Significant REE Values, Project Footprint Extended - Condingup, Esperance WA

EMU NL (ASX: EMU) ("**EMU**" or "**the Company**") is pleased to announce results of its highly successful Stage 2 Rock Chip Reconnaissance Survey and the making of applications to extend the Project footprint at its 100% owned Condingup REE Project within the Esperance REE Province of Western Australia.

RARE FARTHS ELEMENTS, PRECIOUS AND BASE METALS EXPLORER

HIGHLIGHTS

- EMU's Stage 2 Rock Chip Reconnaissance Survey has confirmed and extended the Rare Earth Element (**REE**) mineralisation footprint with highly anomalous REE values recorded from outcropping Booanya suite granites.
- Rock Chip assays results have confirmed the extensive surface TREO (Total Rare Earth Oxides) REE mineralisation with assay results including 941 ppm TREO, 1,089 ppm TREO, 1,205 ppm TREO and 1,242 ppm TREO.
- High value Magnet Rare Earth Oxides (MREO) represent an average of ~22% of TREO grade from 28 rock chip samples.
- Rock Chip Assay results confirm EMU's Booanya suite granites to be highly fertile for rare earth elements with the potential to host significantly enriched rare-earth minerals in clay.
- EMU has applied for an additional 765 square km of highly prospective Exploration Licence ground, taking the overall exploration package at the Condingup REE Project to 1,560 square km of Exploration Licence area – further increasing its major strategic footprint in the Esperance REE Province.
- On a regional scale, the western, central and eastern granitic zones remain untested with numerous, extensive strong exploration targets varying from 14.1km to 18.3km in strike length.
- EMU is currently planning a maiden aircore drilling programme to ascertain mineralisation in target clay REE enriched horizons.

Following the highly successful December 2022 Stage 1 Rock Chip Reconnaissance Survey and surface clay sampling programme¹, which reported **significant 25% MREO** as percentage to TREO **and 12.7% HREO**² as percentage to TREO assay results, the Company undertook a more extensive surface rock chip sampling programme targeting Booanya style granite outcropping.

Assay results from the Stage 2 Rock Chip Reconnaissance Survey identified highly anomalous REE zones, clearly demonstrating strong underlying host rock fertility over the Condingup REE Project. Based on these very early-stage exploration results, the Project has all the hallmarks to potentially host significant economic, clay hosted REE mineralisation.

Results from this sampling programme encouraged EMU to immediately make applications for an additional 765 square kms of exploration licence ground substantially adding to the overall project footprint over the Booanya style granites, associated drainage profiles and adjacent weathered clay zones.

As part of EMU's assessment of the intrusive Booanya suite granites, the regional magnetic survey has outlined a direct correlation between strong magnetic vectors and highly elevated REE assays, delivering a number of walk-up exploration targets. These targets are very extensive in area and provide substantial opportunities for drill testing.

Peter Thomas, EMU's Chairman, comments

"These are stunning results from the rock chip sampling programmes and are extremely encouraging. The results shine a bright light on EMU's Condingup REE Project and identify it as being a "dead ringer" to OD6's Splinter Rocks project. The intrusive Booanya granite suite has proven to be a significant indicator of REE fertility in the eastern Esperance REE Province.

Following successful high value TREO results and the strong possibility of higher enrichment in the surrounding clays, EMU immediately made strategic applications for an additional exploration tenement area, bringing the 100% owned Condingup Project area to an aggregate 1,560 square kilometres thus advancing EMU's status as a significant REE player in the Province.

The impending maiden aircore drilling programme is envisaged to report higher concentrations of REE hosted in clay zones adjacent to, and overlaying, the weathered granite suite".

Stage 2 Rock Chip Reconnaissance Survey

A total of 28 rocks were collected during March and assayed in April 2023. The primary focus of the reconnaissance sampling was to collect clay samples from road cuttings and surfaces from various farms in the region. The multi-element assays of the granite rock samples indicate that the anomalous REEs are hosted within fractionated, metasomatized, alkaline Booanya suite granites. Globally, fractionated alkaline systems are known to be associated with significant REE deposits.

¹ ASX Announcement 14 March 2023: "Assays Confirm Magnetic and Heavy Rare Earth Fertility"

² Heavy Rare-Earth Element Oxides as defined by the USGS "Rare-Earth Elements Professional Paper 1802–O" publication 2017, page 2

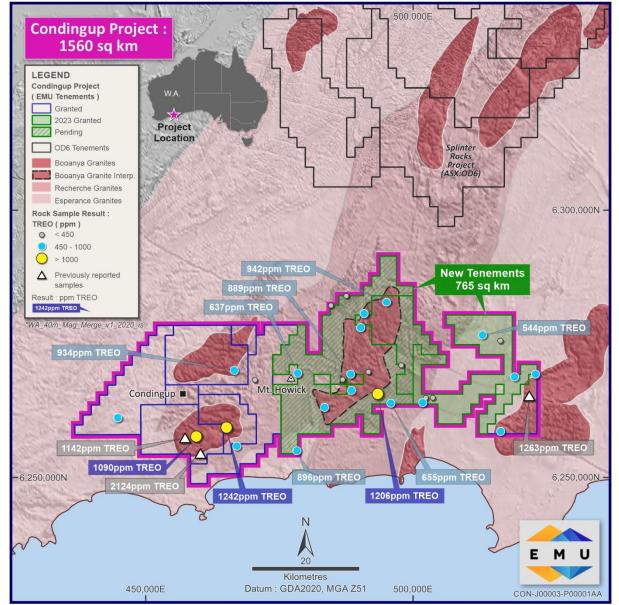


Figure 1 Condingup REE Project highlighting extensive regional land holding and broad REE mineralisation determined from a number of high value TREO's sampled from Booanya granite outcropping.

Conceptual Mineralisation Model

Given the significant exploration success of near neighbour, OD6 Metals at Splinter Rocks, and the results from EMU's Rock Chip Reconnaissance Surveys, EMU expects to identify REE supergene concentrations in clay zone traps through upcoming drilling and exploration vectoring.

Due to geological weathering processes, any clay traps intersected in drilling will likely contain greater concentrations of TREO than the numbers reported in the Booanya granite rock samples detailed in this release highlighting the "fertility" significance of the rock sample results reported herein.

EMU's Condingup REE Project is represented by the discovery of clay hosted rare-earths in an exploration location which has been previously overlooked by past explorers whose primary focus was exploration for industrial minerals. EMU has identified the project through the compilation, review, and processing of publicly available data, combined with the application of geological first principles which includes the collection and assaying of more than 58 regional surface rock and 39 surface clay samples.

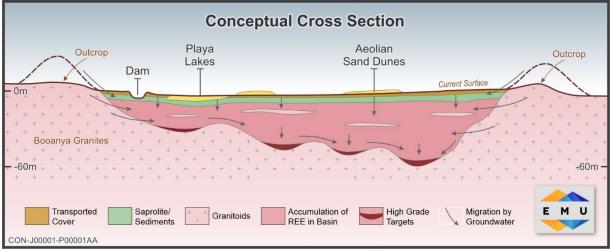


Figure 2 A conceptual cross section of the Booanya suite granites at Condingup showing outcrops dam locations and prospective enriched clay layers.

Follow Up Work Programme

EMU has commenced planning its maiden aircore drill programme at Condingup which will test deeper clay zone targets identified from reprocessed aero magnetic survey data. The drilling programme target areas will focus on interpreted deeper "clay traps" which EMU hypothesises host high grade REE depositions. Drilling will be scheduled following the finalisation of necessary administrative access protocols. Further to drilling programmes, EMU is reviewing the possibility of a geophysical Airborne Electromagnetic Survey (**AEM**), a methodology that has shown significant promise at other clay hosted projects in the area, to identify clay depths over basement rock. An AEM survey has the potential to unlock mineralised zones and provide definitive vectors for drill targets.

About the Condingup Rare Earth Project

The 100% owned Condingup Rare Earth Project is located just 35kms southeast of ASX:OD6's Splinter Rock Project which is achieving success in a similar geological setting within the REE enriched Booanya suite granites. EMU's Condingup Project is situated just 60kms from the port of Esperance and other essential infrastructure all accessible by sealed roads. Esperance is projected to become a central hub for major renewable energy and green hydrogen production and is located within a well-regarded exploration/mining support jurisdiction.

EMU has applications and granted tenements over a package of highly prospective exploration tenements east of Esperance in Western Australia. The 1,560 square kilometre Condingup Rare Earth Project overlies saprolite, clay enriched rare earth soils, and covers the geologically significant Booanya granite suite. The project tenements are located directly over what EMU considers to be the last remaining vacant Booanya granite tenements in the region extending from Condingup to Balladonia, east of Esperance.

RELEASE AUTHORISED BY THE BOARD

For further information, please contact: Doug Grewar Chief Executive Officer Emu NL

info@emunl.com.au

Table 1. Significant Rock Sample Results > 450 TREO (PPM & %)

Site_ID	Medium	Easting	Northing	TREO	MREO %	HREO %	CREO %	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
ESS01794	Granitoid	465113	6259327	1242	25.8	12.7	28.3	510.69	16.87	8.86	4.50	23.63	3.10	233.39	1.10	234.45	66.00	35.95	3.28	1.23	91.94	7.44
ESS01780	Granitoid	493384	6265611	1206	21.2	20.7	30.3	441.58	25.25	14.41	2.05	26.05	4.99	258.02	1.44	173.79	51.84	29.34	4.10	2.02	160.01	11.06
ESS01795	Granitoid	459453	6257654	1090	21.7	11.2	23.8	466.18	12.74	6.88	3.53	17.52	2.44	253.32	0.94	169.13	51.26	24.93	2.50	0.99	71.37	6.10
ESS01802	Granitoid	495029	6282783	942	22.6	14.2	26.6	373.64	14.00	7.91	3.54	17.75	2.71	212.28	1.07	150.47	45.17	23.42	2.59	1.14	79.11	6.96
ESS01813	Granitoid	466558	6269998	934	22.9	11.8	25.4	398.24	11.10	6.17	2.86	14.87	2.11	200.55	0.67	153.96	46.46	22.50	2.08	0.95	66.54	5.41
ESS01811	Granitoid	478278	6254980	896	22.4	8.6	22.4	413.47	9.56	4.24	3.98	14.75	1.62	189.99	0.51	144.63	44.35	22.73	2.00	0.61	40.00	3.75
ESS01791	Granitoid	488337	6269295	889	22.4	4.9	20.0	384.19	4.66	1.93	2.12	10.37	0.78	247.46	0.23	146.97	46.11	18.90	1.15	0.25	22.35	1.47
ESS01803	Granitoid	490842	6280610	876	22.0	15.7	27.6	357.25	14.12	7.50	2.37	16.60	2.76	181.78	0.65	135.30	40.49	21.57	2.54	0.95	87.24	5.02
ESS01774	Granitoid	516370	6258593	832	23.7	14.8	28.2	329.14	13.08	6.85	4.03	16.71	2.41	172.40	0.86	141.13	39.91	22.50	2.38	0.97	73.65	5.83
ESS01808	Granitoid	444778	6261158	666	24.0	16.9	29.7	256.51	12.62	6.22	2.43	15.68	2.35	130.18	0.65	113.26	31.60	19.71	2.38	0.81	67.05	4.74
ESS01781	Granitoid	495844	6263859	655	21.3	7.9	21.3	299.85	5.51	2.81	1.59	8.16	0.99	155.98	0.33	100.78	31.60	13.34	1.09	0.39	29.97	2.32
ESS01798	Granitoid	478398	6269476	637	22.5	6.1	21.2	288.14	4.36	1.80	2.94	8.24	0.73	155.98	0.16	105.56	32.30	13.57	0.98	0.21	21.08	1.15
ESS01773	Granitoid	518991	6268795	611	20.3	24.6	32.4	221.38	13.77	8.50	0.98	14.87	2.68	114.23	1.16	83.51	24.34	16.47	2.35	1.26	97.27	7.97
ESS01779	Granitoid	488492	6266253	568	22.3	6.3	20.8	248.32	4.03	1.64	1.37	8.09	0.63	147.77	0.19	93.31	28.32	13.80	0.93	0.22	18.29	1.34
ESS01783	Granitoid	501803	6263974	561	21.9	10.0	23.1	245.97	5.91	2.82	1.26	9.20	1.04	129.01	0.39	88.76	26.57	13.68	1.21	0.41	32.51	2.46
ESS01771	Granitoid	512977	6276609	544	22.5	7.2	21.6	247.14	4.56	1.90	1.47	7.93	0.76	126.66	0.23	89.23	27.50	12.99	0.97	0.25	20.95	1.49
ESS01792	Granitoid	467032	6255851	535	21.1	5.7	19.4	255.34	3.42	1.62	1.18	5.92	0.60	129.01	0.22	82.00	26.45	10.42	0.74	0.23	16.25	1.33
ESS01799	Granitoid	490193	6277981	533	22.4	15.2	27.3	213.18	8.17	4.59	2.05	10.35	1.59	113.29	0.59	84.33	25.28	14.15	1.59	0.65	48.89	4.09
ESS01812	Granitoid	483439	6263090	486	22.7	6.5	21.5	226.06	3.27	1.51	1.47	6.12	0.58	110.48	0.15	81.06	25.04	10.78	0.73	0.17	17.65	1.06
ESS01772	Granitoid	522891	6269292	459	21.1	23.9	32.5	165.15	10.93	6.42	1.66	11.87	2.18	86.44	0.85	65.67	18.26	12.18	1.83	0.95	68.57	5.74

Table 2. Other Rock Sample Results <450 TREO (PPM & %)

Site_ID	Medium	Easting	Northing	TREO	MREO %	HREO %	CREO %	CeO2	Dy2O3	Er2O3	Eu2O3	Gd2O3	Ho2O3	La2O3	Lu2O3	Nd2O3	Pr6011	Sm2O3	Tb407	Tm2O3	Y2O3	Yb2O3
ESS01804	Granitoid	487504	6283981	436	19.0	12.2	22.6	201.46	5.14	3.01	1.31	6.43	1.02	94.76	0.48	58.09	18.49	8.69	0.96	0.43	32.76	2.92
ESS01782	Granitoid	502357	6264874	421	20.9	29.1	36.1	141.73	12.05	7.39	1.69	11.53	2.45	69.78	0.98	58.09	15.68	11.60	1.92	1.07	77.97	6.67
ESS01788	Granitoid	491634	6269715	416	19.7	6.4	18.7	196.78	2.97	1.27	1.07	5.82	0.48	105.32	0.18	59.25	18.96	8.38	0.67	0.17	13.59	1.12
ESS01784	Granitoid	503665	6264905	377	19.3	30.6	36.3	124.16	10.29	6.91	0.94	9.00	2.19	67.20	0.92	47.01	13.69	9.00	1.57	1.07	77.08	6.42
ESS01787	Granitoid	497774	6270953	335	21.7	13.5	25.4	139.38	4.96	2.70	1.37	6.41	0.95	74.36	0.30	51.20	15.45	7.99	0.94	0.35	26.29	2.19
ESS01790	Granitoid	486812	6268295	296	19.2	5.7	18.1	128.84	1.56	0.88	0.75	2.54	0.30	89.84	0.13	40.82	14.04	4.66	0.31	0.13	9.99	0.80
ESS01770	Granitoid	516302	6275538	196	13.5	37.6	35.5	85.86	6.59	5.57	0.43	3.93	1.55	13.96	0.93	14.70	4.30	3.44	0.86	0.95	46.99	6.39
ESS01805	Granitoid	484636	6282115	129	20.6	13.7	24.7	55.05	1.80	1.04	0.60	2.33	0.37	28.26	0.16	18.55	5.76	3.18	0.36	0.14	10.50	0.93

Emu NL

ABN 50 127 291 927

ASX Codes: EMU and EMUCA

10 Walker Ave West Perth, WA 6005

T +61 8 9226 4266 E info@emunl.com.au

PO Box 1112

West Perth, WA 6872

Fully paid shares (listed)

1,450,021,079 (including 18.6m the subject of the ATM which EMU can buy back for nil consideration)

Contributing Shares (listed)

40,485,069 paid to \$0.03, \$0.03 to pay, no call before 31 December 2023

Contributing Shares (Unlisted)

35,000,000 paid to \$0.0001, \$0.04 to pay, no call before 31 December 2025

Options (unlisted)

172,453,621 options to acquire fully paid shares, exercisable at \$0.01 each, on or before 7 October 2024

Performance Rights (Unlisted)

48,571,429 performance rights in relation to acquisition of Gnows Nest project

Directors:

Peter Thomas Non-Executive Chairman

Terry Streeter Non-Executive Director

Gavin Rutherford Non-Executive Director

Tim Staermose Non-Executive Director

Investor enquiries: Doug Grewar CEO M +61 419833604 E info@emunl.com.au

COMPETENT PERSON'S STATEMENT

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Kurtis Dunstone, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Dunstone is an employee of EMU NL and has sufficient experience in the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Dunstone consents to the inclusion herein of the matters based upon his information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS

As a result of a variety of risks, uncertainties and other factors, actual events and results may differ materially from any forward looking and other statements herein not purporting to be of historical fact. Any statements concerning mining reserves, resources and exploration results are forward looking in that they involve estimates based on assumptions. Forward looking statements are based on management's beliefs, opinions and estimates as of the respective dates they are made. The Company does not assume any obligation to update forward looking statements even where beliefs, opinions and estimates change or should do so given changed circumstances and developments.

NEW INFORMATION OR DATA

EMU confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, which all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.

JORC Code 2012 Edition Table 1: Section 1- Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A 1-2kg surface rock sample was collected for assay. Sampling was carried out under Company protocols and QAQC procedures as per current industry practice. See further details below. Samples were dispatched to LabWest in Perth. Sample preparation by the laboratory included sample sorting, oven drying, mechanical pulverisation to 95% passing 75 microns. Analytical method MMA-04.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 No drilling was undertaken.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• Not applicable.
Logging	Whether core and chip samples have	Geological logging was done on a visual

Criteria	JORC Code explanation	Commentary
	 been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	basis, including; colour, grain size, lithology type, weathering, and mineralogy.
Sub- sampling techniques and sample preparation	 relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The samples were dried and pulverised to 95% passing -75 microns before analysis. QA/QC certified reference samples and field duplicates were routinely inserted at a rate of 1 in 20 with every batch submitted for assay. The sample size is appropriate for the mineralization style, application and analytical techniques used.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Microwave mixed-acid method MMA-04, 62 element determination including rare- earths using a combination of ICP-MS and ICP-OES finish. Detection limits are appropriate for the included results. All elements were reported in PPM (Parts Per Million).
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	 Assays are as reported from the laboratory and stored in the company database, managed by an independent database consultant.

Criteria	JORC Code explanation	Со	mmentary						
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 		 Field data was collected on site using both field sample books and a company Toughbook (laptop computer) and entered into a set of standard logging templates. 						
			Element	Oxide	Conversion				
			PPM	Form	Factor				
			Ce	CeO2	1.2284				
			Dy	Dy2O3	1.1477				
			Er	Er2O3	1.1435				
			Eu	Eu2O3	1.1579				
			Gd	Gd2O3	1.1526				
			Но	Ho2O3	1.1455				
			La	La2O3	1.1728				
			Lu	Lu2O3	1.1371				
			Nd	Nd2O3	1.1664				
			Pr	Pr6011	1.2082				
			Sm	Sm2O3	1.1596				
			Tb	Tb407	1.1762				
			Tm	Tm2O3	1.1421				
			Y	Y2O3	1.2699				
			Yb	Yb2O3	1.1387				
		TRE Mag HRE CRE	using: O (Total Rard Dy2O3 + Er2 Ho2O3 + La2 Pr6O11 + Sn Y2O3 + Yb2O g REO (Magn Dy2O3 + Pr6 Gd2O3 + Ho O (Heavy Ra Er2O3 + Eu2 Lu2O3 + Tb4 O (Critical Ra Eu2O3 + Nd	e Earth Oxi 203 + Eu20 203 + Lu20 203 + Tb4 23 et Rare Ear 5011 + Nd2 203 + Sm2 203 + Gd20 203 + Gd20 407 + Tm20 are Earth O 203 + Tb40	03 + Tb407 + 03 xide) = Dy203 + 03 + Ho203 + 03 + Y203 + Yb203 xide) = Dy203 + 07 + Y203				
		Perc	ent MREO (Magnetic)	= MREO / TREO				
		Perc	ent HREO (H	leavy) = HF	REO / TREO				
		Perc	cent CREO (C	Critical) = C	REO / TREO				

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Rock samples were located using a handheld GPS system with an accuracy of +/- 5m and stored in the company database. All coordinates are referenced to MGA Zone 51, Datum GDA94.
	 Quality and adequacy of topographic control. 	