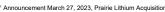


ASX Announcement 20 April 2023

PRAIRIE LITHIUM PROJECT DELIVERS SUCCESSFUL TEST WELL RESULTS


HIGHLIGHTS

- Arizona Lithium's Prairie Project test well results demonstrate significant upside in well productivity and confirms high lithium concentrations from the other wells drilled to date.
- Daily brine production was significantly higher than anticipated, meaning that the rate at which lithium can be produced may exceed expectations with potentially fewer production wells required to be drilled.
- Test work confirms mineralised brine over 27 kilometres of the Williston Basin.
- Highly encouraging result provides data to update the existing Inferred Resource and prepare a Preliminary Economic Assessment (PEA).
- The Prairie Project's JORC Inferred Mineral Resource of 4.1 million tonnes of lithium carbonate equivalent (LCE) at 111 mg/L Li, is the highest quality inferred lithium brine resource in Canada. 1-2

Arizona Lithium Limited (ASX: AZL, AZLOA, OTC: AZLAF) ("Arizona Lithium", "AZL" or "the Company"), a company focused on the sustainable development of two large Lithium development projects in North America, the Big Sandy Lithium Project ("Big Sandy",) and the Prairie Lithium Project ("Prairie"), is pleased to announce the successful test results from its latest well at the Company's Prairie Project.

The Company re-entered a suspended oil well in southeast Saskatchewan on 17 October 2022. Operations commenced with cementing off the existing depleted oil production zone and the well was further deepened by 169 metres to a total depth of 2,374 metres, to test the Duperow Formation for both lithium concentration and well productivity.

In the 16-20 well, the lithium concentration measured in the combined flow test was 104 mg/L. The lithium concentrations from three individual zones tested were 103 mg/L, 113 mg/L and 137 mg/L (Figure 1). These results, combined with the sampling programs completed on two wells in 2021, illustrate elevated levels of lithium in all test wells drilled to date.

Announcement March 27, 2023, Prairie Lithium Acc Prairie Lithium – Announcement by AZL (21/12/22)

ASX: AZL. AZLOA

OTC: AZLAF

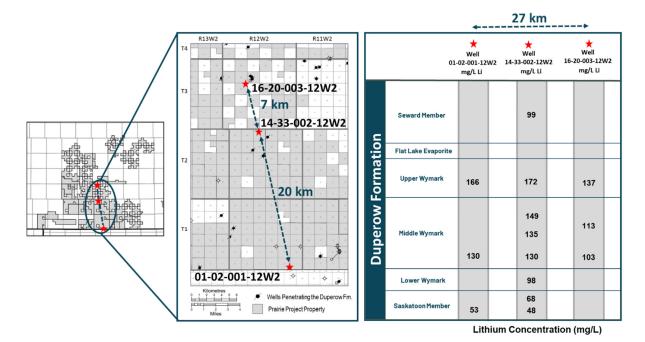


Figure 1 - Location map and representative lithium concentrations from Arizona Lithium's test wells4

Using flow parameters obtained from the combined pump test, consulting group Fluid Domains predicted a sustainable pumping rate of 2,700 m³/day over a three-year period. This is considerably higher than the design requirement for a field pilot plant.

The 16-20 well was pumped for 3.5 days at sustained rates of 200 m³/day and 400 m³/day to determine well performance and aquifer properties. A total of 875 m³ of brine was pumped from the well, with 750 m³ of brine being stored for further testing at the Direct Lithium Extraction (DLE) pilot plant in Emerald Park, which Arizona Lithium recently acquired from Prairie. The produced brine will be used to continue the optimisation of the Company's DLE technology which has processed over 400 m³ of Duperow brine since inception.

Arizona Lithium Managing Director, Paul Lloyd, commented:

"We are pleased to announce that we have demonstrated this wells capability to produce more brine per day than originally anticipated, which demonstrates the potential for the wells to produce more lithium on a daily basis than previously expected. Higher sustainable production rates like this also have the potential to further decrease the future capital and operating costs associated with our wellfield infrastructure, and significantly increase the value of the project."

About the Prairie Lithium Project

AZL's Prairie Lithium Project is located in the Williston Basin of Saskatchewan, Canada, with Arizona Lithium also holding a proprietary lithium extraction process technology that selectively removes lithium from Brine. The Prairie Project holds the highest quality Inferred lithium brine resource in Canada discovered to date, with 4.1MT LCE total JORC Inferred Mineral Resources at 111 mg/L Li³, with significant expansion potential. Located in one of the world's top mining friendly jurisdictions, the projects have easy access to key infrastructure including electricity, natural gas, fresh water, paved highways and railroads. The projects also

ASX: AZL, AZLOA

OTC: AZLAF

³ Refer to Appendix 1 (Summary of 72 subsurface mineral permits where Prairie Lithium has 100% working interest across the Duperow Formation), Appendix 2 (Summary Table of Drill Holes) and the JORC 2012 Table 1 Report appeared to this appropriet for further details

billi noles) and the SORC 2012 rabie i Report almexed to this amounteement to further details.

*(Lithium concentrations measured by Isobrine Solutions and confirmed by one other commercial laboratory in Edmonton, Alberta)

aim to have strong environmental credentials which should result in less use of freshwater, land and waste, aligning with AZL's sustainable approach to lithium development.

The Prairie Lithium Ion Exchange (PLIX) is an ion-exchange material that selectively extracts lithium from brine, using equipment which is anticipated to be readily available at commercial scale. PLIX may have a global application, with the process currently being tested on lithium resources from around the world (including encouraging results with Big Sandy). While Prairie Lithium continues to develop, scale and operate its own DLE technology, the company is also testing other DLE technologies to ensure it deploys the most cost-effective technology onto its resource.

For further information please contact:

Mr. Paul Lloyd Managing Director Tel. +61 419 945 395 paul@arizonalithium.com

Arizona Lithium Projects

Figure 2 - Location of Arizona Lithium Projects

Competent Persons statement for Arizona Lithium and Registered Overseas Professional Organisation (ROPO) and JORC Tables

Gordon MacMillan P.Geol., Principal Hydrogeologist of Fluid Domains, who is an independent consulting geologist of a number of brine mineral exploration companies and oil and gas development companies, reviewed and approves the technical information provided in the release and JORC Code – Table 1 attached to this release. Mr. MacMillan is a member of the Association of Professional Engineers and Geoscientists of Alberta (APEGA), which is ROPO accepted for the purpose of reporting in accordance with the ASX listing rules. Mr. MacMillan has been practising as a professional in hydrogeology since 2000 and has 22 years of experience in mining, water supply, water injection, and the construction and calibration of numerical models of subsurface flow and solute migration. Mr. MacMillan is also a Qualified Person as defined by NI 43-101 rules for mineral deposit disclosure.

ASX: AZL, AZLOA

OTC: AZLAF

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Arizona Lithium's Prairie Project (the Project) is approximately 200 km southeast of the city of Regina between the towns of Estevan and Weyburn. The center of the property has a latitude 49.21363°N and a longitude 103.63518°W. The southern limit of the property is on the border with the states of North Dakota and Montana, United States. The subsurface permits of the property itself encompass parts of Townships 1 to 7 and Ranges 7 to 16 West of the 2nd Meridian.

The focus of this table is the well results from well 16-20-003-12W2M that was drilled and completed from September to December 2022.

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg	 Brine collection procedures for Arizona Lithium's test well (141/16-20-003-12W2) are outlined here. After the well was drilled, it was cased and then perforated over the zones of interest. Prior to perforating the zones of interest, a Cement Bong Log was run and analysed to ensure zonal isolation behind casing. During well testing, formation water was brought to surface using an electrical submersible pump (ESP) and by swabbing small volumes of fluid. During swabbing operations, packers were placed between each individual zone swabbed. The packers were pressure tested to ensure zonal isolation during the swabbing operations. Further measures taken to ensure sample representivity are discussed in 'Drill Sample Recovery'.

ASX: AZL, AZLOA

OTC: AZLAF

Criteria	JORC Code explanation	Commentary
	submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Arizona Lithium's test well (141/16-20-003-12W2) was drilled to a depth of 2,374 m from the Kelly Bushing elevation (mKB) using reverse circulation drilling. It was drilled with a brine mud and a bit size of 156 mm.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Brine collection procedures for Arizona Lithium's test well (141/16-20-003-12W2) are outlined here. The procedures were designed and undertaken to obtain the highest quality samples of original formation fluids. Prior to sampling operations, all lines and tanks were cleaned to remove any possible residual brine or hydrocarbon contamination. Samples were collected directly at the wellhead, or from sampling ports attached to flow lines as close to the wellhead as possible. Prior to sampling the test intervals, representative samples of all drilling and completion fluids were taken and analysed. Field determination of density, resistivity, and pH of the initial samples from the well were used to determine when the well was producing representative samples. The well was drilled with produced water from nearby water source wells with a Total Dissolved Solids content of approximately 260,000 mg/L while all completion operations were conducted with a fluid with TDS less than 2,000 mg/L. Only after the field measured parameters indicated a TDS greater than 260,000 mg/L. Were any samples collected for further laboratory analysis. Once it was determined that the well was producing formation water, samples were collected for lithium analysis in the laboratory. At the sample point, the well was opened to a waste receptacle for 5 to 10 seconds to remove any debris build-up in the sample lines, then the sample was collected into 1 L, 2 L, or 4 L clean plastic screw-top jugs. Field containers were immediately labelled with date, time, sample interval and then the container was transferred to the onsite laboratory for preliminary analysis. After a visual inspection for trace hydrocarbons and debris, samples with obvious debris were prefiltered through glass wool. The sample was then filtered through a standard 0.45-micron filter to remove any particulates or oil. Once sufficient volume was filtered for analysis, samples were split into two to four containers (typically 1 L

Criteria	JORC Code explanation	Commentary
		'anonymous' sample ID for each laboratory), and sealed with secure tape on the caps. Each bottle was then sealed with tamper proof seals to ensure integrity. Samples were couriered to the various laboratories using full chain-of-custody documentation. Representative fluid samples were collected from three separate zones in Arizona Lithium's test well (141/16-20-003-12W2). In addition to collecting fluid samples, Arizona Lithium's test well (141/16-20-003-12W2) was flow-tested for overall productivity.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	A cased-hole wireline log was run by Weatherford's Wireline Services. A petrophysical evaluation from the cased-hole wireline logs was completed by Arizona Lithium on the test well (141/16-20-003-12W2) to determine the reservoir quality of the Duperow Formation. The cased-hole wireline logs include a gamma ray and neutron log. Gamma-ray – the determination of lithology and facies based on natural radioactivity of the formation. Neutron logging tool - emits gamma-rays which detect hydrogen content of a formation and convert this to a porosity calculated curve. The top of the log interval was at 2000 mKB and the bottom of the log interval was at 2372.90 mKB.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Lithium samples are collected in the form of water samples not core. Procedures taken to ensure representative brine samples were collected are discussed in 'Drill Sample Recovery'. To ensure the most precise and accurate measurements of lithium concentration, multiple laboratories were used for analyses for Arizona Lithium's test well (141/16-20-003-12W2). • Each laboratory selected for use was required to pass a qualification test prior to their inclusion in the Project. The qualification test consisted of analyzing a set of three samples for lithium concentration on an artificially prepared saline brine solution, created by Salman Safarimohsenabad (Recion Technologies Inc.). The original stock solution contained 116 mg/L lithium and was diluted 1:1 and 1:2 to create the sample set. Each laboratory was evaluated for accuracy (i.e., how close to 116 mg/L) and precision (i.e., how close the three samples were to each other), prior to their selection. This prepared sample was repeatedly run as part of major sample batches for QAQC. • As described in 'Drill Sample Recovery' samples were determined to be representative of formation water once a sufficient volume of water was removed from the sampling interval and field parameters were found to be stable. The volume of water removed to ensure representativeness of the samples depended on the size of the tested interval

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 and the order of testing. This was typically achieved after removing two to three times the volume of water in the tubing. The initial combined flow test at the 141/16-20-003-12W2 well yielded representative lithium concentrations after 126 m³ of water was removed, the concentrations remained stable until the end of the test that recovered 870 m³. Swab tests at the 141/16-20-003-12W2 well removed between 9 m³ and 16 m³ prior to collecting representative samples. For each zone tested, up to 4 litres of filtered fluid was collected for laboratory analysis. Each laboratory was sent approximately 1 L. Each laboratory analysis takes less than 1 mL, so each lab had sufficient sample volume to run repeats, etc.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Three laboratories of different affiliations (e.g., large commercial, small commercial, internal, and academic) were utilised for analyses for Arizona Lithium's test well (141/16-20-003-12W2). Arizona Lithium laboratory (Emerald Park, Saskatchewan) - Arizona Lithium's internal laboratory provided initial rapid (<12 hour) analysis of lithium and sodium concentrations of sampled brines. Results from this laboratory were used for selecting samples for further/confirmation analyses at the other two laboratories. Due to the lack of independent status, concentrations determined by this laboratory were not used in the final lithium concentration mapping but were used qualitatively and for additional confirmation of the results from the other laboratories. Isobrine Solutions, a small commercial laboratory in Edmonton, Alberta and affiliated with Arizona Lithium, was selected to provide rapid (one-to-two-day turnaround) lithium analyses and comprehensive analyses of selected brine samples. Isobrine Solutions specializes in analysing saline brines, including determining lithium, bromine, and stable isotopes along with other major and trace elements. Results from Isobrine Solutions were used for lithium concentration mapping, but only after they were confirmed by the other two participating laboratories, thereby mitigating the question of independence from Prairie Lithium. Isobrine Solutions uses an ICP-OES to analyse for lithium and sodium (among other elements), but in addition uses an In Chromatograph (IC) to measure chloride (and other elements). The independently determined sodium and chloride are used to calculate a Charge Balance Error, which is a quality control check on the lithium analysis. Element Materials Technology (Element) is a large commercial laboratory in Edmonton, Alberta. Element was used for lithium and alkalinity analysis of selected samples as they have been used for over 20 years as part of the University of Alberta/Isobrine/Saskatchewan Geological Survey sampling programs, and consequently bri

Criteria	JORC Code explanation	Commentary
		analysis. Element Materials Technology is accredited by A2LA to ISO/IEC 17025:2017. All the lithium analyses conducted by Element were done on an ICP-MS.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	A total of 75 samples were sent for analysis of lithium concentration during testing of the 141/16-20-003-12W2 well. 32 samples were analysed by Isobrine Solutions, 21 samples were analysed by Element and 22 samples were analysed by Arizona Lithium.
		In a typical hydrochemical sampling program, the quality assurance and quality control (QA/QC) measures would include 5% to 10% blind duplicate samples to test the precision of the analyses. A total of 32 samples were analysed at Isobrine Solutions and independently analysed by at least one other laboratory (Element, or Arizona Lithium). This far exceeds the 5% to 10% duplicate sample standard.
		As part of the QAQC process, the prepared laboratory standard (S. Safarimohsenabad, Recion Technologies Inc.) was included in batches to ensure continued accuracy of the laboratory analysis. Any time the laboratory obtained a lithium value outside the 110 mg/L to 120 mg/L range, repeat analyses of the entire sample batches were conducted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	For Arizona Lithium's test well (141/16-20-003-12W2), a detailed site survey was completed by Caltech Surveys. The survey was carried out in accordance with Article XIII, Standards of Practice, Section 6 of the bylaws of the Saskatchewan Land Surveyors Association. These high-quality site surveys are routine for oil and gas wells drilled in Saskatchewan. The geographical land grid format survey is in NAD 83 and UTM Zone 13N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Lithium concentration samples from Duperow Formation brines have been collected all around Arizona Lithium's Property. Arizona Lithium's test well (141/16-20-003-12W2) is located in the centre of the Property. The range in spacing between wells with lithium concentration measurements varies from 610 m between the most closely spaced wells to over 68,000 m between the most widely spaced wells. The Duperow Aquifer is judged to be hydraulically continuous within, and far beyond, the Arizona Lithium resource area. The DST-measured lithium concentrations in the Duperow Formation suggest that lithium concentrations are continuous across the Project. This is based on regional hydrochemical mapping conducted over 25 years demonstrating systematic patterns of water chemistry across the project area. The Saskatchewan Phanerozoic Fluids and Petroleum Systems Project (Jensen et al., 2015) was based on

Criteria	JORC Code explanation	Commentary
		hundreds of water samples collected and submitted to the Government of Saskatchewan. The reason there are not an equivalent number of lithium analyses, is simply because the operators were not required to analyse for lithium.
		Arizona Lithium's sampling program supports the interpretation of regionally consistent lithium values. Furthermore, sampling program results suggest some of the variability between previously reported lithium concentrations in the Duperow Formation may be due to the differing geologic units that were sampled.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Duperow Formation brines have been sampled from vertical wells that have been drilled perpendicular to the Duperow Formation stratigraphy. There is no relationship between the drilling orientation and the formation water quality, so no sampling bias related to sampling orientation is present.
Sample security	The measures taken to ensure sample	Sample security procedures for Arizona Lithium's test well (141/16-20-003-12W2):
	security.	Samples were collected directly from the wellhead into 1, 2, or 4L containers (as described above). Samples taken in the field were placed in bottles and were labelled according to the date of sample collection, name of the sampler, location of the sampling and number of the sample.
		After field processing (measurement, filtration, splitting) samples were labelled with anonymous tracking numbers, sealed, and security taped (tamper proof seals) and shipped to the laboratories.
		The samples were later double checked and sent to the 3 rd party laboratories by Purolator shipping services whilst conforming to the required transport protocols. The corresponding Chain of Custody was either sent with the samples or was sent to the 3 rd party by email. The 3 rd party always confirmed the receipt of the samples by sending the chain of custody including the analyses requests, sample descriptions, client identities (IDs), 3 rd party IDs and client notes.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The QP was involved throughout the testing program including participating in the development of the testing program and planning the QAQC for the water sampling. The QP was not on site during the collection of the water samples from the 141/16-20-003-12W2 well

Criteria	JORC Code explanation	Commentary
		but was on site for a previous sampling program completed in 2021. The QP witnessed the sample preparation, analysis and security measures of the reservoir testing completed in 2021 and can verify that the procedures were consistent with the description provided.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Arizona Lithium leases 72 subsurface mineral permits located in southeast Saskatchewan close to the United States border. The subsurface mineral permits are leased from the Saskatchewan Provincial Government and cover 549.5 square miles (351,709 acres or 1,423.2 km²). Petroleum and Natural Gas (PNG) permits also exist across Arizona Lithium's Property and are leased to oil and gas producers. All permits and stratigraphic intervals are held 100% by Arizona Lithium or sub-leased from a geothermal company Deep Earth Energy Production Corp. (DEEP). Arizona Lithium entered into a binding legal Subsurface Mineral Permit Acquisition Agreement (SMPAA) with DEEP on October 20, 2021. The SMPAA covers an Area of Mutual Interest (AMI) over Townships 1 to 4 and Ranges 7 to 16 West of the 2nd Meridian. Any pre-existing or recently purchased subsurface mineral permits within the AMI now possess a stratified stratigraphic arrangement. Arizona Lithium holds 100% working interest in mineral rights from Top Madison Group to Top Red River Formation and DEEP holds 100% working interest in mineral rights from Top Red River Formation to Precambrian. No back-in rights, payments, or other agreements and encumbrances are applicable. The subsurface mineral permits are leased from the Saskatchewan Provincial Government. There has been no prior ownership of the subsurface mineral permits across the Project for lithium. One mineral permit was awarded on December 17, 2019, which will expire in December 2027; three permits were acquired on April 20, 2020, which expire in April 2028; a total of 34 permits were acquired on April 19, 2021, which expire in April 2029; and a total of 16 permits were acquired on August 23, 2021, which expire in April 2029; and a total of 16 permits have been sub-leased from DEEP. Arizona Lithium has no royalty agreements with the provincial government, lithium entities, petroleum companies or other mineral right holders. Industry and government are discussing a mineral royalty structure.

Criteria	JORC Code explanation	Commentary
		The Ministry of Energy and Resources (MER) has indicated to Arizona Lithium that the process to license wells for injection, water source, disposal, or production of lithium will follow that of the oil and gas industry.
		Arizona Lithium is not aware at the date of this report of any known environmental issues that could materially impact their ability to extract lithium from the Project.
		Appendix 1: Summary of 72 subsurface mineral permits where Arizona Lithium has 100% working interest across the Duperow Formation.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal or exploration by other parties.	There has been abundant drilling for oil and gas in southeastern Saskatchewan. This oil and gas exploration work has produced the high quality geologic data (wireline logs, core, and reservoir testing) that was used in Arizona Lithium's report.
		Other parties including government and academic research teams have also leveraged oil and gas wells to evaluate brine chemistry. Academic research (lampen and Rostron, 2000; lampen, 2001; Shouakar-Stash, 2008) and the Saskatchewan Geological Survey / University of Alberta (Rostron et al., 2002; Jensen 2011, 2012, 2015, 2016; Jensen and Rostron, 2017, 2018; Jensen et al., 2019) have published several technical reports characterizing the lithium potential of various stratigraphic intervals in southern and central Saskatchewan.
		Brine-rich formation water from oil and gas producing intervals have been tested for lithium and other elements by these researchers from University of Alberta and the Saskatchewan Geological Survey.
		Historical brine samples from 15 wells in and adjacent to Arizona Lithium's Project have been analyzed for lithium concentrations and are interpreted to be representative of the Duperow Formation brine (lampen and Rostron, 2000; lampen, 2001; Shouakar-Stash, 2008) and the Saskatchewan Geological Survey / University of Alberta (Rostron et al., 2002; Jensen 2011, 2012, 2015, 2016; Jensen and Rostron, 2017, 2018; Jensen et al., 2019). Two of these wells (121/09- 13-002-22W2 and 141/14-12-007-11W2) were sampled twice, resulting in a total of seventeen representative lithium concentrations.
		A total of thirteen of the lithium samples were published in the referenced reports. Four samples (101/07-27-007-06W2/03, 121/09-03-007-11W2, 141/13-02-007-11W2, and 141/01-22-004-19W2/00) were sourced from an unpublished database. These additional data points were collected and analyzed by researchers at the University of Alberta between 1996 and 2004 and obtained under agreement from Isobrine Solutions Incorporated (Isobrine Solutions), a University of Alberta spin-off company. Isobrine Solutions holds a Permit to Practice from APEGA, along with a Certificate of Authorization from APEGS to practice in Saskatchewan. These data were provided to Arizona Lithium for their lithium exploration project in good faith.
		Based on the results of testing at the 101/14-33-002-12W2,104/01-02-001-12W2 and wells 141/16-20-003-12W2, Arizona Lithium believes there is a high degree of spatial correlation of lithium concentrations within individual Duperow Formation units and that the variation of lithium concentration between historical sampling programs may be due to the units sampled in the historical tests.

Criteria	JORC Code explanation	Commentary
Geology	of mineralisation.	The target interval of this Project is porous carbonate rocks of the Upper Devonian (Frasnian) Duperow Formation, Saskatchewan Group (Gerhard et al., 1982; Kent and Christopher, 1994). Upper Devonian sediments were laid down in a northwest to southeast elongated Elk Point Basin that extended broadly from northwestern Alberta, through Saskatchewan, and across into North Dakota and Montana (Dunn, 1975).
	The Duperow Formation correlates westward with the Leduc Formation, a prominent series of reefs in the open-marine Alberta Basin. Middle and Late Devonian sedimentation was characterized by cyclic carbonates and evaporites. Cyclic ordering of strata from shelf carbonates to restricted supratidal carbonates and evaporites, are identified as shallowing-upward or "brining-upward" parasequences and these cyclic intervals are recognized throughout the entire Devonian stratigraphic column in the Elk Point Basin of southern Saskatchewan (Kent and Christopher, 1994). The Duperow Formation was deposited as a shallow-marine, carbonate inner platform to supratidal sabkha or tidal flat (Cen and Salad Hersi, 2006).	
		The deposit type being explored by Arizona Lithium is a lithium-bearing brine hosted by the Duperow Formation. Other lithium-rich brine deposits within oilfields include the brines within the Smackover Formation of the Gulf Coast and the Leduc Formation in Alberta (Kesler et al., 2012; Bowell et al., 2020).
		Lithium brines are defined as accumulations of saline groundwater enriched in dissolved lithium (Bradley, et al., 2017) within arid climates. Lithium brines are located within closed sedimentary basins with a close association with evaporite deposits which resulted from trapped evaporatively concentrated seawater (Bradley et al., 2013). Lithium brines are hosted within one or more aquifers which have had sufficient time to concentrate a brine (Bradley et al., 2017).
		Historical and newly acquired brine analysis data indicate that the Property is located within an area of extremely elevated TDS brine above 300,000 mg/L and with lithium concentrations of up to 190 mg/L within the Duperow Formation. Newly acquired geochemical data has allowed Arizona Lithium to characterize lithium content of the Duperow Formation within much of the Property. Lithium results from wells located across the Property and beyond indicate that lithium concentrations are elevated and laterally continuous across the Property.
		The northern limit of elevated lithium concentrations in the Duperow Formation occurs beyond the northern limits of the Property. Elevated lithium trends extend through the Property and south into North Dakota. Elevated lithium concentrations start decreasing east of the Property at Range 6W2. Lithium values also indicate low lithium concentrations from R18W2 and beyond to the west.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Appendix 2: Summary Table of Drill Holes • 279 wells with wireline logs to determine the average porosity over the net pay interval. • 21 wells with brine samples analysed for lithium concentration.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Based on the geologic setting, the Duperow Aquifer is judged to be hydraulically continuous within, and far beyond, the Arizona Lithium resource area. The DST-measured lithium concentrations in the Duperow Formation suggest that lithium concentrations are continuous across the Project. Arizona Lithium's sampling program supports the interpretation of regionally consistent lithium values and suggest that some of the measured variability between previously reported lithium concentrations in the Duperow Formation may be due to the differing geologic units that were sampled.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Geophysical wireline logs from wells drilled through the Duperow Formation were used to identify the top and base of the formation. A total of 462 wells were used to determine the top of the Duperow Formation and 357 wells were used to determine the base of the Duperow Formation. 279 wells with wireline logs to determine the average porosity over the net pay interval and 21 wells with brine samples analysed for lithium concentration. The majority of the well drilled are vertical and drilled perpendicular to the Duperow Formation stratigraphy and therefore perpendicular to the mineralization.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The following maps and cross sections have been selected included: • Location map and representative lithium concentrations for Arizona Lithium's test wells (Figure 1).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The range of lithium concentrations within the intra-Duperow Formation stratigraphic intervals defined Yang (2015) Lithium are summarized in Table 1. Table 1: Column 1: The stratigraphic interval defined by Arizona Lithium Column 2: The number of wells sampled within and surrounding Arizona Lithium's Property Column 3: The range in lithium concentrations measured over the sample intervals
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data has been collected.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Each sample is tracked using a unique tracking number, thus all laboratory and reporting procedures are tied back to that tracking number. Each laboratory has internal procedures to ensure data integrity. However, we have a final check on transcription and reporting errors from the labs, by comparing the results of each sample to each other. Reporting and transcription errors post lab analysis are mitigated by multiple levels of review by professional geoscientists.
		Arizona Lithium undertook a review of the historical sampling data to determine which samples were representative of the formation water and which samples should be excluded due to QAQC concerns. The Mineral Resource QP verified the lithium concentration data by reviewing Arizona Lithium's program, confirming the reported well names and concentrations in the referenced data sources, reviewing the reasonableness of the dataset based on regional water quality, and reviewing the dataset for consistency within the Project.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The QP was involved throughout the testing program including participating in the development of the testing program, planning the QAQC for the water sampling, and witnessing the testing at the 101/14-33-002-12W2 well from October 19 to October 22, 2021. During the time that the QP was at the 101/14-33-002-12W2 well, four different intervals of the Duperow Formation were developed until representative samples could be collected for laboratory analysis. The QP witnessed the sample preparation, analysis and security measures of the reservoir testing and can verify that the procedures were consistent with the description provided under 'Drill Sample Recovery'.

ASX: AZL, AZLOA

OTC: AZLAF

Criteria	JORC Code explanation	Commentary
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The Duperow Aquifer is laterally extensive and highly correlatable across the resource area. Based on Arizona Lithium's sampling program and historical sampling programs, the pore space is filled with a lithium-rich brine across the Project.
	 The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. 	Historical data compiled by the oil and gas industry and testing completed by Arizona Lithium, suggests it is possible to withdrawal commercial quantities of brine from the Duperow Formation. The Inferred Mineral Resource estimate is based on the total volume of water in the net pay and the interpolated lithium concentration within the resource area.
	 controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	This Mineral Resource estimate is classified as Inferred because geological evidence is sufficient to imply, but not verify lithium grade and continuity across the resource area.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits	Arizona Lithium leases 72 subsurface mineral permits located in southeast Saskatchewan close to the United States border. The subsurface mineral permits are leased from the Saskatchewan Provincial Government and cover 549.5 square miles (351,709 acres or 1,423.2 km²).
		Across the Project, the top of the Duperow Formation varies in depth from 1,500 m true vertical depth (TVD) (900 mbsl) in the northeast to 2,700 m TVD (2,000 mbsl) in the southwest. Seven (7) structure elevation maps between the top of the Duperow (Seward member) and the bottom of the Duperow Formation (top of Souris River Formation) were prepared in the resource area. Between 359 wells (top Souris River Formation) and 468 wells (Flat Lake Evaporite unit) were used in the interpolation of each surface. Based on the high quality of the wireline logs and the highly correlatable nature of the Durperow, the dimensions of the Mineral Resource are well constrained.
		Based on the geologic setting, regional hydraulic head mapping, and regional geochemical characterizations, the Duperow Aquifer is judged to be hydraulically continuous within, and far beyond, the Arizona Lithium resource area. The historical, and recently measured lithium concentrations in the Duperow Formation, also suggest that lithium concentrations are continuous across the Resource Area.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points.	Geological understanding of the Duperow Formation was foundational to the resource estimate. Geological mapping was completed by Arizona Lithium and interpolated structure surfaces for the intra-Duperow Formation stratigraphy were provided to Fluid Domains Inc. for construction of a three-dimensional geologic model in FEFLOW™.

Criteria	JORC Code explanation	Commentary					
	was chosen include a description of	The geological data set used to construct the surfaces and the model are summarized in Table 2.					
	If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Interval Number of Control Points					
		Seward Member (top Duperow Formation)	464				
		Flat Lake Evaporite	468				
		Upper Unit of the Wymark Member	433				
	Estimation of deleterious elements or other	Middle Unit of the Wymark Member	425				
		Lower Unit of the Wymark Member	402				
	drainage characterisation).	Saskatoon Member	400				
	 the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. 	Souris River Formation (base Duperow Formation) 359					
		Wells used in the structure and thickness mapping span from Range 4W2M to Range 18W2M and include the northern two townships in North Dakota and Township 1 to 11 in Saskatchewan. Thickness or structural anomalies identified in the maps were reviewed and corrected (when necessary) prior to interpolation. The interpolated surfaces represent the structure and thickness of the Duperow Formation. No Duperow Formation-aged faults have been identified.					
	 interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking 	Isopach maps were created in GeoSCOUT™ using the inverse distance gridding algorithm at a 400 m grid spacing. The isopach maps were constructed to understand and assess thickness trends within the intra-Duperow Formation stratigraphy. Any anomalies in the maps were addressed by quality checking stratigraphic tops in the wells and shifting them accordingly.					
	data to drill hole data, and use o reconciliation data if available.	The structure maps of surfaces were exported from GeoSCOUT™ and imported into FEFLOW™ to determine the gross rock volume. Additionally, average weighted porosity maps and average net pay maps for each intra-Duperow interval were created in FEFLOW™ to calculate the net brine volume of the Duperow Aquifer. Validation of the FEFLOW generated isopach maps was achieved by comparing to the					
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the	isopach maps generated in GeoSCOUT™. Not applicable.					

Criteria	JORC Code explanation	Commentary
	method of determination of the moisture content.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	Not used.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Prairie Lithium pumped the 16-20 Well for 3.5 days at sustained rates of 200 m³/day and 400 m³/day to determine well performance and aquifer properties. The pumping test was completed in November 2022 and was analysed by Fluid Domains using standard analytical tools. The pumping test analysis suggests the well has a negative skin of -5 and a transmissivity of 2.5 m²/day. Based on the perforated interval thickness (36 m), water pressure (1,972 m formation water hydraulic head), temperature (87 °C), and salinity (320,000 mg/L), the effective permeability of the well is 45 mD. Swab test results suggest that the top 9 m interval of the test (Zone 7) contributed very little flow to the 16-20 Well under pumping conditions. Assuming the producing interval is only 27 m thick (instead of 36 m) the effective permeability of the 27 m interval is 60 mD. AQTESOLV software (HydroSOLVE 2007) was used to solve the Theis (1935) equation. Dougherty-Babu (1984) was selected to analyse the drawdown portion of the pressure data set because of its ability to handle variable rate pumping, wellbore storage, and skin. The Theis (1935) residual drawdown/recovery method was used to analyse the recovery potion of the pressure data set because of its ability to handle variable pumping rates. Analytical solutions to groundwater withdrawal require strict assumptions that are rarely completely honoured in the field. It is Fluid Domains' opinion that the above referenced methods provide a reasonable mathematical solution to the 16-20 pumping test in the Duperow Aquifer. In order to estimate sustainable 1-year and 3-year pumping rates, the Modified Moell method (Maathuis and van der Kamp, 2006) was applied. As applied to the 16-20 Well, this method accounts for the actual drawdown (skin and near well transmissivity) after 2.66 days. The theoretical drawdown between 2.66 days and the end of the period of interest was then calculated using the Theis (1935) solution. The predicted sustainable pumping rates (without a safety factor) are 2,800 m³/

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Arizona Lithium has developed an ion exchange material called Plix that has been shown to extract an average of 99.7% of lithium from brine. This claim is based on a 3rd party verification report prepared in April 2021 by Coanda Research and Development. Plix is manufactured by Arizona Lithium using proprietary raw materials and reaction conditions. Bench scale test for lithium extraction was performed at the Arizona Lithium laboratory under the supervision of Coanda Research and Development. The processing concept is expected to be technically feasible but has not yet been proven on a commercial scale, it is being tested and optimized to identify bottlenecks and operating limits.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	As the Project is in a PEA stage, no environmental surveys or studies have been completed. Nonetheless, Arizona Lithium intends to complete these according to Saskatchewan guidelines and rules at the relevant stage of project advancement. Provincial regulations specific to lithium projects do not currently exist. The Saskatchewan Minister of Energy and Resources has indicated to Arizona Lithium that the process to license wells for injection, water source, disposal, or production of lithium will follow that of the oil and gas industry. Arizona Lithium is not aware at the date of this report of any known environmental issues that could materially impact their ability to extract lithium from the planned Project area. Arizona Lithium intends to place any required infrastructure within cultivated lands to help mitigate any adverse effects to populations of Species of Management Concern (SOMC) at the Project. Once the location of central processing facility is finalized, Arizona Lithium will complete the required detailed environmental surveys. Arizona Lithium aims to minimize surface environmental footprints by having multiple production wells drilled from a common surface pad, using existing surface infrastructure to minimize disturbance, such as using existing roads to access well pads, amongst other activities. Based on the Hunting, Angling and Biodiversity Information of Saskatchewan (HABISask) search, it is not believed that the Project is likely to cause any impacts to SOMC that cannot be mitigated through proper planning.

Criteria	JORC Code explanation	Commentary
		The main waste product produced by the central processing facility will be lithium depleted brine. It is not currently foreseen that the Project will produce any surface tailings or process waste, and all lithium depleted brine is planned to be disposed through six disposal wells into underlying stratigraphy.
Bulk density Classification	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the 	Wireline logs were examined to determine the lithology across the intra-Duperow Formation intervals. Density logging tools emit gamma-rays to measure electron density to calculate porosity and photoelectric factor (PEF) to determine lithology. The bulk density of each interval was one source of data used to interpret the average porosity over each interval. This exercise was completed over 22 individual layers for 279 wells. The Mineral Resource estimation is based on geological surfaces and Duperow Formation Aquifer quality data provided by Arizona Lithium. Historical and current lithium concentrations and geological data were incorporated into the lithium volumetric estimates. The Mineral Resource is classified as Inferred based on the geological evidence being sufficient to imply but not to verify geological, grade, or quality continuity. The Inferred Mineral Resource is preliminary in nature and is considered too speculative geologically to have the economic considerations applied.
	 data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No detailed audits have been completed.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	The Mineral Resource estimation has been performed according to the requirements of the CIM Best Practice Guidelines for Resource and Reserve Estimation for Lithium Brines (2012), CIM Definitions Standard (2014), Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (2019), and the CIM NI 43-101F1 (2011). Additional data and modelling will be required to further characterize the Mineral Resource. The Mineral Resource figures have been rounded to reflect that they are estimates. There has been insufficient exploration to define the Inferred Resources as an Indicated or Measured Mineral Resource. The estimate of Mineral Resource may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues, but at present there are none known which could adversely affect the Mineral Resources estimated above.

Appendix 1:

Summary of 72 subsurface mineral permits where Arizona Lithium has 100% WI across the Duperow Formation. Bold permit numbers indicate DEEP as the lessor, with the stratigraphic interval Top Madison to Top Red River held in trust for Arizona Lithium. Costs are expressed in Canadian dollars; MWR = Minimum Work Requirement.

Public Offering Number	Block	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Rent (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
S002	1	1553.82	1553.82	4/23/2019	3,107.64	577,000	LS	Base Three Forks Group to top Precambrian	DEEP / In
S004	5	1292.16	1292.16	12/17/2019	2,584.32	485,000	PNG	Top Madison Group to Top Precambrian	PLi / Out
S005	29	258.38	258.38	4/20/2020	516.76	97,000	FING	Top Madison Group to Top Precambrian	PLI / Out

Public Offering Number	Block	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Rent (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
	46	1742.94	1656.78	4/20/2020	3,313.55	654,000			
	47	257.95	257.95	4/20/2020	515.90	97,000			DEEP / In
	48	1547.57	1547.57	4/20/2020	3,095.13	581,000			
	58	9295.42	8842.41	4/20/2020	17,684.82	3,485,000		Top Madison Group to Top Winnipeg Formation	
	60	1293.55	1293.55	4/20/2020	2,587.10	485,000		Top Madison Group to Top Precambrian - except E/2 28-3-12W2, 29-3-12W2 and 32-3-12W2 Top Madison Group to Top Winnipeg Formation	PLi / In
	29	3872.15	3807.55	4/19/2021	7,615.10	1,475,000			PLi / Out
	31	128.76	128.76	4/19/2021	257.51	50,000		Top Madison Group to Precambrian	
	32	258.21	258.21	4/19/2021	516.43	99,000			
	33	1227.21	1173.33	4/19/2021	2,346.67	468,000		Top Madison Group to Precambrian; except W/2 and NE-6-2-10 W2 top Madison Group to base Three Forks Group	DEEP / In
	34	258.38	258.38	4/19/2021	516.75	99,000		T M II C I D I I	
	35	2252.20	2252.20	4/19/2021	4,504.40	858,000		Top Madison Group to Precambrian	
	41	2266.02	2265.84	4/19/2021	4,531.68	863,000		Top Madison Group to Precambrian; except NW-6-4-11 W2, S/2-10-4-11 W2, NE-26-3-12 W2 and 36-3-12 W2 top Madison Group to top Winnipeg Formation	PLi / In
	43	1876.44	1876.44	4/19/2021	3,752.87	715,000		Top Madison Group to Precambrian	PLi / Out
	44	2643.97	2539.88	4/19/2021	5,079.76	1,007,000		Top Madison Group to Precambrian; except 23-6-10 W2 top Madison Group to Top Winnipeg Formation	PLi / Out
	46	512.46	512.46	4/19/2021	1,024.92	196,000		Top Madison Group to Precambrian	, I
	49	1738.78	1738.78	4/19/2021	3,477.55	663,000		The state of the s	
	50	1809.08	1809.08	4/19/2021	3,618.16	689,000	3KM, PNG	Top Madison Group to Winnipeg Formation	
	51	1810.75	1810.75	4/19/2021	3,621.49	690,000			
	52	1879.20	1815.16	4/19/2021	3,630.32	716,000			
S008	53	2581.51	2581.51	4/19/2021	5,163.02	984,000		Top Madison Group to top Winnipeg Formation; except 14-2-12 W2 top Madison Group to Precambrian	PLi / In
	54	2828.16	2828.13	4/19/2021	5,656.26	1,078,000		Top Madison Group to top Winnipeg Formation; except 22-2-11 W2, 28-2-11 W2, 29-2-11 W2, 30-2-11 W2 and 32-2-11 W2 top Madison Group to Precambrian	
	56	2388.55	2018.87	4/19/2021	4,037.73	910,000		Top Madison Group to Precambrian; except 22-3-12 W2, 23-3-12 W2 and SE -24-3-12 W2 top Madison Group to top Winnipeg Formation	
	64	3157.57	1803.83	4/19/2021	3,607.66	1,203,000		Top Madison Group to Precambrian	PLi / Out
	65	1410.74	1410.74	4/19/2021	2,821.47	538,000		Top Madison Group to Mecambrian	TEI / Out
	69	2834.84	2834.84	4/19/2021	5,669.68	1,080,000		Top Madison Group to top Winnipeg Formation	
	70	2319.43	2319.43	4/19/2021	4,638.86	884,000		Top Madison Group to top Willingeg Formation	
	71	2106.95	2106.95	4/19/2021	4,213.91	803,000	PNG, T	Top Madison Group to top Winnipeg Formation; except 25-2-12 W2, NE-26-2-12 W2, 27-2-12 W2, 34-2-12 W2, 35-2-12W2 and 36-2-12 W2 top Madison Group to Precambrian	PLi / In
	72	1526.19	1526.19	4/19/2021	3,052.39	582,000	PNG	Top Madison Group to Precambrian	FLI / III
	73	1223.27	1221.99	4/19/2021	2,443.97	466,000		Top madison Group to Frecambinan	
	74	2599.37	2599.06	4/19/2021	5,198.11	990,000	3KM, PNG	Top Madison Group to top Precambrian; except 34-3-12 W2, 2-4-12 W2, 12-4-12 W2 and 13-4-12 W2 top Madison Group to top Winnipeg Formation	

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

Public Offering Number	Block	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Rent (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
	77	1546.80	1482.47	4/19/2021	2,964.95	590,000	PNG, CA, 3KM	Top Madison Group to Precambrian	PLi / Out
	86	1550.44	1550.44	4/19/2021	3,100.88	591,000		Top Madison Group to top Winnipeg Formation	
	87	1874.77	1874.77	4/19/2021	3,749.53	714,000	3KM, PNG	Top Madison Group to top Winnipeg Formation; except NE-5-1-13 W2 top Madison Group to Precambrian	PLi / In
	88	516.70	516.70	4/19/2021	1,033.40	197,000		Top Madison Group to Precambrian	
	89	1806.44	1806.44	4/19/2021	3,612.88	688,000	PNG	Top Madison Group to Precambrian; except 16-1-13 W2, 21-1-13 W2 and 22-1-13 W2 top Madison Group to top Winnipeg Formation	DEEP / In
	90	2391.56	2391.56	4/19/2021	4,783.11	911,000	CA, PNG, 3KM	Top Madison Group to top Winnipeg Formation	PLi /
	91	2074.75	2074.75	4/19/2021	4,149.50	791,000	PNG, 3KM	Top Madison Group to top Willingeg Formation	PLI /
	92	2316.88	2316.88	4/19/2021	4,633.77	883,000	PNG	Top Madison Group to top Precambrian; except 4-2-13 W2 and SE-9-2-13 W2 and W/2-9-2-13 W2 top Madison Group to top Winnipeg Formation; NE-9-2-13 W2 top Madison Group to top Duperow Formation and base Souris River Formation to top Winnipeg Formation.	DEEP / In
	93	2017.84	1956.18	4/19/2021	3,912.37	769,000	PNG	Top Madison Group to top Precambrian; except 33-2-13 W2, 34-2-13 W2, W/2-35-2-13 W2, SE-35-2-13 W2 and 36-2-13 W2 top Madison Group to top Winnipeg Formation	
	94	1548.07	1510.04	4/19/2021	3,020.09	590,000			
	95	2392.85	2392.85	4/19/2021	4,785.70	912,000	3KM, PNG		
	96	2203.46	2203.46	4/19/2021	4,406.91	840,000	PNG		PLi / In
	97	2523.42	2523.42	4/19/2021	5,046.84	961,000	3KM, PNG	Top Madison Group to Precambrian	1 21 / 111
	98	3049.83	3049.83	4/19/2021	6,099.66	1,162,000			
	99	4544.02	4544.02	4/19/2021	9,088.04	1,731,000	PNG		
	102	4394.98	4394.98	4/19/2021	8,789.95	1,674,000	0. 500		DEEP / In
	103	4109.14	4109.14	4/19/2021	8,218.29	1,565,000	CA, PNG	T M II C	DEEP / In
	104	4576.26	4576.26	4/19/2021	9,152.52	1,743,000		Top Madison Group to Precambrian	-
	105	1604.93 2308.58	1604.93 2308.58	4/19/2021 4/19/2021	3,209.86 4,617.16	612,000 880,000	PNG	Top Madison Group to top Precambrian; except SE-4-3-14 W2, E/2-5-3-14 W2, E/2-7-3-14 W2, 18-3-14 W2 and 19-3-14 W2 top Madison Group to top Winnipeg Formation	PLi / In
	107	3447.80	3447.80	4/19/2021	6,895.61	1,314,000	TNO	Top Madison Group to top Precambrian; except 17-3-14 W2 top Madison Group to top Winnipeg Formation	
	108	3380.74	3380.74	4/19/2021	6,761.48	1,288,000			DEEP / In
	109	4585.77	4388.70	4/19/2021	8,777.40	1,747,000		Top Madison Group to Precambrian	DLLI / III
	19	517.46	517.46	8/23/2021	1,034.92	199,000		Top Madison Group to Mecanibrian	PLi / In
	24	1291.87	1259.65	8/23/2021	2,519.30	497,000	PNG, 3KM, CA		1 4 7 111
	25	1811.02	1811.02	8/23/2021	3,622.05	697,000			
	27	516.90	516.90	8/23/2021	1,033.79	199,000	PNG	Top Madison Group to Precambrian	PLi / Out
S009	29	516.17	516.17	8/23/2021	1,032.34	199,000			
	31	1226.31	1157.61	8/23/2021	2,315.23	472,000	PNG, 3KM	Top Madison Group to Precambrian	PLi / Out
	35	258.80	258.80	8/23/2021	517.60	100,000	•	· '	PLi / In
	39	194.65 2393.70	194.65 2393.70	8/23/2021 8/23/2021	389.30 4,787.39	75,000 921,000	PNG	Top Madison Group to Precambrian	PLi / In
	41 42	3359.85	2393.70 3359.85	8/23/2021 8/23/2021	4,787.39 6,719.71	1,292,000	PNG, 3KM, CA	Ton Madison Croup to Procambrian	PLi / Out
	42	3339.63	3333.83	0/23/2021	0,/19./1	1,292,000	FING, SKIM, CA	Top Madison Group to Precambrian	PLI / Out

Level 2, 10 Outram Street

West Perth WA 6005 Australia

T +61 (8) 6313 3936

E info@arizonalithium.com

ASX: AZL, AZ

OTC: AZLAF

Public Offering Number	Block	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Rent (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
	43	2327.11	2327.11	8/23/2021	4,654.22	895,000	PNG, 3KM	Top Madison Group to Precambrian	PLi / Out
	44	515.00	515.00	8/23/2021	1,030.01	198,000	PNG	Top Madison Group to Precambrian	PLi / Out
	50	261.40	245.07	8/23/2021	490.13	101,000		Top Madison Group to Precambrian	PLi / In
	51	130.07	130.07	8/23/2021	260.13	50,000		Top Madison Group to Precambrian	PLi / In
	52	2329.79	2329.79	8/23/2021	4,659.58	896,000	PNG	Top Madison Group to Precambrian	PLi / Out
	53	2192.98	2192.98	8/23/2021	4,385.97	843,000	PNG, 3KM	Top Madison Group to Precambrian	PLi / Out

Appendix 2:

Summary Table of Drill Holes:

- 278 wells with wireline logs to determine the average porosity over the net pay interval.
- 17 wells with brine samples analyzed for lithium concentration.

Well ID	Reference Elevation - Kelly Bushing (m)	Measured Depth (m)	True Vertical Depth (m)	Vertical or Deviated Well	Surface Location	Surface Hole Easting (NAD83)	Surface Hole Northing (NAD83)	Bottom Hole Easting (NAD83)	Bottom Hole Northing (NAD83)	Use of Drill Hole Information
111/15-05-001-08W2/00	583.4	2850.5	2850.5	vertical	15-05-001-08W2	643155.7	5430584.0	643155.7	5430584.0	Petrophysical Evaluation
121/04-02-001-10W2/00	585.6	2441.0	2441.0	vertical	04-02-001-10W2	627978.9	5429036.5	627978.9	5429036.5	Petrophysical Evaluation
131/08-13-001-10W2/00	584.2	2814.2	2814.2	vertical	08-13-001-10W2	630706.9	5432980.5	630706.9	5432980.5	Petrophysical Evaluation
121/12-24-001-10W2/00	581.3	2810.9	2810.9	vertical	12-24-001-10W2	629437.7	5434660.2	629437.7	5434660.2	Petrophysical Evaluation
121/10-28-001-10W2/00	587.0	3165.0	3165.0	vertical	10-28-001-10W2	625274.6	5436212.7	625274.6	5436212.7	Petrophysical Evaluation
102/14-04-001-11W2/00	590.9	3839.5	3496.2	deviated	12-10-001-11W2	616345.4	5431028.0	615352.1	5429978.6	Petrophysical Evaluation
141/03-08-001-11W2/00	602.0	3394.9	3394.9	vertical	03-08-001-11W2	613844.4	5430405.6	613844.4	5430405.6	Petrophysical Evaluation
103/01-02-001-12W2/00	618.6	3731.0	3731.0	vertical	01-02-001-12W2	609801.4	5428759.5	609801.4	5428759.5	Petrophysical Evaluation
131/16-12-001-12W2/00	603.7	2463.0	2462.8	vertical	16-12-001-12W2	611189.0	5431659.5	611185.3	5431658.3	Petrophysical Evaluation
121/13-18-001-12W2/00	631.9	2480.0	2480.0	vertical	13-18-001-12W2	601765.2	5432827.4	601765.2	5432827.4	Petrophysical Evaluation

Arizona Lithium

Level 2, 10 Outram Street West Perth WA 6005 Australia **T** +61 (8) 6313 3936 **E** info@arizonalithium.com **OTC: AZLAF**

121/11-19-001-12W2/00	624.0	3200.0	3200.0	vertical	11-19-001-12W2	602247.8	5434050.6	602247.8	5434050.6	Petrophysical Evaluation
101/02-03-001-13W2/03	668.9	2556.0	2555.7	vertical	02-03-001-13W2	597856.4	5428472.7	597855.7	5428509.4	Petrophysical Evaluation
101/10-25-001-15W2/00	687.0	3272.0	3272.0	vertical	10-25-001-15W2	581443.2	5435490.4	581443.2	5435490.4	Petrophysical Evaluation
101/15-04-001-16W2/00	678.4	2490.0	2490.0	vertical	15-04-001-16W2	566902.0	5429286.4	566902.0	5429286.4	Petrophysical Evaluation
131/03-32-001-16W2/00	695.3	3224.0	3224.0	vertical	03-32-001-16W2	564658.0	5436326.3	564658.0	5436326.3	Petrophysical Evaluation
141/15-14-001-17W2/00	688.1	3205.0	3205.0	vertical	15-14-001-17W2	560374.1	5432589.1	560374.1	5432589.1	Petrophysical Evaluation
121/07-23-001-17W2/00	680.6	3194.0	3194.0	vertical	07-23-001-17W2	560223.9	5433165.6	560223.9	5433165.6	Petrophysical Evaluation
131/05-26-001-17W2/00	708.6	3187.0	3187.0	vertical	05-26-001-17W2	559442.6	5434944.9	559442.6	5434944.9	Petrophysical Evaluation
101/11-27-001-17W2/00	703.8	3198.8	3198.8	vertical	11-27-001-17W2	558308.7	5435227.4	558308.7	5435227.4	Petrophysical Evaluation
121/01-08-002-06W2/00	578.8	2725.0	2681.7	deviated	01-08-002-06W2	662587.7	5441580.3	662590.8	5441374.6	Petrophysical Evaluation
101/05-06-002-08W2/00	575.0	3396.0	3396.0	vertical	05-06-002-08W2	640282.9	5439571.3	640282.9	5439571.3	Petrophysical Evaluation
111/05-14-002-09W2/00	571.3	2685.0	2685.0	vertical	05-14-002-09W2	637465.3	5442546.0	637465.3	5442546.0	Petrophysical Evaluation
131/14-14-002-09W2/00	572.0	2686.0	2686.0	vertical	14-14-002-09W2	637597.6	5443567.0	637597.6	5443567.0	Petrophysical Evaluation
111/16-15-002-09W2/00	574.3	2683.5	2683.5	vertical	16-15-002-09W2	637042.9	5443388.6	637042.9	5443388.6	Petrophysical Evaluation
111/08-22-002-09W2/00	570.2	2611.3	2611.1	vertical	08-22-002-09W2	637026.4	5444232.4	637022.3	5444247.9	Petrophysical Evaluation
121/09-22-002-09W2/00	570.1	2665.0	2664.4	vertical	09-22-002-09W2	636858.4	5444592.0	636849.9	5444610.7	Petrophysical Evaluation
121/04-23-002-09W2/00	570.1	2655.0	2655.0	vertical	04-23-002-09W2	637322.4	5443861.6	637322.4	5443861.6	Petrophysical Evaluation
131/01-28-002-09W2/00	569.5	2665.0	2654.2	vertical	01-28-002-09W2	635172.0	5445452.5	635156.5	5445456.6	Petrophysical Evaluation
111/11-30-002-09W2/00	572.2	2675.0	2675.0	vertical	11-30-002-09W2	631325.5	5446121.5	631329.1	5446120.5	Petrophysical Evaluation
101/03-16-002-10W2/00	584.6	3292.1	3292.1	vertical	03-16-002-10W2	624875.0	5441931.3	624875.0	5441931.3	Petrophysical Evaluation
131/04-36-002-10W2/00	571.4	2676.0	2675.7	vertical	04-36-002-10W2	629089.4	5446968.6	629076.2	5446968.3	Petrophysical Evaluation
131/09-21-002-12W2/02	597.7	3056.0	3056.0	vertical	09-21-002-12W2	606008.1	5444165.1	606008.1	5444165.1	Petrophysical Evaluation
						l	1		l	<u>l</u>

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

141/01-29-002-12W2/00	598.3	2400.0	2400.0	vertical	01-29-002-12W2	604595.8	5444923.3	604595.8	5444923.3	Petrophysical Evaluation
101/14-33-002-12W2/00	598.0	2421.0	2421.0	vertical	14-33-002-12W2	605332.5	5447568.4	605332.5	5447568.4	Petrophysical Evaluation
111/05-34-002-12W2/00	595.5	2368.5	2368.5	vertical	05-34-002-12W2	606518.9	5446768.2	606518.9	5446768.2	Petrophysical Evaluation
101/06-02-002-14W2/00	681.6	2510.0	2510.0	vertical	06-02-002-14W2	589142.4	5438477.7	589142.4	5438477.7	Petrophysical Evaluation
101/08-05-002-14W2/00	680.0	3262.0	3262.0	vertical	08-05-002-14W2	585086.5	5438401.6	585086.5	5438401.6	Petrophysical Evaluation
141/08-16-002-14W2/02	647.1	3189.0	3189.0	vertical	08-16-002-14W2	586734.0	5441788.5	586734.0	5441788.5	Petrophysical Evaluation
101/10-16-002-14W2/03	647.1	2630.0	2630.0	vertical	10-16-002-14W2	586232.4	5442039.7	586232.4	5442039.7	Petrophysical Evaluation
121/16-02-002-15W2/00	696.3	2521.0	2521.0	vertical	16-02-002-15W2	580120.7	5439084.7	580120.7	5439084.7	Petrophysical Evaluation
121/11-33-002-16W2/00	718.9	2420.0	2420.0	vertical	11-33-002-16W2	566245.0	5446566.0	566245.0	5446566.0	Petrophysical Evaluation
131/12-31-003-06W2/00	586.5	2514.0	2514.0	vertical	12-31-003-06W2	659249.4	5458185.1	659249.4	5458185.1	Petrophysical Evaluation
131/07-19-003-08W2/00	581.7	2586.2	2585.9	vertical	07-19-003-08W2	640597.1	5454060.5	640610.9	5454063.1	Petrophysical Evaluation
121/15-19-003-08W2/00	584.3	2577.0	2577.0	vertical	15-19-003-08W2	640462.0	5454730.0	640462.0	5454730.0	Petrophysical Evaluation
141/14-29-003-08W2/00	583.4	2555.0	2554.7	vertical	14-29-003-08W2	641948.9	5456563.5	641941.6	5456564.4	Petrophysical Evaluation
101/09-25-003-09W2/00	582.3	2557.0	2557.0	vertical	09-25-003-09W2	639369.0	5455949.1	639369.0	5455949.1	Petrophysical Evaluation
131/14-25-003-09W2/00	581.9	2491.0	2489.3	vertical	14-25-003-09W2	638408.3	5456446.6	638403.2	5456446.4	Petrophysical Evaluation
131/08-35-003-09W2/00	579.7	2497.0	2497.0	vertical	08-35-003-09W2	637593.3	5457264.8	637593.3	5457264.8	Petrophysical Evaluation
111/12-35-003-09W2/00	581.2	2531.0	2529.9	vertical	12-35-003-09W2	636612.3	5457507.3	636611.5	5457510.6	Petrophysical Evaluation
121/16-35-003-09W2/00	580.3	2552.0	2552.0	vertical	16-35-003-09W2	637546.5	5457941.0	637546.5	5457941.0	Petrophysical Evaluation
121/13-36-003-09W2/00	583.5	2565.0	2564.1	deviated	13-36-003-09W2	637982.4	5457835.2	637990.4	5457863.2	Petrophysical Evaluation
121/15-02-003-10W2/00	569.0	2650.0	2649.6	vertical	15-02-003-10W2	627577.3	5449460.4	627550.0	5449474.2	Petrophysical Evaluation
131/03-14-003-10W2/00	570.6	2620.0	2620.0	vertical	03-14-003-10W2	627101.9	5451803.9	627101.9	5451803.9	Petrophysical Evaluation
101/09-22-003-10W2/00	578.5	2618.0	2618.0	vertical	09-22-003-10W2	626358.6	5454027.9	626358.6	5454027.9	Petrophysical Evaluation
ii	l l					L	l		L	<u>L</u>

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

	_					1	,	1	1	
141/01-27-003-10W2/00	574.0	2620.0	2589.2	deviated	01-27-003-10W2	626449.1	5454906.4	626310.3	5454798.7	Petrophysical Evaluation
121/09-34-003-10W2/00	577.0	2584.0	2584.0	vertical	09-34-003-10W2	626172.7	5457083.4	626172.7	5457083.4	Petrophysical Evaluation
150/02-08-003-14W2/00	621.5	3055.0	3055.0	vertical	02-08-003-14W2	583637.4	5449168.3	583637.4	5449168.3	Petrophysical Evaluation
111/14-15-003-15W2/00	655.1	3039.0	3039.0	vertical	14-15-003-15W2	576578.3	5451807.7	576578.3	5451807.7	Petrophysical Evaluation
111/04-22-003-15W2/00	653.7	3073.0	3006.3	vertical	04-22-003-15W2	576242.9	5452198.9	576241.6	5452191.1	Petrophysical Evaluation
101/07-07-003-17W2/00	706.5	2697.0	2697.0	vertical	07-07-003-17W2	552460.6	5449259.5	552460.6	5449259.5	Petrophysical Evaluation
101/07-23-003-17W2/00	741.3	3100.1	3100.1	vertical	07-23-003-17W2	558967.0	5452501.7	558967.0	5452501.7	Petrophysical Evaluation
101/07-28-004-04W2/00	592.6	2797.0	2797.0	vertical	07-28-004-04W2	682649.9	5466595.1	682649.9	5466595.1	Petrophysical Evaluation
141/06-30-004-04W2/00	591.3	2336.0	2336.0	vertical	06-30-004-04W2	679181.3	5466615.3	679181.3	5466615.3	Petrophysical Evaluation
141/14-18-004-06W2/00	593.5	2475.0	2475.0	vertical	14-18-004-06W2	659635.1	5463505.2	659635.1	5463505.2	Petrophysical Evaluation
141/04-01-004-07W2/00	588.6	2513.0	2513.0	vertical	04-01-004-07W2	657711.8	5458982.9	657711.8	5458982.9	Petrophysical Evaluation
141/15-07-004-07W2/00	589.1	2518.3	2518.1	vertical	15-07-004-07W2	650285.5	5461601.6	650282.4	5461607.1	Petrophysical Evaluation
121/05-13-004-07W2/00	593.7	2441.0	2441.0	vertical	05-13-004-07W2	657436.3	5462549.5	657436.3	5462549.5	Petrophysical Evaluation
141/08-14-004-07W2/00	592.8	2436.4	2436.4	vertical	08-14-004-07W2	657198.8	5462613.9	657198.8	5462613.9	Petrophysical Evaluation
121/08-22-004-07W2/00	594.2	2905.0	2905.0	vertical	08-22-004-07W2	655297.2	5463912.6	655297.2	5463912.6	Petrophysical Evaluation
121/07-16-004-08W2/00	590.7	2523.0	2523.0	vertical	07-16-004-08W2	643625.7	5462094.3	643625.7	5462094.3	Petrophysical Evaluation
131/02-19-004-08W2/00	589.6	2510.0	2509.2	vertical	02-19-004-08W2	640299.9	5463333.1	640296.7	5463341.9	Petrophysical Evaluation
101/04-19-004-08W2/00	587.2	2476.0	2476.0	vertical	04-19-004-08W2	639532.5	5463306.9	639532.5	5463306.9	Petrophysical Evaluation
131/12-20-004-08W2/00	591.5	2502.0	2502.0	vertical	12-20-004-08W2	641119.1	5464170.6	641119.1	5464170.6	Petrophysical Evaluation
121/11-21-004-08W2/00	589.7	2500.0	2496.4	vertical	11-21-004-08W2	643119.0	5464146.7	643126.6	5464133.6	Petrophysical Evaluation
131/04-30-004-08W2/00	590.6	2465.0	2465.0	vertical	04-30-004-08W2	639388.6	5464964.0	639388.6	5464964.0	Petrophysical Evaluation
141/06-30-004-08W2/02	591.6	2485.0	2485.0	vertical	06-30-004-08W2	639977.3	5465485.1	639977.3	5465485.1	Petrophysical Evaluation
										<u> </u>

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

							,			
131/16-30-004-08W2/00	591.6	2407.5	2407.5	vertical	16-30-004-08W2	640602.4	5466201.8	640602.4	5466201.8	Petrophysical Evaluation
141/01-31-004-08W2/00	593.7	2471.0	2470.8	vertical	01-31-004-08W2	640766.8	5466734.4	640767.3	5466742.2	Petrophysical Evaluation
121/06-31-004-08W2/00	593.5	2450.5	2450.3	vertical	06-31-004-08W2	639885.6	5466798.6	639888.3	5466808.7	Petrophysical Evaluation
121/04-32-004-08W2/00	592.7	2443.0	2442.8	vertical	04-32-004-08W2	641101.0	5466488.3	641108.2	5466490.7	Petrophysical Evaluation
131/12-32-004-08W2/00	597.4	2451.0	2449.4	vertical	12-32-004-08W2	640977.8	5467406.1	640955.0	5467387.7	Petrophysical Evaluation
101/08-01-004-09W2/00	586.4	2560.0	2560.0	vertical	08-01-004-09W2	639274.4	5458821.0	639274.4	5458821.0	Petrophysical Evaluation
131/13-02-004-09W2/00	580.0	2516.0	2511.4	vertical	13-02-004-09W2	636294.6	5459603.9	636300.9	5459584.0	Petrophysical Evaluation
141/01-10-004-09W2/00	581.6	2527.0	2527.0	vertical	01-10-004-09W2	636025.1	5459995.4	636025.1	5459995.4	Petrophysical Evaluation
141/05-11-004-09W2/00	583.9	2481.4	2481.4	vertical	05-11-004-09W2	636515.0	5460459.2	636515.0	5460459.2	Petrophysical Evaluation
111/13-11-004-09W2/00	583.9	2507.0	2507.0	vertical	13-11-004-09W2	636573.4	5461124.7	636573.4	5461124.7	Petrophysical Evaluation
111/05-12-004-09W2/00	582.5	2515.0	2514.9	vertical	05-12-004-09W2	638144.4	5460338.6	638151.0	5460336.5	Petrophysical Evaluation
121/16-12-004-09W2/00	589.2	2509.0	2508.0	vertical	16-12-004-09W2	639108.0	5461228.3	639112.7	5461215.1	Petrophysical Evaluation
131/05-13-004-09W2/00	587.3	2486.0	2486.0	vertical	05-13-004-09W2	637888.9	5462110.8	637888.9	5462110.8	Petrophysical Evaluation
111/14-13-004-09W2/00	585.7	2460.0	2460.0	vertical	14-13-004-09W2	638461.6	5462767.0	638461.6	5462767.0	Petrophysical Evaluation
121/16-13-004-09W2/00	586.3	2500.0	2500.0	vertical	16-13-004-09W2	638978.4	5462784.5	638978.4	5462784.5	Petrophysical Evaluation
121/10-14-004-09W2/00	585.0	2495.0	2495.0	vertical	10-14-004-09W2	637064.5	5462321.5	637064.5	5462321.5	Petrophysical Evaluation
141/10-16-004-09W2/00	581.5	2500.0	2494.8	vertical	10-16-004-09W2	633953.5	5462493.9	633941.7	5462497.0	Petrophysical Evaluation
111/12-22-004-09W2/00	588.4	2490.0	2489.5	vertical	12-22-004-09W2	634831.8	5463900.2	634831.8	5463900.2	Petrophysical Evaluation
131/16-23-004-09W2/00	589.0	2915.0	2906.6	deviated	16-23-004-09W2	637486.5	5464438.8	637410.3	5464434.7	Petrophysical Evaluation
111/06-24-004-09W2/00	590.1	2506.7	2506.3	vertical	06-24-004-09W2	638471.9	5463630.4	638488.9	5463646.4	Petrophysical Evaluation
111/12-24-004-09W2/00	589.3	2481.2	2481.2	vertical	12-24-004-09W2	638102.8	5463933.7	638102.8	5463933.7	Petrophysical Evaluation
101/13-24-004-09W2/00	587.7	2475.6	2475.6	vertical	13-24-004-09W2	637920.7	5464435.2	637920.7	5464435.2	Petrophysical Evaluation
· · · · · · · · · · · · · · · · · · ·										

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

111/16-24-004-09W2/00	590.1	2497.0	2474.0	deviated	16-24-004-09W2	638948.5	5464311.0	639139.3	5464357.0	Petrophysical Evaluation
131/03-25-004-09W2/00	588.5	2489.0	2488.1	vertical	03-25-004-09W2	638261.8	5464923.2	638258.7	5464904.2	Petrophysical Evaluation
131/08-26-004-09W2/00	589.5	2477.2	2477.2	vertical	08-26-004-09W2	637326.5	5465310.2	637326.5	5465310.2	Petrophysical Evaluation
141/01-27-004-09W2/00	589.9	2481.0	2480.9	vertical	01-27-004-09W2	635949.7	5464948.9	635949.7	5464950.0	Petrophysical Evaluation
121/12-27-004-09W2/00	590.2	2478.0	2477.8	vertical	12-27-004-09W2	634559.8	5465503.0	634561.5	5465492.0	Petrophysical Evaluation
191/13-34-004-09W2/00	593.8	2895.6	2563.6	deviated	16-33-004-09W2	634210.8	5467615.6	634634.2	5467712.8	Petrophysical Evaluation
141/06-11-004-10W2/00	585.0	2545.0	2545.0	vertical	06-11-004-10W2	627188.7	5460276.6	627188.7	5460276.6	Petrophysical Evaluation
141/16-24-004-10W2/00	585.6	2495.0	2494.7	vertical	16-24-004-10W2	629448.9	5464372.4	629447.4	5464373.5	Petrophysical Evaluation
141/14-35-004-10W2/00	587.4	2488.0	2378.8	deviated	14-35-004-10W2	626927.7	5467500.0	626946.2	5467517.2	Petrophysical Evaluation
121/13-01-004-11W2/00	571.5	2875.5	2875.5	vertical	13-01-004-11W2	618313.3	5458968.4	618313.3	5458968.4	Petrophysical Evaluation
131/13-20-004-11W2/00	572.4	2928.2	2928.2	vertical	13-20-004-11W2	611794.0	5463858.8	611794.0	5463858.8	Petrophysical Evaluation
131/06-07-004-12W2/00	590.8	2879.0	2878.8	vertical	06-07-004-12W2	600825.2	5459615.2	600826.0	5459648.6	Petrophysical Evaluation
121/04-09-004-12W2/00	589.1	2886.0	2885.3	vertical	04-09-004-12W2	603690.2	5459187.0	603697.8	5459171.6	Petrophysical Evaluation
141/16-10-005-06W2/00	595.7	2361.0	2361.0	vertical	16-10-005-06W2	665070.4	5471744.5	665070.4	5471744.5	Petrophysical Evaluation
121/08-18-005-06W2/00	591.9	2382.0	2382.0	vertical	08-18-005-06W2	659990.2	5472221.2	659990.2	5472221.2	Petrophysical Evaluation
111/07-04-005-07W2/00	598.6	2850.0	2850.0	vertical	07-04-005-07W2	653461.1	5468831.5	653461.1	5468831.5	Petrophysical Evaluation
131/11-04-005-07W2/04	598.3	2450.0	2450.0	vertical	11-04-005-07W2	652690.3	5469368.4	652690.3	5469368.4	Petrophysical Evaluation
121/15-05-005-07W2/00	599.1	2837.9	2837.2	vertical	15-05-005-07W2	651588.0	5469525.8	651588.0	5469525.8	Petrophysical Evaluation
121/15-05-005-07W2/04	599.1	2837.9	2837.2	deviated	15-05-005-07W2	651588.0	5469525.8	651619.9	5469527.8	Petrophysical Evaluation
121/15-08-005-07W2/00	599.8	2851.5	2850.8	vertical	15-08-005-07W2	651500.9	5471204.4	651512.2	5471215.8	Petrophysical Evaluation
131/08-14-005-07W2/00	596.0	2388.2	2388.2	vertical	08-14-005-07W2	656793.6	5472372.4	656793.6	5472372.4	Petrophysical Evaluation
111/03-15-005-07W2/00	600.0	2416.0	2415.5	vertical	03-15-005-07W2	654491.9	5471708.4	654500.6	5471733.1	Petrophysical Evaluation
							•			

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

		1		1		1			1	
131/15-31-005-07W2/00	597.3	2360.3	2360.2	vertical	15-31-005-07W2	649674.2	5477857.8	649668.1	5477866.5	Petrophysical Evaluation
121/01-06-005-08W2/02	598.7	2437.0	2436.4	vertical	01-06-005-08W2	640567.9	5468001.8	640577.2	5468036.6	Petrophysical Evaluation
101/05-07-005-08W2/00	600.8	2448.0	2448.0	vertical	05-07-005-08W2	639421.8	5470147.2	639421.8	5470147.2	Petrophysical Evaluation
131/08-15-005-08W2/00	601.5	2467.0	2467.0	vertical	08-15-005-08W2	645374.8	5471934.9	645374.8	5471934.9	Petrophysical Evaluation
141/11-28-005-08W2/00	601.3	2422.7	2375.3	deviated	11-28-005-08W2	642918.3	5475481.1	642976.5	5475696.2	Petrophysical Evaluation
131/15-30-005-08W2/00	598.3	2396.0	2396.0	vertical	15-30-005-08W2	639978.6	5475924.5	639977.4	5475914.5	Petrophysical Evaluation
101/05-32-005-08W2/00	602.4	2389.0	2389.0	vertical	05-32-005-08W2	640820.0	5476698.1	640820.0	5476698.1	Petrophysical Evaluation
121/16-32-005-08W2/00	602.0	2350.0	2350.0	vertical	16-32-005-08W2	641985.5	5477473.6	641985.5	5477473.6	Petrophysical Evaluation
131/11-33-005-08W2/00	601.7	2370.0	2370.0	vertical	11-33-005-08W2	642836.4	5477256.6	642836.4	5477256.6	Petrophysical Evaluation
121/03-35-005-08W2/00	600.2	2417.0	2398.2	deviated	03-35-005-08W2	646162.8	5476258.8	646079.4	5476309.9	Petrophysical Evaluation
121/01-04-005-09W2/00	594.3	2457.0	2457.0	vertical	01-04-005-09W2	634148.3	5467879.9	634148.3	5467879.9	Petrophysical Evaluation
141/10-18-005-09W2/00	596.1	2431.0	2430.9	vertical	10-18-005-09W2	630491.9	5472021.7	630505.5	5472030.9	Petrophysical Evaluation
131/09-23-005-09W2/00	601.8	2432.0	2432.0	vertical	09-23-005-09W2	637148.4	5473904.0	637148.4	5473904.0	Petrophysical Evaluation
131/14-29-005-09W2/00	600.2	2861.0	2861.0	vertical	14-29-005-09W2	631524.4	5475679.1	631524.4	5475679.1	Petrophysical Evaluation
191/14-28-005-10W2/00	593.7	2775.0	2701.3	deviated	15-28-005-10W2	623781.6	5475357.1	623566.0	5475391.2	Petrophysical Evaluation
121/05-22-005-12W2/00	577.4	2440.0	2439.9	vertical	05-22-005-12W2	605030.2	5472525.0	605031.0	5472522.8	Petrophysical Evaluation
101/09-02-006-06W2/00	600.1	2590.0	2590.0	vertical	09-02-006-06W2	666432.2	5479438.3	666432.2	5479438.3	Petrophysical Evaluation
101/03-06-006-06W2/00	600.6	2885.5	2885.5	vertical	03-06-006-06W2	659134.4	5478365.3	659134.4	5478365.3	Petrophysical Evaluation
111/14-06-006-06W2/00	599.3	2722.1	2722.1	vertical	14-06-006-06W2	659192.3	5479516.3	659192.3	5479516.3	Petrophysical Evaluation
111/12-18-006-06W2/00	600.8	2325.0	2325.0	vertical	12-18-006-06W2	658697.0	5482283.3	658697.0	5482283.3	Petrophysical Evaluation
111/15-29-006-06W2/00	603.2	2685.0	2685.0	vertical	15-29-006-06W2	660984.9	5486073.0	660984.9	5486073.0	Petrophysical Evaluation
131/15-30-006-06W2/00	604.7	2562.2	2562.2	vertical	15-30-006-06W2	659269.6	5486084.9	659269.6	5486084.9	Petrophysical Evaluation
								1		I

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

										T
141/12-16-006-07W2/00	601.0	2309.0	2307.1	deviated	12-16-006-07W2	652111.9	5482310.5	652102.6	5482308.0	Petrophysical Evaluation
131/09-32-006-07W2/00	609.0	2282.0	2282.0	vertical	09-32-006-07W2	651453.5	5487249.5	651453.5	5487249.5	Petrophysical Evaluation
131/14-04-006-08W2/00	600.2	2369.0	2368.8	vertical	14-04-006-08W2	642683.8	5479236.0	642680.7	5479243.7	Petrophysical Evaluation
121/16-05-006-08W2/00	601.0	2384.0	2384.0	vertical	16-05-006-08W2	641962.8	5479044.8	641962.8	5479044.8	Petrophysical Evaluation
131/09-09-006-08W2/00	599.6	2356.0	2356.0	vertical	09-09-006-08W2	643584.1	5480495.4	643584.1	5480495.4	Petrophysical Evaluation
111/14-09-006-08W2/00	600.6	2367.0	2367.0	vertical	14-09-006-08W2	642842.3	5480689.6	642842.3	5480689.6	Petrophysical Evaluation
141/07-10-006-08W2/00	600.9	2368.0	2366.7	deviated	07-10-006-08W2	644946.2	5480099.8	644957.4	5480115.7	Petrophysical Evaluation
121/10-23-006-08W2/00	600.5	2311.0	2311.0	vertical	10-23-006-08W2	646299.9	5483625.6	646299.9	5483625.6	Petrophysical Evaluation
141/06-16-006-09W2/00	603.7	2718.0	2718.0	vertical	06-16-006-09W2	633098.3	5481424.4	633098.3	5481424.4	Petrophysical Evaluation
122/05-33-006-10W2/00	606.1	2036.0	2011.0	deviated	05-33-006-10W2	622820.8	5485998.4	622682.1	5485915.2	Petrophysical Evaluation
101/09-01-006-11W2/02	596.5	2623.0	2623.0	vertical	09-01-006-11W2	619289.6	5478212.4	619289.6	5478212.4	Petrophysical Evaluation
131/14-12-006-11W2/00	605.7	2763.0	2761.3	vertical	14-12-006-11W2	618260.4	5480259.9	618262.6	5480259.9	Petrophysical Evaluation
121/03-13-006-11W2/00	604.5	2740.0	2739.3	deviated	03-13-006-11W2	618243.6	5480568.7	618247.5	5480554.3	Petrophysical Evaluation
131/03-14-006-11W2/00	601.3	2729.0	2728.3	vertical	03-14-006-11W2	616695.2	5480741.1	616702.8	5480724.6	Petrophysical Evaluation
191/14-14-006-11W2/00	600.6	2835.0	2774.6	deviated	12-14-006-11W2	616483.6	5481452.9	616575.8	5481648.3	Petrophysical Evaluation
131/07-15-006-11W2/00	597.3	2855.0	2801.0	deviated	07-15-006-11W2	615685.7	5480941.0	615498.9	5481033.8	Petrophysical Evaluation
131/08-16-006-11W2/00	596.1	2738.0	2738.0	vertical	08-16-006-11W2	614168.6	5480981.3	614168.6	5480981.3	Petrophysical Evaluation
121/10-16-006-11W2/00	595.6	2748.0	2747.0	deviated	10-16-006-11W2	613891.4	5481171.3	613889.7	5481216.8	Petrophysical Evaluation
141/11-16-006-11W2/00	597.5	2750.0	2747.9	deviated	11-16-006-11W2	613595.1	5481337.5	613660.6	5481358.9	Petrophysical Evaluation
111/16-20-006-11W2/00	600.7	2719.0	2719.0	vertical	16-20-006-11W2	612726.8	5483127.9	612726.8	5483127.9	Petrophysical Evaluation
111/08-26-006-11W2/00	611.9	2723.0	2708.1	deviated	08-26-006-11W2	617462.5	5484124.2	617492.0	5484032.5	Petrophysical Evaluation
111/14-26-006-11W2/00	608.8	2711.0	2711.0	vertical	14-26-006-11W2	616757.6	5485007.7	616757.6	5485007.7	Petrophysical Evaluation
	<u> </u>							1		I.

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

	1					1			1	
111/08-27-006-11W2/00	609.3	2705.0	2696.8	deviated	08-27-006-11W2	615978.2	5484056.8	615981.8	5483990.2	Petrophysical Evaluation
121/04-28-006-11W2/00	604.5	2620.0	2620.0	vertical	04-28-006-11W2	612971.4	5483632.3	612971.4	5483632.3	Petrophysical Evaluation
111/09-28-006-11W2/00	608.7	2923.3	2923.3	vertical	09-28-006-11W2	614346.9	5484540.7	614346.9	5484540.7	Petrophysical Evaluation
131/01-29-006-11W2/00	605.0	2752.0	2752.0	vertical	01-29-006-11W2	612528.2	5483870.0	612528.2	5483870.0	Petrophysical Evaluation
121/07-29-006-11W2/00	604.6	2809.0	2809.0	vertical	07-29-006-11W2	612125.9	5484060.8	612125.9	5484060.8	Petrophysical Evaluation
141/10-29-006-11W2/00	605.7	2820.0	2820.0	vertical	10-29-006-11W2	612253.5	5484688.5	612253.5	5484688.5	Petrophysical Evaluation
111/12-33-006-11W2/00	612.6	2748.0	2748.0	vertical	12-33-006-11W2	613205.2	5485946.0	613205.2	5485946.0	Petrophysical Evaluation
131/11-34-006-11W2/03	614.7	2841.0	2841.0	vertical	11-34-006-11W2	614869.6	5486372.3	614869.6	5486372.3	Petrophysical Evaluation
141/13-34-006-11W2/00	614.0	1950.0	1950.0	vertical	13-34-006-11W2	614647.3	5486615.6	614647.3	5486615.6	Petrophysical Evaluation
111/15-34-006-11W2/00	612.0	2747.0	2747.0	vertical	15-34-006-11W2	615599.5	5486542.3	615599.5	5486542.3	Petrophysical Evaluation
191/16-34-006-11W2/00	614.7	3027.5	2576.0	vertical	04-02-007-11W2	615595.9	5487052.7	615772.8	5486563.8	Petrophysical Evaluation
141/04-35-006-11W2/00	609.2	2750.4	2750.4	vertical	04-35-006-11W2	616338.6	5485499.2	616338.6	5485499.2	Petrophysical Evaluation
131/11-35-006-11W2/00	609.2	2743.0	2743.0	vertical	11-35-006-11W2	616610.7	5486220.2	616610.7	5486220.2	Petrophysical Evaluation
141/04-16-006-13W2/00	580.8	2949.0	2933.5	deviated	04-16-006-13W2	593674.2	5480242.1	593773.2	5480171.5	Petrophysical Evaluation
121/06-20-006-13W2/00	582.7	2918.0	2918.0	vertical	06-20-006-13W2	592332.8	5481902.9	592332.8	5481902.9	Petrophysical Evaluation
111/10-20-006-13W2/00	580.0	2375.3	2375.3	vertical	10-20-006-13W2	592862.6	5482448.9	592862.6	5482448.9	Petrophysical Evaluation
111/12-27-007-06W2/00	614.1	1760.0	1760.0	vertical	12-27-007-06W2	662916.0	5495428.5	662916.0	5495428.5	Petrophysical Evaluation
101/09-32-007-06W2/00	616.7	1815.0	1815.0	vertical	09-32-007-06W2	660608.7	5497067.7	660608.7	5497067.7	Petrophysical Evaluation
121/08-11-007-07W2/00	604.3	2232.0	2232.0	vertical	08-11-007-07W2	655918.3	5489875.2	655918.3	5489875.2	Petrophysical Evaluation
111/11-16-007-07W2/00	610.5	2636.0	2636.0	vertical	11-16-007-07W2	651834.8	5491806.9	651834.8	5491806.9	Petrophysical Evaluation
121/03-24-007-07W2/00	607.8	2635.0	2610.0	vertical	03-24-007-07W2	656586.6	5492964.0	656527.1	5492770.9	Petrophysical Evaluation
111/01-22-007-08W2/00	611.5	2263.3	2263.3	vertical	01-22-007-08W2	644383.2	5492472.9	644383.2	5492472.9	Petrophysical Evaluation
							•			

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

111/06-24-007-08W2/00	612.5	2257.0	2257.0	vertical	06-24-007-08W2	646905.6	5492946.4	646905.6	5492946.4	Petrophysical Evaluation
101/09-29-007-08W2/00	613.3	2518.0	2509.6	vertical	09-29-007-08W2	641131.4	5494909.4	641142.5	5494901.9	Petrophysical Evaluation
131/10-29-007-08W2/00	612.5	2010.8	2010.8	vertical	10-29-007-08W2	640589.3	5494985.4	640589.3	5494985.4	Petrophysical Evaluation
142/07-30-007-08W2/00	616.3	2279.8	2275.6	vertical	07-30-007-08W2	639238.7	5494383.4	639234.7	5494424.4	Petrophysical Evaluation
121/06-33-007-08W2/00	615.7	1825.0	1825.0	vertical	06-33-007-08W2	641723.4	5496169.6	641723.4	5496169.6	Petrophysical Evaluation
131/15-15-007-09W2/00	613.6	2708.1	2708.1	vertical	15-15-007-09W2	634069.7	5492109.9	634069.7	5492109.9	Petrophysical Evaluation
111/15-04-007-10W2/00	608.5	2750.0	2750.0	vertical	15-04-007-10W2	623041.0	5488206.8	623041.0	5488206.8	Petrophysical Evaluation
121/12-05-007-10W2/00	606.1	1919.0	1919.0	vertical	12-05-007-10W2	620385.7	5487817.1	620394.0	5487836.2	Petrophysical Evaluation
101/13-11-007-10W2/00	605.3	2305.0	1876.7	vertical	13-11-007-10W2	625292.6	5489893.1	625286.2	5489891.8	Petrophysical Evaluation
131/11-14-007-10W2/00	603.4	2673.0	2673.0	vertical	11-14-007-10W2	625459.9	5491364.0	625459.9	5491364.0	Petrophysical Evaluation
111/04-02-007-11W2/00	615.1	2709.0	2709.0	vertical	04-02-007-11W2	615637.3	5486979.1	615637.3	5486979.1	Petrophysical Evaluation
191/05-02-007-11W2/00	613.4	3025.0	2568.2	vertical	12-02-007-11W2	615362.9	5487837.4	615594.7	5487384.1	Petrophysical Evaluation
121/07-02-007-11W2/00	609.4	2821.0	2821.0	vertical	07-02-007-11W2	616310.1	5487278.1	616310.1	5487278.1	Petrophysical Evaluation
101/12-02-007-11W2/00	612.2	2752.4	2752.4	vertical	12-02-007-11W2	615482.4	5487731.0	615482.4	5487731.0	Petrophysical Evaluation
141/13-02-007-11W2/00	610.9	2000.0	2000.0	vertical	13-02-007-11W2	615469.8	5488153.3	615469.8	5488153.3	Petrophysical Evaluation
142/13-02-007-11W2/00	611.1	2711.0	2698.9	deviated	13-02-007-11W2	615565.8	5488234.3	615506.3	5488310.9	Petrophysical Evaluation
111/07-03-007-11W2/00	611.5	2744.0	2744.0	vertical	07-03-007-11W2	614773.4	5487300.0	614773.4	5487300.0	Petrophysical Evaluation
121/09-03-007-11W2/00	614.5	1932.0	1932.0	vertical	09-03-007-11W2	615059.5	5487700.9	615059.5	5487700.9	Petrophysical Evaluation
121/16-03-007-11W2/00	615.8	2709.0	2709.0	vertical	16-03-007-11W2	614915.1	5487994.8	614915.1	5487994.8	Petrophysical Evaluation
121/16-09-007-11W2/00	613.7	2880.0	2880.0	vertical	16-09-007-11W2	613283.9	5489749.0	613283.9	5489749.0	Petrophysical Evaluation
141/02-10-007-11W2/00	609.5	2744.0	2744.0	vertical	02-10-007-11W2	614828.8	5488722.6	614828.8	5488722.6	Petrophysical Evaluation
121/03-11-007-11W2/00	610.3	1935.0	1935.0	vertical	03-11-007-11W2	615724.5	5488532.4	615724.5	5488532.4	Petrophysical Evaluation
	I .					·	L	·	·	I

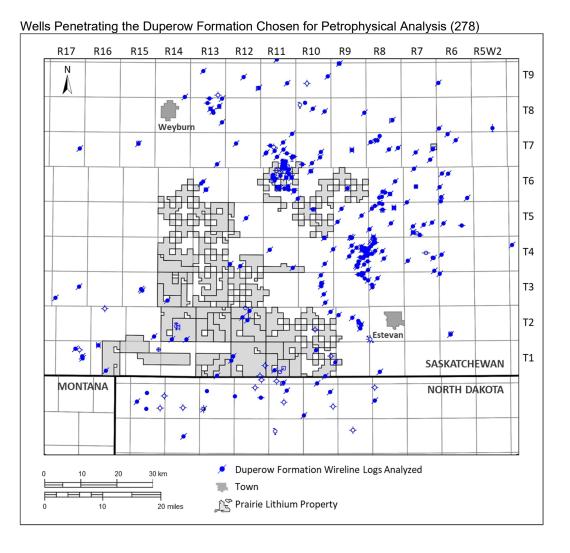
Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

										T
131/11-12-007-11W2/00	607.1	1895.0	1895.0	vertical	11-12-007-11W2	617463.4	5489625.2	617463.4	5489625.2	Petrophysical Evaluation
141/14-12-007-11W2/00	606.8	1902.0	1900.9	vertical	14-12-007-11W2	617572.5	5489933.4	617576.8	5489934.6	Petrophysical Evaluation
141/15-12-007-11W2/00	609.9	1980.0	1969.7	vertical	15-12-007-11W2	617933.5	5489940.1	617925.0	5489929.9	Petrophysical Evaluation
141/06-14-007-11W2/00	609.0	1903.1	1903.1	vertical	06-14-007-11W2	615991.3	5490790.3	615991.3	5490790.3	Petrophysical Evaluation
101/14-16-007-11W2/00	614.7	2726.5	2726.5	vertical	14-16-007-11W2	612577.6	5491396.0	612577.6	5491396.0	Petrophysical Evaluation
131/08-18-007-11W2/00	617.6	2627.0	2627.0	vertical	08-18-007-11W2	610124.3	5490661.8	610124.3	5490661.8	Petrophysical Evaluation
111/09-18-007-11W2/03	617.6	2573.0	2573.0	vertical	09-18-007-11W2	610285.4	5490887.5	610285.4	5490887.5	Petrophysical Evaluation
111/15-20-007-11W2/00	615.2	2757.0	2757.0	vertical	15-20-007-11W2	611364.7	5492837.9	611364.7	5492837.9	Petrophysical Evaluation
111/12-21-007-11W2/00	614.5	2703.0	2703.0	vertical	12-21-007-11W2	612282.3	5492420.8	612282.3	5492420.8	Petrophysical Evaluation
101/01-22-007-11W2/00	610.4	2700.0	2700.0	vertical	01-22-007-11W2	615016.6	5491824.0	615016.6	5491824.0	Petrophysical Evaluation
121/08-27-007-11W2/00	615.9	1900.0	1900.0	vertical	08-27-007-11W2	614878.7	5493797.4	614878.7	5493797.4	Petrophysical Evaluation
121/14-36-007-11W2/00	605.9	1855.8	1855.8	vertical	14-36-007-11W2	617335.5	5496252.3	617335.5	5496252.3	Petrophysical Evaluation
131/01-29-007-12W2/00	603.4	2662.0	2662.0	vertical	01-29-007-12W2	601808.8	5493231.2	601808.8	5493231.2	Petrophysical Evaluation
121/10-02-007-13W2/00	578.9	2330.0	2330.0	vertical	10-02-007-13W2	596640.0	5487344.2	596640.0	5487344.2	Petrophysical Evaluation
111/04-27-007-15W2/00	583.3	2344.6	2302.4	deviated	04-27-007-15W2	574629.0	5492801.5	574666.0	5492582.9	Petrophysical Evaluation
111/04-24-007-17W2/00	637.3	2749.1	2749.1	vertical	04-24-007-17W2	558364.5	5490925.9	558364.5	5490925.9	Petrophysical Evaluation
121/10-03-008-05W2/02	603.9	2475.0	2475.0	vertical	10-03-008-05W2	673057.0	5499014.5	673057.0	5499014.5	Petrophysical Evaluation
141/11-06-008-06W2/00	618.2	2166.2	2166.2	vertical	11-06-008-06W2	658185.6	5498608.7	658185.6	5498608.7	Petrophysical Evaluation
141/03-14-008-08W2/03	618.5	2625.0	2572.2	deviated	03-14-008-08W2	644890.2	5500613.9	645184.0	5500674.1	Petrophysical Evaluation
141/07-24-008-09W2/00	617.0	2578.0	2578.0	vertical	07-24-008-09W2	637320.4	5502539.5	637320.4	5502539.5	Petrophysical Evaluation
141/09-23-008-10W2/00	615.2	2585.0	2584.8	vertical	09-23-008-10W2	626268.3	5502672.5	626264.9	5502663.5	Petrophysical Evaluation
101/01-28-008-10W2/00	615.9	2600.0	2600.0	vertical	01-28-008-10W2	622964.5	5503341.8	622964.5	5503341.8	Petrophysical Evaluation
Lancard Control of the Control of th										

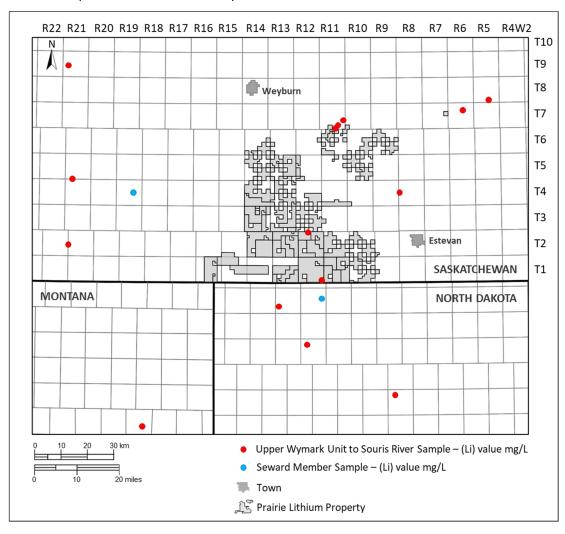
Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

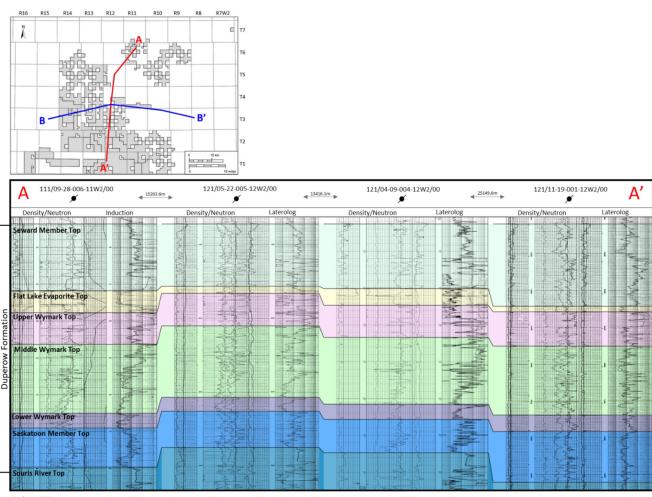
		-						•	1	T
111/15-30-008-10W2/00	613.9	2578.0	2577.7	vertical	15-30-008-10W2	619356.0	5504351.1	619356.4	5504333.4	Petrophysical Evaluation
131/02-32-008-10W2/00	615.2	2588.0	2588.0	vertical	02-32-008-10W2	620766.5	5504954.1	620766.5	5504954.1	Petrophysical Evaluation
111/14-12-008-13W2/00	608.8	2252.0	2252.0	vertical	14-12-008-13W2	597768.7	5499034.4	597768.7	5499034.4	Petrophysical Evaluation
141/08-22-008-13W2/00	605.1	2475.0	2475.0	vertical	08-22-008-13W2	595319.4	5501632.1	595324.3	5501639.9	Petrophysical Evaluation
131/09-22-008-13W2/00	603.1	2240.0	2240.0	vertical	09-22-008-13W2	595182.1	5502053.3	595182.1	5502053.3	Petrophysical Evaluation
191/09-26-008-13W2/00	608.3	2615.0	2590.4	deviated	08-26-008-13W2	596909.7	5503371.7	596912.1	5503561.9	Petrophysical Evaluation
111/03-27-008-13W2/00	602.5	2515.3	2514.9	deviated	03-27-008-13W2	594500.3	5502733.1	594501.2	5502725.4	Petrophysical Evaluation
111/01-33-008-13W2/00	602.8	2557.0	2553.4	vertical	01-33-008-13W2	593641.9	5504294.0	593636.5	5504315.1	Petrophysical Evaluation
141/13-34-008-13W2/00	604.4	2490.0	2490.0	vertical	13-34-008-13W2	594145.3	5505596.1	594145.3	5505596.1	Petrophysical Evaluation
101/14-36-008-13W2/00	615.3	2581.0	2581.0	vertical	14-36-008-13W2	597644.8	5505630.2	597644.8	5505630.2	Petrophysical Evaluation
131/06-18-009-06W2/00	626.8	2442.5	2442.5	vertical	06-18-009-06W2	657745.1	5511268.4	657745.1	5511268.4	Petrophysical Evaluation
141/14-32-009-09W2/00	633.6	2532.2	2519.5	deviated	14-32-009-09W2	629987.9	5516068.5	630130.5	5516101.9	Petrophysical Evaluation
141/08-17-009-10W2/00	616.2	2551.5	2551.5	vertical	08-17-009-10W2	621182.6	5510349.0	621182.6	5510349.0	Petrophysical Evaluation
142/11-24-009-10W2/00	615.2	2608.0	2608.0	vertical	11-24-009-10W2	626937.1	5512445.3	626937.1	5512445.3	Petrophysical Evaluation
121/10-14-009-11W2/00	612.7	2648.0	2648.0	vertical	10-14-009-11W2	615671.4	5510305.1	615671.4	5510305.1	Petrophysical Evaluation
141/10-12-009-12W2/00	610.6	2542.0	2469.7	deviated	10-12-009-12W2	607623.4	5508759.9	607843.3	5508834.3	Petrophysical Evaluation
121/12-22-009-12W2/00	609.8	2455.0	2455.0	vertical	12-22-009-12W2	603525.3	5511759.5	603525.3	5511759.5	Petrophysical Evaluation
141/07-02-009-13W2/00	612.6	2650.0	2650.0	vertical	07-02-009-13W2	596489.6	5506577.1	596489.6	5506577.1	Petrophysical Evaluation
111/12-28-009-13W2/00	618.3	2195.0	2195.0	vertical	12-28-009-13W2	592262.1	5513188.1	592262.1	5513188.1	Petrophysical Evaluation
121/04-01-009-14W2/00	594.1	2242.0	2242.0	vertical	04-01-009-14W2	587292.1	5505885.0	587292.1	5505885.0	Petrophysical Evaluation
131/08-16-010-10W2/00	620.5	2075.0	2075.0	vertical	08-16-010-10W2	622402.7	5520063.4	622402.7	5520063.4	Petrophysical Evaluation
121/09-04-010-11W2/00	616.0	2557.3	2557.3	vertical	09-04-010-11W2	612652.3	5516840.1	612652.3	5516840.1	Petrophysical Evaluation
	l	l l		l l		·	1	1		1

Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF


101/16-14-010-17W2/00	584.2	2445.7	2445.7	vertical	16-14-010-17W2	557543.6	5519664.1	557543.6	5519664.1	Petrophysical Evaluation
33-023-00171-00-00	584.6	3608.8	3608.8	vertical	SESW 18-163-95	641916.3	5422553.7	641916.3	5422553.7	Petrophysical Evaluation
33-023-00177-00-00	592.5	3444.2	3444.2	vertical	SWSW 24-163-97	630329.5	5420658.6	630329.5	5420658.6	Petrophysical Evaluation
33-023-00189-00-00	660.5	3505.2	3505.2	vertical	NWNW 22-162-101	588886.8	5411476.7	588886.8	5411476.7	Petrophysical Evaluation
33-023-00216-00-00	666.0	3389.4	3389.4	vertical	NWNW 20-163-102	575736.4	5420874.4	575736.4	5420874.4	Petrophysical Evaluation
33-023-00221-00-00	604.4	3459.5	3459.5	vertical	NWNW 10-163-98	617351.6	5424808.1	617351.6	5424808.1	Petrophysical Evaluation
33-023-00223-00-00	648.3	3365.6	3365.6	vertical	NWNE 21-163-98	616611.8	5421570.9	616611.8	5421570.9	Petrophysical Evaluation
33-023-00224-00-00	603.5	3504.0	3224.0	vertical	SESW 33-164-98	616093.1	5426792.3	616387.6	5426990.9	Petrophysical Evaluation
33-023-00232-00-00	607.2	3276.6	3276.6	vertical	SENW 32-164-98	614463.6	5427373.5	614463.6	5427373.5	Petrophysical Evaluation
33-023-00233-00-00	589.8	3293.4	3293.4	vertical	SWNE 11-163-97	629440.0	5424679.5	629440.0	5424679.5	Petrophysical Evaluation
33-023-00234-00-00	590.7	3305.6	3305.6	vertical	SESW 33-164-97	625755.8	5427001.6	625755.8	5427001.6	Petrophysical Evaluation
33-023-00251-00-00	643.1	2697.5	2697.5	vertical	SWNE 14-163-99	610193.0	5422695.5	610193.0	5422695.5	Petrophysical Evaluation
33-023-00253-00-00	629.4	3332.1	3332.1	vertical	NWSE 3-163-99	608530.2	5425439.6	608530.2	5425439.6	Petrophysical Evaluation
33-023-00261-00-00	647.7	3316.5	3316.5	vertical	SENE 28-163-102	578369.4	5418918.5	578369.4	5418918.5	Petrophysical Evaluation
33-023-00274-00-00	660.8	3279.6	3279.6	vertical	NESE 9-163-102	578471.1	5423345.0	578471.1	5423345.0	Petrophysical Evaluation
33-023-00307-00-00	676.4	3374.1	3374.1	vertical	NWNW 27-163-101	588558.3	5419444.8	588558.3	5419444.8	Petrophysical Evaluation
33-023-00313-00-00	644.7	3316.2	3316.2	vertical	NWNW 25-163-102	582211.3	5419209.6	582211.3	5419209.6	Petrophysical Evaluation
33-023-00317-00-00	654.4	3291.8	3291.8	vertical	NENE 13-163-102	583322.4	5422618.4	583322.4	5422618.4	Petrophysical Evaluation
33-023-00319-00-00	623.3	3291.8	3291.8	vertical	SWNE 35-164-99	610265.4	5427644.4	610265.4	5427644.4	Petrophysical Evaluation
33-023-00326-00-00	648.6	3347.6	3347.6	vertical	NWNW 18-163-99	602958.5	5422915.0	602958.5	5422915.0	Petrophysical Evaluation
33-023-00327-00-00	683.4	3384.2	3384.2	vertical	SWNE 30-163-100	594340.3	5419196.2	594340.3	5419196.2	Petrophysical Evaluation
33-023-00340-00-00	611.4	3017.8	3017.8	vertical	SWNW 31-163-97	622283.1	5418010.5	622283.1	5418010.5	Petrophysical Evaluation
L						l	L			

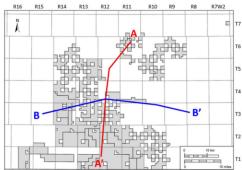
Level 2, 10 Outram Street West Perth WA 6005 Australia T +61 (8) 6313 3936 ASX: AZL, AZ E info@arizonalithium.com OTC: AZLAF

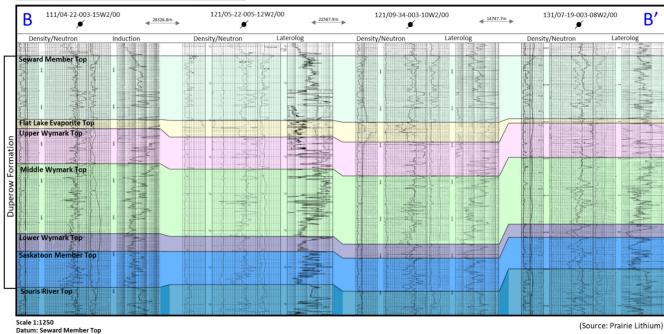

	580.6	2874.3	2874.3	vertical	NESW 6-163-95	641812.6	5426187.1	641812.6	5426187.1	Petrophysical Evaluation
33-023-00387-00-00	380.0	2074.3	2074.3	vertical	NL3W 0-103-93	041012.0	3420107.1	041012.0	3420107.1	retrophysical Evaluation
33-023-00394-00-00	677.0	3497.6	3497.6	vertical	NWNW 17-162-98	614362.9	5413447.4	614362.9	5413447.4	Petrophysical Evaluation
33-023-00445-00-00	630.6	3435.7	3435.7	vertical	SWSE 9-162-96	635999.6	5414183.3	635999.6	5414183.3	Petrophysical Evaluation
33-023-00459-00-00	662.6	2612.1	2612.1	vertical	NENW 8-163-100	595142.6	5424212.4	595142.6	5424212.4	Petrophysical Evaluation
103/01-02-001-12W2/00	618.6	3731.0	3731.0	vertical	01-02-001-12W2	609801.4	5428759.5	609801.4	5428759.5	Petrophysical Evaluation & Lithium Concentration
101/14-33-002-12W2/00	598.0	2421.0	2421.0	vertical	14-33-002-12W2	605332.5	5447568.4	605332.5	5447568.4	Petrophysical Evaluation & Lithium Concentration
121/09-13-002-22W2/00	761.3	3270.1	3270.1	vertical	09-13-002-22W2	513400.5	5441333.4	513400.5	5441333.4	Petrophysical Evaluation & Lithium Concentration
101/04-19-004-08W2/00	587.2	2476.0	2476.0	vertical	04-19-004-08W2	639532.5	5463306.9	639532.5	5463306.9	Petrophysical Evaluation & Lithium Concentration
141/01-22-004-19W2/00	755.6	3075.0	3075.0	vertical	01-22-004-19W2	538242.9	5461756.5	538242.9	5461756.5	Petrophysical Evaluation & Lithium Concentration
111/02-05-005-21W2/00	754.6	2879.0	2862.8	deviated	02-05-005-21W2	514973.6	5466459.7	515093.8	5466344.4	Petrophysical Evaluation & Lithium Concentration
101/07-27-007-06W2/00	612.0	1646.8	1646.8	vertical	07-27-007-06W2	663558.7	5495101.8	663558.7	5495101.8	Petrophysical Evaluation & Lithium Concentration
101/07-27-007-06W2/03	612.0	1732.5	1732.5	vertical	07-27-007-06W2	663558.7	5495101.8	663558.7	5495101.8	Petrophysical Evaluation & Lithium Concentration
141/13-02-007-11W2/00	610.9	2000.0	2000.0	vertical	13-02-007-11W2	615469.8	5488153.3	615469.8	5488153.3	Petrophysical Evaluation & Lithium Concentration
121/09-03-007-11W2/00	614.5	1932.0	1932.0	vertical	09-03-007-11W2	615059.5	5487700.9	615059.5	5487700.9	Petrophysical Evaluation & Lithium Concentration
141/14-12-007-11W2/00	606.8	1902.0	1900.9	vertical	14-12-007-11W2	617572.5	5489933.4	617576.8	5489934.6	Petrophysical Evaluation & Lithium Concentration
121/10-03-008-05W2/00	603.9	2475.0	2475.0	vertical	10-03-008-05W2	673057.0	5499014.5	673057.0	5499014.5	Petrophysical Evaluation & Lithium Concentration
141/11-17-009-21W2/00	764.5	2624.0	2624.0	vertical	11-17-009-21W2	513002.8	5509357.6	513002.8	5509357.6	Petrophysical Evaluation & Lithium Concentration
33-023-00251-00-00	643.1	2697.5	2697.5	vertical	SWNE 14-163-99	610193.0	5422695.5	610193.0	5422695.5	Petrophysical Evaluation & Lithium Concentration
33-023-00273-00-00	698.6	2910.8	2910.8	vertical	SENW 8-161-99	605239.6	5404886.9	605239.6	5404886.9	Petrophysical Evaluation & Lithium Concentration
33-023-00327-00-00	683.4	3384.2	3384.2	vertical	SWNE 30-163-100	594340.3	5419196.2	594340.3	5419196.2	Petrophysical Evaluation & Lithium Concentration
33-105-01468-00-00	696.8	3552.7	3552.7	vertical	SWSE 5-159-96	639116.1	5386933.1	639116.1	5386933.1	Petrophysical Evaluation & Lithium Concentration



Lithium Sample Locations Within the Duperow Formation

North-South Orientated Stratigraphic Cross-Section A-A' with the Top of the Duperow Formation Surface as a Datum




Scale 1:1250 Datum: Seward Member Top Depth: TVD m Well Spacing: Equal

(Source: Prairie Lithium)

West-East Orientated Stratigraphic Cross-Section B-B' with the Top of the Duperow Formation Surface as a Datum

Arizona Lithium

Depth: TVD m Well Spacing: Equal

> Level 2, 10 Outram Street West Perth WA 6005 Australia

T +61 (8) 6313 3936 E info@arizonalithium.com OTC: AZLAF

Table 1: The range of lithium concentrations within the intra-Duperow Formation stratigraphic intervals defined Yang (2015) within and adjacent to Arizona Lithium's Property

Stratigraphic Interval (Yang 2015)	No. Wells Sampled	Range in Lithium Concentration (mg/L)
Seward Member	2	89-99
Flat Lake Evaporite	1	89
Upper Unit of the Wymark Member	7	96-220
Middle Unit of the Wymark Member	9	77-259
Lower Unit of the Wymark Member	5	53-98
Saskatoon Member	4	44-68

OTC: AZLAF