

Friday, 2 June 2023

Significant High Grade Graphite Discovery at the Corella Project

KEY HIGHLIGHTS

- Maiden drilling programme at the Corella Graphite Project has confirmed a significant graphite discovery
- Multiple high-grade intercepts of graphite at Corella include:
 - **142m @ 9.5% TGC** from surface (CGRC003), including:
 - 6m @ 16.1% TGC from 35m; and
 - **10m @13.4%TGC** from 44m
 - **133m @ 10.1% TGC** from surface (CGRC008), including:
 - <u>9m @ 20.5 % TGC</u> from 110m
 - 83m @ 14.8% TGC from 8m (CGRC012), including:
 - <u>23m @ 27.4 % TGC</u> from 13m
 - 64m @ 13.1% TGC from 45m (CGRC002), including:
 - <u>23m @ 19.4% TGC</u> from 57m
 - 54m @ 13.7% TGC from surface (CGRC013), including:
 - 6m @ 21.8 % TGC from 32m
- Assays show multiple intercepts of high-grade graphite content over 15% TGC across thick widths in multiple drill holes with individual intercepts up to 27.4% TGC.
- > Drilling results will feed into the Maiden JORC Mineral Resource Estimate for Corella.
- This significant Graphite discovery adds to the Company's world-class high grade Burke Graphite Deposit which hosts a JORC Indicated and Inferred Total Mineral Resource Estimate of 9.1Mt at 14.4% TGC.

Lithium Energy Limited (ASX:LEL) (Lithium Energy or the Company) is pleased to confirm a significant new graphite discovery from the recently completed maiden drilling programme¹ at the 100% owned Corella Graphite Project located in Queensland (Corella).

Assay results show multiple outstanding (composite) intercepts of graphite in excess of 15% Total Graphitic Carbon (TGC) (refer Tables 1 and 4), with individual intercepts up to 27.4% TGC.

¹ Refer also LEL ASX Announcements dated 17 April 2023: Completion of Drilling Programme at Corella Graphite Prospect and 28 March 2023: Maiden Resource Drilling Programme Underway at Corella Graphite Prospect

www.lithiumenergy.com.au

LITHIUM ENERGY LIMITED

A.B.N. 94 647 135 108

Corella is located ~120 kilometres south of the Burke Deposit (refer Figure 8), which comprises a high grade graphite JORC Indicated and Inferred Total Mineral Resource of 9.1Mt at 14.4% Total Graphitic Carbon (TGC) for a total of 1.3Mt contained graphite.²

The Company is now moving to delineate a maiden JORC Mineral Resource of graphite at Corella, and examine the potential to build the Company's overall graphite inventory as part of the proposed development options to create a vertically integrated battery anode material manufacturing production facility³.

William Johnson, Executive Chairman:

As we advance with the Pre-Feasibility Study for our Australian-based vertically integrated battery anode material manufacturing business, confirming a new graphite discovery at Corella is a highly positive development. The potential to add additional graphite from Corella to the already highgrade Resource at the Burke Tenement and thus expand overall Burke Project graphite inventory, offers the potential for significantly expanded development options for this exciting project. We are looking forward to the maiden JORC Mineral Resource Estimate for Corella based upon these positive drilling results.

Photo 1: RC Drill Rig at Corella Tenement

² Refer LEL ASX Announcement dated 5 April 2023: Burke Graphite Mineral Resource Upgrade Delivers Significant Increases in Size and Confidence

³ Refer LEL ASX Announcement dated 23 May 2023: Excellent Metallurgical Testwork Results at Burke Graphite Project Pave Way for Commencement of PFS (

Corella Drilling Programme

The March/April 2023 maiden resource definition drilling programme at Corella comprised 16 Reverse Circulation (**RC**) holes (Hole ID's CGRC001 to CGRC016) totalling 1,569 metres.

The assay results confirm high-grade graphite mineralisation across multiple intersections at Corella, with composited graphite intersections encountered reported in Table 1:

		FROM	то	INTERSECTION	GRADE
DRILL HOLE ID		Metr	es	Metres	% TGC
CGRC001		18	86	68	7.6
	including	72	85	13	12.5
CGRC002		45	109	64	13.1
	including	57	80	23	19.4
CGRC003		0	142	142	9.5
	including	35	41	6	16.1
	including	44	54	10	13.4
CGRC004		52	55	3	19.8
	and	66	101	35	14.3
	including	70	79	9	20.2
	including	93	101	8	25.0
CGRC005		44	121	77	7.4
CGRC006		65	109	44	7.4
	including	92	96	4	12.5
CGRC007		2	30	28	9.2
	including	19	30	11	15.3
CGRC008		0	133	133	10.1
	including	110	119	9	20.5
CGRC009		30	107	77	9.6
	including	53	71	18	12.3
	and	116	120	4	8.0
	and	133	151	18	5.9
CGRC010		32	77	45	9.0
	including	32	41	9	13.3
CGRC012		8	91	83	14.8
	including	13	36	23	27.4
CGRC013		0	54	54	13.7
	including	32	38	6	21.8
CGRC014		0	73	73	8.6
	including	1	12	11	12.3
CGRC015		0	40	40	10.4
CGRC016		0	87	87	7.7
	including	60	66	6	16.9
	including	81	86	5	15.0

Table 1 - Significant Intersections Encountered – Corella RC Drilling

Notes:

- Intersections reported only if greater than 2 metres width and at a cut-off of 4% or higher TGC
- Intersections with greater than 15% TGC are considered to be high-grade and are highlighted in **bold** in the table
- There were no material results from CGRC011 (full results are in Table 4)

The complete assay results (for %TC and %TGC) for all holes are reported in Table 4. Details of the collar location, inclination, azimuth and depth for all holes are reported in Table 3.

Figure 1 shows the location of RC holes CGRC001 to CGRC016 and the location of the cross-section lines for the cross-sections shown in Figures 2 to Figure 7 (with the results of the previous Electro Magnetic (EM) surveys⁴ also shown).

Figure 1: Location of RC Drillholes and Cross-Sections Lines on Corella Tenement

⁴ Refer SRK ASX Announcement dated 26 June 2018: Burke Graphite Project – New Target Area Identified from Ground Electro-Magnetic Surveys

Lithium Energy has engaged a consultant geologist (who recently completed the JORC Mineral Resource upgrade of the Burke Deposit) to delineate a maiden JORC Inferred Mineral Resource estimate for Corella The compilation of the geological database from the March/April 2023 drilling programme for initial resource modelling will commence shortly and will feed into the maiden JORC Mineral Resource estimate for Corella.

Photo 2: RC Drill Rig at Corella Tenement

Photo 3: RC Drill Rig at Corella Tenement

Figure 2 shows the cross-section for Holes CGRC001 and CGRC002 on the 7708716mN line.

Figure 2: Cross-Section Line (7708716mN) Showing Holes CGRC001 and CGRC002 on Corella Tenement

Figure 3 shows the cross-section for Holes CGRC003 and CGRC004 on the 7708790mN line.

Figure 3: Cross-Section Line (7708790mN) Showing Holes CGRC003 and CGRC004 on Corella Tenement

Figure 4 shows the cross-section for Holes CGRC005, CGRC006 and CGRC007 on the 7708929mN line.

Figure 4: Cross-Section Line (7708929mN) Showing Holes CGRC005, CGRC006 and CGRC007 on Corella Tenement

Figure 5 shows the cross-section for Holes CGRC008, CGRC009 and CGRC010 on the 7708980mN line.

Figure 5: Cross-Section Line (7708980mN) Showing Holes CGRC008, CGRC009 and CGRC010 on Corella Tenement

Figure 6 shows the cross-section for Holes CGRC012, CGRC013 and CGRC014 on the 7709149mN line.

Figure 6: Cross-Section Line (7709149mN) Showing Holes CGRC012, CGRC013 and CGRC014 on Corella Tenement

417500mE Е W Cooperate State Surface 40m @ 10.4% TGC Metasediment Schis Graphitic Schist Metasediment 87m @ 7.7% TGC 49m EOH -50m 67m EOH Incl. 6m @ 16.9% TGC ncl. 5m @ 15.0% TGC 91*m* E -100m 50m Section 7709055 mN Corella Graphite Project, Queensland, Australia Corella Tenement - Drilling Cross-Section LITHIUM ENERGY LTD www.lithiumenergy.com.au

Figure 7 shows the cross-section for Holes CGRC011, CGRC015 and CGRC016 on the 7709055mN line.

Figure 7: Cross-Section Line (7709055mN) Showing CGRC011, CGRC015 and CGRC016 on Corella Tenement

Burke Graphite and Corella Graphite Projects Background

Lithium Energy is developing 100% owned graphite projects on granted Exploration Permits for Minerals (**EPM**) located in the Cloncurry region in North Central Queensland, where there is access to welldeveloped transport infrastructure to an airport at Mt Isa (~122km) and a port in Townsville (~783km) (refer Figure 8):

- (1) The Burke Graphite Project comprises EPM 25443 (the Burke Tenement or Burke) (of ~6.58km²), located 125km north of Cloncurry adjacent to the Mt Dromedary Graphite Project held by Novonix Limited (ASX: NVX); and
- (2) The Corella Graphite Project comprises EPM 25696 (the Corella Tenement or Corella) (of ~19.74km²), located 40km west of Cloncurry near the Flinders Highway that links Mt Isa to Townsville. Corella is located ~120km south of Burke.

The Lansdown Eco-Industrial Precinct near Townsville in North Queensland, where the Company is investigating basing its proposed vertically integrated battery anode material manufacturing business, is emerging as an important location for the production of critical materials for battery technologies in Australia.

Figure 8: Burke Graphite Project Tenement Locations in North Central Queensland

Lithium Energy is currently undertaking a Pre-Feasibility Study (**PFS**) for a vertically integrated Purified Spherical Graphite (**PSG**) (a battery anode precursor material) manufacturing facility in Queensland utilising bulk (flake graphite) concentrate produced from the Burke Deposit as feedstock.⁵

⁵ Refer LEL ASX Announcement dated 23 May 2023: Excellent Metallurgical Testwork Results at Burke Graphite Project Pave Way for Commencement of PFS

Burke Graphite Deposit

- Total Mineral Resource of 9.1Mt at 14.4% Total Graphitic Carbon (TGC) for a total of 1.3Mt contained graphite (at a 5% TGC cut-off grade), comprising:
 - Indicated Mineral Resource of 4.5Mt at 14.7% TGC for 670kt of contained graphite; and
 - Inferred Mineral Resource of 4.5Mt at 14.2% TGC for 640kt of contained graphite.
- Within the mineralisation envelope there is included a higher grade Total Mineral Resource of 7.1Mt at 16.2% TGC for 1.1Mt of contained graphite (at a 10% TGC cut-off grade).⁶

		Resource	Total Graphitic	Contained
Mineral Resource Category	Weathering State	(Mt)	Carbon (TGC) (%)	Graphite (kt)
	Weathered	0.2	12.5	30
Indicated Mineral Resource	Primary	4.3	14.8	640
	Sub-total	4.5	14.7	670
	Weathered	0.1	8.1	10
Inferred Mineral Resource	Primary	4.4	14.4	630
	Sub-total	4.5	14.2	640
	Weathered	0.3	11.1	40
I otal Indicated and Inferred	Primary	8.7	14.6	1,270
wineral Resource	Total	9.1	14.4	1,310

Table 2 : Mineral Resource Estimate for Burke Tenement (the Burke Deposit)

Notes:

- Mineral Resource estimates are constrained by the mineralisation solids and reported above a cut-off grade of 5% TGC; Mineral Resources reported on a dry in-situ basis; Totals may differ due to rounding.
- Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results.
- For further details, refer to LEL ASX Announcement dated 5 April 2023 entitled "Burke Graphite Mineral Resource Upgrade Delivers Significant Increases in Size and Confidence".

AUTHORISED FOR RELEASE - FOR FURTHER INFORMATION:

William Johnson	Peter Smith
Executive Chairman	Executive Director
T (08) 9214 9737	T (08) 9214 9737
E chair@lithiumenergy.com.au	E cosec@lithiumenergy.com.au

ABOUT LITHIUM ENERGY LIMITED (ASX:LEL)

Lithium Energy Limited is an ASX listed battery minerals company which is developing its flagship Solaroz Lithium Brine Project in Argentina and the Burke Graphite Project in Queensland. The Solaroz Lithium Project (LEL:90%) comprises 12,000 hectares of highly prospective lithium mineral concessions located strategically within the Salar de Olaroz Basin in South America's "Lithium Triangle" in north-west Argentina. The Solaroz Lithium Project is directly adjacent to or principally surrounded by mineral concessions being developed into production by Allkem Limited (ASX/TSX:AKE) and Lithium Americas Corporation (TSX/NYSE:LAC). The Burke Graphite Project (LEL:100%) contains a high grade graphite deposit and presents an opportunity to participate in the anticipated growth in demand for graphite and graphite related products.

⁶ Refer Mineral Resource estimates at different %TGC cut-off grades reported in Table 2 of LEL ASX Announcement dated 5 April 2023: Burke Graphite Mineral Resource Upgrade Delivers Significant Increases in Size and Confidence

JORC CODE (2012) COMPETENT PERSON STATEMENTS

- (a) The information in this document that relates to Exploration Results in relation to drilling on the Corella Tenement (EPM 25696) is based on, and fairly represents, information and supporting documentation prepared by Mr Peter Smith, BSc (Geophysics) (*Sydney*) AIG ASEG, who is a Member of The Australasian Institute of Geoscientists (AIG). Mr Smith is a Director of the Company (since 18 March 2021). Mr Smith has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves" (JORC Code). Mr Smith has approved and consented to the inclusion in this document of the matters based on his information in the form and context in which it appears.
- (b) The information in this document that relates to Mineral Resources in relation to the Burke Tenement (EPM 25443) within the Burke Graphite Project is extracted from the following ASX market announcement made by Lithium Energy dated:
 - 5 April 2023 entitled "Burke Graphite Mineral Resource Upgrade Delivers Significant Increases in Size and Confidence".

The information in the original announcement is based on, and fairly represents, information and supporting documentation prepared and compiled by Mr Shaun Searle, who is a Member of the Australasian Institute of Geoscientists (AIG). Mr Searle is an employee of Ashmore Advisory Pty Ltd, an independent consultant to Lithium Energy Limited. Mr Searle has the requisite experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement (referred to above). The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement (referred to above).

The Competent Person(s) named below have been previously engaged by Strike Resources Limited (ASX:SRK) (**Strike**), the former parent company of Lithium Energy Limited (and subsidiaries) that hold the interests in the Burke Graphite Project. Lithium Energy Limited was spun out of Strike into a new ASX listing in May 2021.

- (c) The information in this document that relates to other Exploration Results in relation to the Burke and Corella Graphite Projects is extracted from the following ASX market announcements released by:
 - (i) Strike dated:
 - 26 June 2018 entitled "Burke Graphite Project New Target Area Identified from Ground Electro-Magnetic Surveys".
 - 21 April 2017 entitled "Jumbo Flake Graphite Confirmed at Burke Graphite Project, Queensland".

The information in the original announcements is based on, and fairly represents, information and supporting documentation prepared and compiled by Mr Peter Smith (BSc (Geophysics) (Sydney) AIG ASEG). Mr Smith is a Member of AIG, a consultant to Strike and also a Director of the Company (since 18 March 2021). Mr Smith has the requisite experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements (referred to above). The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements (referred to above).

Lithium Energy's ASX Announcements may be viewed and downloaded from the Company's website: www.lithiumenergy.com.au or the ASX website: www.asx.com.au under ASX code "LEL".

Strike's ASX Announcements may be viewed and downloaded from the Company's website: www.strikeresources.com.au or the ASX website: www.asx.com.au under ASX code "SRK".

FORWARD LOOKING STATEMENTS

This document contains "forward-looking statements" and "forward-looking information", including statements and forecasts which include without limitation, expectations regarding future performance, costs, production levels or rates, mineral reserves and resources, the financial position of Lithium Energy, industry growth and other trend projections. Often, but not always, forward-looking information can be identified by the use of words such as "plans", "expects", "is expected", "is expecting", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates", or "believes", or variations (including negative variations) of such words and phrases, or state that certain actions, events or results "may", "could", "would", "might", or "will" be taken, occur or be achieved. Such information is based on assumptions and judgements of management regarding future events and results. The purpose of forward-looking information is to provide the audience with information about management's expectations and plans. Readers are cautioned that forward-looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, performance or achievements expressed or implied by the forward-looking information. Such factors include, among others, changes in market conditions, future prices of minerals/commodities, the actual results of current production, development and/or exploration activities, changes in project parameters as plans continue to be refined, variations in grade or recovery rates, plant and/or equipment failure and the possibility of cost overruns.

Forward-looking information and statements are based on the reasonable assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management believes to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. Lithium Energy believes that the assumptions and expectations reflected in such forward-looking statements and information are reasonable. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Lithium Energy does not undertake to update any forward-looking information or statements, except in accordance with applicable securities laws.

ANNEXURE A

JORC CODE (2012 EDITION) CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA FOR EXPLORATION RESULTS

Section 1 Sampling Techniques and Data

Criteria	Explanation	Comments	
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work 	Sampling of the Reverse Circulation (RC) drilling was done via a Cyclone with splitter unit attached to the drill rig, with samples taken every 1m. Samples were analysed for %TGC by Intertek method C73/CSA and for %TC by Intertek method CSA01. Sulphur was assayed by Intertek method FP1/OM	
	has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.		
Drilling techniques	 Drill type (eg core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). 	DDH1 Drilling undertook the drilling programme and supplied a UDR650 multi-purpose track mounted rig. A larger diameter RC hammer was used to drill an initial pre- collar of 4m in the soil-colluvium profile, which was then cased off using PVC pipe to avoid unconsolidated material falling behind the drill rods. A combined Cyclone and Sample Splitter unit was fitted to the side of the drill rig. The Cyclone collected a 75% bulk sample in a big calico bag and a 25% sample in a small calico bag.	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Recovery from the Graphitic Schist zone was >95%.	

Criteria	Explanation	Comments		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Geological logging of RC drill chips was routinely undertaken for each one-metre interval basis, recording the following geological data: Rock Lithology, Colour, Minerals, Texture, Hardness, Minerology, Oxidation and Graphite Content. Visual record samples were collected from the large bulk sample and contents placed into a 20-compartment plastic tray. Each chip tray was photographed using a high- resolution digital camera.		
	The total length and percentage of the relevant intersections logged.			
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample tupes, the nature quality. 	RC drill chips were submitted into an Intertek sample preparation laboratory in Townsville, Queensland. Geochemical analysis was subsequently performed at an Intertek laboratory in Perth, Western Australia. Samples were analysed for %TGC by Intertek method		
	and appropriateness of the sample preparation technique.	was assayed by Intertek method FP1/OM. No work has been completed to determine if sample size is		
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. 	appropriate to the grain size of the material being sampled with grain size of the graphite being determined pos drilling by combination of petrology and metallurgica		
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	anaysis.		
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 			
Quality of assay data and laboratory	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	Geochemical Analysis RC drill chips were submitted into Intertek sample preparation laboratory in Townsville. Geochemical analysis was subsequently performed at Intertek laboratory in		
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Perth. The laboratory inserted its own standards, Certified Reference Material (CRM) plus blanks and completed its own QA/QC. Whilst company standards, duplicates and blanks were routinely inserted every 25 th sample.		
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 			
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes 	The QA/QC protocols adopted involved routinely inserting a Certified Graphite Reference Standard (2 different Standards used), duplicates or Blank sample into the tag book number sequence every 25 samples.		
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	The QA/QC sample density is considered to be more than adequate and is very robust. Additional QA/QC controls were also provided by internal laboratory repeats and standards.		
	Discuss any adjustment to assay data.	Laboratory performance and all reported analytical results was statistically evaluated using QA/QC monitoring software. All CRMs reported within one Standard Deviation of the Certified value.		

Criteria	Explanation	Comments
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Differential Positioning System (DGPS) instrument, in the MGA Zone 54 projection, was utilised for the drill collar location. Downhole surveys were routinely collected every 30m, using a Reflex Gyro after completion of the hole, with surveying carried out both going into the hole (inside of rods), and also coming out of the hole. Results were averaged to determine the final drillhole deviation information.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Data was routinely collected on a continuous one-metre interval basis. Samples were collected at one-metre intervals down each hole.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill Hole Orientation Drillholes were designed to intersect graphite mineralisation at perpendicular to strike, as observed in outcrop.
Sample security	• The measures taken to ensure sample security.	All samples were collected by Company consultants, retaining chain of custody until delivery to laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken given early stage of exploration project. Company technical staff will review and implement procedures as appropriate.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Comments	
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	Exploration Permit for Minerals (EPM) No. 25696 (Corella Tenement) was granted by the Queensland Government Department of Mines and Energy on 2 April 2015 to Burke Minerals Pty Ltd (BMPL) for an initial period of five years, which was renewed for a further 5 years (expiring on 1 April 2025). Lithium Energy Limited (ASX:LEL) (LEL) is the ultimate parent company of BMPL.	
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	The 'Corella' area was the subject of significant exploration during the 1970s to 1990s. Surface geochemical sampling was the common exploration method, although airborne electro magnetics (EM) was also employed. The main phases of work completed over the current Corella Tenement area are documented in the table below. So far as the Company is	

Criteria	Explanation	Comments				
		awar mine	e, none of the pro ralisation.	evious exploration tar	geted graphite	
		Year	Company	Activities	EPM	
		1975	Jododex	Soil sampling, stream sediment sampling, drilling	EPM1323	
		1976	Carpentaria Exploration Co Pty Ltd	Soil sampling	EPM1269	
		1984	CRA	Stream sediment sampling, RAB drilling	EPM3368, 3967	
		1989	WMC	Stream sediment sampling	EPM5544 <i>,</i> 6896	
		1992	Dominion & North Limited	Stream sediment and soil sampling, drilling, airborne EM	EPM5754, 7438, 7934	
		1997	Eagle Mining	Stream sediment sampling	EPM9601	
		2002	Selwyn Mines	Soil sampling	EPM10553	
		2013	Mt Isa Mines	Rock chipping, soil sampling	EPM12561	
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Corella Tenement covers a sequence of mapped graphit schists within the Corella Formation, which have also been intruded by gabbro dykes and sills, with subsequent metamorphism to amplibolite grade during the Isan Orogen 1600-1580Ma. C The geology of the Corella Tenement area is dominated by the Tommy Creek Block. The Tommy Creek Block is a small fault bounded triangular 20 x 30 km area near the middle of the Mount Isa Orogen. No basement is exposed; the oldest roct are at east edge of domain, the Bulonga Volcanics (1762 +/-Ma; previously assigned to Tommy Creek Microgranite are then Tommy Creek beds). These are overlain by the Corell Formation, and this is intruded by the Tommy Creek Microgranite (in its original intrusive sense). Both these unit are unconformably overlain by the Milo beds (carbonaceous sandstone, siltstone, and volcaniclastics), with dates ranging from 1629 +/- 8 Ma (silicic lavas or sills) to 1610 +/- 6 M (schist from un-named volcaniclastic unit). The domain affected by the Early (1600-1580 ma), Middle (1570-1550 Ma), Mid (1550-1540 Ma) and Late (1530-1500 Ma) Isa Orogenies. Units within the Milo beds have locally been described a Graphitic Schists and slates. The style of mineralisation 				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth of hole length. 	 Holes were orientated to intersect outcropping graphic schists with a dip angle of 60°, the drillhole azimuth was aim to perpendicular intersect graphite beds. Downhole surveys were taken with the Reflex Gyro every 30m. With the survey being done within the drill rods, running the Gyro down the inside of the rods at the end of the drillhole, surveying going down and coming out of the hole The RC hammer bit had a measured diameter of 123mm. larger diameter RC hammer was used to drill an initial pricollar of 4m in the soil-colluvium profile, which was then cas off using PVC pipe to avoid unconsolidated material fallibehind the drill rods. Full details of the collar location, azimuth, depth for Drillhole ID's CGRC001 to CGRC016 are reported in Table 3. 			oping graphitic nuth was aimed lex Gyro every e drill rods, by t the end of the it of the hole. r of 123mm. A I an initial pre- was then cased material falling oth for Drillhole ole 3.	

Criteria	Explanation	Comments		
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 			
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Graphite intersections were aggregated into composited mineralised intervals on the basis of >1m widths and >15% TGC for "High Grade". Intersection widths of >15% TGC were regarded as "significant". The composited graphite Intersections for Drillhole ID's CGRC001 to CGRC016 are reported in Table 1: Intersections were reported only if greater than 2m width and at a cut-off of 4% or higher TGC; Intersections with greater than 15% TGC are considered to be high-grade and are highlighted in bold in the table; There were no material results from CGRC011 (full results are in Table 4). The complete assays (for %TC and %TGC) for Drillhole ID's CGRC001 to CGRC016 are reported in Table 4. 		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Intercept widths are down hole widths.		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts would be included for any significant discovery being reported. These should include, but not be limited too plan view of drill hole collar locations and appropriate sectional views. 	Figure 1 shows the location of RC Holes CGRC001 to CGRC016 and the location of 6 cross-section lines shown in Figures 2 to 7 on the Corella Tenement (with the results of the previous (2018) EM surveys also shown). Figure 2 shows the cross-section for RC Holes CGRC001 and CGRC002 on the 7708716mN line. Figure 3 shows the cross-section for RC Holes CGRC003 and CGRC004 on the 7708790mN line. Figure 4 shows the cross-section for RC Holes CGRC005, CGRC006 and CGRC007on the 7708929mN line. Figure 5 shows the cross-section for RC Holes CGRC008, CGRC009 and CGRC010 on the 7708980mN line. Figure 6 shows the cross-section for RC Holes CGRC012, CGRC013 and CGRC014 on the 7709149mN line. Figure 7 shows the cross-section for RC Holes CGRC011, CGRC015 and CGRC016 on the 7709055mN line.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative	The information reported in this document is factual in nature and considered to be balanced.		

Criteria	Explanation	Comments
	reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or containing substances. 	In 2017, follow-up mapping and rock chip sampling at the Corella Tenement established the widespread nature of graphite mineralisation with zones of higher grade %TGC graphite content up to 14.85 %TGC; refer Strike Resources Limited (ASX:SRK) (Strike) ASX announcement dated 21 April 2017: Jumbo Flake Graphite Confirmed at Burke Graphite Project, Queensland. Strike is the former parent company of LEL (and LEL subsidiaries) – LEL was spun out of Strike into a new ASX listing in May 2021. In 2018, an EM survey was carried out over outcropping and sub-cropping Geological Survey of Queensland mapped Graphitic Schists - the "Milo beds" - within the Corella Formation; the survey highlighted an area of approximately 1000m x 500m with conductive features in shallow to flat- lying areas of outcropping and sub-cropping graphite that have returned 14.85% TGC from rock chip sampling; the conductive features identified within the Corella Tenement are similar to those corresponding to high-grade graphite encountered within the Company's Burke Tenement; refer Strike ASX Announcement dated 26 June 2018: Burke Graphite Project – New Target Area Identified from Ground Electro-Magnetic Surveys. The Burke Tenement (located ~120kms from the Corella Tenement) has a delineated Total Mineral Resource of 9.1Mt at 14.4% TGC for a total of 1.3Mt contained graphite (at a 5% TGC cut-off grade) (Burke Deposit), comprising: Indicated Mineral Resource of 4.5Mt at 14.7% TGC for 670kt of contained graphite; and
		 Inferred Mineral Resource of 4.5Mt at 14.2% TGC for 640kt of contained graphite, (refer LEL ASX Announcement dated 5 April 2023: Burke
		Graphite Mineral Resource Upgrade Delivers Significant Increases in Size and Confidence).
		In addition to the recently completed RC drilling programme, an extensive rock chip sampling programme was conducted across the Corella Tenement at the same time to facilitate the building of a resource model for graphite mineralisation within the tenement.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, providing this information is not commercially sensitive. 	A review of the data from the (March/April 2023) RC drilling and rock chip sampling programme will be undertaken to increase the geological understanding of the graphite mineralisation (including the thickness, grade and continuity of the graphitic schist units) within the Corella Tenement. A consultant geologist (who recently completed the JORC Mineral Resource upgrade of the Burke Deposit) has been engaged to delineate a maiden JORC Inferred Mineral Resource estimate for the Corella Tenement. Samples from the March/April 2023 drilling programme will undergo metallurgical flotation, purification and spheronisation testwork. Subject to the above, the next stages of exploration at the
		Corella Tenement will include metallurgical and geotechnical drilling and metallurgical testwork.

Table 3 - Drillhole Collar Location, Azimuth and Depth for Corella RC Holes CGRC001 to CGRC016

	Easting	Northing	Elevation	Inclination	Azimuth(Grid)	Final Depth
Hole ID	GDA94-M	IGA Zone 54	AHD	Degrees	Degrees	Metres
CGRC001	417528	7708716	266	60	270	91
CGRC002	417587	7708717	269	60	270	109
CGRC003	417572	7708783	268	60	270	142
CGRC004	417499	7708795	267	60	270	109
CGRC005	417560	7708930	264	90	0	127
CGRC006	417563	7708928	264	60	270	109
CGRC007	417497	7708928	265	60	270	78
CGRC008	417542	7708980	264	60	270	133
CGRC009	417544	7708981	262	90	0	151
CGRC010	417445	7708992	262	60	270	82
CGRC011	417524	7709090	268	60	270	67
CGRC012	417504	7709125	263	60	270	91
CGRC013	417447	7709149	262	60	270	61
CGRC014	417449	7709149	262	90	0	79
CGRC015	417456	7709058	266	60	90	49
CGRC016	417407	7709052	264	60	90	91

Table 4 – Total Carbon (TC) and Total Graphitic Carbon (TGC) Assays Results - Corella RC Holes CGRC001 to CGRC016

	Intersection (metres)			
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC001	0	1	2.98	3.1
CGRC001	1	2	4.14	3.5
CGRC001	2	3	3.99	3.5
CGRC001	3	4	4.27	3.8
CGRC001	4	5	4.09	4
CGRC001	5	6	4.54	3.6
CGRC001	6	7	7.84	6.8
CGRC001	7	8	3.34	2.6
CGRC001	8	9	5.13	5.1
CGRC001	9	10	4.05	4.1
CGRC001	10	11	3.74	3.7
CGRC001	11	12	2.68	2.7
CGRC001	12	13	2.78	2.8
CGRC001	13	14	3.66	3.7
CGRC001	14	15	3.24	3.2
CGRC001	15	16	3.34	3.3
CGRC001	16	17	3.43	3.4
CGRC001	17	18	3.92	3.9
CGRC001	18	19	4.2	4.4
CGRC001	19	20	5.43	5.5
CGRC001	20	21	7.44	7.6
CGRC001	21	22	7.48	7.5
CGRC001	22	23	9.31	9.3
CGRC001	23	24	10.08	10
CGRC001	24	25	8.99	8.8
CGRC001	25	26	6.27	6.3
CGRC001	26	27	4.32	4.3
CGRC001	27	28	3.48	3.5
CGRC001	28	29	6.14	6.1

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 4% (current) Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC001	29	30	7.37	7.3
CGRC001	30	31	7.51	7.5
CGBC001	31	32	7 23	72
CGBC001	32	33	6 57	6.6
	32	34	7 75	7.8
CGRC001	24	2E	7.75	7.8
	25	35	7.00	1.1
CGRC001	35	30	4.77	4.8
CGRC001	36	3/	6.13	6.3
CGRC001	37	38	5.9	6.1
CGRC001	38	39	4.94	4.8
CGRC001	39	40	3.97	3.9
CGRC001	40	41	6.35	5.8
CGRC001	41	42	5.75	5.3
CGRC001	42	43	5.97	5.6
CGRC001	43	44	6.73	6.5
CGRC001	44	45	7.29	7
CGRC001	45	46	6.14	5.7
CGRC001	46	47	7	6.7
CGRC001	47	48	8.5	8.2
CGRC001	48	49	8.35	7.7
CGBC001	49	50	11 34	10.7
	50	51	11.01	10.4
	50	52	11.2	11.4
	51	52	0.22	0.7
CGRC001	52	53	9.22	8.7
CGRC001	53	54	8.24	8
CGRC001	54	55	7.74	7.5
CGRC001	55	56	4.02	3.7
CGRC001	56	57	3.96	3.8
CGRC001	57	58	3.75	3.7
CGRC001	58	59	3.59	3.4
CGRC001	59	60	4.02	3.9
CGRC001	60	61	4.12	4.1
CGRC001	61	62	3.85	3.6
CGRC001	62	63	3.11	3.1
CGRC001	63	64	3.7	3.7
CGRC001	64	65	3.69	3.5
CGBC001	65	66	4.85	4.7
	66	67	6.47	6.4
	67	69	7 22	7
	67	60	7.52	/
	00	50	J.JZ 0 JF	3
CGRC001	69	70	8.25	7.0
	/0	/1	9.12	8.2
CGRC001	/1	/2	8.25	7.9
CGRC001	72	73	10.09	9.6
CGRC001	73	74	16.9	16.2
CGRC001	74	75	14.9	14.5
CGRC001	75	76	12.17	11.5
CGRC001	76	77	14.29	13.7
CGRC001	77	78	15.81	14.9
CGRC001	78	79	13.18	12.4
CGRC001	79	80	12.88	12.1
CGRC001	80	81	11.16	10.9
CGRC001	81	82	10.66	10.3
CGRC001	82	83	13.18	12.2
CGRC001	83	84	12 37	11 9
	84	0 4 85	11 07	11.5
	04 QE	00	11.0/ Q 10	76
	65	00	0.12	7.0
CGRC001	86	87	0.53	0.5

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC001	87	88	0.75	0.6
CGRC001	88	89	0.59	0.5
CGBC001	89	90	0.41	03
CGBC001	90	91	0.7	0.6
CGRC002	0	1	0.94	0.9
CGRC002	1	2	0.72	0.7
CGRC002	1	2	0.73	0.7
CGRC002	2	3	0.5	0.5
CGRC002	3	4	2.33	0.6
CGRC002	4	5	0.92	0.4
CGRC002	5	6	2.22	0.6
CGRC002	6	7	2.65	1.9
CGRC002	7	8	0.87	0.5
CGRC002	8	9	0.69	0.4
CGRC002	9	10	0.93	0.7
CGRC002	10	11	1.15	0.4
CGRC002	11	12	1.27	0.6
CGRC002	12	13	2.62	1.1
CGRC002	13	14	1.18	1
CGBC002	14	15	0.86	0.5
CGRC002	15	16	0.55	0.5
	16	17	0.73	0.4
	17	17	0.73	0.4
	17	10	0.51	0.5
CGRC002	18	19	0.44	0.3
CGRC002	19	20	0.37	0.2
CGRC002	20	21	0.36	0.3
CGRC002	21	22	1.42	1.4
CGRC002	22	23	4.37	4.4
CGRC002	23	24	4.37	4.4
CGRC002	24	25	2.81	2.8
CGRC002	25	26	0.12	0.1
CGRC002	26	27	0.08	0.1
CGRC002	27	28	0.2	0.2
CGRC002	28	29	0.15	0.1
CGRC002	29	30	0.07	0.1
CGBC002	30	31	0.08	0.1
	31	32	0.08	X
	22	22	0.00	× ×
CGRC002	22	24	0.14	0.2
	35	25	0.05	0.2
CGRC002		35	1.01	0.3
CGRC002	35	36	0.89	0.5
CGRC002	36	37	2.85	2.9
CGRC002	37	38	3.11	3
CGRC002	38	39	1.26	1.2
CGRC002	39	40	0.41	0.3
CGRC002	40	41	0.59	0.4
CGRC002	41	42	0.53	0.3
CGRC002	42	43	0.88	0.7
CGRC002	43	44	0.83	0.8
CGRC002	44	45	1.34	1.3
CGRC002	45	46	5.15	4.9
CGRC002	46	47	5.67	5.4
CGRC002	47	48	5.6	5.4
	49	40	6.08	5.4
		50	12 0	12.2
	43	50	12.3	14.2
	50	51	15.39	14.3
	51	52	14.8/	14.4
CGRC002	52	53	15.39	14.7
CGRC002	53	54	9.41	9.2

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC002	54	55	12.06	11.7
CGRC002	55	56	8.96	8.8
CGBC002	56	57	13.31	12.6
CGBC002	57	58	23.3	23.2
	58	50	23.5	24.6
CGRC002	58	60	24.02	10.6
		61	20.0	19.0
CGRC002	60	61	19.1	18.8
CGRC002	61	62	20.2	19.4
CGRC002	62	63	11.75	11.1
CGRC002	63	64	14.87	14.3
CGRC002	64	65	21.8	21.3
CGRC002	65	66	20.7	20
CGRC002	66	67	21.4	21.1
CGRC002	67	68	21.5	21.2
CGRC002	68	69	18.9	18.7
CGRC002	69	70	17.78	16.6
CGRC002	70	71	11.96	11.5
CGRC002	71	72	10.61	10.3
CGRC002	72	73	9.47	8.8
CGRC002	73	70	10.82	9.5
	73	75	10.02	0.3
	74	75	0.24	9.5
	75	70	5.54 10.25	0.4
CGRC002	/6	//	10.25	9.6
CGRC002	//	/8	12.79	11.6
CGRC002	/8	/9	14.66	13.2
CGRC002	79	80	10.21	9.2
CGRC002	80	81	14.04	12.1
CGRC002	81	82	13.73	12
CGRC002	82	83	16.43	14.9
CGRC002	83	84	13.31	11.4
CGRC002	84	85	13.83	12.2
CGRC002	85	86	14.14	12.9
CGRC002	86	87	15.3	13.9
CGRC002	87	88	14.1	13
CGBC002	88	89	14 5	13.6
	89	90	13.8	13.3
	90	01	16.0	15.5
	90	91	10.2	15.0
CGRC002	91	92	10.5	10
CGRC002	92	93	18.4	17.8
	93	94	18	17.3
CGRC002	94	95	13.52	12
CGRC002	95	96	4.64	4.4
CGRC002	96	97	13.1	11.5
CGRC002	97	98	7.63	7.2
CGRC002	98	99	6.39	5.8
CGRC002	99	100	6.45	6.1
CGRC002	100	101	12.54	11.7
CGRC002	101	102	12.56	11.9
CGRC002	102	103	11.61	10.9
CGRC002	103	104	12.43	11.9
CGRC002	104	105	12.14	11.7
CGR(002	105	106	15 12	14 7
	105	107	21 71	20.2
	107	107	16.21	16.2
	102	100	0.12	10.3
	108	108	8.12	7.9
CGRC003	0	1	9.3	7.2
CGRC003	1	2	11.54	5.2
CGRC003	2	3	10.61	7.7

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC003	3	4	12.48	8.5
CGRC003	4	5	13.31	8.9
CGRC003	5	6	11.96	9.3
CGRC003	6	7	11.02	9.1
	7	8	12.32	8.1
CGRC003	, ,	0	12.50	10.2
	<u> </u>	9	12.17	10.2
CGRC003	9	10	11.80	10.1
CGRC003	10	11	12.79	10
CGRC003	11	12	14.21	12.5
CGRC003	12	13	14.9	13.1
CGRC003	13	14	13.42	11.7
CGRC003	14	15	15.5	14.3
CGRC003	15	16	18.5	16.9
CGRC003	16	17	12.79	11.4
CGRC003	17	18	10.61	10.5
CGRC003	18	19	10.5	10.3
CGRC003	19	20	8.9	8.6
CGRC003	20	21	8.27	7.8
CGRC003	21	22	10.3	10
CGRC003	22	23	11.65	11.1
CGRC003	23	24	9.33	9.3
CGBC003	24	25	8.46	8.5
CGBC003	25	26	13	12.6
	25	20	13 31	12.6
	20	27	16.81	16.2
	27	20	10.01	10.2
	28	29	19.17	16.9
CGRC003	29	30	18.55	10.8
CGRC003	30	31	19.37	19.3
CGRC003	31	32	11.32	11
CGRC003	32	33	7.94	7.9
CGRC003	33	34	6.78	6.8
CGRC003	34	35	11.42	11.4
CGRC003	35	36	11.01	10.9
CGRC003	36	37	11.01	11
CGRC003	37	38	11.42	10.5
CGRC003	38	39	12.35	11.6
CGRC003	39	40	11.94	11.6
CGRC003	40	41	11.32	10.5
CGRC003	41	42	12.76	12.3
CGRC003	42	43	10.7	10.7
CGRC003	43	44	11.73	10.8
CGRC003	44	45	12.14	11.8
CGRC003	45	46	11.83	11.7
CGRC003	46	47	11.62	11.6
CGRC003	47	48	13.38	13.3
CGRC003	48	49	14.3	14.3
CGRC003	49	50	13.27	12
CGRC003	50	51	13 17	12.8
	50	52	14.82	14.8
CGRC003	51	52	17 0/	17.9
	52	55	1/.74	1/.0
	23 E4	54	14./1	11.4
	54	55	11.52	11.4
	55	56	0.05	6./
CGRC003	56	5/	10.29	10.1
CGRC003	57	58	9.07	9.1
CGRC003	58	59	8.94	8.6
CGRC003	59	60	6.02	5.7
CGRC003	60	61	6.76	6.4

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC003	61	62	13.58	13
CGRC003	62	63	16.88	16.1
CGBC003	63	64	9.86	9.9
CGRC003	64	65	14.92	14.8
	65	66	15.12	1/ 8
CGRC003	66	67	11.12	10.2
	67	69	10.21	10.2
CGRC003	67	08	10.21	9.5
CGRC003	68	69	16.26	14.9
CGRC003	69	70	11.42	10.8
CGRC003	70	71	11.11	10.6
CGRC003	71	72	12.14	11.5
CGRC003	72	73	1.68	1.7
CGRC003	73	74	5.6	5.2
CGRC003	74	75	11.52	11.4
CGRC003	75	76	5.94	5.7
CGRC003	76	77	4.74	4.7
CGRC003	77	78	0.85	0.8
CGRC003	78	79	0.41	0.4
CGRC003	79	80	0.39	0.4
CGRC003	80	81	0.41	0.4
CGBC003	81	82	0.72	0.7
CGRC003	82	83	0.82	0.8
		94 84	0.92	1
	03	04	1.01	1
CGRC003	<u> </u>	65	1.01	1
CGRC003	85	80	3.//	3.8
CGRC003	86	8/	9.48	9.2
CGRC003	87	88	13.06	12.7
CGRC003	88	89	12.45	12.3
CGRC003	89	90	8.72	8.7
CGRC003	90	91	2.54	2.5
CGRC003	91	92	1.16	1.2
CGRC003	92	93	2.58	2.6
CGRC003	93	94	8.04	7.7
CGRC003	94	95	8.84	8.9
CGRC003	95	96	5.94	5.9
CGRC003	96	97	8.16	8.1
CGRC003	97	98	5.95	6
CGRC003	98	99	7.53	7.4
CGRC003	99	100	8.95	8.7
CGBC003	100	101	9 77	9.8
CGRC003	101	102	8.52	85
CGRC003	101	102	6 5/	6.5
CGRC003	102	103	7 05	0.5 Q
	104	104	11 07	1/1
	104	100	14.82	16.4
	105	107	L/.22	10.4
CGRC003	106	107	6.11	6.1
CGRC003	107	108	2.46	2.5
CGRC003	108	109	18.8	18.4
CGRC003	109	110	15.1	14.9
CGRC003	110	111	20.09	19.6
CGRC003	111	112	19.48	18.7
CGRC003	112	113	12.65	11.9
CGRC003	113	114	12.76	12.4
CGRC003	114	115	15.99	15.5
CGRC003	115	116	11.11	11
CGRC003	116	117	11.11	11
CGRC003	117	118	9.69	9.7
CGRC003	118	119	8 92	87
00110000	110		0.72	0.7

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC003	119	120	7.66	7.7
CGRC003	120	121	9.42	8.8
CGBC003	121	122	8 72	87
CGRC003	122	123	8 57	86
	122	123	7 12	71
CGRC003	123	124	7.12	7.1 6.6
	124	125	0.50	0.0
CGRC003	125	120	5.45	5.5
CGRC003	126	127	5.35	5.3
CGRC003	127	128	5.46	5.5
CGRC003	128	129	6.4	6.3
CGRC003	129	130	5.76	5.8
CGRC003	130	131	5.82	5.6
CGRC003	131	132	8.68	8.7
CGRC003	132	133	12.55	12.3
CGRC003	133	134	9.59	9.6
CGRC003	134	135	15.02	14.2
CGRC003	135	136	14.82	14.6
CGRC003	136	137	5.8	5.8
CGRC003	137	138	4.28	4.3
CGRC003	138	139	6.52	6.4
	130	135	8.19	8.4
	139	140	0.45	0.4
	140	141	4.34 F 37	4.5
CGRC003	141	142	5.37	5.3
CGRC004	0	1	8.41	8.4
CGRC004	1	2	2.4	2.2
CGRC004	2	3	2.33	1.2
CGRC004	3	4	1.31	1.1
CGRC004	4	5	1.3	1.1
CGRC004	5	6	0.88	0.9
CGRC004	6	7	0.95	0.9
CGRC004	7	8	0.95	0.9
CGRC004	8	9	0.99	1
CGRC004	9	10	0.57	0.6
CGRC004	10	11	0.72	0.7
CGRC004	11	12	0.4	0.4
CGRC004	12	13	0.5	0.7
CGRC004	13	14	0.66	0.7
	14	15	0.58	0.5
	14	15	0.38	0.5
	16	10	0.77	0.8
CGRC004	10	1/	0.75	0.7
CGRC004	17	18	0.78	0.8
CGRC004	18	19	0.58	0.6
CGRC004	19	20	0.86	0.9
CGRC004	20	21	1.64	1.6
CGRC004	21	22	2.27	2.3
CGRC004	22	23	1.53	1.4
CGRC004	23	24	1.66	1.7
CGRC004	24	25	1.86	1.4
CGRC004	25	26	1.22	0.9
CGRC004	26	27	1.7	0.8
CGRC004	27	22	1.89	1
CGRC004	22	29	1.03	0.6
CGRC004	29	30	0.86	0.5
CGRC004	30	31	0.99	0.8
CGRC004	31	32	1 47	0.9
	27	22	1.72	1 2
	32 20	33 24	1.01	1.5
	23	54	1.19	1.2
LGKU004	34	35	1.02	1

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC004	35	36	1.28	1.3
CGRC004	36	37	1.38	1.4
CGBC004	37	38	1.63	16
	38	39	2 53	2.5
	30	40	2.03	2:5
	33	40	2.05	1.0
CGRC004	40	41	1.80	1.9
CGRC004	41	42	1.91	1.9
CGRC004	42	43	0.92	0.9
CGRC004	43	44	1.82	1.1
CGRC004	44	45	1.91	1.3
CGRC004	45	46	1.47	0.9
CGRC004	46	47	1.73	1.4
CGRC004	47	48	1.22	1.1
CGRC004	48	49	0.87	0.9
CGRC004	49	50	0.83	0.8
CGRC004	50	51	1.65	1.7
CGRC004	51	52	3.38	3.3
CGRC004	52	53	14.59	14.5
CGRC004	53	54	27.21	25.3
CGRC004	54	55	20.23	19.7
CGRC004	55	56	1.88	1.9
CGRC004	56	57	3.1	3.1
CGBC004	57	58	1 15	12
	58	50	0.85	0.9
	50	60	1 1	1.1
	60	61	1.1	1.1
	60	62	1.40	1.1
CGRC004	61	62	2.35	1.4
CGRC004	62	03	1.9	1.0
CGRC004	63	64	1.73	1.4
CGRC004	64	65	1.35	0.5
CGRC004	65	66	1	1
CGRC004	66	67	14.09	14
CGRC004	67	68	21.01	21
CGRC004	68	69	17.1	17.1
CGRC004	69	70	14.1	14
CGRC004	70	71	20.6	19.7
CGRC004	71	72	22.24	21.6
CGRC004	72	73	22.04	20.9
CGRC004	73	74	25.83	24.7
CGRC004	74	75	26.24	26.2
CGRC004	75	76	19.07	19.1
CGRC004	76	77	13.06	12.8
CGRC004	77	78	14.2	13.8
CGRC004	78	79	24.7	22.9
CGRC004	79	80	4.72	4.7
CGRC004	80	81	1.65	1.1
CGRC004	81	82	3.16	3.2
CGRC004	82	83	2.65	2.7
CGRC004	83	84	3.05	3.1
CGRC004	84	85	3.68	3.6
CGRC004	85	86	3.45	3.3
CGRC004		<u> </u>	5.45	5.5
	00 7	00	1 12	0.7
	07	00	1.15	0.7
	00	69	1.10	0.5
	89	90	0.94	0.4
	90	91	2.32	2.3
LGRC004	91	92	6.66	6.6
CGRC004	92	93	13.79	13.5

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC004	93	94	17.18	16.1
CGBC004	94	95	22.81	21.4
	05	96	22.01	22.1
CGRC004	95	90	28.50	20.2
	90	97	20.40	27.7
CGRC004	97	98	28.66	28
CGRC004	98	99	28.26	26.9
CGRC004	99	100	31.24	29.2
CGRC004	100	101	23.36	22.6
CGRC004	101	102	3.51	3.2
CGRC004	102	103	2.26	2.3
CGRC004	103	104	1.87	1.9
CGRC004	104	105	7.5	7.5
CGRC004	105	106	2.85	2.9
CGRC004	106	107	2.56	2.0
	100	107	2.50	2.2
	107	100	2.40	2.5
	108	109	2.69	2.7
CGRC005	0	1	3.1	3
CGRC005	1	2	1.23	1.1
CGRC005	2	3	0.42	0.4
CGRC005	3	4	0.68	0.7
CGRC005	4	5	1	0.6
CGRC005	5	6	0.62	0.6
CGRC005	6	7	1.53	1.5
CGBC005	7	8	0.89	0.9
CGRC005	, 8	9	0.31	0.3
CCRCOOF	0	10	0.30	0.5
CGRC005	9	10	0.35	0.4
CGRC005	10	11	0.85	0.8
CGRC005	11	12	0.75	0.8
CGRC005	12	13	0.73	0.7
CGRC005	13	14	0.58	0.6
CGRC005	14	15	0.35	0.4
CGRC005	15	16	1.45	1.5
CGRC005	16	17	1.06	1
CGRC005	17	18	2.79	2.7
CGRC005	18	19	4.27	4.3
CGRC005	19	20	1.33	1.3
CGBC005	20	21	2 65	25
CGRC005	21	22	2.13	1 5
	21	22	1 41	0.0
CCRCOOF	22	23	1.74	0.5
	23	24	1.74	1.2
	24	25	1.15	1.1
CGRC005	25	26	1.1/	0.8
CGRC005	26	27	1.58	0.8
CGRC005	27	28	0.82	0.7
CGRC005	28	29	0.85	0.9
CGRC005	29	30	0.7	0.7
CGRC005	30	31	0.53	0.5
CGRC005	31	32	1.68	1.6
CGRC005	32	33	1.66	1.7
CGRC005	33	34	1.08	0.5
CGRC005	34	35	1.53	0.5
CGRC005	25	36	1 89	1 7
CGPCODE	26	27	1 10	1 0
CGRCOOS	טנ סכ	37 20	1.10	1.2
	3/	30	0.45	1.0
CGRC005	38	39	0.45	0.4
CGRC005	39	40	1.02	1
CGRC005	40	41	2.01	2
CGRC005	41	42	4.35	4.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC005	42	43	0.68	0.7
CGRC005	43	44	4.54	4.5
CGRC005	44	45	7	7
CGRC005	45	46	7.87	7.9
CGRC005	46	47	7.43	73
	40	47	7.45	7.5
CGRC005	47	40	7.0 9.09	7.8
CGRC005	40	49 E0	0.50	0.5 0 E
	49	50	9.0	0.5
CGRC005	50	51	9.11	8
LGRC005	51	52	8.59	7.8
CGRC005	52	53	9.05	8.7
CGRC005	53	54	8.25	7.9
CGRC005	54	55	7.93	7.4
CGRC005	55	56	7.59	7.1
CGRC005	56	57	8.06	7.8
CGRC005	57	58	8.22	8
CGRC005	58	59	8.91	8.8
CGRC005	59	60	8.17	7.9
CGRC005	60	61	6.2	6.2
CGRC005	61	62	5.42	5.1
CGBC005	62	63	5.54	5.3
CGBC005	63	64	5.53	5.5
CGRC005	64	65	6.27	63
CGRC005	65	66	6.00	5.9
CGRC005	66	67	E 02	5.0 E.C
	60	67	5.92	5.0
CGRC005	67	68	4.87	4.5
CGRC005	68	69	4.88	4.6
CGRC005	69	70	5.06	4.9
CGRC005	70	71	5.09	4.8
CGRC005	71	72	5.18	5
CGRC005	72	73	5.37	5.4
CGRC005	73	74	7.31	6.9
CGRC005	74	75	7.25	7.3
CGRC005	75	76	5.91	5.8
CGRC005	76	77	6.52	6.5
CGRC005	77	78	7.14	7
CGRC005	78	79	8.03	7.9
CGRC005	79	80	8.79	8.1
CGRC005	80	81	8.53	8.2
CGRC005	81	82	8.53	8.4
CGRC005	82	83	7.97	8
CGRC005	83	84	7.58	7.6
CGRC005	84	85	4,08	4.1
CGRC005	85	86	8,11	75
CGRC005		<u> </u>	2 27	3.4
	87	88		1.7
CGPC005	00	00 00	۰.54 و 10	7.0
	00	60	0.1Z E 10	7.9 E 1
	69	50	5.12	5.1
	90	91	5.97	5.6
	91	92	/.08	/
CGRC005	92	93	4.32	4.3
CGRC005	93	94	4.63	4.6
CGRC005	94	95	5.2	5.2
CGRC005	95	96	6.86	6.9
CGRC005	96	97	5.58	5.5
CGRC005	97	98	6.51	6
CGRC005	98	99	5.61	5.4
CGRC005	99	100	6.26	6.1

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC005	100	101	7.07	6.7
CGRC005	101	102	8.56	8.1
CGBC005	102	103	93	87
CGBC005	103	104	9.49	86
CGRC005	103	105	8.68	8.1
CGRC005	104	105	10.61	0.1
CGRC005	105	100	10.01	9.7
CGRC005	106	107	9.93	9.5
CGRC005	107	108	10.61	9.9
CGRC005	108	109	10.51	9.8
CGRC005	109	110	10.71	9.8
CGRC005	110	111	9.87	9.3
CGRC005	111	112	10.81	10.3
CGRC005	112	113	11.42	10.9
CGRC005	113	114	11.22	10.4
CGRC005	114	115	11.63	10.6
CGRC005	115	116	11.02	9.9
CGRC005	116	117	10.81	10.2
CGRC005	117	118	11.93	11.2
CGRC005	118	119	10.3	9.6
CGRC005	119	120	14.99	14.3
CGBC005	120	121	10.3	10.1
CGRC005	120	122	0.51	0.5
CGPC005	121	122	0.31	0.3
	122	123	0.35	0.3
CGRC005	123	124	0.3	0.3
CGRC005	124	125	0.31	0.3
CGRC005	125	126	0.69	0.5
CGRC005	126	127	0.37	0.4
CGRC006	0	1	3.71	3.6
CGRC006	1	2	1.53	1.1
CGRC006	2	3	0.49	0.4
CGRC006	3	4	0.08	0.1
CGRC006	4	5	1.47	1.5
CGRC006	5	6	0.41	0.4
CGRC006	6	7	0.13	0.1
CGRC006	7	8	0.36	0.4
CGRC006	8	9	0.92	0.8
CGRC006	9	10	1.55	1.2
CGRC006	10	11	0.77	0.8
CGRC006	11	12	0.81	0.7
CGRC006	12	13	0.14	0.1
CGRC006	13	14	0.17	0.1
CGRC006	1/	15	0.12	0.7
CGRC006	15	16	1 83	1.2
CGPC006	16	10	2.05	1.0 2 E
	17	10	2.40	2.0
	1/	18	2.83	2.8
	18	19	0.42	0.4
CGKCUUb	19	20	0.37	0.4
CGRC006	20	21	0.42	0.4
CGRC006	21	22	0.38	0.4
CGRC006	22	23	0.96	0.9
CGRC006	23	24	0.87	0.9
CGRC006	24	25	1.38	1.2
CGRC006	25	26	1.9	1.1
CGRC006	26	27	1.64	0.7
CGRC006	27	28	1.08	0.8
CGRC006	28	29	0.49	0.3
CGRC006	29	30	1.02	0.3
CGRC006	30	31	1.23	0.8
50	~~~			0.0

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC006	31	32	3.33	3.3
CGRC006	32	33	1.18	1.2
CGRC006	33	34	1.79	1.7
CGRC006	34	35	2.68	2.6
CGBC006	35	36	2.49	2
CGRC006	36	37	5.06	51
CGRC006	37	38	2.76	2.8
CGRC006	20	20	2.70	2.0
CCRC006	38	39	0.21	5.5
CGRC006	39	40	9.21	9.2
CGRC006	40	41	3.23	3
CGRC006	41	42	1.09	1
CGRC006	42	43	0.75	0.8
CGRC006	43	44	0.66	0.7
CGRC006	44	45	0.86	0.8
CGRC006	45	46	1.18	0.6
CGRC006	46	47	0.92	0.9
CGRC006	47	48	1.06	1.1
CGRC006	48	49	1.91	1.8
CGRC006	49	50	3	3
CGRC006	50	51	3.38	3.4
CGRC006	51	52	4.04	4
CGRC006	52	53	0.47	0.4
CGBC006	53	54	1.05	1.1
CGRC006	54	55	3 37	3.4
CGRC006	55	56	1 28	0.6
CGRC006	55	57	2.25	2.0
CGRC006	50	57	2.25	2.2
CGRC006	57	50	5.15	5.1
CGRC006	56	59	2.3	2.3
CGRC006	59	60	1.75	1.4
CGRC006	60	61	2.51	2.5
CGRC006	61	62	1.15	1.2
CGRC006	62	63	1	1
CGRC006	63	64	5.64	5.6
CGRC006	64	65	0.86	0.9
CGRC006	65	66	7.19	7.1
CGRC006	66	67	10.24	9.3
CGRC006	67	68	9.71	9.3
CGRC006	68	69	8.06	8.1
CGRC006	69	70	7.25	7.3
CGRC006	70	71	9.1	9.1
CGRC006	71	72	12.53	12.5
CGRC006	72	73	10.75	10.5
CGRC006	73	74	9.65	9.3
CGRC006	74	75	10.65	10.3
CGRC006	75	76	8,97	89
CGRC006	76	77	0.6	0.6
CGRC006	77	78	8	7.8
CGRC006	79	70	11 26	11 /
	70	73	11.50	11.4
	/9	80	11.85	11.5
	80	18	10.47	10.1
	81	82	10.97	11
CGRC006	82	83	3.47	3.4
CGRC006	83	84	8.27	8.1
CGRC006	84	85	8.68	8.5
CGRC006	85	86	5.54	5.4
CGRC006	86	87	9.68	9.5
CGRC006	87	88	10.07	10.1
CGRC006	88	89	1.13	1.1

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC006	89	90	0.59	0.6
CGBC006	90	91	1.06	1
CGRC006	91	92	1 18	- 11
	02	92	1/ 55	1.1
CGRC006	02	04	14.55	11 1
	95	94	11.29	11.1
CGRC006	94	95	12.35	12.1
LGRC006	95	96	11.99	11.8
CGRC006	96	97	6	5.9
CGRC006	97	98	5.04	4.9
CGRC006	98	99	4.21	4.2
CGRC006	99	100	4.48	4.5
CGRC006	100	101	4.82	4.8
CGRC006	101	102	4.41	3.9
CGRC006	102	103	4.16	3.8
CGRC006	103	104	3.73	3.6
CGRC006	104	105	4.27	4.2
CGRC006	105	106	4.42	4.3
CGRC006	106	107	6.62	6.5
CGRC006	107	108	7.26	7
CGRC006	108	109	7.07	7
CGRC007	0	1	6.27	6.3
CGRC007	1	2	3.93	3.1
CGBC007	2	3	4.63	4.1
	3	4	5 37	4
	4	5	7 23	5.6
		6	5.9/	5.0
	5	7	1.54	1.2
CGRC007	7) 0	4.50	4.5
	7	0	5.57	5.2
	8	9	0.1	57
	9	10	5.71	5.7
LGRC007	10	11	4.28	4.3
CGRC007	11	12	3.42	3.4
CGRC007	12	13	4.07	4.1
CGRC007	13	14	4.67	4.7
CGRC007	14	15	4.67	4.6
CGRC007	15	16	2.36	2.4
CGRC007	16	17	6.67	6.4
CGRC007	17	18	9.58	8.7
CGRC007	18	19	10.91	10.1
CGRC007	19	20	18.87	17.3
CGRC007	20	21	18.67	17.9
CGRC007	21	22	13.57	13.2
CGRC007	22	23	14.89	14.8
CGRC007	23	24	17.44	17.2
CGRC007	24	25	14.59	14.3
CGRC007	25	26	14.99	14.6
CGRC007	26	27	14.79	13.5
CGRC007	27	28	16.22	14.4
CGRC007	28	29	15.91	15.2
CGRC007	29	30	15.91	15.4
CGRC007	30	31	5,16	5.2
CGRC007	31	32	2.3	2.3
CGRC007	37	33	3.46	3.4
CGRC007	32	34	5.40	6
CGRC007	33	25) 1	0 2 1
	54 25	55 26	2.1	2.1
	35	30	2.48	2.5
	36	3/	2.05	2.1
CGRC007	37	38	1.85	1.8

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC007	38	39	1.84	1.8
CGBC007	39	40	1.87	19
	10	40	2.10	2.5
	40	41	1.00	1.0
	41	42	1.00	1.9
CGRC007	42	43	1.87	1.9
CGRC007	43	44	2.05	2.1
CGRC007	44	45	1.97	2
CGRC007	45	46	1.96	2
CGRC007	46	47	2.17	2.2
CGRC007	47	48	2.12	2.1
CGRC007	48	49	2	2
CGRC007	49	50	2.07	2
CGBC007	50	53	2.28	2.3
CGRC007	51	52	1 5	1.0
	51	52	1.5	1.4
	52	53	0.99	1
CGRC007	53	54	1.13	1.1
CGRC007	54	55	1.51	1.5
CGRC007	55	56	0.84	0.8
CGRC007	56	57	1.19	1.2
CGRC007	57	58	4.73	4.7
CGRC007	58	59	8.76	8.8
CGRC007	59	60	8.52	8.5
CGBC007	60	61	7.06	71
	61	62	2 27	2.2
	61	62	2.05	3.5
CGRC007	62	03	2.95	2.9
LGRC007	63	64	6.16	6.2
CGRC007	64	65	7.94	7.7
CGRC007	65	66	4.47	4.5
CGRC007	66	67	7.94	7.8
CGRC007	67	68	5.76	5.8
CGRC007	68	69	4.82	4.7
CGRC007	69	70	2.96	2.8
CGRC007	70	71	2.03	2.1
CGRC007	71	72	1.72	1.7
CGBC007	72	73	1 98	19
	72	73	1.56	1.5
CGRC007	74	74	1.50	1.7
	74	75	1.59	1.5
LGRC007	75	/6	1.2	1.1
CGRC007	/6	11	1.//	1./
CGRC007	77	78	1.17	1.1
CGRC008	0	1	7.16	6.8
CGRC008	1	2	4.44	4.3
CGRC008	2	3	8.35	7.9
CGRC008	3	4	8.83	8.8
CGRC008	4	5	7.64	7.5
CGRC008	5	6	8.87	8.9
CGRC008	6	7	7.91	7.8
CGRC008	7	8	<u>8</u> 17	79
CGRC008	, Q	0	7 52	7.5
	0	J 10	7.00	7.5
	У 10	10	1.2	0.8
	10	11	6.86	6.8
CGRC008	11	12	6.34	5.9
CGRC008	12	13	6.16	6.1
CGRC008	13	14	6.11	6.1
CGRC008	14	15	6.29	6.3
CGRC008	15	16	6.41	6.4
CGRC008	16	17	6.39	6.3
CGRC008	17	18	6.37	6.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC008	18	19	6.64	6.5
CGRC008	19	20	8.14	7.7
CGBC008	20	21	8.25	8.2
	21	22	93	93
CGRC008	22	22	8.42	8.2
CGRC008	22	23	0.42	0.2
	25	24	0.40	0.4
CGRC008	24	25	8.15	7.9
CGRC008	25	26	8.21	8.1
CGRC008	26	27	8.06	7.8
CGRC008	27	28	7.85	7.5
CGRC008	28	29	8.59	8.3
CGRC008	29	30	8.53	8.2
CGRC008	30	31	8.92	8.5
CGRC008	31	32	8.74	8.6
CGRC008	32	33	8.36	8.1
CGRC008	33	26	8.64	8.3
CGRC008	34	35	8.32	8.1
CGRC008	35	36	8.48	8.1
CGRC008	36	37	8.33	8
CGRC008	37	38	7.89	76
	38	30	8.32	8.2
	20	20	0.32	0.2
	39	39	9.21	0.0
CGRC008	40	41	8.8	8.4
CGRC008	41	42	9.25	9.2
CGRC008	42	43	10.07	9.3
CGRC008	43	44	8.87	8.7
CGRC008	44	45	8.36	8.1
CGRC008	45	46	9.24	8.9
CGRC008	46	47	6.5	6.3
CGRC008	47	48	7.52	7.1
CGRC008	48	49	7.69	7.5
CGRC008	49	50	7.65	7.6
CGRC008	50	51	7.96	7.8
CGRC008	51	52	6.66	6.3
CGBC008	52	53	10.03	10
CGRC008	53	54	6 16	61
CGRC008	53	55	7.4	7.2
	54	55	7.4	7.5
CGRC008		50	8.4	8.1
LGRC008	56	57	8.62	8.6
	5/	58	/./8	7.3
CGRC008	58	59	9.07	8.9
CGRC008	59	60	6.83	6.6
CGRC008	60	61	8	7.9
CGRC008	61	62	7.89	7.7
CGRC008	62	63	10.06	10.1
CGRC008	63	64	9.58	9.4
CGRC008	64	65	9.57	8.8
CGRC008	65	66	9.9	9.4
CGRC008	66	67	5.92	5.8
CGRC008	67	68	1.57	1.1
CGRC008	68	69	1.02	0.2
CGRC008	60	70	0.25	0.2
	50	70	0.20	12
	/U	/1	12.13	12.2
	/1	/2	12.16	12.2
CGRC008	72	73	8.28	8.1
CGRC008	73	74	7.91	6.9
CGRC008	74	75	8.16	7.9
CGRC008	75	76	8.26	8

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection (metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC008	76	77	6.75	6.4
CGRC008	77	78	7,76	7.6
CGBC008	78	79	10.78	10.8
	79	80	11.89	11.8
	80	00	10.80	10.5
	01	01	14.06	10.5
CGRC008	81	82	14.06	13.9
CGRC008	82	83	17.66	17.1
CGRC008	83	84	13.57	13.4
CGRC008	84	85	3.57	3.1
CGRC008	85	86	2.19	2
CGRC008	86	87	0.9	0.9
CGRC008	87	89	0.58	0.5
CGRC008	88	90	9.6	9.3
CGRC008	89	91	15.66	15.6
CGRC008	90	92	14.54	14.5
CGRC008	91	92	15.84	15
CGRC008	92	93	13.96	13.9
CGRC008	93	94	8.03	7.9
CGBC008	94	95	11 87	11.8
CGRC008	97 95	96	10.69	10.7
	06	07	£ 07	6.9
	90	97	0.07	0.0
CGRC008	97	98	12.13	11.0
CGRC008	98	99	12.86	11.6
CGRC008	99	100	11.29	10.9
CGRC008	100	101	12.46	10.9
CGRC008	101	102	13.31	12.1
CGRC008	102	103	13.7	13.6
CGRC008	103	104	14.77	13.9
CGRC008	104	105	14.48	13.7
CGRC008	105	106	13.55	13
CGRC008	106	107	11.48	10.6
CGRC008	107	108	15.46	13.8
CGRC008	108	109	11.48	10.5
CGRC008	109	110	14.55	13.5
CGBC008	110	111	20.93	19.4
CGBC008	111	112	17 34	17.2
	112	112	16.5	16.1
	112	113	22.5	22
	113	115	22.33	22
	114	115	23.10	22.9
	115	110	22.91	22.2
	116	11/	24.62	22.9
CGRC008	117	118	22.04	21.4
CGRC008	118	119	20.43	20.2
CGRC008	119	120	16.22	15.2
CGRC008	120	121	12.05	12.1
CGRC008	121	122	11.26	11
CGRC008	122	123	10.02	9.4
CGRC008	123	124	10.19	10.2
CGRC008	124	125	8.87	8.5
CGRC008	125	126	12.74	12.6
CGRC008	126	127	17.8	17.3
CGRC008	127	128	18.3	18.1
CGRC008	178	120	73.71	22
	170	120	23.21	20 6
	123	101	21.02	20.0
	130	131	22.28	21
CGRCUU8	131	132	23.4	22.1
CGRC008	132	133	22.87	21.8
CGRC009	0	1	4.98	4.8

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC009	1	2	1.19	1.2
CGRC009	2	3	0.13	Х
CGRC009	3	4	0.11	Х
CGBC009	4	5	0.06	0.1
	5	6	0.05	Y
CGRC009	5	7	0.05	×
		7	0.03	^ X
CGRC009	7	8	0.08	X
CGRC009	8	9	0.02	X
CGRC009	9	10	X	X
CGRC009	10	11	0.02	Х
CGRC009	11	12	0.03	Х
CGRC009	12	13	0.02	Х
CGRC009	13	14	0.05	0.1
CGRC009	14	15	0.02	Х
CGRC009	15	16	0.06	Х
CGBC009	16	17	0.54	Х
CGRC009	17	18	0.04	X
	19	10	0.16	0.2
CCRC009	10	13	0.10	0.2
	13	20	0.08	0.1
	20	21	0.15	0.1
CGRC009	21	22	0.44	0.2
CGRC009	22	23	1.22	0.2
CGRC009	23	24	1.08	0.1
CGRC009	24	25	1.03	0.3
CGRC009	25	26	0.57	0.1
CGRC009	26	27	0.57	0.2
CGRC009	27	28	0.58	0.2
CGRC009	28	29	0.39	0.2
CGRC009	29	30	0.06	Х
CGBC009	30	31	8.35	8.1
	31	32	13.83	13.7
CGRC009	32	33	14.76	14.4
CGRC009	22	24	12 72	12 5
		25	10.49	10.2
CGRC009	25	35	10.48	10.2
CGRC009	35	36	11.4	10.6
CGRC009	36	37	10.97	11
CGRC009	37	38	12.19	11.6
CGRC009	38	39	12.06	11.5
CGRC009	39	40	12.61	12
CGRC009	40	41	11.96	11.7
CGRC009	41	42	12.28	12.3
CGRC009	42	43	12.65	12.2
CGRC009	43	44	11.4	10.8
CGRC009	44	45	11.1	10.4
CGRC009	45	46	11	11
CGRC009	46	47	11.62	11.3
CGRC009	47	48	12.02	13
	10	10	5 25	52
	40 40	4J	J.2J 11.27	10.0
	49	50	11.37	10.8
	50	51	11.36	10.9
CGRCUU9	51	52	10.29	10.1
CGRC009	52	53	10.85	9.4
CGRC009	53	54	13.06	13.1
CGRC009	54	55	11.63	11.4
CGRC009	55	56	12.47	11.9
CGRC009	56	57	10.88	10.6
CGRC009	57	58	10.75	10.6
CGRC009	58	59	12.57	12.2

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC009	59	60	12.87	12.6
CGRC009	60	61	10.43	10.4
CGBC009	61	62	12.71	12.4
CGBC009	62	63	12.72	12
	63	64	12.23	12.3
CGRC000	64	65	12.57	12.5
	64	66	12.02	12.9
CGRC009	05	00	13.03	13
CGRC009	66	6/	13.66	13.1
CGRC009	67	68	11.23	10.6
CGRC009	68	69	13.16	12.5
CGRC009	69	70	16.09	15.5
CGRC009	70	71	13.7	13.4
CGRC009	71	72	12.04	11.2
CGRC009	72	73	9.08	9.1
CGRC009	73	74	10.85	10
CGRC009	74	75	9.03	9
CGRC009	75	76	11.98	12
CGRC009	76	77	11.2	11
CGRC009	77	78	11.22	11.2
CGRC009	78	79	12.21	12.2
CGBC009	79	80	8 39	81
	80	81	6.94	69
	81	82	7 59	7.6
CGRC000	01	02	0.0	7.0 0.C
CGRC009	02	00	0.0	0.0
CGRC009	83	84 05	8.00	0.2
CGRC009	84	85	8.19	8.2
CGRC009	85	86	9.31	9.2
CGRC009	86	87	7.3	7.2
CGRC009	87	88	7.52	7.3
CGRC009	89	90	6.9	6.9
CGRC009	90	91	10.04	9.7
CGRC009	91	92	8.06	8.1
CGRC009	92	93	4.84	4.7
CGRC009	93	94	4.19	4.1
CGRC009	94	95	4.85	4.9
CGRC009	95	96	5.35	5.3
CGRC009	96	97	3.83	3.5
CGRC009	97	98	7.6	7.3
CGRC009	98	99	6.48	6.5
CGRC009	99	100	5.75	5.4
CGRC009	100	101	4.13	3.6
CGRC009	101	102	5.21	4.7
CGBC009	102	103	6,98	67
CGRC009	102	104	4.83	45
CGRC000	103	104	4.05 E 46	4.J
	104	105	5. 4 0 6.1	6.1
CGRC009	105	100	0.1	0.1
CGRC009	106	107	0.58	0.4
CGRC009	107	108	3.21	3.1
CGRC009	108	109	0.5	0.4
CGRC009	109	110	0.52	0.2
CGRC009	110	111	0.21	0.1
CGRC009	111	112	3.69	3.7
CGRC009	112	113	0.3	0.3
CGRC009	113	114	0.4	0.4
CGRC009	114	115	0.68	0.7
CGRC009	115	116	0.68	0.6
CGRC009	116	117	16.25	16.3
CGRC009	117	118	5.89	5.8

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC009	118	119	4.86	4.5
CGRC009	119	120	5.38	5.4
CGBC009	120	121	3 24	31
CGBC009	121	122	2.87	2.7
	122	122	2.07	2.0
CGRC009	122	123	2.75	2.0
CGRC009	123	124	2.01	2.0
CGRC009	124	125	2.72	2.7
CGRC009	125	126	3.66	3.6
CGRC009	126	127	3.71	3.5
CGRC009	127	128	3.53	3.3
CGRC009	128	129	3.23	3.1
CGRC009	129	130	2.71	2.7
CGRC009	130	131	2.98	2.9
CGRC009	131	132	3.24	3.2
CGRC009	132	133	4.06	3.9
CGRC009	133	134	5.09	5
CGRC009	134	135	4.92	4.9
CGRC009	136	137	5.52	5.5
CGRC009	137	138	6.25	6.3
CGBC009	138	139	6.98	69
	130	140	6.09	6.1
CGRC009	140	140	6.27	6.2
CGRC009	140	141	6.32	6.5
CGRC009	141	142	0.35	0.4
CGRC009	142	143	5	5
CGRC009	143	144	/	6.8
CGRC009	144	145	7.08	7.1
CGRC009	145	146	8.03	8
CGRC009	146	147	5.66	5.7
CGRC009	147	148	5.01	5
CGRC009	148	149	6.1	6.1
CGRC009	149	150	5.23	5.2
CGRC009	150	151	4.11	4.1
CGRC010	0	1	5.15	3.5
CGRC010	1	2	2.96	2.4
CGRC010	2	3	4.21	2.9
CGRC010	3	4	4.3	4
CGBC010	4	5	8 74	71
	5	6	1.95	3.6
CGRC010	6	7	6.21	5.0
		/	0.51	J.1 7.4
CGRC010	/	8	9.05	7.4
	<u>ک</u>	9	12.33	/.4
CGRC010	y 10	10	9.13	8.1
CGRC010	10	11	9.18	8.3
CGRC010	11	12	7.64	6.5
CGRC010	12	13	7.63	6.6
CGRC010	13	14	10.22	9.2
CGRC010	14	15	1.7	1.6
CGRC010	15	16	0.31	0.3
CGRC010	16	17	0.35	0.4
CGRC010	17	18	0.94	0.9
CGRC010	18	19	0.61	0.6
CGRC010	19	20	0.45	0.4
CGRC010	20	21	0.18	0.1
CGRC010	20	22	0.10	0.1
CGRC010	21	22	0.50	V.I
	22	23	0.00	^ V
	23	24	0.90	Λ
	24	25	2.19	X
CGRC010	25	26	2.29	0.2

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC010	26	27	2.4	0.1
CGRC010	27	28	1.24	0.1
CGRC010	28	29	0.13	0.1
CGRC010	29	30	0.12	0.1
CGRC010	30	31	0.07	Y Y
CGRC010	21	22	0.07	0.2
CGRC010	31	32	0.21	0.2
CGRC010	32	33	22.0	18.3
CGRC010	33	34	25.16	19.6
CGRC010	34	35	10.7	9.4
CGRC010	35	36	13.1	11.6
CGRC010	36	37	17.64	16
CGRC010	37	38	12.06	10.9
CGRC010	38	39	15	13.3
CGRC010	39	40	13.6	10.4
CGRC010	40	41	10.87	10.1
CGRC010	41	42	7.67	6.8
CGRC010	42	43	6.24	5.8
CGRC010	43	44	6.05	5.0
CGRC010	44	44	6.76	6.2
		45	7 41	6.7
CGRC010	45	46	7.41	0.7
CGRC010	46	4/	1.//	/
CGRC010	47	48	6.74	5.9
CGRC010	48	49	6.56	5.1
CGRC010	49	50	6.68	5.7
CGRC010	50	51	6.23	6
CGRC010	51	52	10.61	9.1
CGRC010	52	53	13.23	11.4
CGRC010	53	54	5.44	5.4
CGRC010	54	55	1.11	1.1
CGRC010	55	56	7.15	6.9
CGRC010	56	57	11.54	11.2
CGRC010	57	58	10.29	10
CGRC010	59	50	10.25	10 2
CCRC010	58	55	10.37	10.2 C F
CGRC010	59	50	0.40	0.5
CGRC010	60	61	6.52	6.4
CGRC010	61	62	6.96	/
CGRC010	62	63	5.68	5.5
CGRC010	63	64	7.61	7.3
CGRC010	64	65	10.58	10.3
CGRC010	65	66	10.37	9.6
CGRC010	66	67	10.79	9.8
CGRC010	67	68	10.03	9.5
CGRC010	68	69	7.71	7.6
CGRC010	69	70	9.41	9.4
CGRC010	70	71	8.91	8.9
CGRC010	71	72	12.05	11.5
CGRC010	72	73	9,29	9.1
CGRC010	72	74	8 75	87
	73	75	0.75	0.7
	75	15	12.21	5.0
	/5	/0	12.31	12.2
	/b 	//	10.1	10.1
CGRC010	77	78	3.92	3.9
CGRC010	78	79	1.12	1.1
CGRC010	79	80	0.58	0.6
CGRC010	80	81	0.27	0.3
CGRC010	81	82	0.39	0.2
CGRC011	0	1	1.13	1.1
CGRC011	1	2	0.31	0.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC011	2	3	0.13	0.1
CGRC011	3	4	0.24	0.1
CGBC011	4	5	0.2	X
CGBC011	5	6	0.21	0.1
	6	7	0.16	0.1
	7	, Q	0.10	0.1
	, ,	0	0.2	0.2
	0	9	0.09	0.1
	9	10	0.13	0.1
CGRC011	10	11	0.07	X 0.1
CGRC011	11	12	0.15	0.1
CGRC011	12	13	0.17	0.2
CGRC011	13	14	0.16	0.2
CGRC011	14	15	0.06	Х
CGRC011	15	16	0.17	0.2
CGRC011	16	17	0.23	0.2
CGRC011	17	18	0.1	Х
CGRC011	18	19	0.05	Х
CGRC011	19	20	0.15	0.2
CGRC011	20	21	0.06	0.1
CGRC011	21	22	0.11	0.1
CGRC011	22	23	0.15	0.2
CGRC011	23	24	0.09	0.1
CGRC011	24	25	0.05	X
CGRC011	25	26	0.02	X
	25	20	0.02	X
	20	27	0.04	X
	27	20	0.26	0.2
	20	29	0.50	0.2 V
	29	30	0.17	^ X
CGRC011	30	31	0.1	X
CGRC011	31	32	0.04	X
CGRC011	32	33	0.05	X
CGRC011	33	34	0.05	X
CGRC011	34	35	0.04	X
CGRC011	35	36	0.05	X
CGRC011	36	37	0.15	Х
CGRC011	37	38	0.17	0.1
CGRC011	38	39	0.34	0.1
CGRC011	39	40	0.2	0.1
CGRC011	40	41	0.12	0.1
CGRC011	41	42	0.11	Х
CGRC011	42	43	0.09	Х
CGRC011	43	44	0.29	0.2
CGRC011	44	45	0.31	0.1
CGRC011	45	46	0.25	X
CGRC011	46	47	0.17	Х
CGRC011	47	48	0.38	0.2
CGRC011	48	49	0.5	Х
CGRC011	49	50	0.24	0.2
CGRC011	50	51	0.27	X
CGRC011	51	52	0.26	X
CGRC011	52	53	0.1	X
CGRC011	52	53	0.14	0.1
	55 E <i>N</i>	54	0.14	0.1
	54	55	0.12	0.1
	55	50	0.42	0.2
	50	5/	0.45	X 0.1
	5/	58	0.15	0.1
CGRC011	58	59	0.14	0.1
CGRC011	59	60	0.28	0.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	(metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC011	60	61	0.08	Х
CGRC011	61	62	0.08	Х
CGBC011	62	63	0.25	0.2
CGRC011	63	64	0.25	0.1
	64	65	0.19	0.2
	65	65	0.15	0.2
	65	67	0.2	0.2
CGRC011	00	0/	0.33	0.1
CGRC012	0	1	5.66	5.3
CGRC012	1	2	1.63	0.9
CGRC012	2	3	0.82	0.6
CGRC012	3	4	0.47	0.3
CGRC012	4	5	0.45	0.2
CGRC012	5	6	0.14	0.1
CGRC012	6	7	0.4	0.3
CGRC012	7	8	3.59	3.4
CGRC012	8	9	18.26	16.3
CGRC012	9	10	20.12	15.1
CGRC012	10	11	22.48	17.4
CGRC012	11	12	22.93	18.4
CGRC012	12	13	20.87	17.4
CGBC012	13	14	23.09	19.3
CGRC012	14	15	27.65	27.4
	15	15	31.8	27.4
CGRC012	15	10	22.22	23.2
	10	1/	33.33 21.07	32.5
	17	10	21.07	30 C
CGRC012	18	19	31.57	29.6
CGRC012	19	20	33.78	31.1
CGRC012	20	21	32.37	30.3
CGRC012	21	22	32.39	32.4
CGRC012	22	23	30.36	30.3
CGRC012	23	24	31.29	31.3
CGRC012	24	25	30.76	29.4
CGRC012	25	26	32.13	31.7
CGRC012	26	27	32.1	28.9
CGRC012	27	28	32.42	29.3
CGRC012	28	29	31.49	30.6
CGRC012	29	30	27.67	26.4
CGRC012	30	31	26.26	24
CGRC012	31	32	22.44	22.4
CGRC012	32	33	22.93	21.4
CGRC012	33	34	23.79	20.6
CGRC012	34	35	20.94	20.5
CGRC012	35	36	21.31	20.8
CGRC012	36	37	14 59	13.4
CGRC012	27	30	17.07	16.7
	20	20	17.07	16.1
	20 20	33	11.23	10.1
	59	40	13	10.4
CGRC012	40	14	17.5	15.1
CGRC012	41	42	14.52	13.2
CGRC012	42	43	19.5	17.5
CGRC012	43	44	18.5	17.4
CGRC012	44	45	17.1	16.5
CGRC012	45	46	18.13	15.7
CGRC012	46	47	19.83	16.2
CGRC012	47	48	15.66	15.5
CGRC012	48	49	17.86	14.7
CGRC012	49	50	15.72	13.3
CGRC012	50	51	15.89	14.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC012	51	52	15.39	14.4
CGBC012	52	53	8.75	8.6
CGBC012	53	54	7 29	71
CGRC012	54	55	7 59	73
	55	55	6.79	6.2
	55	50	7.40	0.2
CGRC012	50	57	7.49	0.9
CGRC012	57	58	0.07	5.5
CGRC012	58	59	5.7	5.3
CGRC012	59	60	8.81	8.3
CGRC012	60	61	7.68	7.5
CGRC012	61	62	7.47	6.4
CGRC012	62	63	7.8	7.5
CGRC012	63	64	7.72	7.7
CGRC012	64	65	7.33	7.3
CGRC012	65	66	7.91	7.5
CGRC012	66	67	8.48	8.4
CGRC012	67	68	7.85	7.8
CGRC012	68	69	7.99	7.4
CGRC012	69	70	7.28	7
CGBC012	70	71	6.49	6.4
CGBC012	71	72	6.64	62
	71	72	6.75	6.6
	72	73	5 71	5.7
	73	74	5.71	5.7
CGRC012	74	75	6.20	0.2
CGRC012	75	70	6.29	5.5
CGRC012	76	//	6.14	5.6
CGRC012	77	78	7.91	7
CGRC012	78	79	6.75	5.3
CGRC012	79	80	9.12	8.2
CGRC012	80	81	7.02	5.9
CGRC012	81	82	5.17	4.5
CGRC012	82	83	6.69	6.1
CGRC012	83	84	6.02	4.8
CGRC012	84	85	6.53	6
CGRC012	85	86	6.5	6
CGRC012	86	87	5.96	5.7
CGRC012	87	88	5.9	5.9
CGRC012	88	89	6.61	6.6
CGRC012	89	90	8.59	8.3
CGRC012	90	91	12	11.1
CGRC013	0	1	6.13	6
CGRC013	1	2	8.25	8.3
CGRC013	2	3	10.49	9.7
CGRC013	2	4	10.73	10.4
CGRC013	5Л		12.75	12.4
		5 F	10.70	10.9
	5		10.76	10.0
	0	/	14.70	13.3
	/	8	18.92	18.7
CGRC013	8	9	17.24	16.5
CGRC013	9	10	18.24	16.8
CGRC013	10	11	19.64	19
CGRC013	11	12	16.62	16.2
CGRC013	12	13	17.34	15.9
CGRC013	13	14	18.26	17
CGRC013	14	15	17.14	15.4
CGRC013	15	16	15.44	14.6
CGRC013	16	17	13.92	13.5
CGRC013	17	18	13.66	13.7

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC013	18	19	16.24	15.6
CGRC013	19	20	17.24	17.1
CGRC013	20	21	16.81	15.8
CGBC013	21	22	16.37	15.5
CGRC013		23	15.41	13.9
	22	23	0.07	0.0
	23	24	0.06	0.0
	24	25	9.50	9.4
CGRC013	25	20	8.00	8.1
CGRC013	26	27	9.54	9.3
CGRC013	27	28	10.17	9.3
CGRC013	28	29	10.37	10.3
CGRC013	29	30	14.76	14
CGRC013	30	31	14.55	13.7
CGRC013	31	32	13.32	12.7
CGRC013	32	33	14.81	14.8
CGRC013	33	34	23.92	23.2
CGRC013	34	35	26.89	26.8
CGRC013	35	36	25.69	24.2
CGRC013	36	37	23.57	23.5
CGRC013	37	38	18.27	18.2
CGBC013	38	39	11 76	11
CGBC013	39	40	19 71	18.9
CGRC013	40	1/	16.18	15.8
	40	14	£ 27	13.0 C
CGRC013	41	42	0.37	
CGRC013	42	43	0.11	5.8
CGRC013	43	44	10.82	10.4
CGRC013	44	45	0.41	0.4
CGRC013	45	46	0.46	0.5
CGRC013	46	47	0.53	0.5
CGRC013	47	48	10.42	9.9
CGRC013	48	49	23.06	22.2
CGRC013	49	50	21.97	21.6
CGRC013	50	51	15.23	14.7
CGRC013	51	52	16.38	16
CGRC013	52	53	18.43	17.1
CGRC013	53	54	18.57	18.4
CGRC013	54	55	1.37	1.4
CGRC013	55	56	0.43	0.4
CGRC013	56	57	0.38	0.4
CGRC013	57	58	0.31	0.3
CGRC013	58	59	0.3	0.2
CGRC013	59	60	0.51	0.5
CGRC013	60	61	0.51	0.5
CGPC014	00	1	0.05 E 66	5.5
	0	1	5.00	5.0
	1	2	12.30	16.2
CGRC014	2	3	10.19	10.2
CGRC014	3	4	13.59	12.8
CGRC014	4	5	14.55	14.6
CGRC014	5	6	11.78	11.8
CGRC014	6	7	10.78	10.4
CGRC014	7	8	10.29	9.8
CGRC014	8	9	13.41	12.6
CGRC014	9	10	10.86	10.6
CGRC014	10	11	12.05	11.9
CGRC014	11	12	13.21	12.6
CGRC014	12	13	11.08	10.8
CGRC014	13	14	12.77	11.9
CGRC014	14	15	11.23	11.2

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10% Significant intercept of graphite with average TGC across the intercept greater than 15%

	Intersection	metres)		
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC014	15	16	9.96	10
CGRC014	16	17	13.83	13.8
CGRC014	17	18	10.35	9.7
CGRC014	18	19	8.69	8.7
CGRC014	19	20	6.07	5.9
CGBC014	20	21	8.27	8.2
	20	21	0.27	0.2
	21	22	5.55	J.8
	22	25	7.00	/./
CGRC014	23	24	0.41	<u>٥.</u> ٥
CGRC014	24	25	8.54	<u> </u>
CGRC014	25	20	8.24	7.8
CGRC014	26	2/	7.92	7.9
CGRC014	2/	28	8./1	8.7
CGRC014	28	29	7.18	7.1
CGRC014	29	30	8.48	8.5
CGRC014	30	31	9.09	9
CGRC014	31	32	9.4	9.3
CGRC014	32	33	7.71	7.7
CGRC014	33	34	7.66	7.7
CGRC014	34	35	7.79	7.8
CGRC014	35	36	7.19	7.2
CGRC014	36	37	9.47	9.5
CGRC014	37	38	8.71	8.7
CGRC014	38	39	7.62	7.6
CGRC014	39	40	9.27	9.3
CGRC014	40	14	7.16	7
CGRC014	41	42	8.46	7.9
CGRC014	42	43	8.1	8.1
CGRC014	43	44	9.57	9.3
CGRC014	44	45	8.9	8.7
CGBC014	45	46	5.46	53
	15	10	1.89	1.0
	40	47	0.89	1.5
	47	40	4.02	0.5
	40	49 E0	4.02	4
	49 E0	50	4.00	4.0
	50	51	4.59	4.4
CGRC014	51	52	10.88	10.5
CGRC014	52	53	10.51	9.9
CGRC014	53	54	6.33	6.1
CGRC014	54	55	16.58	15.1
CGRC014	55	56	8.28	8.3
CGRC014	56	57	7.6	7.6
CGRC014	57	58	8.75	8.4
CGRC014	58	59	7.91	7.7
CGRC014	59	60	5.47	5.4
CGRC014	60	61	7.2	6.6
CGRC014	61	62	7.83	7.8
CGRC014	62	63	8.53	8.5
CGRC014	63	64	8.87	8.8
CGRC014	64	65	8.85	8.9
CGRC014	65	66	9.26	9.3
CGRC014	66	67	8.6	8.4
CGRC014	67	68	8.64	8.5
CGRC014	68	69	6.17	6.2
CGRC014	69	70	6.87	6.9
CGRC014	70	71	7.77	7.8
CGRC014	71	72	8.14	8.1
CGRC014	72	73	4.79	4.7

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection (metres)			
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC014	73	74	2.02	1.8
CGRC014	74	75	0.64	0.5
CGBC014	75	76	14	14
	76	70	0.92	0.9
	70	77	0.92	0.9
CGRC014	//	/8	1.42	1.3
CGRC014	78	79	1.41	1.1
CGRC015	0	1	7.37	6.5
CGRC015	1	2	8.6	8
CGRC015	2	3	10.31	9.4
CGRC015	3	4	9.99	9.5
CGRC015	4	5	10.66	8.5
CGRC015	5	6	13.03	10.7
CGRC015	6	7	14.64	13.3
CGRC015	7	8	17.89	16.3
CGRC015	8	9	14.48	13
CGBC015	9	10	12 11	11.6
CGRC015	10	11	11 69	11
CGRC015	10	12	10.28	0.0
	12	12	10.28	9.9
CGRC015	12	13	10.02	9.7
CGRC015	13	14	11.57	10.7
CGRC015	14	15	9.4	9.2
CGRC015	15	16	10.84	10.3
CGRC015	16	17	11.42	10.8
CGRC015	17	18	13.96	12.9
CGRC015	18	19	12.65	12
CGRC015	19	20	12.43	11.4
CGRC015	20	21	13.18	12.5
CGRC015	21	22	12.62	12.3
CGRC015	22	23	9.18	9.2
CGRC015	23	24	10.96	10.4
CGBC015	24	25	10.47	9.8
CGBC015	25	26	12.07	11.4
CGRC015	25	20	17.93	17.2
CGPC015	20	27	15.08	1/ 2
CGRC015	27	20	6 70	14.0 C 9
	20	29	7.26	0.0
CGRC015	29	30	7.20	7.2
CGRC015	30	31	7.05	6.2
CGRC015	31	32	8.88	8.7
CGRC015	32	33	10.16	10
CGRC015	33	34	10.04	9.4
CGRC015	34	35	10.61	9.8
CGRC015	35	36	10.28	9.7
CGRC015	36	37	10.99	10.6
CGRC015	37	38	9.78	9
CGRC015	38	39	10.43	9.3
CGRC015	39	40	7.14	7.1
CGRC015	40	41	0.64	0.6
CGRC015	41	42	0.41	0.4
CGRC015	42	43	0.36	0.2
CGRC015	43	44	0.24	0.1
CGRC015		 /5	0.24	0.1
	 //E		0.13	0.1
	45	40	0.17	0.1
	40	4/	0.09	0.1
CGKC015	4/	48	0.19	X
CGRC015	48	49	0.32	0.1
CGRC016	0	1	5.86	3.8
CGRC016	1	2	5.51	4.4
CGRC016	2	3	6.71	4.6
CGRC016	3	4	6	5.2
CGRC016	4	5	5.56	4.5
CGRC016	5	6	4.59	4.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

		Intersection (metres)			
	Drillhole ID	From	То	% Total Carbon (TC)	% TGC
ľ	CGRC016	6	7	5	4.6
ľ	CGRC016	7	8	6.5	5.3
ľ	CGRC016	8	9	5.43	4.5
ľ	CGRC016	9	10	6.12	5.2
ŀ	CGRC016	10	11	5.69	5.3
ŀ	CGBC016	11	12	6.58	6.3
ŀ	CGBC016	12	13	8	7.2
ŀ	CGBC016	13	14	9.27	8.7
ŀ	CGRC016	14	15	9.19	8.7
ŀ	CGRC016	15	15	6.36	6
ŀ	CGRC016	15	10	6.05	69
ŀ	CCRC016	10	17	0.95	0.9
ŀ	CGRC016	17	18	8.4	8.3
ŀ	CGRC016	18	19	3.55	3.0
ŀ	CGRC016	19	20	0.29	0.3
ŀ	CGRC016	20	21	1.48	0.4
ŀ	CGRC016	21	22	1.63	0.3
ŀ	CGRC016	22	23	1.64	0.1
ŀ	CGRC016	23	24	1.1	0.3
	CGRC016	24	25	5.4	5.3
	CGRC016	25	26	6.89	6.7
	CGRC016	26	27	6.97	7
	CGRC016	27	28	6.15	6.2
Γ	CGRC016	28	29	6.07	6.1
Γ	CGRC016	29	30	5.46	5.5
ſ	CGRC016	30	31	5.02	4.7
ľ	CGRC016	31	32	4.87	4.9
ľ	CGRC016	32	33	4	4
ľ	CGRC016	33	34	4.94	4.5
ŀ	CGRC016	34	35	4.64	4.4
ŀ	CGBC016	35	36	4.49	4.3
ŀ	CGRC016	36	37	9.28	9
ŀ	CGBC016	37	38	8 53	81
ŀ	CGBC016	38	39	7.68	7.6
ŀ	CGRC016	39	40	5 56	5.6
ŀ	CGRC016	40	40	J.50	1.6
ŀ	CGPC016	40	41	5.01	4.0 E
ŀ	CCBC016	42	42	6.07	7
ŀ	CGRC016	42	45	7.21	7
ŀ	CGRC016	45	44	7.51	7.5
ŀ	CGRC016	44	45	7.49	7.5
ŀ	CGRC016	45	46	9.97	9.8
ŀ	CGRC016	40	47	9.49	9.1
ŀ		4/	48	9.80	9.0
ŀ		48	49	12.23	11./
ŀ		49	50	10.57	10.4
ŀ		50	51	9.64	9.1
ŀ	CGRC016	51	52	6.15	6.2
ŀ	CGRC016	52	53	5.59	5.3
ŀ	CGRC016	53	54	5.98	6
ŀ	CGRC016	54	55	7.27	7.3
	CGRC016	55	56	8.32	8.3
	CGRC016	56	57	8.15	8.2
	CGRC016	57	58	9.94	9.5
	CGRC016	58	59	8.7	8.7
	CGRC016	59	60	9.77	9.8
	CGRC016	60	61	15.35	15.3
ľ	CGRC016	61	62	13.76	13.7
ĺ	CGRC016	62	63	16.93	16.9
ſ	CGRC016	63	64	17.62	17.5
ſ	CGRC016	64	65	21.21	20.6
ſ	CGRC016	65	66	17.37	17.4
ſ	CGRC016	66	67	9.15	9.2
÷					

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off)

Significant intercept of graphite with average TGC across the intercept greater than 10%

	Intersection (metres)			
Drillhole ID	From	То	% Total Carbon (TC)	% TGC
CGRC016	67	68	5.82	5.7
CGRC016	68	69	5.34	5.2
CGRC016	69	70	6.56	6.6
CGRC016	70	71	7.61	7.6
CGRC016	71	72	7.44	7.4
CGRC016	72	73	4.72	4.7
CGRC016	73	74	5.43	5.4
CGRC016	74	75	5.92	5.9
CGRC016	75	76	6.79	6.8
CGRC016	76	77	19.7	19.4
CGRC016	77	78	16.8	16.8
CGRC016	78	79	7.5	5.7
CGRC016	79	80	4.66	4.6
CGRC016	80	81	10.36	10.3
CGRC016	81	82	18.95	19
CGRC016	82	83	15.87	15.7
CGRC016	83	84	14.31	14.3
CGRC016	84	85	12.82	12.5
CGRC016	85	86	13.81	13.7
CGRC016	86	87	8.41	8.4
CGRC016	87	88	0.96	1
CGRC016	88	89	0.61	0.5
CGRC016	89	90	0.32	0.3
CGRC016	90	91	0.31	0.3

Notes to Table 4:

• Results below detectable levels are reported as "X"

Intercept of graphite with average TGC across the intercept greater than 4% (cut-off) Significant intercept of graphite with average TGC across the intercept greater than 10%