 0.5 0.1 7.2 0.4 392.0 33.2 3.5 PPAC044 40 42 2.1 170.0 1.1 4.2 0.3 102.1 0.0 55.5 20.8 7.5 0.4 0.1 5.9 0.3 3.3 1.0 3.1 3.4 1.2 0.3 10.1 11.2 4.01 15.3 1.1 0.1 15.3 1.1 0.1 16.5 0.7 0.7 5.5 20.8 1.3 1.0 0.1 15.3 1.1 0.1 15.3 1.1 0.1 15.3 15.7 0.4 11.1 <t< td=""><td>PPAC043</td><td>38</td><td>40</td><td>2</td><td>269.7</td><td>4.1</td><td>1.4</td><td>4.6</td><td>8.9</td><td>0.6</td><td>144.6</td><td>0.1</td><td>105.5</td><td>31.4</td><td>13.9</td><td>0.9</td><td>0.2</td><td>17.5</td><td>0.8</td><td>604.1</td><td>2.5</td></t<>	PPAC043	38	40	2	269.7	4.1	1.4	4.6	8.9	0.6	144.6	0.1	105.5	31.4	13.9	0.9	0.2	17.5	0.8	604.1	2.5
PPAC04 36 38 42 240.5 1.9 0.6 1.0 3.4 0.3 7.8 0.0 5.0.8 1.7.8 6.7 0.4 0.11 5.6 0.4 398.0 7.2 PPAC044 40 42 12.0 1.1 4.2 0.3 108.4 0.0 65.9 22.9 8.5 0.1 7.2 0.4 32.0 32.0 32.0 PPAC044 40 42 44 2.1 13.6 0.0 1.0 4.1 0.0 10.0 62.4 22.1 7.7 0.5 0.1 16.4 0.3 35.2 0.4 35.2 2.6 1.0 1.1 0.3 1.0 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.1 1.5 1.1 0.3 3.5 0.0 1.1 1.3 1.0 1.1 0.3 1.3 1.5 0.0 3.5 0.0 3.3 1.1 </td <td>PPAC044</td> <td>34</td> <td>36</td> <td>2</td> <td>166.5</td> <td>1.4</td> <td>0.4</td> <td>0.8</td> <td>3.0</td> <td>0.2</td> <td>94.1</td> <td>0.0</td> <td>52.5</td> <td>18.5</td> <td>6.5</td> <td>0.3</td> <td>0.0</td> <td>4.3</td> <td>0.3</td> <td>348.9</td> <td>4.6</td>	PPAC044	34	36	2	166.5	1.4	0.4	0.8	3.0	0.2	94.1	0.0	52.5	18.5	6.5	0.3	0.0	4.3	0.3	348.9	4.6
PPAC04 38 40 2 10.2 10.2 0.7 1.1 4.2 0.5 10.0 55.9 22.9 8.5 0.5 0.1 7.2 0.4 322.8 4.39 PPAC044 40 42 2 136.0 1.0 3.8 0.3 102.1 0.0 55.2 0.4 0.1 5.9 0.3 322.0 4.4 PPAC044 42 44 2 136.0 1.0 1.1 0.3 1.02 1.0 0.0 5.7 0.4 0.1 1.6 0.4 0.3 35.0 0.4 1.1 0.3 0.5 1.0 0.1 1.7.2 4.01 1.5.3 1.1 0.1 1.7.2 0.4 0.3 35.0 0.4 1.1 0.1 1.1 0.3 1.1 0.3 1.1 1.1 0.3 1.1 1.1 0.3 1.1 1.1 1.1 1.1 0.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>PPAC044</td> <td>36</td> <td>38</td> <td>2</td> <td>230.5</td> <td>1.9</td> <td>0.6</td> <td>1.0</td> <td>3.4</td> <td>0.3</td> <td>/8.5</td> <td>0.0</td> <td>50.8</td> <td>17.8</td> <td>6./</td> <td>0.4</td> <td>0.1</td> <td>5.6</td> <td>0.4</td> <td>398.0</td> <td>7.2</td>	PPAC044	36	38	2	230.5	1.9	0.6	1.0	3.4	0.3	/8.5	0.0	50.8	17.8	6./	0.4	0.1	5.6	0.4	398.0	7.2
PPAC044 40 42 2 120 1.9 0.5 1.0 3.8 10.1 10.0 5.8 20.8 7.5 0.4 0.1 5.9 0.3 329.1 5.8 PPAC044 50 52 2 363.0 4.6 1.3 2.1 8.7 0.6 183.9 0.1 11.2 40.1 15.3 1.1 0.1 16.5 0.7 755.2 6.5 PPAC044 52 53 1 93.6 8.1 1.3 0.6 2.4 0.1 83.3 0.3 31.3 1.9 0.3 3.7.3 1.8 189.0 5.5 PPAC045 2.6 2.7 1.1 0.3 0.6 2.4 0.1 8.3 0.0 3.4 1.4 4.5 0.3 0.0 3.6 0.1 8.0 0.0 3.6 3.13 1.9 0.2 2.3 9.1 0.6 0.1 8.0 9.7 3.6 3.4 1.4 1.6 <td>PPAC044</td> <td>38</td> <td>40</td> <td>2</td> <td>1/0.3</td> <td>2.2</td> <td>0.7</td> <td>1.1</td> <td>4.2</td> <td>0.3</td> <td>108.4</td> <td>0.0</td> <td>65.9</td> <td>22.9</td> <td>8.5</td> <td>0.5</td> <td>0.1</td> <td>7.2</td> <td>0.4</td> <td>392.8</td> <td>4.9</td>	PPAC044	38	40	2	1/0.3	2.2	0.7	1.1	4.2	0.3	108.4	0.0	65.9	22.9	8.5	0.5	0.1	7.2	0.4	392.8	4.9
PPAC04 42 44 2 13.6 2.0 1.0 1.0 1.0.3 10.3 10.0 0.2.4 2.1.7 1.7.7 0.5.3 0.1. 0.4.6 0.3.3 2.0.4 4.4 PPAC044 50 52 22 363.0 4.6 1.3 2.1 8.7 0.6 13.9 0.1 17.2 40.1 11.5 1.1 0.1 15.5 0.7 755.2 6.5 PPAC044 52 53 1 90.3 6.6 2.4 0.1 8.3 0.0 38.4 1.4.4 4.5 0.3 0.0 3.6 0.2 30.2 7.4 1.4 1.4 0.3 3.7.3 1.8 1890.3 5.5 PPAC045 2.6 2.8 2.0 182.8 1.7 0.5 0.7 3.7 0.3 9.7 0.0 7.0 7.3 1.8 6.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	PPAC044	40	42	2	126.0	1.9	0.5	1.0	3.8	0.3	102.1	0.0	58.5	20.8	7.5	0.4	0.1	5.9	0.3	329.1	5.8
PPAC044 Su	PPAC044	42	44	2	134.0	2.0	0.6	1.0	4.1	0.3	109.8	0.0	62.4	22.1	/./	0.5	0.1	6.4	0.3	352.0	4.4
PPAC044 52 53 1 93.5 3.4 1.1.2 1.1.3 50.0 0.2 1.7.3 90.5 3.1.3 1.1.9 0.3 3.1.3 1.1.8 1.100 5.5 PPAC045 24 26 2 147.4 1.1 0.3 0.66 2.4 0.1 8.3 0.0 3.4 14.4 4.5 0.3 0.0 3.6 0.2 30.7 1.4 PPAC045 26 28 2.0 152.7 2.6 0.7 1.2 5.4 0.3 97.7 0.0 72.0 23.3 9.3 0.6 0.1 8.0 0.3 4.4 4.5 0.3 0.6 0.1 6.4 0.3 30.7 1.4 PPAC045 26 27 1 22.5 2.8 0.8 1.3 5.5 0.4 11.3 0.0 75.1 24.9 10.1 0.6 0.1 7.6 0.3 445.7 4.2 PPAC047 18 20 21.7 3.6 1.4 1.2 5.5 0.6 99.2 0.1	PPAC044	50	52	2	363.0	4.6 0.5	1.3	2.1	8.7	0.6	183.9	0.1	117.2	40.1	15.3	1.1	0.1	16.5	0.7	/55.2	6.5
PPAC045 24 26 26 28 2 147,4 1.1 0.5 0.6 2.4 0.1 38.3 0.0 3.8,4 144,4 4.5 0.5 0.0 3.0 0.1 8.0 0.2 302,7 1.4 PPAC045 30 32 22 182.8 1.7 0.5 0.7 3.7 0.3 9.1 0.0 72.0 23.3 9.3 0.6 0.1 8.0 0.3 427.3 2.8 PPAC045 30 32 2 11 22.5 2.8 0.7 0.7 0.3 9.1 0.0 7.4 0.6 0.1 6.6 0.3 45.3 6.6 0.4 0.1 6.6 0.1 6.6 0.1 6.6 0.1 7.6 0.3 45.6 0.6 0.1 1.6 0.1 1.6 0.1 1.6 0.1 1.6 0.1 1.6 0.1 1.6 0.1 1.6 0.3 1.6 0.1 1.6 0.2 1.6 1.6 1.6 0.6 0.1 1.6 0.3 1.6<	PPAC044	52	53	1	903.6	8.5 1.1	3.1	3.4	17.2	1.3	507.0	0.2	277.3	96.3	31.3	1.9	0.3	37.3	1.8	1890.3	5.5
PPACO4S 28 28 20 20.3 2.6 0.7 2.7 0.0 97.7 0.0 7.20 2.5 9.3 0.6 0.1 6.0 0.0 42.5 2.5 PPAC045 30 32 2 182.8 1.7 0.5 0.7 3.7 0.3 91.7 0.0 54.3 182. 6.4 0.4 0.1 6.0 0.3 367.6 3.4 PPAC045 26 27 1 222.5 2.8 0.8 1.3 5.5 0.4 1148 0.0 70.8 23.2 9.1 0.6 0.1 6.6 0.3 367.6 3.4 PPAC047 16 18 2 316.7 3.7 1.4 1.6 6.6 10.1 7.5 24.9 10.1 0.6 0.3 25.6 0.6 99.2 0.1 68.8 23.3 9.4 0.8 0.2 13.8 0.9 568.6 3.6 PPAC047 20 22 24 2 21.7 7.6 2.9 3.1 1.2 23.5 <td>PPAC045</td> <td>24</td> <td>20</td> <td>2</td> <td>147.4</td> <td>1.1</td> <td>0.3</td> <td>0.0</td> <td>2.4</td> <td>0.1</td> <td>89.3</td> <td>0.0</td> <td>38.4</td> <td>14.4</td> <td>4.5</td> <td>0.3</td> <td>0.0</td> <td>3.0</td> <td>0.2</td> <td>302.7</td> <td>1.4</td>	PPAC045	24	20	2	147.4	1.1	0.3	0.0	2.4	0.1	89.3	0.0	38.4	14.4	4.5	0.3	0.0	3.0	0.2	302.7	1.4
PPAC043 3.6 3.2 1.7 0.3 0.7 3.7 0.3 9.1. 0.6. 3.4.3 1.6.2 0.4.4 0.4.4 0.1. 0.4.4 0.1.5 3.6.7 3.6.7 3.7 0.5.7 0.1.6 3.4.7 0.6.7 0.4.7 0.5.7 0.4.4 0.1.6 0.1.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.4.7 0.5.7 0.5.7 0.4.7 0.5.7 0.5.7 0.4.7 0.5.7	PPAC045	20	20	2	102.0	2.0	0.7	0.7	3.4 2.7	0.3	97.7	0.0	72.0	23.3	9.5	0.0	0.1	6.0	0.3	427.5	2.0
PPAC040 20 27 11 222.5 2.8 0.6 1.3 0.5 114.8 0.0 70.8 25.2 9.1 0.6 0.1 7.0 0.3 433.8 0.3.2 PPAC047 16 18 2 316.7 3.7 1.4 1.6 6.1 0.6 113.1 0.1 75.1 24.9 10.1 0.8 0.2 13.5 0.9 568.6 3.6 PPAC047 18 20 2 217.7 3.6 1.4 1.2 5.6 0.6 99.2 0.1 68.8 23.3 9.4 0.8 0.2 13.8 0.9 446.7 4.2 PPAC047 20 22 2 17.4 7.6 2.9 3.2 0.5 9.9 0.1 56.6 10.4 14.7 43.0 19.7 1.6 0.3 242.8 3.2 3.2 145.7 48.0 19.7 1.6 0.3 445.8 3.2 3.2 14.7 14.8 14.7 14.8 14.7 14.8 14.7 14.8 14.7 14.8 </td <td></td> <td>30</td> <td>32</td> <td>1</td> <td>222.5</td> <td>1.7</td> <td>0.5</td> <td>0.7</td> <td>5.7</td> <td>0.3</td> <td>114.0</td> <td>0.0</td> <td>70.0</td> <td>10.2</td> <td>0.4</td> <td>0.4</td> <td>0.1</td> <td>7.6</td> <td>0.3</td> <td>450.9</td> <td>5.4 6.2</td>		30	32	1	222.5	1.7	0.5	0.7	5.7	0.3	114.0	0.0	70.0	10.2	0.4	0.4	0.1	7.6	0.3	450.9	5.4 6.2
PPACO47 18 20 21 21.7 3.6 1.4 1.0 0.1 0.11 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 <th11.1< th=""> <th11.1< th=""> <th11.1<< td=""><td>PPAC040</td><td>16</td><td>18</td><td>2</td><td>222.3</td><td>2.0</td><td>0.8</td><td>1.5</td><td>5.5</td><td>0.4</td><td>114.0</td><td>0.0</td><td>70.8</td><td>23.2</td><td>9.1 10.1</td><td>0.0</td><td>0.1</td><td>7.0</td><td>0.3</td><td>435.0</td><td>3.6</td></th11.1<<></th11.1<></th11.1<>	PPAC040	16	18	2	222.3	2.0	0.8	1.5	5.5	0.4	114.0	0.0	70.8	23.2	9.1 10.1	0.0	0.1	7.0	0.3	435.0	3.6
PACOAT 200 220 210 2100 2100 2300		18	20	2	217.7	3.7	1.4	1.0	5.6	0.0	99.2	0.1	68.8	24.3	9 /	0.8	0.2	13.5	0.9	446.7	
PPAC047 22 24 2 148.3 2.9 1.1 1.0 5.2 0.5 99.9 0.1 50.6 16.5 6.5 0.6 0.1 14.7 0.6 348.6 2.5 PPAC047 30 32 2 21.2 1.9 0.6 1.0 4.2 0.3 102.3 0.0 63.6 21.9 7.6 0.5 0.1 14.7 0.6 348.6 2.5 PPAC047 30 32 2 21.2 1.9 0.6 1.0 4.2 0.3 102.3 0.0 63.6 21.9 7.6 0.5 0.1 6.4 0.3 442.8 3.2 PPAC048 12 14 2 240.6 0.6 0.2 0.3 1.7 0.1 115.6 0.0 38.2 14.6 3.9 0.2 0.0 1.6 442.8 3.2 PPAC048 14 16 2 0.6 1.1 4.6 0.3 176.1 0.0 38.5 14.0 3.9 0.1 6.8 3.3 76.9 3.5	PPAC047	20	20	2	217.7	7.6	29	3.2	13.0	1.2	233.2	0.1	146 7	48.0	19 7	1.6	0.2	29.6	1.8	726.8	3.2
PPACO47 30 32 2 212.2 1.9 0.6 1.0 4.2 0.3 102.3 0.0 63.6 21.9 7.6 0.1 6.4 0.3 422.8 3.2 PPAC047 30 32 2 212.2 1.9 0.6 1.0 4.2 0.3 102.3 0.0 63.6 21.9 7.6 0.5 0.1 6.4 0.3 422.8 3.2 PPAC048 12 14 2 240.6 0.6 0.2 0.3 1.7 0.1 115.6 0.0 38.2 14.6 3.9 0.2 0.0 1.6 0.1 417.7 2.9 PPAC048 14 16 2 162.1 0.6 0.2 0.3 1.7 0.1 86.8 0.0 38.5 14.0 3.9 0.2 0.0 2.2 0.1 310.6 2.8 PPAC048 16 18 2 38.06 2.0 0.6 1.1 4.6 0.3 176.1 0.0 92.1 32.0 9.9 0.5 0.1 6.	PPAC047	20	24	2	148.3	2.9	1.1	1.0	5.2	0.5	99.9	0.1	50.6	16.5	6.5	0.6	0.5	14.7	0.6	348.6	2.5
PPACO48 12 14 2 240.6 0.6 0.2 0.3 1.7 0.1 115.6 0.0 38.2 14.6 3.9 0.1 0.4 0.4 0.5 41.7 0.1 115.6 0.0 38.2 14.6 3.9 0.2 0.0 1.6 0.1 417.7 2.9 PPAC048 14 16 2 162.1 0.6 0.2 0.3 1.7 0.1 115.6 0.0 38.2 14.6 3.9 0.2 0.0 1.6 0.1 417.7 2.9 PPAC048 14 16 2 162.1 0.6 0.2 0.3 1.7 0.1 86.8 0.0 38.5 14.0 3.9 0.2 0.0 2.2 0.1 310.6 2.8 PPAC048 16 18 2 38.06 2.0 0.6 1.1 4.6 0.3 176.1 0.0 92.1 32.0 9.9 0.5 0.1 6.8 0.3 706.9 3.5 PPAC048 18 19 1 36.0 0.		30	32	2	212.2	1.9	0.6	1.0	4.2	0.3	102.3	0.0	63.6	21.9	7.6	0.5	0.1	6.4	0.0	422.8	3.2
PPAC048 14 16 2 162.1 0.6 0.2 0.3 1.7 0.1 86.8 0.0 38.5 14.0 3.9 0.2 0.0 2.2 0.1 310.6 2.8 PPAC048 14 16 2 162.1 0.6 0.2 0.3 1.7 0.1 86.8 0.0 38.5 14.0 3.9 0.2 0.0 2.2 0.1 310.6 2.8 PPAC048 16 18 2 38.06 2.0 0.6 1.1 4.6 0.3 176.1 0.0 92.1 32.0 9.9 0.5 0.1 6.8 0.3 706.9 3.5 PPAC048 18 19 1 637.4 3.6 1.1 1.8 8.0 0.5 280.4 0.1 144.8 51.2 16.3 0.9 0.1 13.5 0.6 1160.3 5.0 PPAC050 22 24 2 218.0 1.9 0.6 0.9 4.2 0.3 11.10 0.0 69.0 23.1 7.5 0.4 <th< td=""><td>PPAC048</td><td>12</td><td>14</td><td>2</td><td>240.6</td><td>0.6</td><td>0.2</td><td>0.3</td><td>1.7</td><td>0.1</td><td>115.6</td><td>0.0</td><td>38.2</td><td>14.6</td><td>3.9</td><td>0.2</td><td>0.0</td><td>1.6</td><td>0.1</td><td>417.7</td><td>2.9</td></th<>	PPAC048	12	14	2	240.6	0.6	0.2	0.3	1.7	0.1	115.6	0.0	38.2	14.6	3.9	0.2	0.0	1.6	0.1	417.7	2.9
PPAC048 16 18 2 380.6 2.0 0.6 1.1 4.6 0.3 176.1 0.0 92.1 32.0 9.9 0.5 0.1 6.8 0.3 706.9 3.5 PPAC048 18 19 1 637.4 3.6 1.1 4.6 0.3 176.1 0.0 92.1 32.0 9.9 0.5 0.1 6.8 0.3 706.9 3.5 PPAC048 18 19 1 637.4 3.6 1.1 1.8 8.0 0.5 280.4 0.1 144.8 51.2 16.3 0.9 0.1 13.5 0.6 1160.3 5.0 PPAC050 22 24 2 218.0 1.9 0.6 0.9 4.2 0.3 11.0 0.0 69.0 23.1 7.5 0.4 0.1 7.5 0.3 445.0 2.7 PPAC051 0 2 10.3 60.6 0.4 68.6 18.9 10.8 1.2 0.4 38.2 2.5 333.1 13.3 95.5 0.2	PPAC048	14	16	2	162.1	0.6	0.2	0.3	1.7	0.1	86.8	0.0	38.5	14.0	3.9	0.2	0.0	2.2	0.1	310.6	2.5
PPAC048 18 19 1 637.4 3.6 1.1 1.8 8.0 0.5 280.4 0.1 144.8 51.2 16.3 0.9 0.1 13.5 0.6 1160.3 5.0 PPAC050 22 24 2 218.0 1.9 0.6 0.9 4.2 0.3 111.0 0.0 69.0 23.1 7.5 0.4 0.1 7.5 0.3 445.0 2.7 PPAC051 0 2 2 108.7 6.8 3.4 2.2 9.1 1.3 60.6 0.4 68.6 18.9 10.8 1.2 0.4 38.2 2.5 333.1 13.3 PPAC052 28 30 2 178.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 569.4 2.2 PPAC052 28 30 2 178.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 2.8	PPAC048	16	18	2	380.6	2.0	0.6	1.1	4.6	0.3	176.1	0.0	92.1	32.0	9.9	0.5	0.1	6.8	0.3	706.9	3.5
PPAC050 22 24 2 218.0 1.9 0.6 0.9 4.2 0.3 111.0 0.0 69.0 23.1 7.5 0.4 0.1 7.5 0.3 445.0 2.7 PPAC051 0 2 2 108.7 6.8 3.4 2.2 9.1 1.3 60.6 0.4 68.6 18.9 10.8 1.2 0.4 38.2 2.5 333.1 13.3 PPAC052 28 30 2 178.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 56.9 2.7 PPAC052 28 30 2 178.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 569.4 2.2 PPAC052 28 30 2 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 569.4	PPAC048	18	19	1	637.4	3.6	1.1	1.8	8.0	0.5	280.4	0.1	144.8	51.2	16.3	0.9	0.1	13.5	0.6	1160.3	5.0
PPAC051 0 2 2 108 6.8 3.4 2.2 9.1 1.3 60.6 0.4 68.6 18.9 10.8 1.2 0.4 38.2 2.5 333.1 13.3 PPAC052 2.8 30 2 178.5 4.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 569.4 2.2	PPAC050	22	24	2	218.0	1.9	0.6	0.9	4.2	0.3	111.0	0.0	69.0	23.1	7.5	0.4	0.1	7.5	0.3	445.0	2.7
PPAC052 28 30 2 178.5 4.5 1.9 2.2 8.4 0.8 195.5 0.2 105.7 33.6 12.2 0.9 0.2 23.8 1.1 569.4 2.2	PPAC051	0	2	2	108.7	6.8	3.4	2.2	9.1	1.3	60.6	0.0	68.6	18.9	10.8	1.2	0.4	38.2	2.5	333.1	13.3
	PPAC052	28	30	2	178.5	4.5	1.9	2.2	8.4	0.8	195.5	0.2	105.7	33.6	12.2	0.9	0.2	23.8	1.1	569.4	2.2
PPAC052 30 32 2 185.0 7.0 2.6 3.9 13.5 1.1 285.6 0.2 176.2 58.2 22.1 1.6 0.3 28.7 1.4 787.5 1.7	PPAC052	30	32	2	185.0	7.0	2.6	3.9	13.5	1.1	285.6	0.2	176.2	58.2	22.1	1.6	0.3	28.7	1.4	787.5	1.7

					-											-				
PPAC052	32	34	2	325.3	3.5	1.3	1.8	6.7	0.6	137.5	0.1	83.7	27.2	10.5	0.7	0.1	17.9	0.7	617.8	2.3
PPAC052	34	36	2	144.2	1.6	0.6	0.9	3.4	0.3	80.2	0.0	43.0	13.9	5.4	0.3	0.1	7.5	0.3	301.6	1.7
PPAC053	32	34	2	175.3	1.4	0.5	0.9	2.8	0.2	83.2	0.0	44.6	15.2	5.1	0.3	0.1	6.4	0.3	336.4	1.4
PPAC053	34	36	2	117.7	2.4	0.9	1.4	4.4	0.4	117.2	0.1	64.7	21.5	7.6	0.5	0.1	10.5	0.6	350.0	1.5
PPAC053	36	38	2	153.6	4.8	2.1	2.2	8.4	0.9	175.5	0.2	92.6	29.7	11.8	1.0	0.2	27.1	1.2	511.1	2.0
PPAC054	28	30	2	412.1	3.5	1.5	0.9	4.6	0.6	64.3	0.1	41.8	13.9	6.6	0.7	0.2	14.0	1.0	565.9	4.0
PPAC054	30	32	2	536.8	5.6	2.3	1.6	8.3	0.9	149.9	0.2	91.2	30.2	12.8	1.1	0.3	21.4	1.6	864.1	3.7
PPAC054	32	34	2	141.5	5.7	2.1	1.8	8.6	0.9	138.5	0.2	96.4	31.4	14.2	1.1	0.3	16.3	1.5	460.3	4.3
PPAC054	34	36	2	117.2	5.5	2.2	1.7	8.5	0.9	140.4	0.2	91.1	30.0	13.5	1.1	0.3	20.8	1.4	434.8	2.8
PPAC054	36	38	2	125.3	3.9	1.6	1.0	5.7	0.7	85.6	0.1	48.8	16.0	7.5	0.8	0.2	16.3	1.0	314.5	3.0
PPAC054	38	40	2	162.3	4.8	2.1	1.2	7.5	0.9	137.3	0.2	68.0	22.2	9.3	0.9	0.2	28.5	1.1	446.4	3.2
PPAC054	44	46	2	154.3	3.9	1.6	1.1	5.7	0.7	89.8	0.1	49.7	16.2	7.4	0.8	0.2	17.9	0.9	350.1	3.1
PPAC054	46	48	2	195.4	3.0	1.3	0.9	5.1	0.5	100.9	0.1	57.0	18.6	7.3	0.6	0.1	15.2	0.7	407.0	3.1
PPAC054	58	59	1	262.8	3.1	1.2	0.9	5.5	0.5	117.9	0.1	67.4	22.6	8.9	0.6	0.1	14.2	0.7	506.5	4.7
PPAC055	36	38	2	435.5	3.7	1.1	1.4	7.8	0.5	221.0	0.1	121.8	41.5	14.2	0.9	0.1	12.8	0.5	863.0	4.6
PPAC058	54	56	2	159.0	2.7	0.9	1.2	5.7	0.4	97.1	0.1	60.0	18.2	7.7	0.6	0.1	11.8	0.4	366.0	2.8
PPAC058	56	57	1	145.6	3.0	1.1	1.1	5.7	0.5	91.6	0.1	56.4	17.0	7.4	0.6	0.1	14.0	0.5	344.8	3.6
PPAC059	30	32	2	87.9	2.6	0.9	1.4	5.4	0.4	126.5	0.1	68.0	22.7	8.8	0.6	0.1	11.0	0.5	336.9	0.8
PPAC059	32	34	2	154.3	4.0	1.4	2.5	9.0	0.6	206.3	0.1	129.4	43.1	15.9	1.0	0.2	17.5	0.8	586.0	0.9
PPAC059	40	41	1	291.6	1.5	0.4	1.0	4.6	0.2	172.8	0.0	90.7	31.1	9.6	0.4	0.0	5.2	0.2	609.3	0.9
PPAC060	28	30	2	184.5	2.1	0.8	0.8	4.1	0.3	103.0	0.1	53.1	18.1	6.3	0.5	0.1	9.8	0.4	383.8	1.5
PPAC064	26	28	2	328.3	4.4	1.3	3.3	9.6	0.6	176.7	0.1	157.9	49.4	19.5	1.0	0.1	13.0	0.7	766.2	1.4
PPAC064	28	30	2	216.0	5.4	2.1	3.0	10.1	0.9	147.9	0.2	119.4	35.6	15.5	1.1	0.2	28.6	1.2	587.1	1.5
PPAC064	30	32	2	359.7	3.1	1.3	1.6	5.6	0.5	92.6	0.1	63.8	19.1	7.9	0.6	0.2	17.9	0.9	574.8	1.0
PPAC065	26	28	2	293.2	4.1	1.7	1.9	7.3	0.7	161.9	0.1	91.0	30.1	10.7	0.8	0.2	21.4	1.1	626.2	2.3
PPAC065	28	30	2	172.0	2.4	1.0	1.1	4.4	0.4	96.6	0.1	54.8	17.7	6.5	0.5	0.1	12.6	0.6	370.8	1.8
PPAC065	32	34	2	155.9	2.7	0.8	1.0	4.9	0.4	76.7	0.0	52.5	16.5	6.8	0.6	0.1	10.7	0.4	330.1	3.4
PPAC068	0	2	2	95.6	12.0	6.3	3.8	15.5	2.3	91.9	0.6	89.7	23.8	16.7	2.1	0.8	71.7	4.4	437.4	15.0
PPAC073	60	62	2	225.5	2.0	0.6	1.6	4.5	0.3	65.4	0.0	53.6	17.4	7.9	0.5	0.1	6.3	0.4	386.0	5.6
PPAC073	62	64	2	170.0	2.3	0.7	1.9	4.8	0.3	64.2	0.1	57.5	18.1	8.5	0.5	0.1	6.3	0.4	335.7	3.6
PPAC073	64	66	2	121.7	4.4	1.5	3.7	10.9	0.7	170.2	0.1	107.3	34.0	14.8	1.1	0.1	20.6	0.8	492.0	3.5
PPAC073	66	68	2	116.1	2.1	0.7	1.5	5.3	0.3	104.7	0.1	62.5	19.4	7.7	0.5	0.1	10.0	0.4	331.4	3.4
PPAC074	20	22	2	157.1	2.2	0.9	1.2	4.3	0.3	98.7	0.1	49.3	17.4	6.3	0.5	0.1	10.7	0.5	349.5	1.2
PPAC074	24	26	2	367.7	3.0	0.9	1.8	6.6	0.4	161.0	0.1	98.7	36.1	13.1	0.7	0.1	8.9	0.5	699.4	1.8
PPAC075	26	28	2	153.4	1.1	0.3	1.3	3.0	0.1	79.4	0.0	52.8	19.3	6.4	0.3	0.0	3.0	0.1	320.4	1.7
PPAC075	30	32	2	329.8	2.0	0.6	2.3	5.4	0.3	132.9	0.0	91.8	32.9	11.2	0.5	0.1	6.0	0.3	616.1	3.6
PPAC075	32	34	2	199.3	1.6	0.4	1.8	4.1	0.2	78.9	0.0	55.9	19.6	7.4	0.4	0.0	5.0	0.2	375.0	2.3
PPAC075	34	36	2	420.5	2.1	0.6	2.3	5.2	0.3	114.6	0.0	81.3	29.0	10.2	0.5	0.1	6.2	0.3	673.2	2.4
PPAC075	36	38	2	166.2	1.7	0.5	1.8	4.4	0.2	85.1	0.0	57.2	19.8	7.8	0.4	0.0	5.1	0.2	350.6	2.8
PPAC076	42	44	2	209.8	1.5	0.5	1.0	3.5	0.2	89.4	0.0	48.7	15.3	5.8	0.4	0.0	5.6	0.2	382.0	1.6
PPAC076	44	46	2	173.0	1.7	0.5	1.1	3.7	0.3	77.6	0.0	49.2	15.9	6.1	0.4	0.1	5.8	0.3	335.5	1.4
PPAC076	46	48	2	196.0	2.6	0.8	1.8	5.1	0.4	82.2	0.1	61.2	19.9	8.4	0.6	0.1	8.4	0.5	387.8	2.1
PPAC076	48	50	2	151.5	2.4	0.7	1.9	5.2	0.3	97.8	0.1	68.3	23.1	9.4	0.6	0.1	7.6	0.4	369.4	1.3
PPAC076	50	52	2	185.6	3.4	1.0	2.6	7.2	0.5	138.5	0.1	91.3	30.7	12.5	0.8	0.1	11.3	0.6	486.1	1.8
PPAC076	52	54	2	158.0	3.4	1.0	2.6	7.3	0.5	141.7	0.1	88.4	29.9	12.3	0.8	0.1	11.5	0.5	458.1	1.7
PPAC076	54	56	2	138.0	3.0	0.9	2.2	6.4	0.4	118.5	0.1	73.1	24.2	10.3	0.7	0.1	10.3	0.5	388.5	1.8
PPAC076	56	58	2	142.3	2.6	0.7	1.9	6.0	0.4	119.0	0.0	69.8	22.7	9.6	0.7	0.1	9.0	0.4	385.2	1.9
PPAC076	58	60	2	136.7	2.1	0.6	1.5	5.1	0.3	103.1	0.0	56.7	18.0	7.8	0.5	0.1	7.4	0.3	340.2	1.9
PPAC076	60	62	2	164.8	2.3	0.6	1.6	5.5	0.3	109.1	0.0	58.0	18.1	7.9	0.6	0.1	8.9	0.3	378.2	1.6

PPAC079	18	20	2	158.0	0.8	0.2	0.6	2.2	0.1	80.7	0.0	41.0	14.6	4.5	0.2	0.0	2.3	0.1	305.4	1.7
PPAC079	20	22	2	173.9	1.3	0.3	1.0	3.3	0.2	81.6	0.0	52.1	17.3	6.2	0.3	0.0	4.1	0.1	341.7	2.2

JORC Code, 2012 Edition – Table 1: Peak Charles Aircore

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All drilling and sampling was undertaken in an industry standard manner. Aircore holes were sampled from the individual sample piles laid out on the ground. Generally, 2m composite samples (or smaller 1m sample at EOH) were collected from the 1m sample piles. Sample weight ranged from 2-4kg. The independent laboratory will crush and pulverize the entire sample and create a 40g sample for Aqua Regia digestion and subsequent ICP-MS/AES analysis. (further described below) Commercial industry prepared independent standards and duplicates are inserted about every 50 samples. Sample sizes are considered appropriate for the material sampled
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Air core drilling was completed by blade bit using industry standard drilling techniques. Aircore is considered to be an appropriate drilling technique for saprolite clay profiles. Drilling used blade bits of 87mmØ with 3m length drill rods to blade refusal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air core recoveries were not recorded but are not considered to be materially biased, given the consistent sample return observed. Aircore samples were visually assessed for recovery The assay data will be analysed against control samples No sample bias has been observed.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The entire hole has been geologically logged by the Moho geological team, with geological logs recording lithology, colour and weathering.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 A composite 2m sample of ~ 3kg for analysis was taken using a scoop from each metre pile to subsample a 1-1.5kg sample. This was then dispatched to the laboratory. Sample weight ranged up to 4kg. Commercial industry prepared independent standards and duplicates are inserted about every 50 samples. Sample sizes are considered appropriate for the material sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The independent laboratory will crush the entire sample to 3mm and pulverize to 95% passing 105um, riffle split to create a 40g sample for Aqua Regia digestion and subsequent analysis. To be finished by ICP_MS/AES for the elements described below. The Aircore drill chip samples were analysed for 53 Multi element with 12 rare Eart Element add on. The analysis techniques are considered quantitative in nature Certified reference standards were inserted by the Moho geological team and the laboratory also utilises internal standards for individual batches. The standards are considerate satisfactory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Assay results are reported in this release. Geological and spatial data has been uploaded into the Moho geological database. No Twinned holes have been drilled at this stage. All data is stored in a verified database.

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	 Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to- stoichiometric conversion factors.
		Eleme ntConv factorOxide formCe1.2284CeO2Dy1.1477Dy2O3Er1.1435Er2O3Eu1.1579Eu2O3Gd1.1526Gd2O3Ho1.1455Ho2O3La1.1728La2O3Lu1.1664Nd2O3Pr1.2082Pr6O11Sm1.1596Sm2O3Tb1.1762Tb4O7Tm1.1421Tm2O3
		Y1.2699Y2O3Yb1.1387Yb2O3•Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups:•TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The Aircore hole collars are located with handheld GPS to an accuracy of +/- 3m. The locations are given in GDA94 zone 51 projection. The survey data is adequate for this stage of the project. Downhole survey was not undertaken with all hole drilled vertical.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Aircore drill holes for each prospect were drilled at 200m spacing. Sample compositing has been applied before sample submission
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes were vertical and approximately perpendicular to mineralisation hosted in the flat lying clay basin
Sample security	The measures taken to ensure sample security.	 Samples were collected, processed, and dispatched to the laboratory by the drilling contractor
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• The Competent Person reviewed the sampling techniques and data collection. The Independent Competent Person completed a site visit during drilling to verify sampling techniques and data collection.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Aircore drilling was on tenement E74/695 which is 100% held by Moho Resources. The tenement is located 100km Northwest of the town of Esperance WA. There are no known impediments outside the usual course

Criteria	JORC Code explanation	Commentary
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	of exploration licenses
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The project area has had several levels of nickel-copper, lignite-coal, uranium, gold and base-metals exploration by a number of companies over the last 50 years. Historical regional RAB drilling for gold.
Geology	Deposit type, geological setting and style of mineralisation.	 The rare earth mineralisation at the Peak Charles Project occurs in the weathered profile (in- situ regolith clays). The current working model is that the emplacement of rare earths is through ground water mobilisation from REE rich basement granite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole collar information is included in the Drill Hole Data (Table 3) No material has been excluded Results (<300ppm TREO) occur outside the mineralised area of interest and have been excluded as not being of material interest. No internal waste has been included in the mineralised intercepts
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No cutting of grades has been used Data has been aggregated according to the intercept length above the cut off grade of 300ppm TREO Moho considers this to be an appropriate cut off grade for clay basin hosted rare earth oxides Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to- stoichiometric conversion factors.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The drill holes are drilled vertical and therefore perpendicular to generally flat lying clay basin mineralisation Drilled width is approximately the true width
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plans with scale and GDA94 coordinates are provided in this report. Cross sections for two significantly mineralised prospects are included, with 10X vertical exaggeration
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All holes drilled, with associated REE assays from this drilling program are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The various prospects are widely spaced, and the program was aimed to explore the extent of possible clay basin hosted REE mineralisation
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further Aircore drilling programs are anticipated as follow up for this drilling campaign to define the extend of the intersected clay basins Metallurgical test work to establish extractability rates of the REO.