

9 May 2023

12m @ 4,276ppm TREO – Further High-Grade Infill and Extensional Assays Support Initial Circle Valley REE Mineral Resource

- Assays received for final 32 infill and extensional rare earth element ("REE") Mineral Resource drill holes from Circle Valley (MEK 100%).
- Individual samples returned TREO grades up to 7,475ppm with consistently high NdPr to TREO ratios, up to 30%.
- Composite high-grade intersections include:
 - 12m @ 4,276ppm TREO (28% NdPr) from 19m incl. 4m @ 7,475ppm TREO (23CVAC062)
 - I6m @ 1,814ppm TREO (30% NdPr) from 17m incl. 4m @ 3,226ppm TREO (23CVAC070)
 - 4m @ 1,773ppm TREO (29% NdPr) from 25m (23CVAC075)
 - 4m @ 1,070ppm TREO (30% NdPr) from 6m (23CVAC085)
 - 4m @ 1,024ppm TREO (24% NdPr) from 13m (23CVAC083)
- Assays have now been received for infill and extensional drilling covering ~15km² and REE Mineral Resource modelling has commenced.
- The initial REE Mineral Resource for Circle Valley is on track for release in the June 2023 quarter.

Commenting on these results, Meeka's Managing Director Tim Davidson said: "These results include the highest grade rare earth mineralisation seen to date at Circle Valley, over 7,000ppm TREO. Assays continue to confirm thick seams of high-grade mineralisation rich in NdPr magnet rare earth elements are present at Circle Valley.

Combined, the 2023 infill and extension drilling covers an area of ~15km², significantly expanding the footprint of mineralisation in preparation for Mineral Resource estimation, which is now underway. We anticipate reporting the Circle Valley Mineral Resource in June 2023, which in conjunction with the ongoing metallurgical test work will support economic assessment.

These latest assay results also continue to confirm the shallow high-grade mineralisation trends northwest and remains open in that direction, providing strong potential for further growth through drilling."

Meeka Metals Limited ("**Meeka**" or "**the Company**") is pleased to report further high-grade REE assays from Circle Valley. The assays relate to the final 32 infill and extensional Mineral Resource drill holes completed during the March 2023 quarter. This drilling covers an area of ~15km² with results being used to inform a REE Mineral Resource for Circle Valley in the June 2023 quarter.

The REE at Circle Valley accumulate within the saprolite clay horizon creating thick, near surface mineralised seams below shallow transported cover. Drilling shows the cover shallows to the northwest of Circle Valley, coincident with the highest-grade mineralisation recorded to date, 7,475ppm TREO. The mineralisation also consistently demonstrates a high proportion, up to 34%, as valuable NdPr magnet rare earths.

Second Floor, 46 Ventnor Avenue West Perth, Western Australia 6005 P: +61 8 6388 2700
E: info@meekametals.com.au
W: meekametals.com.au

@MeekaMetals
 meeka-metals-limited
 ASX:MEK

ABN: 23 080 939 135

Notable intersections (above 500ppm TREO) include:

- 12m @ 4,276ppm TREO (28% NdPr) from 19m incl. 4m @ 7,475ppm TREO (23CVAC062)
- 16m @ 1,814ppm TREO (30% NdPr) from 17m incl. 4m @ 3,226ppm TREO (23CVAC070)
- 4m @ 1,773ppm TREO (29% NdPr) from 25m (23CVAC075)
- 4m @ 1,070ppm TREO (30% NdPr) from 6m (23CVAC085)
- 4m @ 1,024ppm TREO (24% NdPr) from 13m (23CVAC083)
- 4m @ 923ppm TREO (19% NdPr) from 5m (23CVAC065)
- 8m @ 920ppm TREO (25% NdPr) from 27m incl. 4m @ 1,296ppm TREO (23CVAC066)
- 4m @ 887ppm TREO (20% NdPr) from 22m (23CVAC087)
- 4m @ 843ppm TREO (24% NdPr) from 35m (23CVAC074)

These follow previously released high-grade assays from this 2023 drilling program, including:

- 6m @ 2,360ppm TREO (30% NdPr) from 46m incl. 4m @ 3,084ppm TREO (23CVAC044)
- 8m @ 1,542ppm TREO (27% NdPr) from 20m incl. 4m @ 1,843ppm TREO (23CVAC023)
- 4m @ 1,495ppm TREO (19% NdPr) from 35m (23CVAC038)
- 10m @ 1,364ppm TREO (28% NdPr) from 32m incl. 4m @ 1,805ppm TREO (23CVAC060)
- 12m @ 1,330ppm TREO (21% NdPr) from 12m incl. 4m @ 1,671ppm TREO (23CVAC010)
- 8m @ 1,258ppm TREO (30% NdPr) from 16m incl. 4m @ 1,998ppm TREO (23CVAC009)
- 4m @ 1,017ppm TREO (27% NdPr) from 27m (23CVAC029)
- 4m @ 1,005ppm TREO (30% NdPr) from 16m (23CVAC016)
- 12m @ 954ppm TREO (14% NdPr) from 19m incl. 4m @ 1,490ppm TREO (23CVAC053)
- 16m @ 870ppm TREO (26% NdPr) from 32m incl. 4m @ 1,704ppm TREO (23CVAC045)
- 4m @ 842ppm TREO (34% NdPr) from 16m (23CVAC027)
- 4m @ 810ppm TREO (8% NdPr) from 40m (23CVAC055)
- 4m @ 810ppm TREO (8% NdPr) from 40m (23CVAC055)
- 4m @ 786ppm TREO (5% NdPr) from 26m (23CVAC041)
- 4m @ 763ppm TREO (23% NdPr) from 52m (23CVAC051)
- 12m @ 754ppm TREO (26% NdPr) from 34m incl. 4m @ 1,170ppm TREO (23CVAC041)

As well as previously released high-grade assays from drilling undertaken in 2022, including:

- 8m @ 2,814ppm TREO (30% NdPr) from 40m (22CVAC354)
- 12m @ 2,690ppm TREO (26% NdPr) from 20m (22CVAC250)
- 8m @ 2,766ppm TREO (27% NdPr) from 28m (22CVAC212)
- 8m @ 2,245ppm TREO (28% NdPr) from 12m (22CVAC188)
- 4m @ 1,940ppm TREO (20% NdPr) from 12m (22CVAC234)
- 8m @ 1,433ppm TREO (26% NdPr) from 16m (22CVAC244)
- 8m @ 1,432ppm TREO (29% NdPr) from 28m (22CVAC237)
- 4m @ 1,269ppm TREO (29% NdPr) from 12m (22CVAC030)
- 8m @ 1,236ppm TREO (23% NdPr) from 20m (22CVAC251)
- 16m @ 1,098ppm TREO (18% NdPr) from 12m (22CVAC029)
- 6m @ 1,069ppm TREO (15% NdPr) from 16m (22CVAC306)
- 8m @ 1,003ppm TREO (29% NdPr) from 16m (22CVAC240)

Figure 1: Meeka's 100% owned Circle Valley Project (222km2) showing collar locations and assays (coloured points).

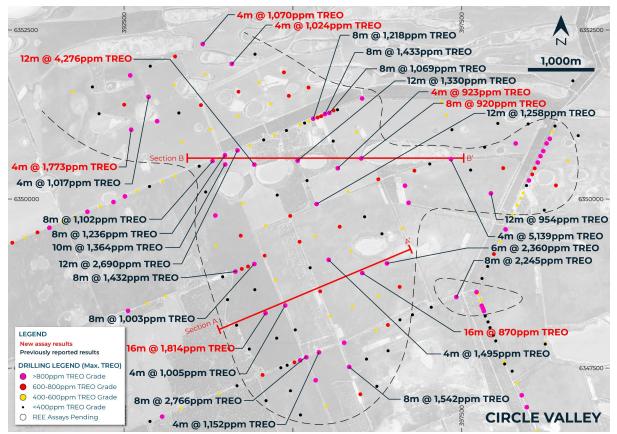


Figure 2: North-western area showing consistent thick, high-grade REE with a high proportion of valuable NdPr magnet rare earths.

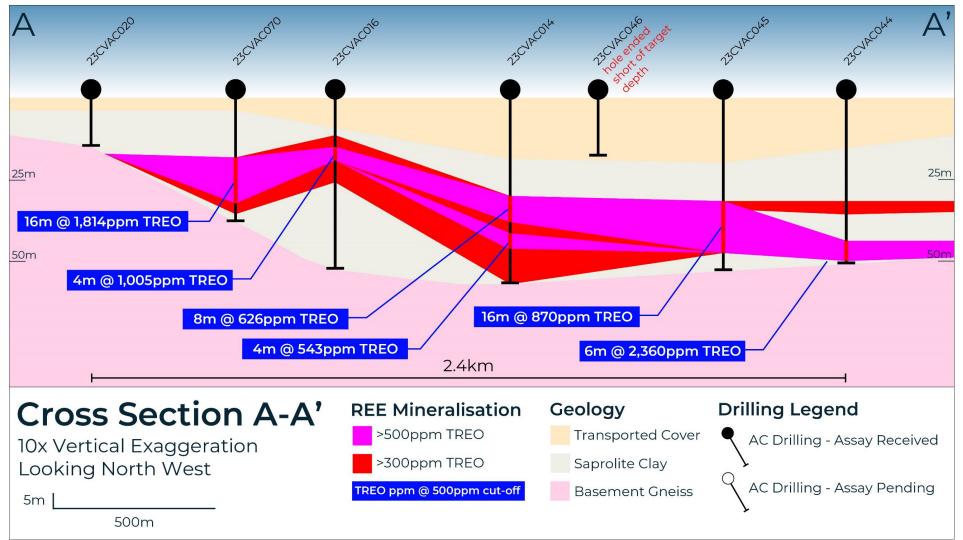


Figure 3: Section A-A' on Figure 2 – cross section through mineralisation.

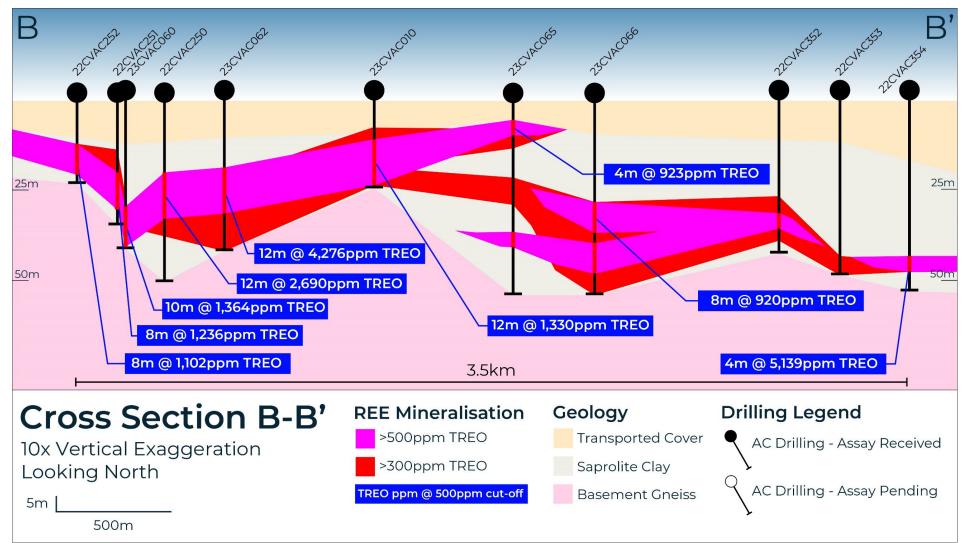


Figure 4: Section B-B' on Figure 2 – cross section through mineralisation.

Drill Hole ID	Depth From	Length	TREO	Neody	/mium	Praseo	dymium	NdPr	Scandium
				Nd	2 O 3	Pr	5 O 11		Sc ₂ O ₃
	m	m	ppm	ppm	%TREO	ppm	%TREO	%TREO	ppm
23CVAC062	19	12	4276	935	22%	257	6%	28%	26
23CVAC070	17	16	1814	434	24%	117	6%	30%	22
23CVAC075	25	4	1773	400	23%	114	6%	29%	18
23CVAC085	6	4	1070	265	25%	61	6%	30%	29
23CVAC083	13	4	1024	190	19%	55	5%	24%	34
23CVAC065	5	4	923	134	15%	40	4%	19%	12
23CVAC066	27	8	920	177	19%	52	6%	25%	23
23CVAC087	22	4	887	135	15%	40	5%	20%	21
23CVAC074	35	4	843	163	19%	37	4%	24%	22
23CVAC067	15	3	816	187	23%	55	7%	30%	25
23CVAC077	13	4	776	162	21%	44	6%	27%	18
23CVAC082	18	8	686	109	16%	29	4%	20%	29
23CVAC078	15	15	672	96	14%	27	4%	18%	24
23CVAC088	31	10	649	90	14%	27	4%	18%	22
23CVAC092	24	1	626	113	18%	28	4%	23%	30
23CVAC087	30	4	623	104	17%	30	5%	22%	23
23CVAC086	7	12	586	90	15%	23	4%	19%	37
23CVAC072	18	4	586	110	19%	29	5%	24%	11
23CVAC079	16	4	550	98	18%	28	5%	23%	28
23CVAC065	37	4	540	79	15%	25	5%	19%	19
23CVAC079	28	3	539	74	14%	21	4%	18%	25
23CVAC066	39	8	538	91	17%	23	4%	21%	21
23CVAC080	32	4	526	51	10%	15	3%	12%	19
23CVAC081	17	4	513	72	14%	20	4%	18%	26
23CVAC085	14	4	506	101	20%	24	5%	25%	50

Table 1 – Circle Valley assay results above a 500ppm TREO cut-off grade

Note:

TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$

 $\mathbf{NdPr} = \mathbf{Nd}_2\mathbf{O}_3 + \mathbf{Pr}_6\mathbf{O}_{11}$

ABOUT RARE EARTH ELEMENTS

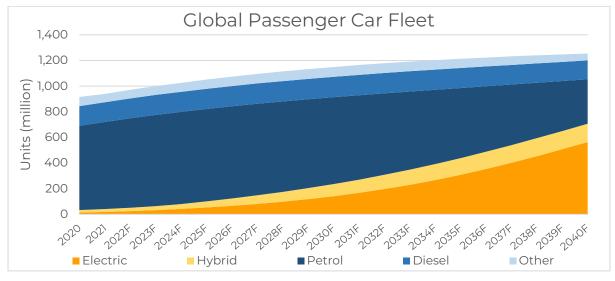
Rare earths are used in glass and ceramics, phosphors, medical imaging, communication technology, the automotive industry, electric vehicles and in renewable energy generation. The unique chemical and physical properties of rare earths make them a critical material across a number of rapidly evolving markets and industrial applications. Of particular importance are the magnet rare earth elements, neodymium and praseodymium (NdPr), used in the manufacture of powerful permanent magnets for electric motors and turbines.

Key global megatrends driving strong and diversified demand for NdPr include:

Military application – guidance and control systems.

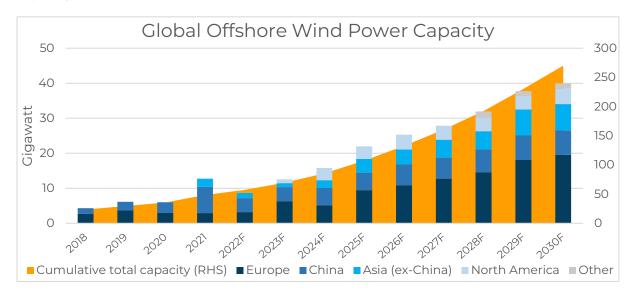
Communications technology.

Sustainable resource security – increasing scarcity of and global competition for resources.



Supply chain security – against a backdrop of heightened geopolitical tension and push to diversify supply away from concentrated sources.

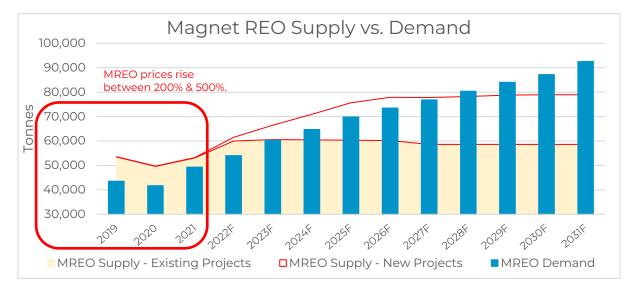
KEY DEMAND DRIVERS FOR RARE EARTH ELEMENTS


The public and private sector push toward a low carbon economy is driving increased penetration of electric vehicles (EV) and use of renewable technologies for energy generation. These megatrends drive growing demand for permanent magnets and are forecast to be the primary driver of growth in rare earth demand over next 10 years.

Global EV sales are forecast to grow at 20% CAGR to 2026 (20 million units/year). By 2040 there are forecast to be more EV's on the road than hydrocarbon powered passenger vehicles. Each EV uses 2-5kg of rare earth magnets.¹

¹ Argus, "Rare Earth Analytics", Report, April 2022.

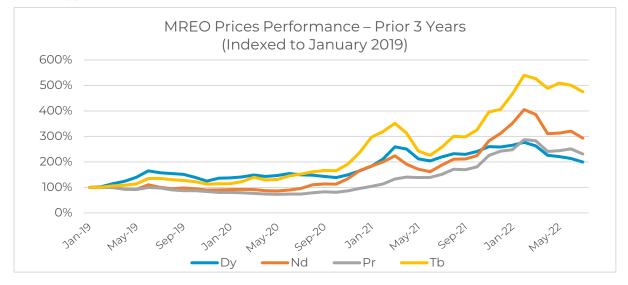
Installed wind turbine generating capacity is forecast to grow at 25% CAGR to 2030. Each direct-drive turbine uses 650kg of rare earth magnets per megawatt of generation capacity.²


THE OPPORTUNITY – GROWING DEMAND OUTPACES SUPPLY

Global demand for magnet rare earth elements neodymium, praseodymium, dysprosium and terbium is expected to grow faster than demand for all other rare earth elements, challenging the ability of the supply-side to keep up.

Market analysts forecast a supply deficit in magnet rare earth oxide (MREO) of between 15% and 37%, within the next 5 years due to tight supply from current producers and a lack of new production coming online.³

Key points:


- MREO supply deficit of 37% forecast by 2031 if no new supply comes online.
- MREO supply deficit of 15% forecast by 2031 if <u>all</u> new sources of supply are developed and produce as forecast.

² Argus, "Rare Earth Analytics", Report, April 2022.

³ Argus, "Rare Earth Analytics", Report, April 2022.

To understand potential impact of supply shortfalls on MREO pricing, the preceding 3 years (2019 through 2021) provides a good guide. While markets were in a state of balance, MREO prices appreciated between 200% and 500%.⁴

ABOUT CLAY HOSTED RARE EARTH DEPOSITS

Clay hosted rare earth deposits often enjoy significant project and cost advantages compared to hard rock deposits, with lower cost bulk mining and a simple process flow sheet. Clay deposits do not require the higher cost comminution and beneficiation processes that hard rock deposits require, resulting in lower capital intensity and lower operating cost to produce a refined product. The generally higher proportion of magnet rare earth elements (neodymium-praseodymium) in clay deposits also results in a high value product. Additionally, clay deposits may not produce the deleterious tailings waste.

Criteria	Clay Hosted REE	Hard Rock Hosted REE
Mineralisation	 Elevated MREO. 	 Can be either LREO or HREO dominant mineralisation.
Resource Definition	 Rapid, shallow, drilling into clay. Lower cost. 	 Slow, deeper, drilling into hard rock. Higher cost.
Mining	 Shallow mining. Lower strip ratio. Higher productivity. No blasting required. Lower cost. 	Higher strip ratio.Lower productivity.Blasting required.Higher cost.
Processing O+O O+O	 Simple process flow sheet. No comminution (crushing or milling). Lower capital and operating costs. 	 Complex process flow sheet. Requires comminution and beneficiation. Higher capital and operating costs.
Environmental	 Low levels of radionuclides. Non-radioactive waste. Progressive rehabilitation of mining footprint. 	 Possible deleterious elements in waste.

⁴ Argus, "Rare Earth Analytics", Report, April 2022.

FORTHCOMING ANNOUNCEMENTS

9-11 May 2023: Presentation and attendance – RIU Sydney Resources Round-up Conference.

From May 2023 onwards: Gold assays from Fairway shear zone drilling, Murchison Gold Project.

21-22 June 2023: Presentation and attendance – Gold Coast Investment Showcase.

June 2023: Initial Mineral Resource – Circle Valley (rare earths).

June 2023: Pre-feasibility Study for the Murchison Gold Project.

July 2023: June 2023 Quarterly Activities Report.

29-30 August 2023: Presentation and attendance – Australian Gold Conference, Sydney.

This announcement has been authorised for release by the Company's Board of Directors.

For further information, please contact:

Tim Davidson – Managing Director +61 8 6388 2700

info@meekametals.com.au www.meekametals.com.au

ABOUT MEEKA

Meeka Metals Limited is a gold and rare earths company with a portfolio of high quality 100% owned projects across Western Australia.

Gold

Meeka's flagship Murchison Gold Project has a combined 281km² landholding in the prolific Murchison Gold Fields and hosts a large high-grade +1.2Moz JORC Resource. The Company is actively growing these Resources while also progressing toward production. The release of the Murchison Gold Project Scoping Study in December 2021 outlined a robust Project that produces over 420koz of gold⁵.

In addition, Meeka owns the Circle Valley Project (222km²) in the Albany-Fraser Mobile Belt (also host to the Tropicana gold mine – 3Moz past production). Gold mineralisation has been identified in four separate locations at Circle Valley and presents an exciting growth opportunity, which is being aggressively pursued.

Rare Earths

Meeka controls the Cascade Rare Earths Project (2,269km²) in a region that is rapidly emerging as a highly prospective clay rare earths province. Importantly, the results to date contain high levels of permanent magnet metals (neodymium-praseodymium). These metals are geopolitically critical, and the Company intends to accelerate its understanding of Cascade through metallurgical work and ongoing drilling.

Circle Valley also hosts clay rare earths within thick, near surface mineralised zones below shallow transported cover. The mineralisation consistently demonstrates a high proportion of the grade as neodymium-praseodymium oxides. Metallurgical work, in addition to infill and extensional drilling are ongoing. An initial Mineral Resource is targeted for 2023.

⁵First reported in announcement dated 1 December 2021 and titled "Murchison Gold Project Scoping Study". The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the target continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Mineral Resource Summary

	١	Measure	ł	l	ndicated	I		Inferred			Total	
Project	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
	('000t)	(g/t)	('000oz)	('000t)	(g/t)	('000oz)	('000t)	(g/t)	('000oz)	('000t)	(g/t)	('000oz)
Andy Well	150	11.4	55	1,050	9.3	315	650	6.5	135	1,800	8.6	505
Turnberry				4,600	1.6	230	6,000	2.4	455	10,600	2.0	685
St Anne's				270	2.8	25				270	2.8	25
TOTAL	150	11.4	55	5,900	3.0	570	6,700	2.8	590	12,700	3.0	1,215

Notes:

Mineral Resources reported to the market on 3 May 2023. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. 2. Mineral Resources are classified in accordance with JORC code (2012).

 The Andy Well Mineral Resource is reported using 0.1g/t cut-off grade.
 The Turnberry open pit Mineral Resource is only the portion of the Mineral Resource that is constrained within a A\$2,600/oz optimised pit shell and above a 0.5g/t gold cut-off grade.

The Turnberry underground Mineral Resource is only the portion of the Mineral Resource that is located outside the A\$2,600/oz optimised pit shell and above a 1.5g/t 5. gold cut-off grade.

The St Anne's Mineral Resource is constrained within a A\$2,600/oz optimised pit shell and above a 0.5g/t gold cut-off grade. Estimates are rounded to reflect the level of confidence in the Mineral Resources at the time of reporting. 6

COMPETENT PERSON'S STATEMENT

The information that relates to Exploration Results as those terms are defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve", is based on information reviewed by Mr Duncan Franey, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Franey is a full-time employee of the Company. Mr Franey has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Franey consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information that relates to Mineral Resources was first reported by the Company in its announcement to the ASX on 3 May 2023. The Company is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD LOOKING STATEMENTS

Certain statements in this report relate to the future, including forward looking statements relating to the Company's financial position, strategy and expected operating results. These forward-looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement and deviations are both normal and to be expected. Other than required by law, neither the Company, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements will actually occur. You are cautioned not to place undue reliance on those statements.

DRILLING DATA

Table 2 – Collar Table

Hole ID	Туре	Easting	Northing	RL	Azimuth	Dip (Damaaa)	End of Hole
2701/40001	AC	398729	6349837	234	(Degrees) 0	(Degrees) -90	(m)
23CVAC001 23CVAC002	AC	398729	6350201	234	0	-90	17 78
23CVAC002 23CVAC003	AC	399068	6350568	229	0	-90	27
23CVAC004	AC	399232	6350939	229	0	-90	73
23CVAC005	AC	393638	6351389	233	Ő	-90	45
23CVAC006	AC	393782	6351034	232	Õ	-90	9
23CVAC007	AC	396265	6350292	234	Õ	-90	51
23CVAC008	AC	395816	6350110	234	Õ	-90	52
23CVAC009	AC	395351	6349925	237	0	-90	43
23CVAC010	AC	395070	6350567	235	0	-90	24
23CVAC011	AC	395215	6350275	236	0	-90	15
23CVAC012	AC	394960	6349750	235	0	-90	52
23CVAC013	AC	395550	6348266	238	0	-90	52
23CVAC014	AC	395404	6348634	236	0	-90	58
23CVAC015	AC	395041	6348066	237	0	-90	57
23CVAC016	AC	394886	6348426	238	0	-90	54
23CVAC017	AC	394581	6349162	235	0	-90	43
23CVAC018	AC	394742	6348794	238	0	-90	51
23CVAC019	AC	394360	6347782	238	0	-90	18
23CVAC020	AC	394172	6348135	236	0	-90	15
23CVAC021	AC	394038	6348513	240	0	-90	33
23CVAC022	AC	395261	6348985	237	0	-90	34
23CVAC023	AC	395834	6347516	238	0	-90	43
23CVAC024	AC	395099	6349368	236	0	-90	17
23CVAC025	AC	395999	6347112	237	0	-90	32
23CVAC026	AC	395492	6346936	238	0	-90	23
23CVAC027	AC	395337	6347319	237	0	-90	41
23CVAC028	AC	394608	6347019	238	0	-90	21
23CVAC029	AC	392862	6351512	232	0	-90	40
23CVAC030	AC	392893	6351967	230	0	-90	5
23CVAC031	AC	393255	6352108	231	0	-90	14
23CVAC032	AC	394598	6349608	235	0	-90	42
23CVAC033	AC	394252	6349934	232	0	-90	30
23CVAC034	AC	394773	6350060	233	0	-90	24
23CVAC035	AC	396581	6348700	235	0	-90	28
23CVAC036	AC AC	396268 395887	6348563	237 238	0	-90 -90	38 26
23CVAC037 23CVAC038	AC	395530	6348406 6349101	230	0 0	-90	45
23CVAC038 23CVAC039	AC	395862	6349230	232	0	-90	52
23CVAC039	AC	395327	6349447	233	0	-90	30
23CVAC040 23CVAC041	AC	395693	6349590	234	0	-90	46
23CVAC042	AC	396068	6349739	235	0	-90	19
23CVAC043	AC	396325	6349487	232	Ő	-90	36
23CVAC044	AC	396392	6349047	235	0	-90	52
23CVAC045	AC	396027	6348905	235	0	-90	54
23CVAC046	AC	395647	6348759	231	Õ	-90	18
23CVAC047	AC	394970	6347165	236	0	-90	21
23CVAC048	AC	396416	6347757	237	Õ	-90	22
23CVAC049	AC	396096	6347634	237	0	-90	25
23CVAC050	AC	396250	6347231	237	0	-90	25
23CVAC051	AC	398115	6350457	230	0	-90	66
23CVAC052	AC	397638	6350430	232	0	-90	46
23CVAC053	AC	397933	6350084	230	0	-90	31
23CVAC054	AC	395118	6346808	237	0	-90	19
23CVAC055	AC	398300	6350822	232	0	-90	58
23CVAC056	AC	397846	6350768	230	0	-90	18
23CVAC057	AC	398491	6351112	230	0	-90	48
23CVAC058	AC	398041	6351120	230	0	-90	30
23CVAC059	AC	394227	6349458	238	0	-90	42
23CVAC060	AC	393997	6350511	236	0	-90	42
23CVAC061	AC	393708	6350104	239	0	-90	18
23CVAC062	AC	394429	6350509	235	0	-90	42
23CVAC063	AC	395941	6350987	233	0	-90	57
23CVAC064	AC	395597	6350857	234	0	-90	19
23CVAC065	AC	395665	6350455	232	0	-90	54
23CVAC066	AC	396011	6350603	231	0	-90	54

Hole ID	Туре	Easting	Northing	RL	Azimuth (Degrees)	Dip (Degrees)	End of Hole (m)
23CVAC067	AC	393851	6349756	235	0	-90	18
23CVAC068	AC	393859	6349309	236	0	-90	37
23CVAC069	AC	394760	6347942	237	0	-90	43
23CVAC070	AC	394595	6348311	240	0	-90	39
23CVAC071	AC	394436	6348659	238	0	-90	18
23CVAC072	AC	393356	6350845	232	0	-90	25
23CVAC073	AC	393311	6351273	231	0	-90	13
23CVAC074	AC	392989	6351151	231	0	-90	58
23CVAC075	AC	392605	6351025	229	0	-90	29
23CVAC076	AC	394664	6351410	230	0	-90	22
23CVAC077	AC	395231	6351649	230	0	-90	19
23CVAC078	AC	394940	6351526	231	0	-90	30
23CVAC079	AC	394187	6351225	233	0	-90	31
23CVAC080	AC	394501	6351725	234	0	-90	62
23CVAC081	AC	393697	6351844	232	0	-90	30
23CVAC082	AC	394867	6351874	231	0	-90	35
23CVAC083	AC	394095	6351999	232	0	-90	21
23CVAC084	AC	394439	6352142	232	0	-90	6
23CVAC085	AC	393664	6352292	231	0	-90	24
23CVAC086	AC	393244	6351686	230	0	-90	40
23CVAC087	AC	392590	6351829	230	0	-90	38
23CVAC088	AC	392501	6351395	232	0	-90	41
23CVAC089	AC	392129	6351262	231	0	-90	7
23CVAC090	AC	391741	6351582	233	0	-90	12
23CVAC091	AC	392030	6351658	234	0	-90	13
23CVAC092	AC	394194	6351587	233	0	-90	25

Table 3 – REO Results

Drill Hole	From	То	Int.	La_2O_3	CeO ₂	Pr ₆ O ₁₁	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd_2O_3	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
ID	(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
23CVAC061	14	18	4	42.3	96.2	10.5	37.1	7.5	1.3	6.0	0.8	4.7	0.8	2.4	0.3	2.2	0.3	24.0	236	29.9
23CVAC062	11	15	4	5.2	13.8	1.5	5.8	0.8	0.2	1.0	0.2	1.0	0.2	0.6	0.1	0.8	0.1	5.1	36	14.3
23CVAC062	15	19	4	46.7	58.2	15.8	51.1	10.2	1.7	6.2	1.0	5.4	1.0	3.1	0.5	2.7	0.4	25.5	229	19.6
23CVAC062	19	23	4	1823.7	733.4	489.3	1761.3	350.2	58.6	300.8	45.8	259.4	47.2	131.5	18.0	119.6	15.9	1320.7	7475	26.8
23CVAC062	23	27	4	1098.9	577.3	225.9	831.6	149.6	26.5	148.7	21.7	124.0	24.2	66.7	9.4	61.5	8.3	695.9	4070	29.4
23CVAC062	27	31	4	243.9	337.8	56.9	212.3	40.6	8.1	43.2	6.5	39.3	7.7	22.3	3.0	20.0	2.9	236.8	1281	23.0
23CVAC062	31	35	4	64.3	113.7	15.3	54.6	11.0	2.1	11.8	1.8	12.5	2.8	8.8	1.1	7.3	1.1	98.0	406	14.1
23CVAC062	35	39	4	71.8	145.6	18.1	63.9	11.8	2.1	11.7	1.6	10.1	2.1	5.8	0.9	5.0	0.8	64.0	415	23.3
23CVAC062	39	42	3	52.8	112.3	13.2	48.9	8.8	1.9	8.4	1.3	7.5	1.5	4.5	0.7	4.1	0.6	48.3	315	19.3
23CVAC063	7	11	4	74.6	66.5	18.0	57.9	9.6	1.6	6.0	0.9	4.7	0.8	2.6	0.3	2.0	0.3	26.2	272	7.1
23CVAC063	11	15	4	119.6	83.7	28.2	89.1	13.6	2.0	9.5	1.2	7.0	1.2	3.3	0.5	2.8	0.5	32.4	395	8.9
23CVAC063	15	19	4	120.8	145.6	27.1	87.8	14.8	2.2	9.7	1.4	7.2	1.3	3.5	0.4	2.9	0.4	40.1	465	14.7
23CVAC063	19	23	4	105.6	181.8	21.0	67.2	11.1	2.1	8.7	1.1	6.1	1.1	3.3	0.5	2.7	0.4	38.0	451	11.8
23CVAC063	23	27	4	84.7	155.4	18.8	61.5	9.7	1.4	7.3	1.0	5.7	1.1	3.2	0.4	2.7	0.5	34.7	388	8.0
23CVAC063	27	31	4	64.0	149.9	14.7	46.5	8.3	1.2	6.3	0.9	4.8	0.8	2.5	0.4	2.0	0.3	27.6	330	6.6
23CVAC063	31	35	4	78.7	101.6	17.3	57.0	8.7	1.2	6.1	0.9	4.9	1.0	2.7	0.4	2.5	0.4	29.1	312	10.4
23CVAC063	35	39	4	90.3	220.5	18.8	66.5	10.5	1.3	8.8	1.3	8.0	1.5	4.5	0.7	4.6	0.8	52.7	491	10.3
23CVAC063	39	43	4	57.9	115.5	14.0	45.7	8.8	1.3	7.6	1.1	6.8	1.4	4.4	0.6	4.2	0.6	45.1	315	15.3
23CVAC063	43	47	4	65.7	141.9	14.7	50.9	9.8	2.1	7.8	1.2	7.5	1.5	4.6	0.6	4.5	0.7	49.0	363	17.8
23CVAC063	47	51	4	66.4	121.6	15.7	53.4	9.7	2.5	8.9	1.2	7.1	1.4	3.9	0.6	4.1	0.6	40.1	337	20.2
23CVAC063	51	55	4	41.6	81.7	10.6	39.2	7.8	1.4	6.0	0.9	4.8	1.1	3.1	0.5	2.9	0.6	28.1	230	23.3
23CVAC063	55	57	2	61.3	123.5	12.6	45.4	7.7	1.4	6.9	0.9	6.0	1.1	3.4	0.6	3.5	0.5	38.0	313	14.0
23CVAC064	9	13	4	57.9	95.8	11.2	36.0	6.3	0.9	5.0	0.7	4.1	0.8	2.4	0.3	2.3	0.3	23.6	248	9.5
23CVAC064	13	17	4	65.8	113.5	13.7	47.5	7.5	1.4	6.2	0.9	5.1	1.2	3.5	0.5	3.6	0.5	38.7	310	11.8
23CVAC064	17	19	2	32.4	68.5	7.5	25.8	5.4	0.9	4.5	0.6	3.7	0.8	2.4	0.3	2.3	0.4	24.4	180	6.6
23CVAC065	5	9	4	177.7	421.3	40.0	134.1	22.6	3.8	18.4	2.6	14.6	2.5	6.7	0.9	5.3	0.7	71.4	923	12.3
23CVAC065	9	13	4	96.6	216.8	22.2	72.9	11.1	1.9	8.6	1.4	7.2	1.4	4.0	0.6	4.3	0.5	40.8	490	6.1
23CVAC065	13	17	4	48.9	82.7	10.6	37.8	6.9	1.1	4.5	0.7	3.3	0.7	2.2	0.4	2.3	0.3	21.3	224	8.4
23CVAC065	17	21	4	59.2	75.5	14.1	54.4	7.5	1.0	5.1	0.8	4.1	0.8	2.4	0.4	2.2	0.3	23.6	252	11.7
23CVAC065	21	25	4	67.4	221.7	16.3	57.2	10.3	1.4	7.0	1.2	5.8	1.2	3.3	0.5	2.9	0.5	31.4	428	9.8
23CVAC065	25	29	4	65.1	138.8	14.6	50.4	8.5	1.3	6.5	0.9	5.0	1.1	2.8	0.4	2.6	0.4	34.4	333	10.1
23CVAC065	29	33	4	61.7	111.2	13.0	45.1	8.1	1.3	5.6	0.8	4.4	0.9	2.4	0.4	2.3	0.4	29.8	287	13.3
23CVAC065	33	37	4	36.0	67.2	7.0	24.1	3.9	0.8	3.1	0.4	2.3	0.5	1.5	0.2	1.5	0.2	14.0	163	31.6
23CVAC065	37	41	4	129.0	239.5	24.6	79.3	11.7	2.6	7.7	1.0	5.4	1.1	2.8	0.4	2.6	0.4	32.3	540	19.5
23CVAC065	41	45	4	36.5	89.8	10.7	46.3	10.7	3.3	8.7	1.2	7.0	1.4	4.1	0.5	3.3	0.5	42.7	267	38.2
23CVAC065	45	49 57	4	37.2	74.6	8.3	28.8	5.1	1.3	4.0	0.6	3.3	0.5	1.6	0.3	1.6	0.2	18.0	185	10.9
23CVAC065	49	53	4	26.9	57.7	6.8	25.4	5.4	1.4	4.6	0.8	3.7	0.8	2.0	0.3	1.8	0.3	21.8	160	23.8
23CVAC065	53	54	1	12.4	33.7	4.7	20.3	4.4	1.7	4.7	0.6	3.8	0.8	1.6	0.3	1.6	0.3	22.9	114	38.5
23CVAC066	11	15	4	35.5	41.4	4.9	15.7	3.1	0.4	2.3	0.4	2.7	0.7	1.9	0.3	2.4	0.3	20.8	133	7.7
23CVAC066	15 19	19 23	4	38.6	66.9	7.3	24.0	3.5 3.9	0.5	3.0	0.5	2.7	0.7	1.9	0.3 0.4	2.4	0.4 0.4	20.1 26 F	173	9.5
23CVAC066	19	23	4	32.0	51.7	6.0	20.3	3.9	0.6	3.2	0.5	3.6	0.7	2.4	0.4	2.9	0.4	26.5	155	11.8

Drill Hole ID	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm₂O₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
	(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
23CVAC066	23	27	4	39.9	57.0	6.3	21.6	3.6	0.6	2.6	0.4	2.9	0.7	1.9	0.3	2.1	0.3	19.0	159	12.3
23CVAC066	27	31	4	175.9	174.4	26.5	82.9	13.6	2.4	10.6	1.5	8.3	1.3	3.7	0.5	3.0	0.5	38.2	543	24.5
23CVAC066	31	35	4	317.8	358.7	78.2	271.8	46.3	8.8	32.2	4.5	23.1	4.5	11.2	1.5	9.7	1.2	126.4	1296	22.4
23CVAC066	35	39	4	100.7	156.6	25.4	86.9	14.8	2.8	11.3	1.5	7.7	1.6	4.0	0.5	3.6	0.4	47.1	465	19.2
23CVAC066	39	43	4	97.1	169.5	23.7	89.2	17.2	4.1	15.4	2.2	12.2	2.5	6.9	0.9	5.4	0.8	75.7	523	22.5
23CVAC066	43	47	4	87.1	194.7	22.4	91.8	18.0	4.6	16.9	2.4	14.4	2.6	7.2	1.0	6.1	0.9	82.9	553	18.9
23CVAC066	47	51	4	75.1	154.2	16.7	63.2	12.3	2.4	10.2	1.6	8.0	1.6	4.6	0.6	4.2	0.6	52.1	407	18.1
23CVAC066	51	54	3	62.4	122.6	14.0	51.0	9.0	1.8	7.4	1.0	6.3	1.2	3.2	0.5	3.0	0.4	37.3	321	17.3
23CVAC067	15	18	3	194.1	249.4	55.2	187.2	30.1	4.4	16.8	2.2	12.1	2.1	5.3	0.7	4.7	0.7	50.9	816	25.5
23CVAC068	14	18	4	4.1	23.5	1.0	3.5	0.8	0.2	0.5	0.1	0.7	0.1	0.5	0.1	0.7	0.1	4.4	40	9.4
23CVAC068	18	22	4	10.7	173.2	2.9	10.5	2.1	0.4	1.5	0.2	1.3	0.3	1.0	0.2	1.2	0.2	9.8	215	9.4
23CVAC068	22	26	4	34.9	196.5	8.2	26.9	5.3	0.9	3.7	0.4	2.6	0.5	1.6	0.2	1.8	0.3	15.7	300	10.9
23CVAC068	26	30	4	80.8	172.0	16.7	53.4	7.2	1.3	5.4	0.8	4.5	0.8	2.4	0.4	2.3	0.4	26.3	375	10.1
23CVAC068	30	34	4	132.5	143.1	25.9	82.9	12.3	2.3	9.2	1.2	6.8	1.4	4.0	0.5	4.0	0.6	41.5	468	11.0
23CVAC068	34	37	3	80.2	130.2	15.5	50.0	7.5	1.4	6.0	0.9	4.5	1.0	3.0	0.4	3.0	0.4	31.7	336	9.4
23CVAC069	15	19	4	40.9	80.2	9.0	30.0	5.5	0.8	3.4	0.6	3.1	0.6	1.8	0.3	2.0	0.2	16.0	194	6.4
23CVAC069	19	23	4	88.0	48.6	19.1	67.4	10.7	1.9	8.3	1.2	6.7	1.2	3.9	0.5	2.9	0.4	40.6	302	32.5
23CVAC069	23	27	4	24.9	57.2	6.5	25.8	5.2	1.3	5.1	0.8	3.9	0.8	2.1	0.3	1.8	0.2	24.8	161	24.2
23CVAC069	27	31	4	41.6	82.9	8.9	30.2	5.1	1.1	3.5	0.6	3.3	0.7	1.9	0.3	2.0	0.3	20.3	203	12.4
23CVAC069	31	35	4	57.2	101.5	11.4	37.7	6.3	0.9	4.8	0.8	4.6	0.9	2.9	0.4	2.5	0.4	26.4	259	8.6
23CVAC069	35	39	4	48.1	105.2	9.8	34.1	5.8	1.1	4.9	0.7	4.3	0.8	2.2	0.4	2.3	0.3	27.8	248	8.6
23CVAC069	39	43	4	38.9	84.8	8.6	32.1	5.9	1.4	5.0	0.8	5.0	1.0	3.1	0.4	2.7	0.4	33.4	224	18.7
23CVAC070	13	17	4	26.0	100.9	5.6	18.2	3.4	0.4	1.8	0.3	1.5	0.2	0.7	0.1	0.7	0.1	6.0	166	18.1
23CVAC070	17	21	4	242.8	439.8	63.9	232.1	41.3	8.3	36.2	5.2	27.2	5.2	13.4	1.7	9.5	1.2	147.3	1275	27.5
23CVAC070	21	25	4	754.1	287.4	237.4	884.1	155.4	29.9	116.4	17.5	96.8	18.7	52.7	6.7	41.4	5.8	521.9	3226	28.8
23CVAC070	25	29	4	465.6	159.1	105.1	380.2	64.0	12.4	53.5	7.6	38.7	7.0	19.9	2.5	15.5	2.3	200.0	1533	11.2
23CVAC070	29	33	4	261.5	205.1	60.4	239.1	44.2	9.7	42.5	6.2	34.9	7.2	21.4	2.7	15.8	2.4	266.7	1220	19.3
23CVAC070	33	37	4	90.0	148.6	20.1	71.2	12.2	2.9	10.0	1.6	8.3	1.7	5.4	0.8	4.5	0.7	67.1	445	19.0
23CVAC070	37	39	2	32.3	56.9	8.4	31.7	6.1	1.6	5.9	0.9	5.2	1.2	3.5	0.5	2.5	0.4	36.6	194	47.2
23CVAC071	13	18	5	33.3	35.5	6.7	23.1	4.3	0.9	4.0	0.6	3.8	0.9	2.8	0.4	2.4	0.4	43.3	163	25.8
23CVAC072	14	18	4	110.2	91.1	29.1	107.8	21.3	2.7	16.0	2.6	13.8	2.7	7.5	1.0	5.9	0.9	84.6	497	11.4
23CVAC072	18	22	4	118.5	129.6	29.1	109.8	21.3	2.8	19.6	3.0	17.7	3.4	10.1	1.2	7.7	1.1	110.7	586	10.7
23CVAC072	22	25	3	91.2	126.5	21.8	79.0	14.4	2.1	14.2	2.3	13.3	2.6	8.6	1.1	6.6	0.9	96.5	481	11.8
23CVAC073	5	9	4	4.9	6.8	1.0	2.4	0.7	0.3	0.5	0.1	0.8	0.2	0.5	0.1	0.5	0.1	4.3	23	26.1
23CVAC073	9	13	4	35.3	76.4	9.2	34.3	6.9	1.6	6.1	0.9	5.9	1.1	4.0	0.5	2.9	0.5	34.0	220	36.5
23CVAC074	11	15	4	72.4	109.0	12.1	31.5	4.3	1.0	3.1	0.4	2.7	0.5	1.3	0.2	1.4	0.2	13.1	253	20.2
23CVAC074	15	19	4	24.7	159.1	4.0	12.8	2.8	0.7	2.3	0.5	3.0	0.6	2.2	0.3	2.4	0.3	17.3	233	33.0
23CVAC074	19	23	4	64.3	205.1	12.1	36.5	5.5	1.6	4.9	0.8	4.6	1.1	3.9	0.5	3.8	0.5	41.8	387	44.9
23CVAC074	23	27	4	35.3	158.5	7.2	27.9	5.2	1.3	5.1	0.8	5.4	1.2	3.5	0.6	4.0	0.6	37.8	294	35.6
23CVAC074	27	31	4	33.8	122.8	7.4	27.9	6.0	1.5	5.7	0.8	5.3	1.2	3.6	0.5	3.7	0.6	23.9	245	33.1
23CVAC074	31	35	4	31.2	121.0	7.8	32.7	7.0	2.0	7.7	1.2	8.3	1.9	6.8	0.9	6.0	1.0	63.9	299	36.4
23CVAC074	35	39	4	125.5	88.1	36.9	162.7	33.0	10.0	37.3	5.7	33.3	7.4	21.4	2.8	18.1	2.6	257.8	843	22.1
23CVAC074	39	43	4	68.5	92.4	20.4	86.8	17.6	5.2	20.2	3.2	18.2	4.0	11.7	1.7	9.6	1.6	131.4	493	24.8

Drill Hole	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
ID	(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
23CVAC074	43	47	4	62.7	130.2	15.5	56.8	11.6	2.0	10.8	1.7	10.7	2.2	6.9	0.9	6.2	0.9	78.5	398	16.0
23CVAC074	47	51	4	62.2	134.5	16.1	59.6	11.7	2.0	10.8	1.8	9.9	2.1	6.2	0.8	5.4	0.8	65.8	390	15.0
23CVAC074	51	55	4	64.0	127.8	15.6	56.0	11.9	1.8	10.0	1.5	9.8	2.0	6.0	0.7	5.1	0.7	65.9	379	16.7
23CVAC074	55	58	3	72.1	133.9	16.6	63.3	12.3	2.0	12.4	1.9	12.2	2.8	8.7	1.1	6.3	1.0	121.0	468	16.9
23CVAC075	5	9	4	26.4	41.4	6.0	22.5	4.5	1.0	4.5	0.7	3.8	1.0	2.7	0.4	2.3	0.4	29.6	147	16.6
23CVAC075	9	13	4	12.7	14.1	2.1	8.2	1.3	0.3	1.3	0.2	1.1	0.2	0.9	0.1	0.8	0.2	8.4	52	17.5
23CVAC075	13	17	4	8.1	13.6	1.4	5.5	1.0	0.2	0.9	0.2	0.9	0.2	0.9	0.2	0.9	0.2	6.7	41	19.6
23CVAC075	15	21	4	4.9	35.5	1.3	5.2	1.1	0.2	0.9	0.2	1.2	0.3	1.1	0.2	1.3	0.2	7.0	61	24.1
23CVAC075	21	25	4	27.8	246.9	6.4	23.1	4.1	0.6	2.6	0.4	2.8	0.5	1.6	0.3	1.8	0.3	13.0	332	22.7
23CVAC075	25	29	4	423.4	308.3	114.2	400.1	75.4	11.8	58.6	8.4	50.3	9.4	26.1	3.8	22.5	3.2	257.8	1773	18.4
23CVAC076	5	9	4	106.8	124.7	27.1	99.4	19.1	3.6	15.0	2.2	12.1	2.2	6.3	0.9	5.0	0.8	69.8	495	15.6
23CVAC076	9	13	4	60.4	116.3	12.7	44.9	7.5	1.2	6.6	0.9	5.8	1.0	3.0	0.4	3.1	0.4	33.8	298	11.2
23CVAC076	13	17	4	66.5	140.7	14.6	47.7	8.9	1.2	6.3	1.0	5.8	1.0	3.3	0.5	2.8	0.4	34.5	335	10.3
23CVAC076	15	21	4	70.7	147.4	15.0	54.2	8.3	1.5	6.8	1.0	5.8	1.1	3.3	0.4	3.2	0.5	36.3	355	10.5
23CVAC076	21	22	1	72.2	162.1	16.3	55.5	9.7	1.4	6.8	1.0	5.7	1.1	3.2	0.5	3.1	0.4	32.4	371	9.0
23CVAC077	5	9	4	33.0	44.0	5.0	14.0	2.6	0.3	2.0	0.3	1.9	0.4	1.2	0.2	1.5	0.4	12.1	119	6.7
23CVAC077	9	13	4	74.8	94.5	14.4	44.3	7.0	1.0	4.2	0.6	3.6	0.4	1.2	0.2	1.9	0.2	15.9	265	8.0
23CVAC077	13	17	4	168.9	148.0	44.2	162.1	31.1	5.8	28.1	3.8	21.4	4.0	11.2	1.6	9.3	1.3	135.2	776	17.8
23CVAC077	15	19	2	30.6	88.9	12.1	48.9	9.8	3.1	8.2	1.3	7.2	1.3	3.7	0.6	3.4	0.6	37.1	257	26.1
23CVAC077	7	15	4	14.5	38.2	2.3	7.2	1.5	0.3	1.0	0.1	1.0	0.2	0.6	0.0	0.7	0.0	4.6	73	35.6
23CVAC078	, 11	15	4	28.3	219.3	6.3	22.4	3.9	0.5	2.9	0.5	2.4	0.5	1.4	0.2	1.5	0.3	17.3	308	17.5
23CVAC078	15	19	4	20.5 95.1	262.9	23.6	85.5	14.7	3.3	11.6	1.6	2. 4 7.4	1.2	3.4	0.2	2.8	0.5	34.5	548	31.3
23CVAC078	19	23	4	85.6	202.5	21.1	78.3	12.1	2.4	9.9	1.4	8.1	1.5	4.9	0.7	4.4	0.7	61.6	501	23.3
23CVAC078	23	27	4	201.1	372.2	41.2	144.1	22.7	4.6	22.2	3.3	19.7	4.3	12.9	1.8	10.3	1.7	189.2	1051	20.7
23CVAC078	23	30	3	102.2	181.8	19.1	67.4	10.9	1.9	12.6	1.8	11.9	2.8	8.4	1.0	6.6	1.7	126.9	557	18.3
23CVAC079	12	16	4	66.6	52.1	14.4	50.2	9.1	1.6	6.0	0.8	4.5	0.8	2.0	0.3	1.8	0.3	18.0	229	14.0
23CVAC079	16	20	4	114.5	237.1	27.5	98.4	17.1	3.1	11.5	1.6	8.7	1.3	2.8	0.3	2.2	0.3	23.9	550	27.6
23CVAC079	20	24	4	81.0	150.5	22.3	89.1	17.5	3.9	15.0	2.0	10.7	1.5	3.3	0.4	2.4	0.3	31.4	431	43.4
23CVAC079	24	28	4	32.6	82.2	6.0	20.1	3.7	0.7	2.8	0.3	2.5	0.5	1.5	0.4	1.5	0.2	10.8	166	26.1
23CVAC079	28	31	3	72.4	205.8	20.7	74.2	16.5	2.9	14.6	2.5	15.2	3.1	9.2	1.4	8.6	1.3	91.2	539	25.3
23CVAC080	8	12	4	26.3	47.0	5.8	20.5	3.7	0.8	3.1	0.5	3.3	0.7	1.9	0.4	1.9	0.4	18.4	135	23.0
23CVAC080	12	16	4	30.7	31.4	5.9	19.8	3.4	0.6	2.5	0.4	2.5	0.5	2.0	0.4	2.2	0.4	15.7	119	14.9
23CVAC080	16	20	4	20.8	78.6	4.6	14.5	3.2	0.6	2.3	0.4	2.6	0.5	1.9	0.3	2.2	0.4	19.6	152	10.1
23CVAC080	20	24	4	65.6	172.6	16.1	54.8	10.5	1.4	8.1	1.3	7.8	1.5	4.6	0.5	4.5	0.7	46.7	397	11.7
23CVAC080	24	28	4	57.1	153.6	13.8	47.9	8.1	1.1	6.1	1.0	6.5	1.3	4.2	0.7	4.2	0.6	42.2	348	12.9
23CVAC080	28	32	4	42.9	130.2	10.2	35.0	5.9	0.9	4.5	0.7	4.6	0.8	2.8	0.4	2.7	0.4	34.2	276	23.0
23CVAC080	32	36	4	70.0	330.4	14.9	50.7	8.2	1.5	6.8	1.0	5.2	1.0	2.5	0.4	2.7	0.4	30.7	526	19.2
23CVAC080 23CVAC080	36	40	4	70.0 52.2	200.2	14.5	39.9	6.3	1.0	5.8	0.9	5.2 6.0	1.0	2.3 3.4	0.5	2.3 3.1	0.4	35.8	368	19.2
23CVAC080 23CVAC080	30 40	40 44	4	52.2 73.4	200.2 234.0	16.1	54.9	9.5	1.0	5.0 8.3	1.2	6.8	1.0 1.6	5.0	0.5	4.8	0.5	53.6	300 472	16.6
23CVAC080 23CVAC080	40 44	44 48	4	73.4 50.4	234.0 84.1	13.0	54.9 47.8	9.5 8.8	1.3 1.4	0.3 7.4	1.2	6.8	1.6 1.4	3.0 4.0	0.7	4.0 3.4	0.7	55.6 44.7	275	67.8
23CVAC080 23CVAC080	44	40 52	4	53.2	106.1	12.3	47.8	0.0 7.5	1.4	7.4 5.1	0.8	5.0	0.9	4.0 3.0	0.6	3.4 2.6	0.5	32.3	275	33.9
23CVAC080 23CVAC080	40 52	52 56	4	55.2 68.6	133.9	12.3	40.4 49.9	7.5 8.5	1.0	5.1 7.1	0.8 1.2	5.0 6.3	1.4	3.0 4.5	0.5	2.0 3.9	0.4 0.6	32.3 47.5	351	10.1
23CVAC080 23CVAC080	52 56	50 60	4	66.6 64.0	128.4	15.4 14.1	49.9 46.3	0.5 8.6	1.5 1.0	6.5	0.9	6.3 4.9	1.4	4.5 3.0	0.8	2.8	0.6	47.5 32.9	315	8.0
ZJUVAUU8U	30	00	4	04.0	120.4	14.1	40.5	0.0	1.0	0.5	0.9	4.9	1.0	5.0	0.4	2.0	0.4	32.9	212	0.0

Drill Hole	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
ID	(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
23CVAC080	60	62	2	54.3	129.0	11.8	42.1	6.8	1.1	5.9	0.9	5.1	1.1	3.2	0.5	3.4	0.4	39.0	305	13.0
23CVAC081	9	13	4	21.0	56.5	4.0	13.8	2.1	0.4	2.2	0.2	2.0	0.4	1.4	0.2	1.5	0.2	11.3	117	21.8
23CVAC081	13	17	4	24.3	164.6	4.5	13.2	2.8	0.5	2.5	0.4	2.5	0.6	2.0	0.3	2.3	0.3	18.2	239	21.6
23CVAC081	17	21	4	72.4	230.3	20.1	72.4	14.4	3.0	11.3	1.7	9.9	2.2	6.2	0.9	6.3	0.9	60.6	513	25.6
23CVAC081	21	25	4	78.9	154.8	19.7	72.9	14.7	3.1	13.2	2.0	11.8	2.4	7.1	0.9	6.3	0.9	70.2	459	27.8
23CVAC081	25	29	4	74.0	170.1	19.3	74.9	14.8	3.0	13.3	2.0	11.6	2.5	6.3	1.0	5.9	0.9	69.3	469	25.2
23CVAC081	29	30	1	70.8	155.4	17.4	69.9	12.5	2.7	12.0	2.0	11.4	2.4	6.6	1.0	6.6	0.9	72.8	444	21.6
23CVAC082	6	10	4	13.7	26.0	2.9	11.5	2.1	0.4	2.0	0.2	1.7	0.4	1.2	0.2	1.2	0.2	11.7	75	13.5
23CVAC082	10	14	4	36.2	44.8	7.0	23.6	3.6	0.8	3.3	0.5	2.9	0.7	2.3	0.3	2.0	0.4	22.7	151	18.6
23CVAC082	14	18	4	24.0	26.4	4.5	15.2	2.5	0.5	2.1	0.3	1.9	0.4	1.6	0.3	1.5	0.3	13.6	95	18.4
23CVAC082	18	22	4	190.6	298.5	37.1	138.8	23.4	5.5	22.3	3.1	17.5	3.6	9.3	1.3	7.9	1.1	109.7	870	38.8
23CVAC082	22	26	4	94.9	210.1	21.7	78.5	12.8	2.4	10.8	1.5	7.9	1.6	4.8	0.7	4.0	0.6	49.3	501	19.6
23CVAC082	26	30	4	61.7	125.9	13.2	47.8	7.7	1.7	6.6	1.0	6.4	1.3	4.0	0.7	3.9	0.5	42.5	325	23.0
23CVAC082	30	34	4	68.6	135.1	15.6	55.8	10.0	2.2	8.6	1.1	6.3	1.2	4.0	0.6	3.0	0.5	39.9	352	21.9
23CVAC082	34	35	1	53.2	115.6	13.4	48.5	9.4	2.0	7.9	1.2	5.9	1.4	4.0	0.6	3.5	0.5	42.0	309	18.4
23CVAC083	5	9	4	23.8	67.7	3.6	11.4	2.0	0.4	1.5	0.2	1.2	0.3	0.8	0.1	0.7	0.1	6.0	120	15.0
23CVAC083	9	13	4	73.1	82.8	9.8	27.4	4.4	0.5	2.7	0.4	1.8	0.3	1.0	0.1	0.7	0.1	7.4	213	17.2
23CVAC083	13	17	4	225.2	371.0	54.9	190.1	31.9	5.8	21.3	3.2	15.9	2.9	7.8	1.0	5.8	0.9	86.5	1024	33.9
23CVAC083	17	21	4	83.5	184.3	21.7	81.3	14.3	3.1	10.3	1.5	8.8	1.7	4.3	0.7	3.5	0.6	53.6	473	31.3
23CVAC084	3	6	3	2.7	6.6	0.8	3.6	0.5	0.1	0.5	0.1	0.3	0.1	0.1	0.0	0.2	0.0	2.4	18	2.9
23CVAC085	6	10	4	166.5	211.9	60.5	264.8	55.7	15.0	45.6	5.9	31.3	6.1	15.7	2.0	11.9	1.6	175.9	1070	29.4
23CVAC085	10	14	4	40.3	66.8	12.6	50.4	10.0	3.0	9.8	1.4	7.1	1.5	4.3	0.5	3.3	0.5	53.1	265	12.6
23CVAC085	14	18	4	73.4	174.4	24.1	101.1	20.2	5.3	15.8	2.2	10.9	2.3	6.1	0.8	4.8	0.7	63.4	506	49.7
23CVAC085	18	22	4	46.4	122.1	17.8	84.8	18.2	5.3	17.4	2.5	13.7	2.6	6.9	0.9	5.4	0.8	73.9	419	54.0
23CVAC085	22	24	2	37.2	87.5	11.9	52.1	11.5	3.2	10.3	1.3	7.2	1.5	4.2	0.5	3.3	0.5	59.3	291	44.5
23CVAC086	3	7	4	65.3	157.2	15.0	58.4	11.5	3.2	11.0	1.6	9.4	2.0	5.9	0.8	5.3	0.8	64.3	412	30.1
23CVAC086	7	11	4	111.8	253.1	25.5	99.6	19.1	5.8	18.6	2.6	14.5	3.2	9.9	1.3	8.2	1.2	101.0	675	37.4
23CVAC086	11	15	4	90.8	198.4	21.7	80.5	15.4	4.4	14.6	2.2	12.7	3.0	9.2	1.4	8.2	1.4	105.1	569	32.7
23CVAC086	15	19	4	91.6	152.9	22.6	90.0	17.0	5.0	15.1	2.3	12.5	2.7	7.5	1.2	7.2	1.1	85.8	515	39.7
23CVAC086	19	23	4	33.5	90.4	7.5	27.2	5.8	1.5	4.2	0.6	3.6	0.9	2.9	0.5	2.9	0.4	28.2	210	36.2
23CVAC086	23	27	4	14.0	90.4	2.8	11.7	2.7	0.8	2.8	0.4	2.7	0.6	2.1	0.4	2.2	0.5	22.5	157	28.8
23CVAC086	27	31	4	60.8	107.0	15.7	63.3	12.5	3.3	10.6	1.6	9.1	1.8	5.5	0.8	5.0	0.8	59.1	357	32.5
23CVAC086	31	35	4	47.7	105.0	12.0	44.0	9.4	2.6	7.4	1.2	6.5	1.3	4.3	0.6	3.9	0.6	42.2	289	33.4
23CVAC086	35	39	4	40.9	88.8	10.9	39.1	8.6	2.5	6.7	1.1	6.3	1.3	3.9	0.5	3.4	0.5	39.6	254	30.1
23CVAC086	39	40	1	43.4	92.0	11.2	44.8	8.4	2.2	7.1	1.0	6.6	1.3	3.8	0.5	3.6	0.5	38.9	265	32.4
23CVAC087	6	10	4	38.1	143.1	5.6	15.4	3.2	0.4	2.0	0.3	1.6	0.3	0.9	0.1	0.9	0.1	8.9	221	20.7
23CVAC087	10	14	4	35.8	342.7	5.1	17.0	3.3	0.6	2.5	0.4	2.7	0.7	1.9	0.3	2.1	0.3	20.1	435	19.0
23CVAC087	14	18	4	54.9	171.4	7.2	17.5	3.0	0.4	2.1	0.3	1.8	0.3	1.3	0.2	1.5	0.2	10.3	272	22.5
23CVAC087	18	22	4	9.3	100.7	1.8	5.4	1.5	0.2	0.9	0.2	1.8	0.3	1.2	0.2	1.4	0.2	7.1	132	21.2
23CVAC087	22	26	4	147.2	363.6	40.0	134.7	29.6	4.6	20.5	3.3	19.3	3.5	10.8	1.4	10.4	1.2	97.3	887	21.2
23CVAC087	26	30	4	65.9	148.0	19.6	69.3	13.8	2.2	9.1	1.3	7.4	1.3	4.0	0.5	3.9	0.6	35.6	383	19.6
23CVAC087	30	34	4	119.0	162.1	30.0	104.0	21.3	4.2	19.9	3.1	17.9	3.6	10.3	1.4	9.6	1.4	114.9	623	22.7
23CVAC087	34	38	4	71.1	110.4	16.1	55.2	10.5	1.7	9.1	1.5	8.2	1.8	5.7	0.7	4.5	0.7	66.0	363	13.2

Drill Hole ID	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₆ On	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y ₂ O ₃	TREO	Sc ₂ O ₃
	(m)	(m)	(m)	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
23CVAC088	11	15	4	42.8	47.4	7.8	22.7	3.2	0.5	1.9	0.2	1.5	0.3	0.8	0.1	1.0	0.2	5.6	136	4.2
23CVAC088	15	19	4	56.1	68.2	11.1	32.7	4.7	0.5	2.4	0.3	1.8	0.3	1.0	0.1	1.1	0.2	6.6	187	6.2
23CVAC088	19	23	4	38.4	67.4	7.4	23.4	3.5	0.4	2.0	0.3	1.6	0.3	0.8	0.1	1.0	0.2	5.8	153	4.6
23CVAC088	23	27	4	33.3	64.4	5.6	16.4	2.7	0.3	1.6	0.2	1.3	0.3	0.9	0.1	1.1	0.2	6.0	134	3.5
23CVAC088	27	31	4	84.0	128.4	14.3	39.5	5.7	0.6	2.7	0.4	2.3	0.4	1.2	0.2	1.3	0.2	7.4	288	7.5
23CVAC088	31	35	4	121.4	344.0	29.1	94.0	15.4	1.7	6.6	0.9	4.2	0.6	1.6	0.2	1.4	0.2	11.3	633	20.4
23CVAC088	35	39	4	84.3	390.6	20.9	66.0	11.2	1.2	5.3	0.7	3.5	0.6	1.6	0.2	1.8	0.3	12.1	600	14.9
23CVAC088	39	41	2	112.5	218.7	32.6	129.5	28.4	3.9	25.5	3.7	23.8	4.7	14.3	2.1	13.0	1.9	163.2	778	37.6
23CVAC089	0	4	4	44.3	137.6	12.1	44.8	8.4	1.4	6.9	1.0	6.2	1.2	3.3	0.5	3.3	0.5	32.0	303	11.1
23CVAC089	4	7	3	52.1	198.4	14.1	51.3	10.8	1.7	6.3	1.3	6.1	1.1	3.3	0.5	3.5	0.5	29.5	381	14.3
23CVAC090	0	4	4	19.9	51.7	5.5	20.5	4.1	0.8	3.1	0.4	2.9	0.5	1.8	0.2	1.6	0.2	16.5	130	5.4
23CVAC090	4	8	4	63.8	190.4	15.9	58.8	11.6	2.3	8.8	1.2	7.1	1.4	4.1	0.6	4.0	0.6	37.7	408	15.3
23CVAC090	8	12	4	23.0	66.7	5.6	21.9	4.6	1.0	3.6	0.5	3.2	0.5	1.7	0.3	1.6	0.2	17.7	152	6.1
23CVAC091	9	12	3	56.5	119.2	13.3	47.2	9.4	1.5	8.0	1.2	7.1	1.5	4.3	0.6	4.2	0.6	43.6	318	12.4
23CVAC091	12	13	1	43.4	91.3	9.6	33.6	7.1	1.1	4.7	0.7	4.1	0.8	2.5	0.3	2.5	0.4	24.9	227	9.4
23CVAC092	12	16	4	16.1	50.1	3.4	11.2	2.1	0.4	1.7	0.3	1.6	0.3	0.9	0.1	0.9	0.1	8.0	97	2.8
23CVAC092	16	20	4	44.7	131.4	10.6	40.2	8.7	1.3	5.8	0.9	5.1	1.0	3.0	0.4	2.8	0.4	27.3	283	11.5
23CVAC092	20	24	4	70.8	152.3	19.1	75.2	13.8	3.3	10.6	1.5	8.2	1.4	4.4	0.6	4.1	0.6	41.7	408	18.3
23CVAC092	24	25	1	94.9	213.1	27.9	113.1	22.9	5.5	19.0	2.5	14.5	2.7	8.5	1.1	7.2	0.9	92.6	626	30.3

JORC 2012 – TABLE 1: CIRCLE VALLEY

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Aircore and RC drilling conducted with a large format Schramm T450 aircore/slimline RC rig. Chips collected through a cyclone and cone-split for 1 metre samples and spear sampled for 4 metre composites. Aircore sampling with a 4 inch cutting bit. RC drilling conducted with 5.5 inch face sampling hammer bit.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Drill chips were cone split sampled for 1m intervals and spear sampled for 4m composite sampling. Samples were drilled dry wherever possible and where they were wet this was logged. Sample recovery was actively monitored by geologists on the rig to ensure maximum recovery is achieved.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Air core drilling was used to obtain 1m cone split samples as reference samples. Four metre spear composite samples were collected ensuring proportional sampling to acquire a 2-3kg sample. Samples are dried before crushing and pulverising. A 1g sample is used to determine loss on ignition. A 0.1g sample is prepared by lithium borate fusion to produce a fused bead which is digested for analysis by mass-spectroscopy (MS) for rare earth elements (including Scandium) and trace elements and analysed by inductively coupled plasma atomic absorption spectroscopy (ICP-AES) for whole rock oxide geochemistry. ALS analysis code ME-MS81d. pXRF analysis was conducted for immediate feedback from drilling by collecting a small 50g sub-sample from the drilling spoils pile and analysed with an Olympus Vanta VMR XRF analyser.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• Aircore drilling with cutting bits and face sampling hammers were used to collect the samples. The drilling was conducted using a Schramm T450 AC/slimline RC rig drilling with 400psi/1240cfm onboard air. 4 inch aircore blade bits were used with 3.5 inch drill pipe. Holes were generally drilled to blade refusal. Occasionally based on geology the hole would be extended using hammer to assess bedrock geology.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	• Visual estimate of drill chip recovery recorded in database as well as photographs of drill spoils taken for reference.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	• A large format AC rig with adequate onboard air to drill holes dry. Where wet samples were collected they were logged as such. Constant observation and assessment of sample recoveries on the rig ensured recoveries were maximised.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• Unknown at this stage.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All holes logged at 1 m resolution for the entirety of the hole. Holes logged qualitative: lithology, alteration, foliation. All holes chipped for the entire hole to preserve a chip tray record of all holes drilled.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Qualitative: visual logging and pXRF analysis (semi-quantitative for some elements). Quantitative: multielement geochemistry elements; no density measurements taken Chip samples taken from every metre of every hole to maintain chip tray record.
	• The total length and percentage of the relevant intersections logged.	All holes logged for entire length of hole.
Sub-sampling techniques and	• If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling completed.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Chips cone-split, sampled dry where possible for 1 m samples. Composite samples were spear-sampled. AC sample were spear sampled in up to 4 m composite intervals.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• The primary sample collected is considered appropriate technique for the purpose of the drilling. 4 m composites are considered appropriate for preliminary assessment of mineralisation and for preliminary resource estimation. The drill method and rig employed allowed for samples to be kept mostly dry and maintain good sample recoveries.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Duplicates and blanks were routinely included in the 1 m sampling sequence and submitted when 1 m samples were submitted to the laboratory. CRMs have not yet been used due to the early stage of exploration. Duplicate speared composite samples were collected for a selection of holes using pXRF data to guide sample selection to sample mineralisation.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	• All composites were speared ensuring the total depth of the sample pile was sampled to provide a representative sample. Close attention was paid when spearing to the size of each sample making up a composite. The size of the

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		 sample is kept consistent within each composite. Single metre samples are cone split and duplicates are taken every 20 m to monitor variability. Duplicate speared composite samples were taken and results are pending.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	• The sample size is considered appropriate for mineralisation being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Gold analysis is determined by 50g Fire Assay and AAS and is considered a total analysis. ME analysis by ICP-MS and ICP-AES Analysis and is appropriate for rare earth elements, trace element and whole rock geochemistry. The analysis is a total technique which analyses resistive minerals as well. pXRF while a qualitative dataset is considered appropriate for whole-rock geochemical analysis and monitoring of trace elements for alteration when used indicatively and relative to the results of similarly collected samples.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 An Olympus Vanta 50KV VMR handheld pXRF instrument was used in conjunction with the EasySampler system to analyse the drill powder produced. All three beams were used with a 10 second time lapse for each beam. No factors have been used on the data. The data is considered qualitative and is used only indicatively to assess alteration and potential mineralisation based on anomalism relative to other drill samples analysed.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Laboratory certified CRMs and blanks were inserted by the laboratory and analysed in the sample stream and have performed acceptably. Field duplicates were included in the 4 m composite sample stream, results are pending. No external laboratory checks have been conducted at this stage.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are verified by multiple Company personnel prior to release.
	The use of twinned holes.	• No twin holes at present.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• Data stored in Datashed database, logging performed in Logchief with auto-validation and synchronised to Datashed database, data validated by database administrator, import validate protocols in place. Visual validation by company geologists.
	Discuss any adjustment to assay data.	• Multielement results (REE) are converted to stoichiometric oxide (REO) using element-to-oxide stoichiometric conversion factors.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole	• Collars: surveyed with Garmin GPS accurate to +/- 3m.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	
	• Specification of the grid system used.	• MGA94 - Zone 51
	Quality and adequacy of topographic control.	• Loose topographic control from geophysical data. Appropriate for this early-stage exploration.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 From 20m up to 1km. Spacing appropriate for first pass reconnaissance drilling and preliminary resource assessment.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The current drill spacing is appropriate for preliminary resource estimation work.
	Whether sample compositing has been applied.	Generally 4m composite assays reported.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• Mineralisation occurs in horizontal saprolitic clay horizons. Vertical drilling employed to intersect mineralisation perpendicular.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The drilling is oriented perpendicular to mineralisation.
Sample security	The measures taken to ensure sample security.	• Samples were delivered from the Company tenure directly to the laboratory using a freight company in sealed bulka bags.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• No external QC reviews have been conducted on the project so far.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Two Exploration Licence (EL) covering a land area of 222km2. Meeka Metals Limited is the current holder, having a 100% interest in the EL's. Tenure predominantly overlies freehold agricultural land used for crop and livestock farming. Prior to conducting ground disturbing exploration on private land, a land access agreement must be signed between the Company and the relevant landowner. The tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Project has had limited exploration work completed over it. Exploration by previous operators included Pan Australian Exploration Pty Ltd, Toro Energy Limited and Spitfire Oil Limited, who focussed on uranium and lignite mineralisation within paleochannels. Reconnaissance aircore (AC) drilling programs targeting the underlying

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		greenstone belts for gold mineralisation has been completed by AngloGold Ashanti Australia Limited and Terrain Minerals Ltd. • The historical data has been assessed and is of good quality.
Geology	Deposit type, geological setting and style of mineralisation.	 The Circle Valley Project lies within the Central Biranup Zone of the Proterozoic Albany Fraser Province. Lithologies of the Biranup Zone comprise paragneiss, or orthogneiss and meta-basic rocks. It is interpreted that there is a subordinate portion of reworked Archaean rocks within the package. Magnetics of the Project area displays strong deformation with complex folding, faulting and thrusting. The target type is Tropicana style gold mineralisation hosted in high grade metamorphic rocks of the Albany Fraser Mobile Belt. It is thought that the regolith hosted REE enrichment originates through weathering of underlying felsic rocks (granite, gneiss).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• All drill results are reported to the ASX in line with ASIC requirements.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top-cuts have been applied when reporting results. Individual Au and ME assay results have been reported. Multielement results (REE) are converted to oxide (REO) using element-to-oxide stoichiometric conversion factors.
Relationship between mineralisa-tion widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a 	 Drill holes are oriented to drill perpendicular to mineralisation. Mineralisation occurs in horizontally oriented saprolitic clay horizons.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Drilling is presented in long-section and cross section as appropriate and reported quarterly to the ASX in line with ASIC requirements.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drillhole results have been reported including those drill holes where no significant intersection was recorded.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• All meaningful and material data is reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Return of remaining REE assays from this drill programme. A preliminary resource estimate will be compiled using the recently drilled AC grid from Circle Valley. Metallurgy work is on-going to assess the extractability of the REEs.