ASX Announcement (ASX: OBM) # SIGNIFICANT DAVYHURST LITHIUM DISCOVERY Maiden Drilling Program Intersects over 11 metres of Spodumene at 1.28% Li₂0 #### **HIGHLIGHTS:** - An initial three-hole lithium focussed exploration program at Federal Flag completed, with the following outstanding results from the first hole assayed (Hole 1 FFLIDD2301): - 11.1 metres (estimated true width of 10 metres) @ 1.28% Li₂O from 54 metres in a basal pegmatite (fresh), including 8.0 metres @ 1.56% Li₂O and a maximum value of 1 metre @ 2.13% Li₂O - XRD and petrography confirms abundant primary spodumene is the dominant lithium bearing mineral - Hole 1 intersected two more pegmatites in the oxide zone, both with spodumene present, however, they were lower grade due to lithium depletion in the weathered zone - > Assays are pending on the remaining two holes, noting: - Hole 2 (FFLIDD2302) intersected three Lithium-Caesium-Tantalum ("LCT") pegmatites in oxide with visible spodumene - Hole 3 (FFLIDD2303) drilled into gold bearing shear zone, visible gold logged, pegmatites absent - > Follow up drilling is planned at Federal Flag - Field work completed to date has identified three priority lithium fields, at Federal Flag, Barney and Waihi, with a total six LCT pegmatite swarms identified - Regional rock chip sampling conducted collected 209 samples, 86 of which contained anomalous lithium, 7 of which contained spodumene ### **Background** As part of Ora Banda Limited's ("Ora Banda" ASX:OBM) 3-Year Strategy to Create Value from investing in Exploration a small dedicated team is currently focussed on the Lithium exploration potential of the OBM tenement package. Work commenced in December 2022 with desktop studies and extensive field mapping generating immediate drilling targets starting at the Federal Flag prospect. # **Federal Flag Lithium Prospect** Federal Flag is located on a Mining Lease approximately 10km south of the Davyhurst Processing Plant (see Figure 1). There are two historical gold open pits at Federal Flag linked by north-south trending gold mineralisation. A number of pegmatites were intersected in the resource drilling that went into Federal Flag. The LCT pegmatites are blind to the surface with a thin veneer of transported cover. Lithium mineralisation was observed in drill spoil during the field mapping exercise, along with a small exposure in the high wall of a shallow open pit that was historically mined for gold. The three hole program tested and confirmed the presence of the LCT pegmatites, their broad strike and dip orientation along with the presence of spodumene. Observations in core suggest that the pegmatites pre-date the later gold mineralisation. Further work is required to identify the extent of this LCT pegmatite swarm. Figure 1 – Plan showing location of Federal Flag LCT pegmatite swarm Figure 2 - Federal Flag Prospect — oxidised LCT pegmatite outcrop in old gold workings showing abundant coarse spodumene crystals Figure 3 - Hole 1 (FFLIDD2301) core showing abundant coarse spodumene crystals Figure 4 – Plan view of Federal Flag showing drilling, LCT pegmatite and historical gold pits Figure 5 – Cross section A-A; Federal Flag showing LCT pegmatites, gold bearing shear and weathering Figure 6 - Federal Flag LCT pegmatite outcrop in historical gold workings Figure 7 - Hole 1 (FFLIDD2301) section of basal LCT pegmatite showing abundant spodumene crystals # **Futher Regional Lithium Prospectivity** Initial regional reconnaissance has identified five other areas (Barney, Waihi, Young Australian, Gila, Siberia) hosting lithium bearing LCT pegmatite swarms of which Barney and Waihi prospects are highest priority for immediate follow-up based on current data. Further regional exploration and progression of all identified lithium occurrences will be continued as part of OBM's strategy to create value from investing in exploration. #### **Barney Pegmatite Swarm** The Barney prospect is located south-west of the Riverina Open Pit. It is a high density LCT pegmatite swarm that is laterally extensive, with good outcrop. The known extents are 1000m x 800m, with the lithium mineralisation running under cover to the west. The identified lithium mineral appears to be lepidolite in the tested areas. ### **Waihi Lithium Prospect** Outcrop is generally poor in the Waihi area although first pass regional mapping identified several strike extensive LCT pegmatites. XRD on rock chip sampling has identified the presence of spodumene. Further work is required to identify the extent of this LCT pegmatite swarm. Figure 8 – Tenement map showing regional lithium occurrences # **Managing Director's Comment:** "The fact that we have intersected high grade spodumene in the first hole targeting lithium prospectivity is both a testament to the excellent work completed by the geology team and the outstanding potential of the entire tenement package. "Whilst the first results are very encouraging, this is very early days in unlocking the lithium potential and we will continue to work this up with a small, focused team and disciplined drill programs. "It is important to note that our lithium exploration will be conducted without compromising our gold focused exploration objectives of finding a second high-grade underground mine to compliment Riverina Underground and drive further production growth and increased cashflows for the Company." This announcement was authorised for release to the ASX by Luke Creagh, Managing Director. For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au. #### **Investor & Media Queries:** Luke Creagh Managing Director +61 8 6365 4548 admin@orabandamining.com.au #### **Competent Persons Statement** The information in this report that relates to Exploration Results is based on information compiled under the supervision of Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. #### **Forward-looking Statements** This Announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this Announcement, are expected to take place. Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements. The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this Announcement, except where required by law. The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward looking statements contained in this Announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. # Appendix 1: Significant Intersections Table | Hole_ID | From
m | To
m | Width
m | Li₂O
% | Ta₂O₅
ppm | Fe₂O₃
% | Comments | |------------|-----------|---------|------------|-----------|--------------|------------|------------------| | FFLIDD2301 | 32.2 | 47.7 | 15.5 | 0.37 | 99 | 1.15 | Entire Pegmatite | | FFLIDD2301 | 54 | 65.1 | 11.1 | 1.28 | 100 | 0.86 | Entire Pegmatite | | Inc. | 54 | 64 | 10 | 1.42 | 99 | 0.85 | @ 0.1% Li2O | | Inc. | 54 | 62 | 8 | 1.56 | 92 | 0.89 | @ 1% Li2O | # Appendix 2: Diamond Drillhole Details | Hole_ID | MGA East | MGA North | MGA RL | Dip | MGA
Azimuth | Total
Depth | |------------|------------|--------------|--------|-----|----------------|----------------| | FFLIDD2301 | 273,320.18 | 6,664,093.45 | 446.55 | -50 | 200 | 203.6 | | FFLIDD2302 | 273,252.24 | 6,664,151.72 | 445.89 | -50 | 200 | 199.7 | | FFLIDD2303 | 273,351.40 | 6,664,184.91 | 445.44 | -65 | 200 | 306.2 | ASX Announcement (ASX: OBM) 26 April 2023 # Appendix 3: JORC Tables # JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE # **Section 1 Sampling Techniques and Data** Sections 1 and 2 describe the work undertaken by Ora Banda Mining Limited and only refer to historical information where appropriate and/or available. | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Sampling techniques carried out by Ora Banda Mining (OBM) have included both diamond drilling (DD) and rock chip sampling. Pegmatites were sampled and analysed separately to potential gold bearing zones Half core (HQ or NQ) sample pegmatite intervals (cut by automated core saw) were selected by a geologist based on geological boundaries. All samples were dispatched to the Nagrom laboratory, Perth. Samples were prepared at Nagrom and multielement analysis was conducted by four acid digestion. Non – pegmatite intervals were selected by a geologist based on geological boundaries and half core (HQ or NQ), samples were dispatched to the Nagrom laboratory, Perth. Samples were prepared at Nagrom and analysis was conducted for gold by 50g Charge Fire Assay, while multi element analysis was carried out by 40g Aqua Rega Digest | | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | Diamond drilling consists of HQ and HQ3 coring to approx. 40m (or fresh, unbroken rock), then NQ to BOH. All core was oriented
by reflex instrument, and down hole surveys done every 30m with a Gyro instrument. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | helpe
• Diamo
blocks | d reduced the lo | oss. Any core
ries are record | recovery issuded as a perce | es are noted o
entage calcula | on core blocks and logged
ated from measured core | veathered material, use of HQ3 drillir
d.
e against downhole drilled intervals (o | | |--|--|-----------------------------------|---|--|---|---|---|--|------| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Qualit
of fels
Magn
comp | ative logging: Lic intrusives (e., etic susceptibili eted. | ithology, colo
g. pegmatite)
ty, SG and RQ | ur, oxidation,
, quartz veinii
D were recor | grainsize, tex
ng, sulphide a
ded, and stru | cture, structure, hardness
and alteration percentage | CF-31 ruggedized laptop computers. s, regolith. Quantitative: estimates ar es. Core photographed both wet and gical contacts, foliation, veins, lineatical resource estimation | dry. | | Sub-
sampling
techniques
and sample | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or | and si | ubmitted to the | Nagrom labo | ratory, Perth. | . Samples we | | geologist based on geological bound
nd multielement analysis was condu-
nents analysed for). | | | preparation . | dry. | | | | ELEMENT | | | METHOD | | | | For all sample types, the nature, quality and | Al, B | Cr, Fe, Mg, Si, | Ti, V | | | | ICP005_OES | | | | appropriateness of the sample preparation | Li, M | o, Nb, Sb, Sn, Ta | a, W | | | | ICP005_MS | | | | technique. | Ba, C | a, Co, Cu, K, Mr | n, Na, Ni, P, S, | Sr, Zn, Zr | | | ICP003_OES | | | | Quality control procedures adopted for all sub-
sampling stages to maximise representivity of
samples. | _ | s, Be, Bi, Cd, Ce
c, Se, Sm, Tb, Te | | | , Hf, Ho, In, La | a, Lu, Nd, Pb, Pr, Rb, | ICP003_MS | | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Non – dispat | pegmatite inte
ched to the Naj
e Fire Assay, wh
ICP Analysis (d
40g Aqua Regi
Ag
Bi
Mo | rvals were sel
grom laborat
nile multi elen
etection limits p | lected by a ge
ory, Perth. Sa
nent analysis | ologist based
mples were p
was carried o | | es and half core (HQ or NQ) samples wan analysis was conducted for gold by 50 | | | | | | Cr | 1 | Zn | 5 | | | | | | | Blanks ar | nd standards | for gold wer | e submitted a | s part of QAC | QC | |--|--|--|--|---|--|---|--| | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external | Following by HCl ar decompo are accep on a sing Non – pe dispatche Charge Fi | g sample pre
nd the result:
osed under th
otable. Blank
le 0.12m cor
gmatite inte
ed to the Nag
ire Assay, wh | paration, the
ant solution i
nese conditio
s were insert
e, to confirm
rvals were se
grom laboral
ille multi eler
etection limits | now prepare
s analysed by
ns. Internal La
ed into the sa
mineralogy, t
lected by a ge
ory, Perth. Sa | ed sample is d
ICP - MS. This
aboratory stand
ample stream
that being spo
eologist based
amples were p
was carried d | n Perth and analysed by four acid digest (HCI, HCIO4, HF, HNO3). igested by the four acids and boiled until dry. The residue is leached is method is a near total digestion, most mineral species will be indards and repeats indicated the accuracy and precision of assaying at a rate of approximately 2:25. XRD and petrography was performed odumene as the dominant lithium bearing mineral dongeological boundaries and half core (HQ or NQ) samples were prepared at Nagrom and analysis was conducted for gold by 50g but by 40g Aqua Rega Digest as per the following: | | | laboratory checks) and whether acceptable | 10.000 | Ag | 0.1 | Pb | 1 | | | | levels of accuracy (ie lack of bias) and precision | ICP008_MS | Bi | 0.1 | Sb | 0.5 | | | | have been established. | 161 000_1113 | Mo | 1 | W | 1 | | | | | | As | 1 | Cu | 1 | | | | | ICP008_OES | Co | 1 | Ni | 1 | | | | | | Cr | 1 | Zn | 5 | | | | | Blanks ar | | for gold wer | | | sample stream at a rate of 1:12 as part of QAQC | | Verification
of sampling
and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Geologica
via email
are recein
reference | al and sampl
or through a
ved in .csv fo
e if necessary | e data logged
shared serv
rmat and loa
v. | er and import
ded directly i | field comput
ted into Geob
nto the datab | personnel er at the core yard using Geobank Mobile. Data is transferred to Perth ank SQL database by the database administrator (DBA). Assay files base by the DBA. Hardcopy and/or digital copies of data are kept for ide conversions from Li to Li2O, Fe to Fe2O3 and Ta to Ta2O5. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | | | | | | e collar positions were picked up by an OBM mining surveyor using are recorded every 30m using a Gyro instrument. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological | | | • | r single holes
he current ex | • | ults. | | | and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill intercepts are length weighted, full pegmatite plus 0.1% Li2O lower cut-off and further 1% Li2O lower cut-off, no top-cut, maximum 2m internal dilution. | |---|--|--| | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling was oriented at as close to 900 to the interpreted strike and dip of pegmatite dykes. Downhole core structural measurements of pegmatite contacts indicated the drilling is close to 90 degrees to the actual strike and dip of the pegmatites Diamond drilling is predominately inclined at between -50 and -65 degrees towards the south-west. | | Sample
security | The measures taken to ensure sample security. | Samples were bagged, tied and stored in a secure yard on site. Samples are transported directly to Kalgoorlie by OBM staff then freighted to Nagrom Laboratory in Perth. | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | OBM considers the sampling technique to be valid for this style of mineralisation | # Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | | | |----------------------------------|---|----------------------|---|--------------------| | Mineral tenement and land tenure | Type, reference name/number, location
and ownership including agreements or | All tenure pertainin | g to this report is listed below | | | status | material issues with third parties such as joint ventures, partnerships, overriding | TENEMENT | HOLDER | AGREEMENTS | | | royalties, native title interests, historical sites, wilderness or national park and | М30/255 | CARNEGIE GOLD PTY LTD. | | | | environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | There are no knowr | td is a wholly owned subsidiary of OBM.
n heritage or native title issues.
n impediments to obtaining a licence to op | erate in the area. | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | No recorded historical lithium related exploration has taken place on OBM tenements. No recorded targeted Li assaying has previously taken place at tenement M30/255 or in other OBM tenements. | |-----------------------------------|---|--| | Geology | Deposit type, geological setting and style
of mineralisation. | • The geology of Federal Flag consist of a series of pegmatite dykes hosted within a chlorite schist. The dykes cross-cut the regionally extensive, N-S trending Round Dam shear which hosts gold mineralisation at Federal Flag, as well as several other locations along strike to the north and to the south. The largest of the lithium bearing pegmatites strike NW and dip at approx. 35° towards the NE. Spodumene, and to some extent quartz, are elongated, following the foliation of the shear within which the pegmatites are hosted. The pegmatites often exhibit strong fracture planes, parallel to the major shear. Lithium mineralisation (predominantly spodumene) is hosted within the shallow NE dipping pegmatite dykes. Lepidolite is observed to be present in minor amounts through the pegmatites | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | A list of the drill hole coordinates, orientations and metrics are provided as an appended table. A list of the drill hole coordinates, orientations and metrics are provided as an appended table. | | Data aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical | Original assays are length weighted. Grades are not top cut. Lower cut off is nominally 0.1% Li₂O and 1% Li₂O. Metal equivalents are not reported. | | | | examples of such aggregations should be shown in detail. | | |---|---|---|--| | | • | The assumptions used for any reporting
of metal equivalent values should be
clearly stated. | | | Relationship
between
mineralisation | • | These relationships are particularly
important in the reporting of Exploration
Results. | Intercept widths are down hole lengths. True widths are not reported given the early stage of exploration and low confidence on overall dimensions of the pegmatite dykes, and varying orientation of drilling at this prospect. The geometry of the mineralisation at Federal Flag consists of a NW strike with an approximate dip of 35° towards the NE. Drilling | | widths and
intercept lengths | • | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. | is oriented approximately perpendicular the strike of the mineralisation. | | | • | If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | | | Diagrams | • | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | See plans and cross-sections. | | Balanced
reporting | • | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | The location of drill hole intersections is shown on the sectional diagram | | Other substantive exploration data | • | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | XRD completed on a 0.12m sample of pegmatite core (at 60m in FFLIDD2301) showed spodumene to be abundant and the only lithium bearing mineral in that sample. Visual observation of the remaining pegmatite intervals identified spodumene to be dominant lithium mineral observed with minor lepidolite in places | | Further work | • | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the | Further diamond and RC drilling is planned at Federal Flag to map out the extents and grade of lithium mineralisation associated
with the pegmatite swarm. The full program design has yet to be finalised. | | main geological interpretations and | |--------------------------------------| | future drilling areas, provided this | | information is not commercially | | sensitive. |