

13 June 2023

Sandfire Portugal Exploration Update

Drilling identifies a high-grade polymetallic zone at the Sesmarias Prospect, Portugal

Highlights

- High grade polymetallic mineralisation intersected at the Sesmarias prospect, part of the Alvalade Project Joint Venture.
- Drillhole SES23-047 intersected 43.40m at 1.51% Cu, 4.78% Zn, 2.15% Pb and 64.1ppm Ag from 392.80 436.20m downhole.
 - Includes a higher-grade zone of 26.95m at 2.18% Cu, 5.60% Zn, 2.58% Pb and 88.2g/t Ag from 393.80 - 420.75m.
- Target stratigraphic zone is interpreted to be >1km in strike length.
- Step out drilling located 150m to the southwest currently underway.
- Six-hole program designed to test potential.

Sandfire Resources Limited (**Sandfire** or **the Company**) notes a new assay result released by its joint venture partner, TSX-listed Avrupa Minerals Limited (**Avrupa**), from diamond drilling at the Sesmarias massive sulphide target within the Alvalade Project Joint Venture in Portugal (**Alvalade JV**).

Avrupa is the current operator of the Alvalade JV. Sandfire holds an indirect 51% interest in PorMining Lda. (the Alvalade JV company) and can increase its interest to 85% under Phase II. The interest in the Alvalade JV was acquired by Sandfire through the acquisition of the MATSA Copper Operations in 2022.

Avrupa is undertaking a drill program to follow up Sesmarias discovery hole SES002 which was drilled in 2014 and intersected 7.95 metres grading 2.21% copper, 3.05% lead, 4.82% zinc, and 89.8g/t silver from approximately 150 metres depth.

A deeper follow-up hole SES23-047 has now intersected:

• 26.95 metres of 2.18% copper; 2.58% lead; 5.60% zinc; and 88.2g/t silver from 393.80 metres depth, within a wider interval of 43.40 metres of 1.51% copper; 2.15% lead; 4.78% zinc; and 64.1g/t silver from 392.80 metres depth.

Drilling remains at an early stage. Only one hole has intersected the new zone of mineralisation at depth and the true thickness and orientation of the mineralisation is not known at this stage. Further drilling by Avrupa is planned to test the extents of the new zone of mineralisation. Results from this drilling will continue to inform Sandfire and allow it to better assess the materiality of the results.

Full details of the exploration results are contained in the Avrupa TSX announcement which is available on the Avrupa website.

A JORC Table 1 for the reporting of the new exploration result is included at the back of this announcement.

Management Comment

Sandfire CEO and Managing Director, Brendan Harris, said: 'While we are very encouraged by the recent drilling results at the Sesmarias JV, it is important to note that further drilling is required to get a better understanding of the deeper zone of high-grade mineralisation that has been identified. Sandfire has a substantial portfolio of exploration tenure throughout the Iberian Pyrite Belt in both Portugal and Spain. The belt has been a prolific producer of metal and Sandfire believes that it remains highly prospective for new discoveries.'

- ENDS -

For further information, please contact:

Sandfire Resources Ltd Ben Crowley – Head of Investor Relations Office: +61 8 6430 3800

This announcement is authorised for release by Sandfire's Managing Director and Chief Executive Officer, Brendan Harris.

Competent Person's Statement

Exploration Results

The information in this report that relates to Exploration Results at the Sesmarias Prospect, is based on information compiled by Mr Richard Holmes who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Holmes is a permanent employee of Sandfire and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Holmes consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

Certain statements made during or in connection with this release contain or comprise certain forward-looking statements regarding Sandfire's Mineral Resources and Reserves, exploration and project development operations, production rates, life of mine, projected cash flow, capital expenditure, operating costs and other economic performance and financial condition as well as general market outlook. Although Sandfire believes that the expectations reflected in such forward-looking statements are reasonable, such expectations are only predictions and are subject to inherent risks and uncertainties which could cause actual values, results, performance or achievements to differ materially from those expressed, implied or projected in any forward-looking statements and no assurance can be given that such expectations will prove to have been correct.

Introduction

The Sesmarias prospect is in the western part of the Iberian Pyrite Belt (**IPB**), within a License covering about 115km² held under the Alvalade JV, about 6km and 16km SE of the historical Lousal and Caveira mines respectively, and about 80km southeast of Setúbal (Figure 1). Sandfire's wholly owned subsidiary, Sandfire Mineira Portugal (formerly Emisurmin), entered an option deal with Avrupa in 2019, whereby an interest of up to 85% can be earned in the project in a staged process. Sandfire currently holds an indirect 51% interest in PorMining Lda. (the Alvalade JV company).

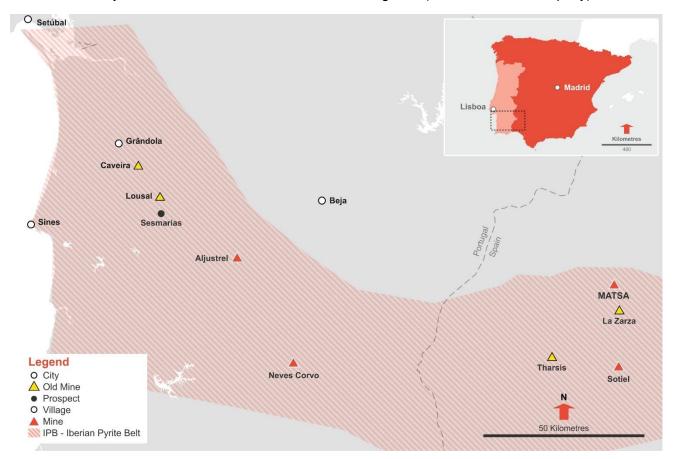


Figure 1: Location of the Sesmarias prospect within the IPB in the south of Portugal and Spain.

Drilling to date has showed that the Volcanogenic Massive Sulphide (**VMS**) mineralisation at Sesmarias exists discontinuously over a strike extent of at least 1,500m. Exploration at Sesmarias by others prior to Emisurmin had outlined mineralisation in areas termed the northern, central, and southern zones. Further drilling between the currently outlined sections is required to test if the mineralisation is continuous along the trend between the interpreted zones.

Drill hole SES23-047 was planned to investigate the position about 200m down-dip of the mineralisation intersected in drill hole SES002 and about 350m laterally to the south-east of the mineralisation intersected in drill holes SES21-040 and SES21-044 in the central zone of Sesmarias (Figure 2).

The drill hole intersected 43.40m at 1.51% Cu, 4.78% Zn, 2.15% Pb and 64.1ppm Ag from 392.80 – 436.20m downhole,

Including a higher-grade zone of 26.95m at 2.18% Cu, 5.60% Zn, 2.58%Pb and 88.2g/t Ag from 393.80 - 420.75m.

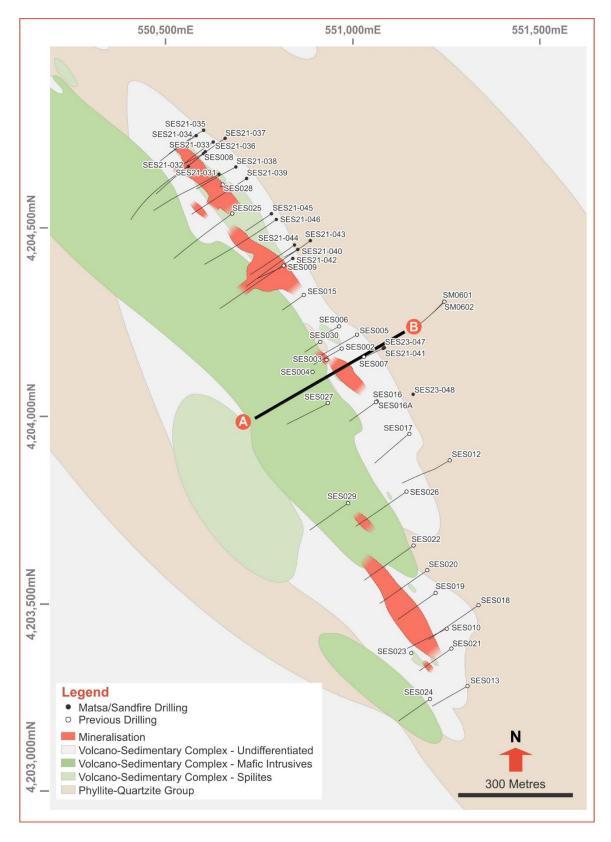


Figure 2: Drill Location plan at -130m of the Sesmarias Prospect area over simplified interpreted basement geology. Historical drill collars in white; drill holes from the current Emisurmin - Avrupa work are shown in black. Plan outlines of the mineralisation intersected to date are also shown.

All assay results are reported as downhole thickness.

Significant results prior to Sandfire Mineira Portugal work include:

- **SES002:** 12.35m @ 1.61% Cu, 3.97% Zn, 2.28% Pb and 66.8ppm Ag from 151.65m
- SES003: 19.3m @ 1.49% Cu, 1.76% Zn, 0.86% Pb and 29.9ppm Ag from 132.05m
- **SES019:** 50.5m @ 0.44% Cu, 2.68% Zn, 0.77% Pb and 17.5ppm Ag from 263.5m

Significant results from Emisurmin and Sandfire Mineira Portugal work in partnership with Avrupa include:

- SES23-047: 43.40m at 1.51% Cu, 4.78% Zn, 2.15% Pb and 64.1ppm Ag from 392.80m
 including 26.95m at 2.18% Cu, 5.60% Zn, 2.58% Pb and 88.2g/t Ag from 393.80m
- SES21-039: 37.8m @ 0.44% Cu, 2.12% Zn, 0.80% Pb and 27.8ppm Ag from 349.4m
- SES21-040: 36.45m @ 0.73% Cu, 0.14% Zn, 0.82% Pb and 21.0ppm Ag from 479.4m
- SES21-044: 57.8m @ 0.41% Cu, 2.37% Zn, 0.96% Pb and 37.6ppm Ag from 417.2m

See Appendix 1 and 2 for details of the drilling to date at Sesmarias.

Sesmarias Geology

At Sesmarias the target IPB geological units are covered by younger Tertiary rocks usually of about 70-110m thickness (Figure 4). The Sesmarias host rocks and mineralisation are interpreted to be folded in a syncline. The target sequence consists of black shales and felsic volcanics of the Volcanic Sedimentary Complex (VSC). At Sesmarias the VSC sequence comprises thick intervals of shales, felsic volcanics and basalt. The syncline core of VSC rocks is surrounded by the older Phyllite and Quartzite Group (PQ Group). The current target is on the eastern limb of the syncline, which mostly has a steep (60-80°) dip to the north-east.

The higher-grade intersection at drill hole SES23-047 follows ongoing geological modelling and reinterpretation work conducted by Sandfire Mineira Portugal and PorMining (Avrupa) geology teams. This work is planned to continue in FY2023-24 to test the extents of the Sesmarias mineralisation and possibly other targets.

A plan view of Sesmarias and a geological cross section are provided as Figures 2 and 3 respectively.

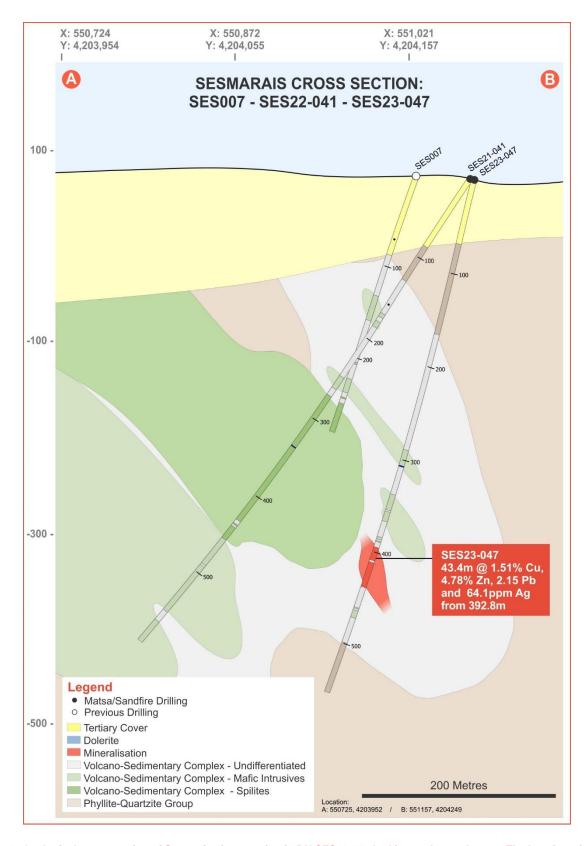


Figure 3: Geological cross section of Sesmarias intersection in DH SES23-047 looking to the north-west. The location of the section is shown in Figure 2.

Sesmarias Mineralisation

The central zone of the Sesmarias mineralisation extends for at least 70m along-strike in the overturned limb of a syncline, with the potential to be extended further along strike and down-dip around the syncline as it remains open to NW and SE. Mineralisation intersected to date is zinc-dominated but also contains appreciable levels of copper, silver, lead and minor gold, and is interpreted as typical VMS mineralisation of the IPB.

Appendix 2 presents all assays available to date based on a >0.3% Cu cut-off grade. Mineralisation intersected to date consists of massive sulphide, semi-massive sulphides and stringer styles.

Ongoing Activities

Drilling is continuing with the objective of further testing the extent of the Sesmarias mineralisation. Current activities include drill testing the along-strike and down-dip extent of the higher-grade zone intersected in SES23-047.

Figure 4 shows the strike extent of the zone which is currently being assessed.

SES23-048 is currently being drilled to test 150m along-strike to the south-east from the SES23-047 intersection. Present geological understanding suggests a potential 1,100m strike length of poorly tested prospective horizon.

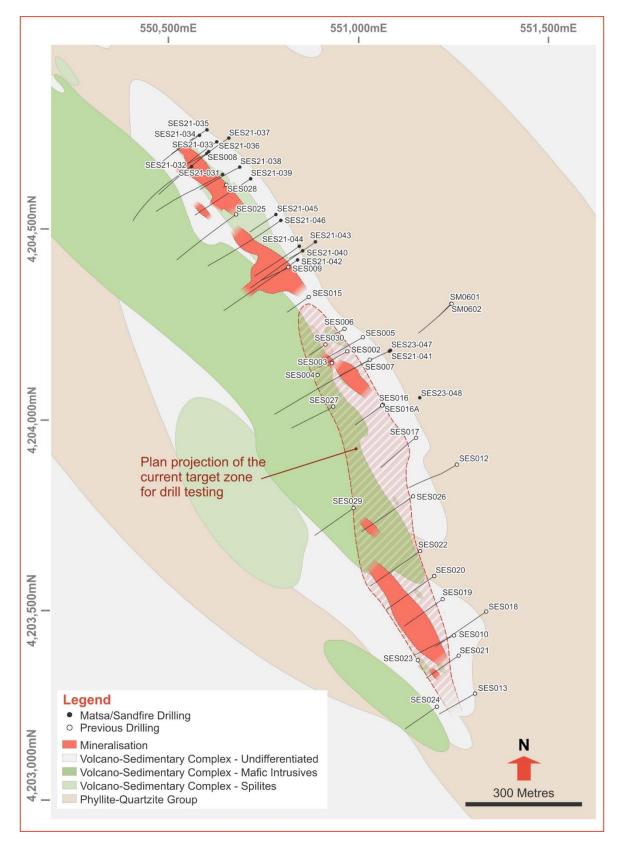


Figure 4: Plan view of current target zone at the Sesmarias prospect.

Appendix 1: Drill Collar Information

SSS001 155.00 -70 240 ESSØ /UTM 29N \$51867 4200911 59 Completed Historical Hole SSS002 274,70 -70 240 ESSØ /UTM 29N \$50929 4204150 75 Completed Historical Hole SSS004 183.90 90 0 EDSØ /UTM 29N \$50829 4204150 75 Completed Historical Hole SSS006 183.90 90 0 EDSØ /UTM 29N \$50864 4204120 77 Completed Historical Hole SSS006 253.10 -70 240 EDSØ /UTM 29N \$50864 4204240 72 Completed Historical Hole SSS008 334.10 -70 240 EDSØ /UTM 29N \$550804 4204020 85 Completed Historical Hole SSS011 371.10 -70 240 EDSØ /UTM 29N \$551327 420402 85 Completed Historical Hole SSS012 4328.10 -70 240 EDSØ /UTM 29N \$551262 <t< th=""><th>HoleID</th><th>Depth</th><th>Dip</th><th>Azimuth</th><th>Grid ID</th><th>Easting</th><th>Northing</th><th>RL</th><th>Hole Status</th><th>Phase</th></t<>	HoleID	Depth	Dip	Azimuth	Grid ID	Easting	Northing	RL	Hole Status	Phase
SESDOQ 274,70 -70 240 EDSO / UTM 29N 550072 4201813 75 Completed Historical Hole SESDO3 160.20 -90 0 EDSO / UTM 29N 5500929 4204150 76 Completed Historical Hole SESDOS 320.30 -70 240 EDSO / UTM 29N 551012 4204119 77 Completed Historical Hole SESDO7 279,70 -70 240 EDSO / UTM 29N 551030 4204129 75 Completed Historical Hole SESDO9 283.10 -70 240 EDSO / UTM 29N 551030 4204199 75 Completed Historical Hole SESDO9 263.10 -70 240 EDSO / UTM 29N 551031 4204040 85 Completed Historical Hole SESD12 438.10 -70 240 EDSO / UTM 29N 551032 4204102 85 Completed Historical Hole SESD14 480.10 -70 240 EDSO / UTM 29N 551006	SES001	155.00	-70	240	ED50 / UTM 29N	551627	4200911	59		Historical Hole
SESD03 160.20 -90 0 EDSO / UTM 29N 550929 4204150 76 Completed Historical Hole SESD04 183.90 -90 0 EDSO / UTM 29N 550933 4204119 77 Completed Historical Hole SESD06 233.10 -70 240 EDSO / UTM 29N 550964 4204218 76 Completed Historical Hole SESD07 279.70 -70 240 EDSO / UTM 29N 550964 420420 72 Completed Historical Hole SESD08 334.10 -70 240 EDSO / UTM 29N 550804 4204702 80 Completed Historical Hole SESD01 371.10 -70 240 EDSO / UTM 29N 551357 42040402 85 Completed Historical Hole SESD11 372.10 -70 240 EDSO / UTM 29N 551357 4202744 90 Completed Historical Hole SESD12 372.10 -70 240 EDSO / UTM 29N 551308							4204181			
SESDO4 183.90 -90 0 D. DSO / UTM 29N \$50893 4 204119 77 Completed Historical Hole SESDO5 320.30 -70 240 EDSO / UTM 29N \$50012 4204218 76 Completed Historical Hole SESDO7 279.70 -70 240 EDSO / UTM 29N \$50304 2204240 72 Completed Historical Hole SESDO9 263.10 -70 240 EDSO / UTM 29N \$50304 4204022 85 Completed Historical Hole SESDO9 263.10 -70 240 EDSO / UTM 29N \$50312 4204022 85 Completed Historical Hole SESD13 371.10 -70 240 EDSO / UTM 29N \$51320 4204343 68 Completed Historical Hole SESD12 438.10 -70 240 EDSO / UTM 29N \$51308 4203281 68 Completed Historical Hole SESD14 60.50 -70 240 EDSO / UTM 29N \$51306					· .	550929	4204150		•	
SESDOS 320.30 -70 240 EDSO / UTM 29N 551012 4204218 76 Completed Historical Hole SESDOO 253.10 -70 240 EDSO / UTM 29N 550644 2420420 72 Completed Historical Hole SESDOS 334.10 -70 240 EDSO / UTM 29N 550004 2204129 75 Completed Historical Hole SESDOS 263.10 -70 240 EDSO / UTM 29N 550004 4204020 88 Completed Historical Hole SESDI1 372.10 -70 240 EDSO / UTM 29N 551252 4203434 68 Completed Historical Hole SESDI1 372.10 -70 240 EDSO / UTM 29N 551252 4203434 68 Completed Historical Hole SESDI3 400.50 -70 240 EDSO / UTM 29N 551306 4203281 60 Completed Historical Hole SESDI4 400.50 -70 240 EDSO / UTM 29N 551064										
SESO06 253.10 -70 240 EDSO / UTM 29N 550964 4204240 72 Completed Historical Hole SESO07 279.70 -70 240 EDSO / UTM 29N 550040 4204109 75 Completed Historical Hole SESO09 263.10 -70 240 EDSO / UTM 29N 550681 4204020 85 Completed Historical Hole SES010 371.10 -70 240 EDSO / UTM 29N 551537 4204402 85 Completed Historical Hole SES011 372.10 -70 240 EDSO / UTM 29N 551537 4203744 90 Completed Historical Hole SES013 490.50 -70 240 EDSO / UTM 29N 551308 420381 60 Completed Historical Hole SES014 604.90 -70 2240 EDSO / UTM 29N 551008 420312 70 Completed Historical Hole SES015 214.90 -70 235 EDSO / UTM 29N 551008					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
SESSO07 279.70 -70 240 EDSO / LTM 29N 551030 4204159 75 Completed Historical Hole SESO08 334.10 -70 240 EDSO / LTM 29N 550817 42040E05 80 Completed Historical Hole SESO10 371.10 -70 240 EDSO / LTM 29N 551252 4204444 68 Completed Historical Hole SES011 372.10 -70 240 EDSO / LTM 29N 551252 4204444 68 Completed Historical Hole SES011 348.10 -70 240 EDSO / LTM 29N 551308 4203881 60 Completed Historical Hole SES013 400.50 -70 240 EDSO / LTM 29N 551080 4203881 60 Completed Historical Hole SES015 214.90 -70 2235 EDSO / LTM 29N 551066 4204008 84 Completed Historical Hole SES015 214.90 -70 2235 EDSO / LTM 29N 551066<					· .					
SESDOR 334.10 -70 240 EDSO / UTM 29N \$50604 420402 80 Completed Historical Hole SESDOR 263.10 -70 240 EDSO / UTM 29N \$51252 4204402 85 Completed Historical Hole SESD11 372.10 -70 240 EDSO / UTM 29N \$51252 4203434 68 Completed Historical Hole SESD12 438.10 -70 240 EDSO / UTM 29N \$51260 4203883 68 Completed Historical Hole SESD14 604.90 -70 240 EDSO / UTM 29N \$51308 4203871 70 Completed Historical Hole SESD14 604.90 -70 2240 EDSO / UTM 29N \$51908 4203712 70 Completed Historical Hole SESD16 114.20 -70 233 EDSO / UTM 29N \$51106 4204000 84 Completed Historical Hole SESD16 114.20 -70 233 EDSO / UTM 29N \$51126									•	
SESD09 263.10 -70 240 EDSO / UTM 29N 550817 4204042 85 Completed Historical Hole SES011 371.10 -70 240 EDSO / UTM 29N 551252 4203434 86 Completed Historical Hole SES012 438.10 -70 240 EDSO / UTM 29N 551250 4203883 68 Completed Historical Hole SES013 400.50 -70 240 EDSO / UTM 29N 551308 4203881 60 Completed Historical Hole SES014 604.90 -70 240 EDSO / UTM 29N 551908 4203217 70 Completed Historical Hole SES016 214.90 -70 235 EDSO / UTM 29N 551066 4204040 84 Completed Historical Hole SES016 114.20 -70 235 EDSO / UTM 29N 551152 4203954 86 Completed Historical Hole SES019 355.50 -70 235 EDSO / UTM 29N 551122					•				•	
SES010 371.10 -70 240 EDSO/UTM 29N 551252 4203434 68 Completed Historical Hole SES011 372.10 -70 240 EDSO/UTM 29N 551260 4203888 68 Completed Historical Hole SES013 400.50 -70 240 EDSO/UTM 29N 551308 4203281 60 Completed Historical Hole SES014 604.90 -70 230 EDSO/UTM 29N 550807 4203712 70 Completed Historical Hole SES016 114.20 -70 235 EDSO/UTM 29N 550807 4204324 90 Completed Historical Hole SES016 114.20 -70 235 EDSO/UTM 29N 551152 4203984 AC Completed Historical Hole SES017 36,50 -70 235 EDSO/UTM 29N 551152 4203395 AC Completed Historical Hole SES018 50,50 -70 235 EDSO/UTM 29N 551122 4203395 AC Completed </td <td></td> <td></td> <td></td> <td></td> <td>· .</td> <td></td> <td></td> <td></td> <td></td> <td></td>					· .					
SES011 372.10 -70 240 EDSO / UTM 29N 551377 4202744 90 Completed Historical Hole SES012 438.10 -70 240 EDSO / UTM 29N 551308 4203883 66 Completed Historical Hole SES014 604.90 -70 240 EDSO / UTM 29N 551308 4203281 60 Completed Historical Hole SES016 114.20 -70 235 EDSO / UTM 29N 551066 4204044 90 Completed Historical Hole SES016 114.20 -70 235 EDSO / UTM 29N 551064 4204048 48 Completed Historical Hole SES016 362.50 -70 235 EDSO / UTM 29N 551152 4204038 84 Completed Historical Hole SES019 362.50 -70 235 EDSO / UTM 29N 551120 4203590 66 Completed Historical Hole SES019 359.50 -70 235 EDSO / UTM 29N 551120					•					
SES012 438.10 -70 240 ED50 / UTM 29N 551260 4203883 68 Completed Historical Hole SES013 400.50 -70 240 ED50 / UTM 29N 551308 4203281 60 Completed Historical Hole SES014 604.90 -70 235 ED50 / UTM 29N 551908 4203121 70 Completed Historical Hole SES015 214.90 -70 235 ED50 / UTM 29N 551066 4204040 84 Completed Historical Hole SES016 114.20 -70 235 ED50 / UTM 29N 551066 4204083 84 Completed Historical Hole SES017 362.50 -70 235 ED50 / UTM 29N 551152 4203954 88 Completed Historical Hole SES019 359.50 -70 235 ED50 / UTM 29N 551222 4203599 68 Completed Historical Hole SES021 347.00 -70 235 ED50 / UTM 29N 551162					· .				•	
SES013 400.50 -70 240 EDSO/ UTM 29N 551308 4203281 60 Completed Historical Hole SES014 604.90 -70 240 EDSO/ UTM 29N 551908 4203712 70 Completed Historical Hole SES016 114.20 -70 235 EDSO/ UTM 29N 551066 4204040 84 Completed Historical Hole SES016 114.20 -70 235 EDSO/ UTM 29N 551066 4204040 84 Completed Historical Hole SES017 362.50 -70 235 EDSO/ UTM 29N 551352 4203954 88 Completed Historical Hole SES018 502.50 -70 235 EDSO/ UTM 29N 551326 4203497 66 Completed Historical Hole SES018 359.50 -70 235 EDSO/ UTM 29N 551220 4203891 61 Completed Historical Hole SES018 359.50 -70 235 EDSO/ UTM 29N 551220										
SES014 664.90 -70 240 EDSO/ UTM 29N \$51908 4203712 70 Completed Historical Hole SES015 214.90 -70 235 EDSO/ UTM 29N \$50870 4204324 90 Completed Historical Hole SES016 114.20 -70 235 EDSO/ UTM 29N \$51066 4204048 84 Completed Historical Hole SES016 2420403 84 Completed Historical Hole SES017 362,50 -70 235 EDSO/ UTM 29N \$513152 4203954 88 Completed Historical Hole SES018 \$50.50 -70 235 EDSO/ UTM 29N \$51322 4203529 68 Completed Historical Hole SES018 \$50.50 -70 235 EDSO/ UTM 29N \$51222 4203529 68 Completed Historical Hole SES018 \$50.70 235 EDSO/ UTM 29N \$51163 4203590 70 Completed Historical Hole SES022										
SES015 214.90 -70 235 EDSO/UTM 29N 550870 4204324 90 Completed Historical Hole SES0160 114.20 -70 235 EDSO/ UTM 29N 551066 42040403 84 Completed Historical Hole SES017 362.50 -70 235 EDSO/ UTM 29N 551152 4203954 88 Completed Historical Hole SES018 502.50 -70 235 EDSO/ UTM 29N 551326 4203957 66 Completed Historical Hole SES019 359.50 -70 235 EDSO/ UTM 29N 551320 4203590 70 Completed Historical Hole SES020 420.50 -70 235 EDSO/ UTM 29N 551260 4203380 70 Completed Historical Hole SES021 347.00 -70 235 EDSO/ UTM 29N 551157 4203380 61 Completed Historical Hole SES022 40.95 -70 235 EDSO/ UTM 29N 551154					· · · · · · · · · · · · · · · · · · ·				•	
SES016 114.20 -70 235 ED56 / UTM 29N \$51066 4204040 84 Completed Historical Hole SES016A 243.80 -70 235 ED56 / UTM 29N \$51064 4204038 84 Completed Historical Hole SES017 362.50 -70 235 ED50 / UTM 29N \$51152 4203954 88 Completed Historical Hole SES019 359.50 -70 235 ED50 / UTM 29N \$51222 4203599 66 Completed Historical Hole SES019 339.50 -70 235 ED50 / UTM 29N \$51222 4203599 70 Completed Historical Hole SES020 440.50 -70 235 ED50 / UTM 29N \$51163 4203590 70 Completed Historical Hole SES022 440.50 -70 235 ED50 / UTM 29N \$51163 4203590 70 Completed Historical Hole SES023 299.50 -0 0 ED50 / UTM 29N \$51167					•					
SES016A 243.80 -70 235 ED50 / UTM 29N 551064 4204038 84 Completed Historical Hole SES017 362.50 -70 230 ED50 / UTM 29N 551152 4203994 88 Completed Historical Hole SES018 502.50 -70 235 ED50 / UTM 29N 551152 4203997 66 Completed Historical Hole SES019 339.50 -70 235 ED50 / UTM 29N 551220 4203590 70 Completed Historical Hole SES021 347.00 -70 235 ED50 / UTM 29N 551163 4203590 70 Completed Historical Hole SES022 440.50 -70 235 ED50 / UTM 29N 551163 4203656 67 Completed Historical Hole SES024 296.50 -70 235 ED50 / UTM 29N 551167 420347 58 Completed Historical Hole SES025 409.55 -60 235 ED50 / UTM 29N 550479									•	
SES017 362.50 -70 230 ED50 / UTM 29N 551152 4203954 88 Completed Historical Hole SES018 500.50 -70 235 ED50 / UTM 29N 551336 4203497 66 Completed Historical Hole SES019 359.50 -70 235 ED50 / UTM 29N 551222 4203599 70 Completed Historical Hole SES020 420.50 -70 235 ED50 / UTM 29N 551264 4203381 61 Completed Historical Hole SES021 347.00 -70 235 ED50 / UTM 29N 551163 4203656 67 Completed Historical Hole SES022 440.50 -70 235 ED50 / UTM 29N 551167 4203349 60 Completed Historical Hole SES024 296.50 -70 235 ED50 / UTM 29N 551207 420347 58 Completed Historical Hole SES025 499.55 -60 235 ED50 / UTM 29N 550679					· .					
SES018 502.50 -70 235 ED50 / UTM 29N 551336 4203497 66 Completed Historical Hole SES019 3595.00 -70 235 ED50 / UTM 29N 551222 4203529 68 Completed Historical Hole SES021 347.00 -70 235 ED50 / UTM 29N 551200 4203581 61 Completed Historical Hole SES021 347.00 -70 235 ED50 / UTM 29N 551163 4203656 67 Completed Historical Hole SES023 299.50 -90 0 ED50 / UTM 29N 551157 4203369 60 Completed Historical Hole SES024 296.50 -70 235 ED50 / UTM 29N 551207 4203247 58 Completed Historical Hole SES026 447.85 -70 235 ED50 / UTM 29N 55144 4203800 78 Completed Historical Hole SES027 529.15 -80 235 ED50 / UTM 29N 550653										
SES019 359.50 -70 235 EDSO / UTM 29N 551222 4203529 68 Completed Historical Hole SES020 420.50 -70 235 EDSO / UTM 29N 551200 4203590 70 Completed Historical Hole SES021 347.00 -70 235 EDSO / UTM 29N 551264 4203581 61 Completed Historical Hole SES023 299.50 -70 235 EDSO / UTM 29N 551157 4203369 60 Completed Historical Hole SES024 296.50 -70 235 EDSO / UTM 29N 551157 4203247 58 Completed Historical Hole SES025 409.55 -60 235 EDSO / UTM 29N 550679 4204541 33 Completed Historical Hole SES026 447.85 -70 235 EDSO / UTM 29N 550679 4204541 86 Completed Historical Hole SES027 529.15 80 235 EDSO / UTM 29N 550633										
SES020 420.50 -70 235 EDSO / UTM 29N 551200 4203590 70 Completed Historical Hole SES021 347.00 -70 235 EDSO / UTM 29N 551264 4203381 61 Completed Historical Hole SES022 440.50 -70 235 EDSO / UTM 29N 551157 4203656 67 Completed Historical Hole SES023 299.50 -90 0 EDSO / UTM 29N 551157 4203247 58 Completed Historical Hole SES025 490.55 -60 235 EDSO / UTM 29N 550679 4204541 93 Completed Historical Hole SES026 447.85 -70 235 EDSO / UTM 29N 550679 4204541 93 Completed Historical Hole SES026 447.85 -70 235 EDSO / UTM 29N 550634 4204619 86 Completed Historical Hole SES029 411.60 -75 235 EDSO / UTM 29N 550633					· · · · · · · · · · · · · · · · · · ·					
SES021 347.00 -70 235 ED50 / UTM 29N 551264 4203381 61 Completed Historical Hole SES022 440.50 -70 235 ED50 / UTM 29N 551163 4203656 67 Completed Historical Hole SES023 299.50 -70 235 ED50 / UTM 29N 551127 4203369 60 Completed Historical Hole SES024 296.50 -70 235 ED50 / UTM 29N 551207 4203247 58 Completed Historical Hole SES026 447.85 -70 235 ED50 / UTM 29N 551144 4203800 78 Completed Historical Hole SES027 529.15 -80 235 ED50 / UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50 / UTM 29N 550638 4204046 81 Completed Historical Hole SES02031 154.70 -70 235 ED50 / UTM 29N 550683					, , , , , , , , , , , , , , , , , , , ,					
SES022 440.50 -70 235 ED50 / UTM 29N 551163 42036566 67 Completed Historical Hole SES023 299.50 -90 0 ED50 / UTM 29N 551157 4203369 60 Completed Historical Hole SES025 409.55 -60 235 ED50 / UTM 29N 551207 420347 58 Completed Historical Hole SES025 409.55 -60 235 ED50 / UTM 29N 551244 4203800 78 Completed Historical Hole SES026 447.85 -70 235 ED50 / UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50 / UTM 29N 550953 4204619 86 Completed Historical Hole SES029 441.60 -75 235 ED50 / UTM 29N 550988 4203769 81 Completed Historical Hole SES21-031 536.00 -70 235 ED50 / UTM 29N 550963					•				•	
SES023 299.50 -90 0 ED50 / UTM 29N 551157 4203369 60 Completed Historical Hole SES024 296.50 -70 235 ED50 / UTM 29N 551207 4203247 58 Completed Historical Hole SES025 409.55 -60 235 ED50 / UTM 29N 550679 4204541 93 Completed Historical Hole SES027 529.15 -80 235 ED50 / UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50 / UTM 29N 550653 4204619 86 Completed Historical Hole SES029 441.60 -75 235 ED50 / UTM 29N 550938 4204619 86 Completed Historical Hole SES02030 164.70 -70 235 ED50 / UTM 29N 550988 4204769 81 Completed Historical Hole SES21-031 536.00 -70 240 ED50 / UTM 29N 550662 <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td>•</td> <td></td>					·				•	
SES024 296.50 -70 235 ED50 / UTM 29N 551207 4203247 58 Completed Historical Hole SES025 409.55 -60 235 ED50 / UTM 29N 550679 4204541 93 Completed Historical Hole SES026 447.85 -70 235 ED50 / UTM 29N 551144 4203800 78 Completed Historical Hole SES027 529.15 -80 235 ED50 / UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50 / UTM 29N 550938 4204619 86 Completed Historical Hole SES020 441.60 -75 235 ED50 / UTM 29N 550914 4204199 83 Completed Historical Hole SES20-031 536.00 -70 240 ED50 / UTM 29N 550643 4204666 81 Completed Current SES21-032 338.20 -60 235 ED50 / UTM 29N 550662										
SES025 409.55 -60 235 ED50/UTM 29N 550679 4204541 93 Completed Historical Hole SES026 447.85 -70 235 ED50/UTM 29N 551144 4203800 78 Completed Historical Hole SES027 529.15 -80 235 ED50/UTM 29N 550934 4204036 81 Completed Historical Hole SES028 550.80 -90 0 ED50/UTM 29N 550653 4204619 86 Completed Historical Hole SES029 441.60 -75 235 ED50/UTM 29N 550988 4204619 81 Completed Historical Hole SES02031 536.00 -70 240 ED50/UTM 29N 550643 4204499 83 Completed Current SES21-032 338.20 -60 235 ED50/UTM 29N 550562 4204667 82 Completed Current SES21-033 791.60 -80 235 ED50/UTM 29N 550671 4204706									Completed	Historical Hole
SESO26 447.85 -70 235 ED50/UTM 29N 551144 4203800 78 Completed Historical Hole SES027 529.15 -80 235 ED50/UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50/UTM 29N 550653 4204619 86 Completed Historical Hole SES029 441.60 -75 235 ED50/UTM 29N 550988 4203769 81 Completed Historical Hole SES02030 164.70 -70 235 ED50/UTM 29N 550643 4204666 81 Completed Current SES21-032 338.20 -60 235 ED50/UTM 29N 550624 4204666 82 Completed Current SES21-033 791.60 -80 235 ED50/UTM 29N 55067 4204706 82 Completed Current SES21-033 791.60 -80 235 ED50/UTM 29N 550607 4204706					· .					Historical Hole
SES027 529.15 -80 235 ED50 / UTM 29N 550934 4204036 81 Completed Historical Hole SES028 505.80 -90 0 ED50 / UTM 29N 550653 4204619 86 Completed Historical Hole SES029 441.60 -75 235 ED50 / UTM 29N 550988 4203769 81 Completed Historical Hole SES030 164.70 -70 235 ED50 / UTM 29N 550914 4204199 83 Completed Current SES20-031 536.00 -70 240 ED50 / UTM 29N 550662 4204666 81 Completed Current SES21-032 338.20 -60 235 ED50 / UTM 29N 550607 4204706 82 Completed Current SES21-033 791.60 -80 235 ED50 / UTM 29N 550601 4204706 82 Completed Current SES21-033 419.40 -75 235 ED50 / UTM 29N 550601 4204764 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Completed</td> <td>Historical Hole</td>									Completed	Historical Hole
SES028 505.80 -90 0 EDSO / UTM 29N 550653 4204619 86 Completed Historical Hole SES029 441.60 -75 235 EDSO / UTM 29N 550988 4203769 81 Completed Historical Hole SES030 164.70 -70 235 EDSO / UTM 29N 550914 4204199 83 Completed Historical Hole SES21-031 536.00 -70 240 EDSO / UTM 29N 550643 4204646 81 Completed Current SES21-032 338.20 -60 235 EDSO / UTM 29N 550607 4204706 82 Completed Current SES21-033 791.60 -80 235 EDSO / UTM 29N 550607 4204706 82 Completed Current SES21-034 392.60 -75 235 EDSO / UTM 29N 550607 4204749 82 Completed Current SES21-035 419.40 -75 235 EDSO / UTM 29N 550628 420473	SES026	447.85	-70	235	ED50 / UTM 29N			78	Completed	Historical Hole
SES029 441.60 -75 235 EDSO / UTM 29N 550988 4203769 81 Completed Historical Hole SES030 164.70 -70 235 EDSO / UTM 29N 550914 4204199 83 Completed Historical Hole SES20-031 536.00 -70 240 EDSO / UTM 29N 550643 4204646 81 Completed Current SES21-032 338.20 -60 235 EDSO / UTM 29N 550662 4204667 82 Completed Current SES21-033 791.60 -80 235 EDSO / UTM 29N 5506607 4204706 82 Completed Current SES21-034 392.60 -75 235 EDSO / UTM 29N 550661 4204764 82 Completed Current SES21-035 419.40 -75 235 EDSO / UTM 29N 550661 4204764 82 Completed Current SES21-037 641.00 -80 235 EDSO / UTM 29N 550660 4204742<	SES027	529.15			ED50 / UTM 29N			81	Completed	Historical Hole
SES030 164.70 -70 235 ED50 / UTM 29N 550914 4204199 83 Completed Historical Hole SES20-031 536.00 -70 240 ED50 / UTM 29N 550643 4204646 81 Completed Current SES21-032 338.20 -60 235 ED50 / UTM 29N 550662 4204667 82 Completed Current SES21-033 791.60 -80 235 ED50 / UTM 29N 550607 4204706 82 Completed Current SES21-034 392.60 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550689 4204666	SES028	505.80	-90		ED50 / UTM 29N			86	Completed	Historical Hole
SES20-031 536.00 -70 240 ED50 / UTM 29N 550643 4204646 81 Completed Current SES21-032 338.20 -60 235 ED50 / UTM 29N 550562 4204667 82 Completed Current SES21-033 791.60 -80 235 ED50 / UTM 29N 550607 4204706 82 Completed Current SES21-034 392.60 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550608 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 235 ED50 / UTM 29N 550689 4204666	SES029	441.60	-75	235	ED50 / UTM 29N	550988	4203769	81	Completed	Historical Hole
SES21-032 338.20 -60 235 ED50 / UTM 29N 550562 4204667 82 Completed Current SES21-033 791.60 -80 235 ED50 / UTM 29N 550607 4204706 82 Completed Current SES21-034 392.60 -75 235 ED50 / UTM 29N 550581 4204749 82 Completed Current SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550854 4204445	SES030	164.70	-70	235	ED50 / UTM 29N	550914	4204199	83	Completed	Historical Hole
SES21-033 791.60 -80 235 ED50 / UTM 29N 550607 4204706 82 Completed Current SES21-034 392.60 -75 235 ED50 / UTM 29N 550581 4204749 82 Completed Current SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550824 4204445	SES20-031	536.00	-70	240	ED50 / UTM 29N	550643	4204646	81	Completed	Current
SES21-034 392.60 -75 235 ED50 / UTM 29N 550581 4204749 82 Completed Current SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 550821 4204182	SES21-032	338.20	-60	235	ED50 / UTM 29N	550562	4204667	82	Completed	Current
SES21-035 419.40 -75 235 ED50 / UTM 29N 550601 4204764 82 Completed Current SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 550824 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550887 4204422	SES21-033	791.60	-80	235	ED50 / UTM 29N		4204706	82	Completed	Current
SES21-036 461.70 -80 235 ED50 / UTM 29N 550628 4204731 82 Completed Current SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 550841 4204482 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043 309.90	SES21-034	392.60	-75	235	ED50 / UTM 29N	550581	4204749	82	Completed	Current
SES21-037 641.00 -80 235 ED50 / UTM 29N 550660 4204742 81 Completed Current SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 551082 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043 309.90 -75 235 ED50 / UTM 29N 550845 4204469	SES21-035	419.40	-75	235	ED50 / UTM 29N	550601	4204764	82	Completed	Current
SES21-038 423.00 -75 240 ED50 / UTM 29N 550689 4204666 82 Completed Current SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 551082 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457	SES21-036	461.70	-80	235	ED50 / UTM 29N	550628	4204731	82	Completed	Current
SES21-039 645.00 -75 235 ED50 / UTM 29N 550718 4204635 82 Completed Current SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 551082 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541	SES21-037	641.00	-80	235	ED50 / UTM 29N	550660	4204742	81	Completed	Current
SES21-040 623.50 -75 235 ED50 / UTM 29N 550854 4204445 85 Completed Current SES21-041 590.50 -55 240 ED50 / UTM 29N 551082 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526	SES21-038	423.00	-75	240	ED50 / UTM 29N	550689	4204666	82	Completed	Current
SES21-041 590.50 -55 240 ED50 / UTM 29N 551082 4204182 72 Completed Current SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307	SES21-039	645.00	-75	235	ED50 / UTM 29N	550718	4204635	82	Completed	Current
SES21-042 644.20 -73 235 ED50 / UTM 29N 550841 4204422 85 Completed Current SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 <td< td=""><td>SES21-040</td><td>623.50</td><td>-75</td><td>235</td><td>ED50 / UTM 29N</td><td>550854</td><td>4204445</td><td>85</td><td>Completed</td><td>Current</td></td<>	SES21-040	623.50	-75	235	ED50 / UTM 29N	550854	4204445	85	Completed	Current
SES21-043 292.40 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-041	590.50	-55	240	ED50 / UTM 29N	551082	4204182	72	Completed	Current
SES21-043A 309.90 -75 235 ED50 / UTM 29N 550887 4204469 85 Completed Current SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-042	644.20	-73	235	ED50 / UTM 29N	550841	4204422	85	Completed	Current
SES21-044 706.10 -79 235 ED50 / UTM 29N 550845 4204457 85 Completed Current SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-043	292.40	-75	235	ED50 / UTM 29N	550887	4204469	85	Completed	Current
SES21-045 332.40 -75 235 ED50 / UTM 29N 550784 4204541 82 Completed Current SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-043A	309.90	-75	235	ED50 / UTM 29N	550887	4204469	85	Completed	Current
SES21-046 746.80 -75 235 ED50 / UTM 29N 550797 4204526 82 Completed Current SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-044	706.10	-79	235	ED50 / UTM 29N	550845	4204457	85	Completed	Current
SM0601 152.60 -70 225 ED50 / UTM 29N 551246 4204307 78 Completed Current SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-045	332.40	-75	235	ED50 / UTM 29N	550784	4204541	82	Completed	Current
SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SES21-046	746.80	-75	235	ED50 / UTM 29N	550797	4204526	82	Completed	Current
SM0602 400.80 -70 225 ED50 / UTM 29N 551245 4204307 78 Completed Current	SM0601	152.60	-70	225	ED50 / UTM 29N	551246	4204307	78	Completed	Current
	SM0602		-70			551245	4204307	78		
SES23-047 552.7 -75 240 ED50 / UTM 29N 551085 4204184 70 Completed Current										

Appendix 2: Assay results (0.3% Cu cut-off, 3m maximum consecutive internal dilution)

HOLEID	FROM	ТО	Length m	Cu %	Zn %	Pb %	Ag ppm	Au ppm
SES002	151.65	164	12.35	1.61	3.97	2.28	66.8	0.16
SES003	132.05	151.35	19.30	1.49	1.76	0.86	29.9	0.21
SES008	304.1	309.1	5.00	0.62	1.53	0.95	0.5	1.27
SES010	228.4	243.5	15.10	0.44	1.91	0.55	28.6	0.40
SES010	275	286.25	11.25	0.36	1.24	0.35	16.0	0.21
SES019	263.5	314	50.50	0.44	2.68	0.77	17.5	0.41
SES020	302.4	319.95	17.55	0.63	0.67	0.66	20.6	0.60
SES021	262.85	276.85	14.00	0.37	0.42	0.30	10.2	0.45
SES022	326.6	348.6	22.00	0.59	0.89	0.63	18.8	0.60
SES026	384.55	414.65	30.10	0.47	1.26	0.51	15.5	0.74
SES21-033	365.6	385.25	19.65	0.45	1.99	1.05	40.6	0.59
SES21-036	401.1	423.1	22.00	0.38	1.84	0.95	30.3	0.55
SES21-038	356.65	362.85	6.20	0.71	1.36	0.94	31.5	0.54
SES21-039	349.4	387.2	37.80	0.44	2.12	0.80	27.8	0.72
SES21-040	479.4	515.85	36.45	0.73	0.14	0.82	21.0	0.36
SES21-044	417.2	475	57.80	0.41	2.37	0.96	37.6	0.69
SES21-044	508.2	523	14.80	0.56	0.49	0.15	8.3	0.33
SES21-046	380.3	401.4	21.10	0.50	2.21	1.05	37.2	0.71
SES23-047	392.8	433	40.20	1.61	4.97	2.29	68.1	0.28

APPENDIX I: JORC 2012 CODE

JORC 2012 MINERAL RESOURCE PARAMETERS

SANDFIRE MINEIRA PORTUGAL

JORC Code Assessment Criteria	Comment			
Section 1 Sampling Techniques and Data				
Sampling Techniques Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	 Drilling undertaken by PorMining complies with the industry best practices and the resultant sampling pattern is sufficiently dense to interpret the geometry, boundaries, and different styles of the sulphide mineralisation at Sesmarias with a high level of confidence within well drilled areas. All core samples were taken from diamond drill cores drilled from the surface. Diamond drill holes were generally sampled through intervals of visual mineralisation and into visually barren material above and below the mineralised rocks and also from several different units for geochemical characterization. Sampling intervals are then marked by a geologist to ensure representativity of the sampling, and the length of the samples are typically between 1 and 2m intervals, although this can be reduced depending on the geology and mineralisation in the core. The most common sample lengths in the assay database are 1 and 2m. Samples were cut longitudinally in half using a manual operated diamond core saw, or in quarter core when routine duplicate samples where included. The core is then sampled by hand, avoiding any possible contamination from adjacent sampling intervals, it's double bagged to prevent contamination, tagged with barcoded ticket and sealed. 			
Drilling Techniques	All drilling conducted has been diamond drilling ("DDH") – from surface collar locations.			
Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.), and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 Core is orientated in HQ and NQ drilling diameters with COREMASTER from Stockholm Precision Tools (SPT). The core is placed in a "v" shaped tray, and then oriented and marked before reading and recording the angles to core axis of the geological structures. Each structure recorded is classified according to its nature. The information is then recorded in database (Excel file). Drilling has been carried out by external third-party contractor. The diamond drilling has been conducted using several drilling machines and is usually undertaken using wireline double tube tools. 			

13 June 2023 Page 11 of 17

JORC Code Assessment Criteria	Comment				
Drill Sample Recovery Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred	 The drillholes start in PQ to penetrate the Tertiary rocks and into the first meters of the Palaeozoic rocks. These are then reduced to HQ and can be reduced to NQ size depending on technical problems. The drill core is transported from the drilling rigs to the Core Shed where it is sorted and stored before being processed. Core intervals are measured against the drillers recorded measurements and then the core recovery is determined by the geologists and by trained technicians supervised by the geologists. Diamond core recovery is logged and captured in the database. The drillers also record the length on every run. Both records are compared. When low recovery is captured, the specific sampling interval is noted to avoid bias in over or under reporting. 				
due to preferential loss/gain of fine/coarse material.					
Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.), photography. The total length and percentage of the relevant intersections logged.	 The drill core is laid out on a flat logging rack with natural lights and water supply. The logging includes lithological coding as well as assigning an overall geological unit. The lithological coding system comprises 47 individual rock types. These individual rock types are grouped into an overall geological unit code, or main rock type depending on its nature. Logging also includes a visual rock alteration log according to its type (sericite, chlorite, silica) and intensity. Geological structure characterisation is logged in a separate table with its nature and length. Structural readings are also registered to aid with the structural knowledge. Mineralisation logging includes only visible mineralisation aspects with its occurrence and visible mineralogy. Trained technicians measure and record RQD in the core and density of the rocks. The core logging is qualitative in nature whereas the sampling and results are quantitative. All drill cores are photographed and catalogued appropriately. All drill holes are fully logged. 				
Sub-Sampling Techniques and Sample Preparation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc., and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 For all intersections with logged presence of sulphides and adjacent rocks, cores are marked for sampling and cut into two equal halves. The core is placed in a "v" shaped tray and oriented prior to being placed in the core cutting tray machine, the core is then cut. One half of the core is selected for sample preparation and assay analysis, whilst the other is retained as a reference sample. When routine duplicates are present, the half core cut is then cut into a quarter for a duplicate sample. Core sample preparation at the used commercial laboratory (ALS) is completed as follows: LOG-22 - Samples are weighted and logged in. Samples are prepared with the preparation package PREP-31BY that consists in the following: The entire sample is run through a crusher which reduces 70% of the particles to less than 2 mm in size; A rotary splitter then splits out a 1kg subsample; The 1kg subsample is then pulverised to > 85% passing 75 microns. 				

13 June 2023 Page 12 of 17

JORC Code Assessment Criteria	Comment
Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Coarse blanks, twin duplicates and certified reference materials are alternately inserted on a 1:10 ratio in the batch of samples. Pulp samples are randomly selected for duplicate analysis. Re-assaying of these pulp samples is used to identify issues with non-representative sampling. The pulp re-assays typically display a high level of correlation. The sample size is considered appropriate for the mineralisation style.
Quality of Assay Data and Laboratory Tests	Samples are assayed using four acid digestion with ICP-MS finish (ME-MS61) with a suite of 48 elements.
The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	 Samples are fire-assayed for Au using the laboratory method Au-AA23 and also analysed for Sn using the ME-XRF05. Selected historical core was also assayed using the same methods as for new core. A portable magnetic susceptibility meter (SM30-ZH Instruments) was used to record point data on a 2-3m intervals over all lithological units. QAQC samples (blanks, certified reference material and duplicates) are inserted into the sample stream prior to these being sent to the laboratory for assay analysis. Blank samples comprise local sedimentary country rock and have been included in the sample stream of the project since 2020. The results of the blank analysis demonstrate that the sample preparation process employed at ALS limits contamination to acceptable levels. Pulverised certified blank samples were used when pulps were sent for re-assay due to the nature of the sample. The assay results of the pulverised blank analysis are within acceptable limits. Twin duplicate samples are quarter core field duplicate samples which have been included in the sample stream on a regular basis. These duplicate results show reasonably good repeatability as well as good correlation between the original and duplicate samples. The company has used 4 different CRM across all the projects. The CRM are used to monitor Cu, Zn, Pb, Mo and Au grades. The CRMs used have been purchased from certified commercial laboratories (Geostats Pty Ltd).
Verification of Sampling and Assaying	Significant intervals documented have not been verified by independent or alternative company personnel.
The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	 The mineralisation appears to be reasonably laterally continuous and has been intersected in fence-style drilling programmes. Separation between drill holes is usually between 25 to more than 100m. Data entry is completed after core logging and surveying mineralised intervals. Documentation of sampling is undertaken on assay tags provided by ALS Minerals and within a digital assay database (Excel file).
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)	 Sampling documentation is then added on ALS Minerals sample submittal form. Lithological information about the sampled interval is later added in the assay database.

13 June 2023

JORC Code Assessment Criteria	Comment			
protocols.	Once assay results are received, the digital assay database is updated.			
Discuss any adjustment to assay data.	 All values under the lower detection limit are transformed to half of the lower detection limit value and all values above the higher detection limit are added "+1". Copper, Lead, Zinc and Silver values above maximum detection limits are re-processed with ore grade methods based on ALS protocols. 			
Location of Data Points	Drillhole collars are marked by the geology personnel in LEAPFROG and/or QGIS, using ED50 UTM Zone			
Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 29N format and then verified in the field using a GARMIN gps with the same coordinate system, which has an accuracy of 3m in the X, Y and Z coordinates. The drilling company typically uses a REFLEX single shot tool for all of its downhole surveys, with the 			
Specification of the grid system used.	measurements routinely taken every 25m.			
Quality and adequacy of topographic control.				
Data Spacing and Distribution	Planned drilling programs are typically aimed to intersect mineralisation perpendicular to strike and also in			
Data spacing for reporting of Exploration Results.	 fan-style distribution for depth continuity verification. Drill spacing can vary from 25m to more than 100m, based on the geological model and location of the 			
Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 bodies of mineralisation. No sample compositing is applied during the sampling process. 			
Whether sample compositing has been applied.				
Orientation of Data in Relation to Geological Structure	Deposit type implies that the mineralization is typically stratiform. Drilling programs are aimed to intersect			
Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	mineralisation perpendicular to strike and also in "fan style" distribution for depth continuity verification. However, high average unit dips and local aspects may constrain drill hole collar positioning. No significant sampling bias occurs in the data due to the orientation of drilling with regards to			
If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 mineralisation. Drilling undertaken by Sandfire Mineira Portugal/PORMINING conforms to industry best practices and the resulting sampling pattern is sufficiently dense to interpret the geometry, boundaries, and different styles of the sulphide mineralisation. Confidence in the geological interpretation decreases in areas of reduced sample coverage and is reflected in the classification of mineral resources. 			
Sample Security	All drill core is delivered to the core shed, usually via flatbed trucks, for photography, core recovery			
The measures taken to ensure sample security.	 calculations, geological and geotechnical logging, and sampling. The core shed, sample preparation facilities and laboratory are all confined within secure boundaries, with controlled access points, where only authorised personnel are allowed entry. 			

13 June 2023 Page 14 of 17

JORC Code Assessment Criteria	Comment			
Audits and Reviews The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been completed.			
Section 2 Reporting of Exploration Results				
Mineral Tenement and Land Tenure Status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Sandfire Mineira Portugal currently holds 4 exploration permits (Ermidas, Cercal, Ourique and Santiago) and an experimental exploitation licence (Alvalade) in joint venture with Avrupa, all in the IPB, which amounts to a total of approximately 1615km². All drilling in this announcement is within the Alvalade experimental exploitation Licence. The Licence is held by PorMining, a subsidiary of Avrupa Mining Ltd. Sandfire Mineira Portugal has an option agreement with Avrupa whereby Sandfire may earn up to an 85% interest in the Licence via a series of stages. 			
The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.				
Exploration Done by Other Parties Acknowledgment and appraisal of exploration by other parties.	 Mining in the IPB has occurred for over 2,500 years. Activity can be dated to prehistorical times and to Phoenician and Roman periods. Significant interest in IPB did not re-emerge until the 1800s following the successful extraction of Cu, resulting in over 60 mines operating by 1900. The Rio Tinto Company was formed in 1873 to operate some of these mines. The discovery of the Neves Corvo deposit in 1977, renewed exploration interest in the region, which ultimately led to the discovery of the mineralisation associated with the Aguas Teñidas mine and re-opening of the Sotiel Mine in 1983. The "Alvalade" experimental exploitation licence holds 2 VMS historical mine sites, Caveira and Lousal. The most recent exploration works developed in this area, from the past century up to 2019, include projects developed by Avrupa Minerals Ltd. with several joint venture partners (Antofagasta and Colt Resources), Riofinex plc, Billiton, SAPEC and Serviço de Fomento Mineiro (Portuguese Geological Survey). 			
Geology Deposit type, geological setting and style of mineralisation.	 The mineral deposit at Sesmarias is interpreted to be volcanogenic massive sulphide (VMS) hosted by volcanic and sedimentary units. VMS deposits are predominantly stratiform accumulations of sulphide minerals that precipitate from upwelling hydrothermal fluids associated with magmatism on or below the seafloor in a wide range of geological settings. Work is underway to characterise the Sesmarias deposit, which is hosted by felsic volcanic rocks and black shales. 			

13 June 2023 Page 15 of 17

JORC Code Assessment Criteria	Comment
Drill hole information A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar • Elevation or rl (reduced level – elevation above sea level in metres) of the drill hole collar • Dip and azimuth of the hole • Downhole length and interception depth • Hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Appendix 1 of this accompanying document.
Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Appendix 2 shows intercepts that are based on a >0.3% Cu COG and may include up to a maximum of 3m consecutive intervals of included waste. Minimum and maximum DDH sample intervals used for intersection calculation are 0.5m and 2m respectively, and are subject to geological boundaries. No metal equivalents are used in the intersection calculation.
Relationship between mineralisation widths and intercept lengths These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 All drillhole intercepts are reported in downhole thickness. The drill holes are interpreted to be approximately perpendicular, or at a high angle to the strike and dip of mineralisation. Secondary folds may influence the cross-cutting angle. True thickness is estimated to be approximately 50% of downhole thickness reported. Further drilling and work are required to confidently establish that thickness.

13 June 2023 Page 16 of 17

JORC Code Assessment Criteria	Comment		
If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g., 'downhole length, true width not known').			
Diagrams	 Appropriate maps and sections are included within the body of the accompanying document. 		
Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.			
Balance reporting	The accompanying document is considered to represent a balanced report. Reporting of grades is		
Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	undertaken in a consistent manner.		
Other substantive exploration data	Other exploration data collected is not considered as material to this document at this stage, Further data		
Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment, metallurgical test results, bulk density, groundwater, geotechnical and rock characteristics, potential deleterious or contaminating substances.	collection will be reviewed and reported when considered material.		
Further work	Step-out drilling along-strike and down-dip extensions of mineralisation continue subject to geological		
The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	interpretation and observations.		
Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.			

13 June 2023