

Positive Assay Results Demonstrate Development Options at Oracle Ridge

Eagle Mountain Mining Limited (ASX:**EM2**) (**Eagle Mountain**, or the **Company**) is pleased to provide an update on its 100% owned Oracle Ridge Copper Mine Project (**Oracle Ridge**, or the **Project**) in Arizona, USA.

HIGHLIGHTS

- Assay results and observations from a detailed maiden underground sampling and mapping program at Oracle Ridge have identified multiple high-grade copper zones in channel sampling, surrounded by broader lower grade 'halo's'
- The presence of extensive lengths of mineralisation containing higher-grade sections enhances the optionality of Oracle Ridge, supporting either bulk mining or selective high-grade mining scenarios
- Current mineral resource estimates have likely underestimated block grades in higher grade areas as the channel samples are generally higher grade than nearby drill holes, providing potential grade upside in the mineral resource
- These results will be used to inform detailed geological and grade modelling and guide future bulk sampling for metallurgical test work, including defining future drill targets
- Selected assay results included:1
 - 7.6m at 4.39% Cu, 9.10g/t Ag, 0.07g/t Au and
 - 9.1m at 3.72% Cu, 8.25g/t Ag, 0.07g/t Au (6400-NW-001)
 - 36.6m at 1.99% Cu, 18.00g/t Ag, 0.24g/t Au (6400-NW-005)
 - 3.3m at 3.80% Cu, 11.40g/t Ag, 0.14g/t Au and
 - 4.0m at 3.26% Cu, 10.32g/t Ag, 0.12g/t Au (6400-NW-022)
 - 6.1m at 4.31% Cu, 76.38g/t Ag, 0.58g/t Au (6400-NW-032)
 - 10.4m at 2.12% Cu, 25.80g/t Ag, 0.35g/t Au (6400-NW-033)

Commenting on the underground work, Eagle Mountain Mining's CEO, Tim Mason, said:

"The strong assay results from our maiden underground channel sampling program at the Oracle Ridge Project are highly significant as they support various potential scenarios for development, including bulk mining or selective high-grade mining scenarios.

The channel sampling results indicate potential upside to the current resource model with higher-grade zones and resource extensions and we are now investigating how to model and incorporate these localised, high-grade areas that were not previously identified from wider-spaced drill hole data. They are surrounded by broader lower grade 'halo's' that could provide the scale for bulk mining. The results will also help guide future bulk sampling for metallurgical test work, including refining future drill targets.

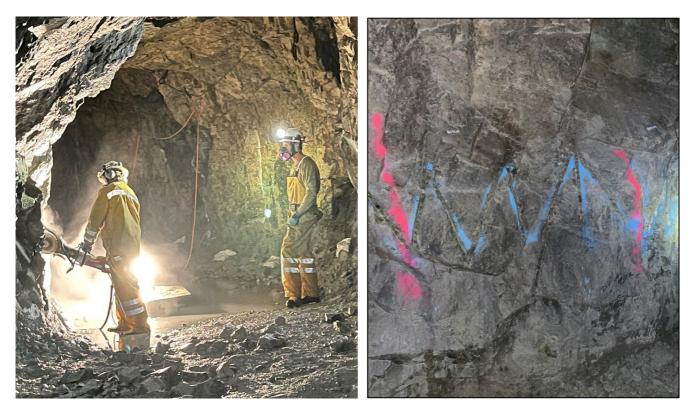
In addition to the underground drill results, the channel samples will help upgrade resources from Indicated to Measured and Inferred to Indicated resource categories in the North West mine zone where this work was carried

AUS REGISTERED OFFICE Ground Floor, 22 Stirling Highway Nedlands WA 6009 ACN: 621 541 204

CONTACT E: info@eaglemountain.com.au ASX: EM2 eaglemountain.com.au

PAGE 1

¹ All reported intervals are horizontal channel widths


out. The North West is expected to be mined early in the mine life and its very important that as much detail as can be defined is incorporated in the ongoing technical evaluations.

Since the Company acquired Oracle Ridge in late 2019, we have focused on establishing a resource base of sufficient critical mass allowing the commencement of technical studies to evaluate various production scenarios. This has included drilling approximately 200 new holes around the main mine area and the Talon, the recent initial refurbishment of the underground mine, and the channel sampling program. These activities have revealed significant insights into the mineralisation and potential upside in grade in the mineral resource.

Technical studies will increasingly feature in the development of the project with current studies in progress including mining, processing, infrastructure, environmental and tailings designs. The recent \$3 million loan facility from an entity related to Managing Director Charlie Bass will be used primarily to fund the expansion of the initial technical studies to include ore sorting, heap leach test work and further mineral processing. As is common with many junior resource companies moving to technical studies, exploration and non-essential work is being curtailed until such time as further resource definition is required."

Underground Channel Mapping and Sampling

A unique method of cutting a continuous "herringbone" pattern across exposed underground walls was developed to provide continuous and unbiased samples, as shown in Photos 1 and 2. Almost all exposure had a veneer of hard to remove grime accumulated over the past 25 to 30 years, and this method allowed the Company to sample and visually inspect what was beneath the grime.

Photos 1 and 2 – Channel sampling of underground walls showing the "herringbone" sampling pattern. Note sample cut width is approximately 2.5cm.

Photos 3 and 4 – Channel cuts undertaken as part of the underground sampling program. Note massive chalcopyrite mineralisation in the cut, hiding behind the surface grime. "The side walls are seemingly unimpressive until we cut into them and reveal the amazing mineralisation hidden under years of grime" notes Director of Exploration, Brian Paull.

Not only has this method of channel sampling exposed much broader zones of mineralisation than expected, it has also shown zones of barren "white" marble that could not be seen through the grime.

The cut channel is approximately 2.5cm in width. A continuous sample is then taken along the full length of each "herringbone" over a horizontal distance not exceeding three metres with breaks at geological contacts. Sample weight for each assay interval is approximately two kilograms.

Assay results have been received for 39 underground channels comprising 341 samples, with key points outlined below. The naming convention used to denote the underground channels was the mine level in feet (eg. 6400), followed by the mine area (e.g. NW for North West zone) and the channel number (e.g. 033 in 6400-NW-033).

Figure 1 shows the location of the underground channel results reported in this announcement. Further details of the results are provided in Attachment 1.

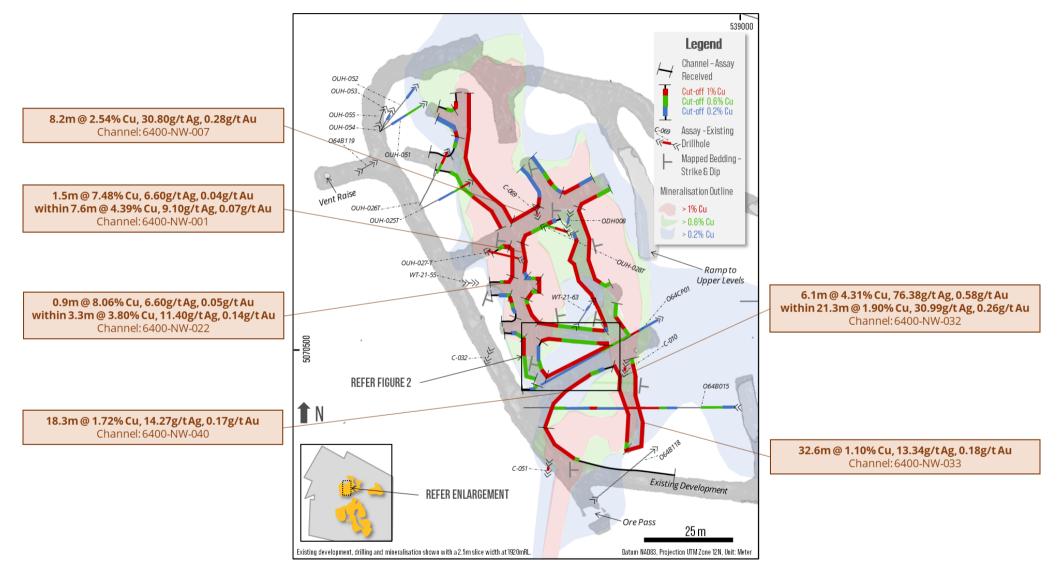


Figure 1 – Plan view of the North West mine area showing underground channel locations with new assays received coloured by grade. Selected results shown, refer to Attachment 1 for all assay results including cut-off grades used for reported intercepts.

Resource Upside Potential

In higher grade zones, the channel sampling generally results in higher assays than the nearest drill holes. Equally, in lower grade zones, the channel samples give slightly lower value assays than the surrounding drill holes. The channel sampling program has on average shown an increase in grade compared to the existing Mineral Resource Estimate (MRE), as shown in Figure 2. Overall, it is expected that the contained copper will increase when the channel samples are used in the next grade estimation model. These results may support resource upside potential if local-scale high-grade zones are modelled.

Figure 2 illustrates that the current MRE block grades estimated from only drill holes are lower in value than the nearby channel samples. It also illustrates that some historic drill holes such as O64CP01 have negatively impacted the MRE grade model. The historic sampling of this hole only had 10 meter intervals and may likely have missed higher grade zones. As a comparison, the weighted average grade of the drill hole for the same distance as the 17.1m at 1.2% Cu is only 0.46% Cu.

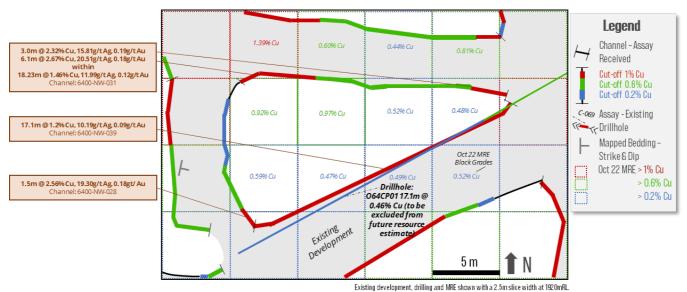


Figure 2 – Plan view of inset area outlined in Figure 1, with resource block grades displayed adjacent to drillholes and channel samples showing strong potential for resource upside.

The underground sampling program has supported what has been observed in almost all drill holes, namely that there are many narrow but quite high grade "pods" that cannot be predicted or related from one drill hole to another. Historic drill hole O64CP01 (shown in Figures 1 and 2) and possibly several others were sampled at significantly greater lengths compared to channel sampling and other drill holes, and likely had mineralisation diluted as a result. These greater sample lengths are not considered appropriate given the localised variability now evident from proximal channel sampling, and O64CP01 (and other similar historic drill holes) will be excluded in the future resource estimate as a result.

Mapping and sampling has also identified broader lower grade zones of mineralisation which tend to form a "halo" around higher-grade intersections. Some of these wide intercepts include:

- 32.6m at 1.10% Cu, 13.34g/t Ag and 0.18g/t Au (6400-NW-033) at 0.6% Cu cut-off grade, which includes
 - 10.4m @ 2.12% Cu, 25.80g/t Ag and 0.35g/t Au

- 18.3m at 1.46% Cu, 11.99 g/t Ag and 0.12g/t Au (6400-NW-031) at 0.6% Cu cut-off grade, which includes
 - 3.0m @ 2.32% Cu, 15.81 g/t Ag and 0.19g/t, and
 - 6.1m @ 2.67% Cu, 20.51 g/t Ag and 0.18 g/t Au

Importantly, if these halo zones prove to be extensive, they may support the potential for bulk style mining and processing methods.

Eagle Mountain is now investigating resource estimation methods that will provide a more representative estimate of how the mineralisation occurs and will also reflect the optionality that the mineralisation presents.

Geological Model

The underground workings are being mapped in detail as part of the underground channel sampling program. This information is being used by the Company to update and further refine the geological model at a higher resolution than was previously possible from drill hole data. Mapping information captured includes lithology, structures and associated offsets, alteration, veining and mineralisation.

This ASX announcement was authorised for release by the Board of Eagle Mountain Mining Limited.

For further information please contact:

Tim Mason Chief Executive Officer tim@eaglemountain.com.au Mark Pitts Company Secretary mark@eaglemountain.com.au

Jane Morgan Investor and Media Relations jm@janemorganmanagement.com.au

COMPETENT PERSON STATEMENT

The information in this document that relates to new Exploration Activities is based on information compiled by Mr Brian Paull, who is a member of The Australasian Institute of Mining and Metallurgy (MAusIMM) and has sufficient experience relevant to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012). Mr Paull is the Director of Exploration at Eagle Mountain Mining Limited's wholly-owned subsidiary, Silver Mountain Mining Inc, and consents to the inclusion in this document of the information in the form and context in which it appears. Mr Paull holds shares and options in Eagle Mountain Mining Limited.

Where the Company references historic exploration results including technical information from previous ASX announcements including 25 May 2020, JORC Table 1 disclosures are included within them. The Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements, and all material assumptions and technical parameters underpinning the results within those announcements continue to apply and have not materially changed. In addition, the form and context in which the Competent Persons findings are presented have not been materially modified from the original reports.

The information in this report that relates to historic production results was prepared and first disclosed under a pre-2012 edition of the JORC Code. The data has been compiled but NOT validated by Eagle Mountain geologists. At this stage, Eagle Mountain is unable to conclude that the production data is reliable. However, nothing has come to the attention of Eagle Mountain that causes it to question the accuracy or reliability of the historic production results and the various source reports.

ABOUT EAGLE MOUNTAIN MINING

Eagle Mountain is a copper-gold explorer focused on the strategic exploration and development of the Oracle Ridge Copper Mine and the highly prospective greenfields Silver Mountain Project, both located in Arizona, USA.

Arizona is at the heart of America's mining industry and home to some of the world's largest copper discoveries such as Bagdad, Miami and Resolution, one of the largest undeveloped copper deposits in the world.

Follow the Company's developments through our website and social media channels:

Twitter EM2 Website

<u>LinkedIn</u>

Attachment 1

Summary table of recent underground channels at Oracle Ridge

Channel ID	Easting	Northing	Elevation	Dip	Azimuth	Length
	[m]	[m]	[m]	[•]	[0]	[m]
6400-NW-001	524017	3593229	1919	0	159	9
6400-NW-002	524018	3593220	1919	0	141	5
6400-NW-003	524014	3593220	1919	0	0	9
6400-NW-004	524010	3593234	1919	0	305	24
6400-NW-005	524002	3593268	1919	0	168	37
6400-NW-006	524008	3593232	1919	0	65	3
6400-NW-007	524014	3593236	1919	0	105	8
6400-NW-008	524021	3593240	1919	0	329	12
6400-NW-009	524019	3593252	1919	0	120	12
6400-NW-010	524028	3593243	1919	0	63	9
6400-NW-011	524040	3593244	1919	0	230	11
6400-NW-012	524027	3593236	1919	0	267	13
6400-NW-013	524012	3593228	1919	0	300	4
6400-NW-014	524021	3593219	1919	0	145	3
6400-NW-015	524021	3593216	1919	0	247	5
6400-NW-016	523986	3593256	1919	0	116	11
6400-NW-017	523997	3593253	1919	0	41	6
6400-NW-018	523999	3593259	1919	0	318	6
6400-NW-019	523992	3593268	1919	0	118	6
6400-NW-020	523998	3593265	1919	0	50	1
6400-NW-021	524017	3593213	1919	0	192	8
6400-NW-022	524008	3593218	1919	0	60	7
6400-NW-023	524013	3593215	1919	0	314	5
6400-NW-024	524014	3593208	1919	0	15	7
6400-NW-025	524011	3593208	1919	0	20	5
6400-NW-026	524016	3593203	1919	0	294	5
6400-NW-027	524020	3593192	1919	0	297	12
6400-NW-028	524023	3593193	1919	0	304	11
6400-NW-030	524021	3593207	1919	0	101	18
6400-NW-031	524040	3593201	1919	0	318	18
6400-NW-032	524042	3593195	1919	0	155	23
6400-NW-033	524046	3593197	1919	0	168	33
6400-NW-034	524039	3593205	1919	0	0	37
6400-NW-035	524032	3593239	1919	0	168	23
6400-NW-038	524041	3593210	1919	0	163	8
6400-NW-039	524023	3593193	1919	0	90	18
6400-NW-040	524042	3593195	1919	0	249	25
6400-NW-041	524022	3593178	1919	0	152	40
6400-NW-042	524017	3593189	1919	0	98	4

Summary table of recent underground channel intersections at Oracle Ridge

Channel ID	From	То	Length	Cu	Ag	Au
	[m]	[m]	[m]	[%]	[g/t]	[g/t]
6400-NW-001	0.0	7.6	7.6	4.39	9.10	0.07
including	6.1	7.6	1.5	7.48	6.60	0.04
within	0.0	9.1	9.1^	3.72	8.25	0.07
6400-NW-002	3.0	4.6	1.6	1.61	15.59	0.40
within	1.5	4.6	3.1*	1.21	13.56	0.30
within	0.0	4.6	4.6^	0.99	11.55	0.23
6400-NW-003	0.0	9.1	9.1	1.76	11.53	0.10
6400-NW-004	0.0	11.9	11.9	1.76	14.72	0.23
within	0.0	21.3	21.3	1.19	10.77	0.17
6400-NW-005	0.0	36.6	36.6	1.99	18.00	0.24
6400-NW-006	4.4	6.4	2.0*	0.78	7.1	0.186
6400-NW-007	0.0	8.2	8.2	2.54	30.80	0.28
6400-NW-008	0.0	2.4	2.4	2.04	25.28	0.19
within	0.0	11.9	11.9^	0.60	11.52	0.12
6400-NW-009	7.3	8.8	1.5	1.17	34.00	0.14
within	4.6	10.4	5.8*	0.89	21.47	0.13
within	0.0	12.2	12.2^	0.55	13.02	0.08
6400-NW-010	0.0	3.7	3.7	1.10	16.45	0.18
within	0.0	9.1	9.1^	0.67	11.17	0.08
6400-NW-011	6.1	10.7	4.6	1.98	25.56	0.26
within	0.0	10.7	10.7*	1.23	14.53	0.25
6400-NW-012	1.8	3.4	1.6	1.39	19.90	0.16
	8.5	12.8	4.3	2.99	15.42	0.12
within	1.8	12.8	11.0*	1.57	12.04	0.10
within	0.9	12.8	11.9^	1.47	11.37	0.09
6400-NW-013	0.0	1.5	1.5	4.43	9.20	0.08
including	0.0	0.9	0.9	6.46	6.40	0.03
within	0.0	2.1	2.1*	3.36	11.09	0.18
6400-NW-014	0.0	3.0	3.0	1.98	16.30	0.25
6400-NW-015	1.5	4.9	3.4	1.81	11.79	0.12
within	0.0	4.9	4.9*	1.50	9.31	0.10
6400-NW-016			No Significar	nt Intersection (NS	51)	
6400-NW-017	3	4.6	1.6*	0.78	11.00	0.13
within	3	6.1	3.1^	0.67	7.56	0.15
6400-NW-018	0	1.5	1.5	1.32	10.30	0.318
within	0	6.1	6.1^	0.61	4.63	0.13
6400-NW-019	4.6	6.1	1.5*	0.69	7.00	0.232
6400-NW-020	0	1.2	1.2	1.70	11.10	0.307
6400-NW-021	1.5	7.6	6.1	2.28	25.30	0.26
within	0.0	7.6	7.6*	2.02	21.27	0.22
6400-NW-022	3.4	6.7	3.3	3.80	11.40	0.14
including	5.8	6.7	0.9	8.06	6.60	0.05
within	2.7	6.7	4.0*	3.26	10.32	0.12
6400-NW-023	0.0	0.9	0.9*	0.95	9.80	0.09
within	0	3.4	3.4^	0.45	4.21	0.03
6400-NW-024	4.6	7.0	2.4	1.24	9.23	0.10
within	3.0	7.0	4.0*	1.08	8.14	0.09
within	1.5	7.0	5.5^	0.88	7.63	0.09
6400-NW-025		. .	9	nt Intersection (NS		
6400-NW-026	0.0	2.4	2.4*	0.77	7.46	0.21

Note - All reported intervals are horizontal channel widths.

within	0	3.4	3.4^	0.61	5.74	0.16
6400-NW-027	7.6	12.2	4.6	1.31	12.46	0.18
within	0.0	12.2	12.2*	0.80	7.57	0.12
6400-NW-028	0.0	1.5	1.5	2.56	19.30	0.18
within	0.0	4.6	4.6*	1.40	9.00	0.08
within	0.0	9.1	9.1^	0.97	5.85	0.05
6400-NW-030	0.0	6.1	6.1	2.51	36.31	0.32
	16.5	18.3	1.8	3.13	32.15	0.38
within	0.0	18.3	18.3*	1.32	16.88	0.17
6400-NW-031	0.0	3.0	3.0	2.32	15.81	0.19
	12.2	18.3	6.1	2.67	20.51	0.18
within	0.0	18.3	18.3*	1.46	11.99	0.12
6400-NW-032	0.0	21.3	21.3	1.90	30.99	0.26
within	0.0	22.9	22.9*	1.82	29.53	0.25
including	0.0	6.1	6.1	4.31	76.38	0.58
6400-NW-033	1.2	11.6	10.4	2.12	25.80	0.35
within	1.2	32.6	31.4	1.11	13.64	0.18
within	0.0	32.6	32.6*	1.10	13.34	0.18
6400-NW-034	1.5	35.1	33.6	1.45	14.53	0.21
within	0.0	36.6	36.6^	1.38	13.95	0.20
6400-NW-035	0.0	20.4	20.4	1.56	17.69	0.24
within	0.0	22.9	22.9*	1.48	16.71	0.24
6400-NW-038	2.1	6.1	4.0	1.41	10.33	0.28
within	0.0	7.6	7.6*	1.08	8.79	0.21
6400-NW-039	0.0	17.1	17.1	1.23	10.19	0.09
6400-NW-040	7.0	25.3	18.3	1.72	14.27	0.17
within	5.5	25.3	19.8*	1.65	14.37	0.17
within	3.4	25.3	21.9^	1.51	13.33	0.15
6400-NW-041	0.0	12.2	12.2	1.46	9.09	0.11
within	0.0	12.8	12.8*	1.44	9.16	0.11
6400-NW-042	2.7	3.7	1.0*	0.68	6.60	0.11
within	2.1	3.7	1.6^	0.56	5.06	0.11

*Reported at 0.6% Cu cut-off grade ^Reported at 0.2% Cu cut-off grade

Attachment 2

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Drilling: Diamond drilling from surface and underground. Nominal sampling interval of 3m adjusted as required for local geological conditions. Core was sawn and half-core was crushed, pulverised and split to produce a representative sample for assaying. For WT-series (Wedgetail) drilling, samples returning weighted average Cu ≥ 1% are reported in the announcement. Wider intercepts are reported using 0.6% and 0.2% Cu cut-off grades. For GE-series (Golden Eagle) drilling, samples returning weighted average Au ≥ 0.5g/t or Cu ≥ 1% are reported in the announcement. Visual results presented are based on geological observations, and for WT-series drilling consider the copper content of different sulphide species at a 0.6% Cu nominal cut-off. REE were analysed from pulps prepared during the original laboratory analysis. Underground channel sampling: Cut rock chip channel samples. Nominal sampling interval of 3m adjusted as required for local geological conditions. Channels are cut in a "saw-tooth" pattern at a consistent angle approximately 1.5m from the floor. Samples returning weighted average Cu ≥ 1% within a channel are reported in the announcement. Wider intercepts are reported using 0.6% and 0.2% Cu cut-off grades.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple 	• Diamond drilling completed by Boart Longyear using an LF-90 surface and LM-90 underground drill rig.

Criteria	JORC Code explanation	Commentary
	or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Core is PQ3, HQ3 and NQ3. Downhole deviation surveys are performed approximately every 30.5m (100 feet). An azimuth aligner is used when each hole is collared. The core is oriented with a Boart Longyear Truecore[™] system to allow measurement of structural information.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are recorded by the drillers at the rig and verified by Company's personnel during core logging. To maximise sample recovery and core quality drilling is performed with a "triple tube" set up where two splits are inserted in the barrel to minimize core displacement and core loss. No relationship has been determined between sample recoveries and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drilling: A quick log is completed on site and detailed logging is performed at the Company's facility in Tucson. Logging is both qualitative and quantitative in nature. Portable XRF and magnetic susceptibility measurements are taken at regular intervals on the core. Core is photographed after mark-up, before sampling, wet and dry. 100% of the relevant intersections are logged. Underground channel sampling: Underground walls and faces are mapped geologically for each sample interval.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 For all GE series holes and WT series holes up to WT-21-73, the core is sawn in half by ALS Minerals or Skyline Assayers and Laboratories at their Tucson facilities. Half of the core is bagged and sent for assaying while the other half is left in the core box for future reference. Commencing with drill hole WT-21-74, holes are cut using a

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Company-owned automatic core saw. Half of the core is bagged and sent for assaying while the other half is left in the core box for future reference. A cut line is drawn by a geologist to guide sawing and sampling of intervals where sample bias might occur (e.g. mineralised vein at small angle to core axis). ALS Minerals or Skyline Assayers and Laboratories conducted all preparation work: core and channel samples were weighed, dried, crushed and crushed to better than 70% passing 2mm; sample was split with a riffle splitter and a split of up to 250g pulverised to better than 85% passing 75µm. Duplicates are used to assess the core sampling representativeness. When duplicates are collected the core is quartered: one quarter is sent to the laboratory as the primary sample, the other quarter is sent to the laboratory as the duplicate and the remaining half of the core is left in the box for future reference. Sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 <u>ALS Minerals assay methods:</u> Surface drilling - ME-MS61 (48 element four acid ICP-MS) and Au-AA23 (Au 30g charge Fire Assay with Atomic Absorption finish). The technique is considered a near total digest of relevant minerals. Above detection samples are re-assayed with Au-GRA21, Ag-OG62 (100 to 1,500g/t), Ag-GRA21 (> 1,500g/t), Cu-OG62, Pb-OG62, Zn-OG62. Underground drilling - methods used as per surface drilling, or by acid digestion and ICP finish (Cu-ICP61 and Ag-ICP61) and Au-AA23 where multi-element data is not required. Underground channel samples: Cu-ICP61, Ag-ICP61 and Au-AA23. <u>Skyline Assayers and Laboratories methods:</u>

Criteria	JORC Code explanation	 Surface drilling - TE-5 (47 element multi acid digestion with ICP-MS) and FA-01 (Au Fire Assay with Atomic Absorption finish). The technique is considered a near total digest of relevant minerals. Above detection samples are re-assayed with FA-02 Au, FA-04 Ag, CuT AAS (up to 10%), SEA-Cu_LI (> 10%). Certified Reference Material (CRM), blanks and duplicates were inserted/collected at a ratio of 1:10 for drill core and channel samples, with a minimum of 1 CRM per assay batch. CRMs are inserted at intervals never exceeding 20 samples. Acceptable levels of accuracy and precision have been established. Before releasing drill core results from geological observations (e.g. visual mineralisation), the Company adopts the following QA/QC procedures: Core is dispatched to the laboratory and cut. Samples are bagged, crushed and pulverised (sample preparation) After sample preparation is finalised, a sub-sample is returned to the Company while assays are being completed at the laboratory Returned sub-samples are analysed with the Company's portable XRF instrument
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Portable XRF readings are compared with the visual logs Visual results are approved for release to the market Significant intersections have been verified by the Company's Director of Exploration. No twinned holes reported. Logging and sampling data are collected using tablet computers and Logchief software to ensure data integrity. The data is transferred weekly to the Datashed database after further data validation by the database manager. No assay adjustment performed.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 NAD83 Arizona State Plane Central (International feet). Data is presented in NAD83 UTM Zone 12N (meters). National Elevation Dataset. Horizontal resolution of approximately 10m and vertical resolution of 1m. Surface drill holes are located with a hand-held GPS with an estimated horizontal accuracy of ±5m. The collar location is subsequently recaptured using a DGPS system with an estimated accuracy of ±0.5m. Underground drill holes are located by a total station survey instrument. Underground channel samples are located from survey stations using a laser distometer.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing of underground channel samples is variable and based on the extent of accessible underground workings. Data spacing of drilling ranges from approximately 15m x 15m to greater than 50m x 50m. Data spacing of the new results reported is sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation. Sample compositing has not been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between drilling and channel sampling orientation and orientation of key mineralised structures is yet to be determined. Drill holes are designed to intersect targets at a perpendicular angle.
Sample security	• The measures taken to ensure sample security.	• Core boxes are collected at the drill rig by Company personnel and transported to the Tucson logging facility. After logging the core is delivered by Company personnel to ALS Minerals' Tucson facilities for cutting, sampling, sample preparation and

Criteria	JORC Code explanation	Commentary
		 subsequent transport for assaying. Channel samples are collected underground by Company personnel and delivered to ALS Minerals' Tucson facilities for sample preparation and subsequent transport for assaying.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Drill hole sample pulps assayed >1% Cu during each quarter are sent for umpire analysis to Skyline Assayers and Laboratories. Results have shown expected correlations when compared to original assay values from ALS.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Oracle Ridge Mine Project (Project) is located in the Marble Peak area, approximately 30 kilometres by air north-east of Tucson, Arizona, U.S.A. It is located in Sections 17, 18, 19 and 20 of Township 11 South, Range 16 East, Gila and Salt River Base and Meridian of the U.S. cadastral system. The geographical coordinates are approximately Latitude 32°28' North, Longitude 110°41' West. The Project is 100% owned by Eagle Mountain Mining Limited through its Arizona subsidiaries Wedgetail Operations LLC (100%) and Wedgetail Holdings LLC (100%). The Project consists of four main areas: Oracle Ridge, OREX, Golden Eagle and Red Hawk. Oracle Ridge (including historical Tailings Storage Facility) Oracle Ridge comprises 60 Patented Mining Claims and 50
		 Unpatented Mining Claims within the Coronado National Forest (United States Forest Service). 100% of the mineral rights starting from 15.2m (50 feet) below surface are owned by Wedgetail Operations LLC. In 2009, the surface rights for the area necessary for potential mining access (e.g. portals), processing facilities and offices have been secured by an industrial property lease. Under the agreement, Wedgetail Operations LLC leases the surface rights to the project for the purpose of carrying out its exploration, potential development and mining. The lease has an initial
		 term of three years and is renewable for nine additional extensions of three years each. A separate surface access agreement is in place to allow access to drill sites and drill pads construction.
		• The mineral rights of Patented Claims at Oracle Ridge have a

Criteria JORC Code explanation

Commentary

reversionary interest to Marble Mountain Ventures, which occurs on 18 February 2025, unless the Company exercises its Extension Option upon which the Company's interests in the mineral rights are extended to 18 February 2040.

- There is a 3% net smelter returns royalty on the future sale of any metals and minerals derived from the Oracle Ridge mine. OREX
- The OREX area is covered by 93 Unpatented Mining Claims within the Coronado National Forest (United States Forest Service).
- 100% of the mineral rights are owned by Wedgetail Operations LLC.
- The OREX area is also partly covered by Patented Mining Claims controlled by Pima County. The Company has an agreement in place for non-ground disturbing exploration work to occur on Pima County's Patented Mining Claims. The Company does not currently control the Mineral Rights over Pima County's claims.

Golden Eagle

- The Golden Eagle area is covered by 27 Patented Mining Claims and 32 Unpatented Mining Claims within the Coronado National Forest (United States Forest Service).
- 100% of the mineral rights are owned by Wedgetail Operations LLC.
- The Golden Eagle area is also partly covered by Patented Mining Claims controlled by Pima County. The Company has an agreement in place for non-ground disturbing exploration work to occur on Pima County's Patented Mining Claims. The Company does not currently control the Mineral Rights over Pima County's claims.

Red Hawk

• The Red Hawk area is covered by 24 Unpatented Mining Claims

Criteria	JORC Code explanation	Commentary
		 within the Coronado National Forest (United States Forest Service). 100% of the mineral rights are owned by Wedgetail Operations LLC. The land tenure is secure at the time of reporting and there are no known impediments to obtaining permits to operate in the area.
Exploration done	Acknowledgment and appraisal of exploration by other parties.	Oracle Ridge
by other parties		 The Oracle Ridge Mining District was discovered in 1873. In 1881, an 18 tonne per day copper smelter was erected at nearby Apache Camp. The ore for this smelter was supplied from the Hartman, Homestake, Leatherwood, Stratton, Geesaman and other small mines in the area. Phelps Dodge Copper Company (Phelps Dodge) entered the District in 1910 and undertook considerable development and exploration work. Continental Copper, Inc began exploring in the District in the 1950s. Continental leased the property in 1968 with an option to purchase and undertook a large exploration and development program. This was the first time there was a large scale assessment of the mineralisation. Union Miniere began a new exploration program in April 1980. In 1984, a feasibility study for an 1,814 short ton per day operation was completed. In October 1988, South Atlantic Ventures acquired Union Miniere's interest and entered into a 70-30 partnership with Continental to develop the mine. Minproc Engineers Inc. was contracted to supervise the confirmatory metallurgical test work. A detailed design was started in November 1989 on a column flotation plant. Construction of the facility commenced in April 1990 and the first ore was processed through the plant on March 3, 1991. The capacity of the mill was initially set at

Criteria JORC Code explanation

Commentary

771 short ton per day. The mill capacity was later expanded to approximately 1,000 short ton per day.

- The mine closed in 1996. Production records show that approximately 1,200,000 short tons were milled since commencement of the operation.
- Between 2009 and 2015 the project was owned by Oracle Ridge Mining, a TSX-V listed company, which drilled approximately 130 surface and underground holes.
 Golden Eagle
- Small scale mining occurred in the Golden Eagle area in the first half of the 1900s focussed on gold. The largest operation was the Sanderson Mine. The mine is part of the Golden Eagle mineralised system but is located outside the Company's landholding. It reported smelter returns between 1936 and 1941 averaging 0.4 Oz/short ton Au (13.7 g/t Au), 0.65 Oz/ton Ag (22.3 g/t Ag) and 0.46% Cu (small tonnage).
- Oracle Ridge mining conducted exploration at Golden Eagle in the mid-1990s. A geophysical magnetic survey was flown over the area. Few magnetic anomalies, postulated to be magnetiterich skarn were tested by reconnaissance drilling. Results were not deemed sufficiently encouraging and no further drilling was conducted in the area.

OREX

- Details of historical (pre-1980s) exploration and mining activities in the OREX area are not known. Few small-scale workings were found during mapping.
- In 1980 a Joint Venture between Gulf Minerals Corporation and W.R. Grace Company completed mapping of the area and drilled 7 holes. Results of the program were reviewed by Oracle Ridge Mining Partners and summarised in an internal communication in 1992.

Red Hawk

Criteria	JORC Code explanation	Commentary
		 No historical exploration nor mining activities are known for the Red Hawk area.
Geology	Deposit type, geological setting and style of mineralisation.	 Oracle Ridge The deposit is classified as copper dominated skarn. Minerals representative of both prograde and retrograde skarn development are present, the former being represented by diopside and garnets, the latter by epidote, magnetite and chlorite. Copper dominated mineralisation generally contain chalcopyrite and bornite. The deposits are most commonly associated with Andean-type plutons intruded in older continental-margin carbonate sequences. The associated intrusive rocks are commonly porphyritic stocks, dikes and breccia pipes of quartz diorite, granodiorite, monzo-granite and tonalite composition, intruding carbonate rocks, calcareous-volcanic or tuffaceous rocks. The deposits shapes vary from stratiform and tabular to vertical pipes, narrow lenses, and irregular zones that are controlled by intrusive contacts. The copper rich skarn deposits at Oracle Ridge are found in conformable lens along the contact with the Leatherwood Granodiorite or associated with faults and shear zones which intersect the Leatherwood. These have acted as feeders into the reactive carbonate horizons. The latter can form a "Christmas Tree" type shape. Golden Eagle Based on early stage exploration drilling, interpretation of the deposit type for Golden Eagle is ongoing. The majority of elevated gold and base metals (copper, lead, zinc) from drill results are hosted within granitic rocks. These granites are bounded by what are interpreted to be younger intrusive rocks to the east and schists to the west. The gold-rich system is proximal to the lithological contact

Criteria	JORC Code explanation	Commentary
		between the granites and younger intrusion. Although not visible in core, the gold is coincident with increased brecciatior and oxidation. The base metal or polymetallic system occurs within the granites and occur as disseminations and veinlets.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• See body of announcement including Attachment 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 For WT-series drilling and underground channel samples, results are reported as weighted averages of assays equal or above a 1% copper cut-off. Lower grade intersections are reported as weighted averages of assays equal or above 0.6% and 0.2% copper cut-offs. Intersections start and end at a sample at or exceeding the specified cut-off. For GE-series drilling, results are reported as weighted averages of assays equal or 1% copper cut-off. Intersections start and end at a sample at or exceeding the specified cut-off. For GE-series drilling, results are reported as weighted averages of assays equal or above a 0.5g/t gold cut-off or 1% copper cut-off. Intersections start and end at a sample at or exceeding the specified cut-off. No metal equivalents reported.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 For drilling intercepts, all intervals reported are down hole widths. True widths are not known at this stage. For underground channel sampling, all intervals reported are horizontal channel widths.

Criteria	JORC Code explanation	Commentary
widths and intercept lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See body of announcement.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All exploration results obtained so far have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other meaningful and material exploration data beyond this and previous ASX announcements by the Company.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Further work will include interpretation of logging and assay results when they become available. Additional drilling and channel sampling will be completed at Oracle Ridge.