ASX RELEASE

13 June 2023

Primary Ni-Cu-PGE-Au Mineralisation at Ablett

HIGHLIGHTS

Calingiri East:

- AC drilling results prove the Ablett prospect has a true mineralised ultramafics co-incident Ni-Cu-PGE system.
- Primary Ni-Cu-PGE mineralisation confirmed in 5 holes at Ablett, incl.;
 - o 12m @, 1,111ppm Cu, 2,388ppm Ni, 14ppb Au, 19ppb Pd, 17ppb Pt from 28m
 - o 12m @ 915ppm Cu, 1,698ppm Ni, 17ppb Au, 14ppb Pd, 13ppb Pt from 32m
 - o 8m @ 1,243ppm Cu, 1,406ppm Ni, 4.5ppb Au, 34ppb Pd, 25ppb Pt from 20m
 - o 4m @ 1,590ppm Cu, 1,085ppm Ni, 6ppb Au, 17ppb Pd, 21ppb Pt from 20m
 - o 4m @, 1,455ppm Cu, 950ppm Ni, 7ppb Au, 42ppb Pd, 29ppb Pt from 20m
- Phil's Hill anomalous Ni-Cu-PGE results, including;
 - o 4m @ 1,025ppm Cu, 502ppm Ni, 1ppb Au, 5ppb Pd, 7ppb Pt from 8m
- Ablett Orogenic gold system confirmed and extended to > 850 metres
 - o 20m @ 523ppm Cu, 78ppm Ni, **347ppb Au**, 5ppb Pd, 7ppb Pt, from 12m incl.;
 - 4m @ 0.57 g/t Au from 12m
 - o 18m @ 741ppm Cu, 173ppm Ni, **262ppb Au**, 5ppb Pd, 7ppb Pt from 8m
 - o 16m @ 369ppm Cu, 37ppm Ni, **279ppb Au**, 6ppb Pd, 7ppb Pt from 32m

WA Projects:

 Pursuit has received a number of third-party approaches to buy or JV our WA projects which we are actively reviewing

Rio Grande Sur (RGS) Lithium Project:

Quantec EM survey is on time and budget, CSAMT due to start shortly

Pursuit Managing Director, Bob Affleck, said:

"We are delighted with the AC drilling results at Ablett prospect, Calingiri East confirming a true mineralised ultramafics co-incident Ni-Cu-PGE system has been discovered. The orogenic Au gold mineralisation at Ablett has also been extended to over 850m and remains open along strike. This is an exciting time for the Company as we aggressively advance the world-class Rio Grande Sur Lithium project along with the latest Warrior results which adds to the Ni-Cu-PGE mineralisation."

Pursuit Minerals Limited (ASX:**PUR**) ("**Pursuit**" or the "**Company**") is pleased to advise primary Ni-Cu-PGE mineralisation has been discovered at Ablett prospect, further adding to significant orogenic Au

anomalism noted in previous drilling. Work will now commence on finding the deeper source of this mineralisation with new geophysics before targeted drilling commences at the prospect.

AC Drilling Calingiri East & Bindi Bindi

The Company is pleased to announce the results of 4m composite assays from Air Core (AC) drilling at the Calingiri East and Bindi Bindi Projects located approximately ~50km north north-east of Chalice's Julimar Project, and 125km NNE of Perth Western Australia. Assay data has been collated by Company geologists and reviewed by consultant geochemist Dr Carl Brauhart.

Calingiri East E70/5379

Four metre composite assay results from AC drilling of PGE, gold and REE targets at Ablett, Phil's Hill and downslope of existing REE anomalies have been received, highlighting new coincident Ni-Cu-PGE mineralisation. Figure 2 shows the location of 181 holes drilled at Ablett, Ablett East and Phil's Hill.

AC traverses across Ablett were designed to close off bedrock gold mineralisation to the north and south, infill to clarify mineralisation width and explore REE anomalies discovered in AC drilling and auger geochemistry. AC drilling at Phil's Hill now covers the whole prospect and was designed to extend coverage south of diamond drilling in 2021 in an area of intense cross-faulting.

One-metre resamples of all anomalous intervals have been submitted for assay with results expected late June or early July.

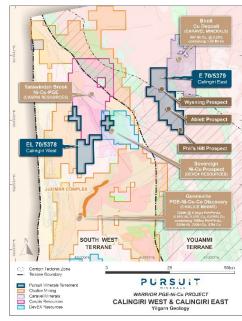


Figure 1: Warrior tenement location plan

Ablett

Eighty-six (86) holes for 2,989m were drilled into Ablett to extend gold anomalism and to follow up encouraging Ni-Cu-PGE anomalism. The drilling was highly successful with new coincident Ni-Cu-PGE mineralisation identified (Figure 3) located on the eastern margin of an ultramafic unit. Geological logging suggests that multiple intrusive events have occurred and created a "stacked" series of mineralised bodies. The resulting mineralised zone is up to 200m thick and strikes approximately 600m in length and remains open.

Gold mineralisation encountered during the AC program has clarified and extended the zone to over 850m in strike and width between 40 to 100m. The mineralisation (Figure 4) appears to bifurcate into an eastern and western zone.

Further work will continue to extend the gold mineralisation trend to the south where previous explorers appear to have "stepped over" the mineralisation with very broad lines of AC drilling. In conjunction with this work drilling will also focus on the identification of higher-grade shoots within the mineralisation to determine economic potential.

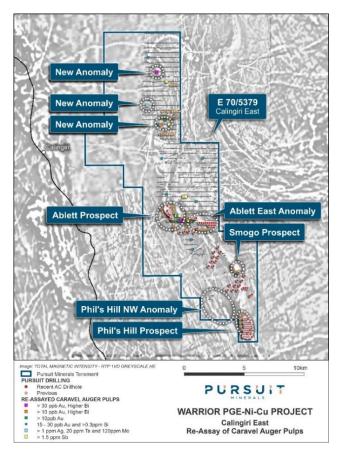


Figure 2: 2023 AC traverses, Calingiri East

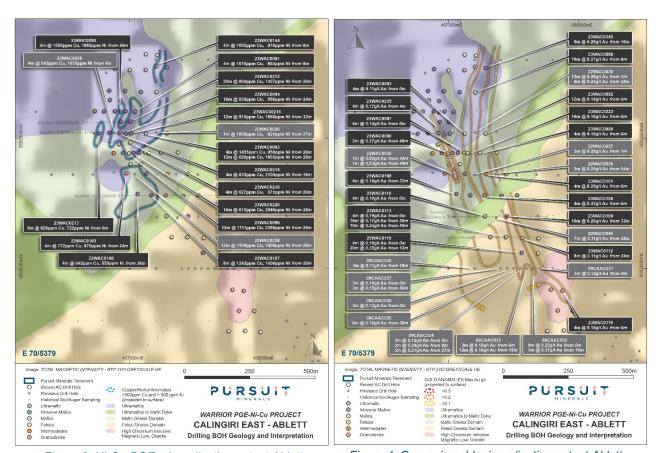


Figure 3: Ni-Cu-PGE mineralisation extent Ablett

Figure 4: Orogenic gold mineralisation extent Ablett

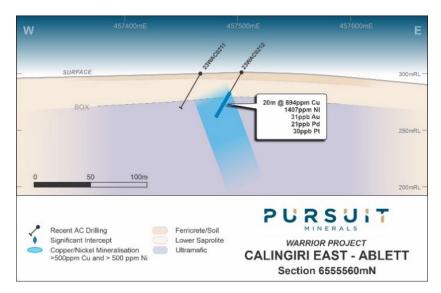


Figure 5: Ablett Ni-Cu-PGE mineralisation, 6555520N

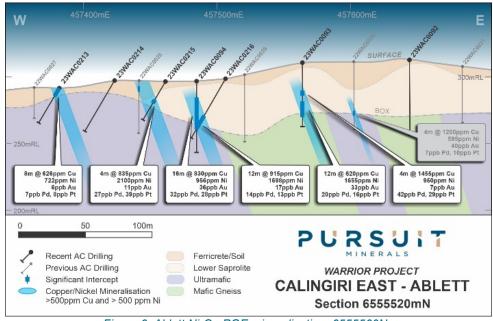


Figure 6: Ablett Ni-Cu-PGE mineralisation, 6555560N

Cross sections below showing Ablett AC composite assay results highlight the strong confirmation of Ni-Cu-PGE oxide mineralisation in cross-cutting drillholes (Figure 5, holes 94 and 216) as well as significant basement mineralisation (Figure 6). Given the very shallow depth of drilling to date the intervals are considered highly significant. Data review by Dr Brauhart notes that Ni-Cu-PGE may be west dipping, a possibility Pursuit will consider in future drilling.

New gold mineralisation at Ablett is highlighted on section 6555120N (Figure 7) which confirms anomalism in both lower saprolite and basement (fresh) samples. Section 6555200N (Figure 8) also highlights lower saprolite gold anomalism and targeted RC drilling will be required beneath these zones once 1m re-assay results are reported and crops harvested in Q4.

New exploration work at Ablett to extend and deepen the primary Ni-Cu-PGE mineralisation will include EM surveys to search for massive sulphide conductors beneath current drilling (limited to approximately 50m below current land surface), as well as IP surveys to identify disseminated Ni-Cu-PGE-Au mineralisation. As further targets are defined Pursuit will test these with deeper RC or diamond drilling.

Phil's Hill

Forty-three (43) holes for 833m (Figure 9) were completed across the Phil's Hill prospect to extend and clarify the orogenic gold signature previously reported. Drilling was often very shallow with a range of lithologies encountered including ultramafics, mafic/felsic gneiss, granodiorite and late-stage dolerite dykes.

Additional gold mineralisation was not identified but drilling did locate potentially significant Ni-Cu-PGE mineralisation to the north and south of the main Phil's Hill prospect that warrants further follow up. In the south drilling across the NE-SW fault (Figure 10) located Ni-Cu-PGE mineralisation (hole 177) but was incomplete due to an area of remnant vegetation and additional work is required east and west of hole 177.

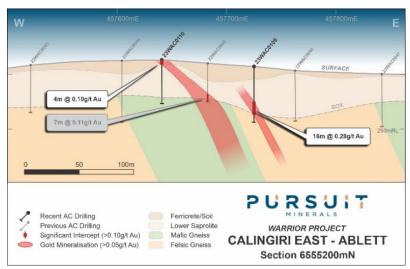


Figure 7: Ablett gold mineralisation, 6555120N

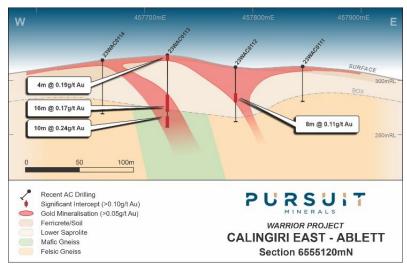


Figure 8: Ablett gold mineralisation, 6555200N

Future work may include EM surveys or IP surveying extended from the current body of geophysical coverage and targeted drilling of any anomalies detected.

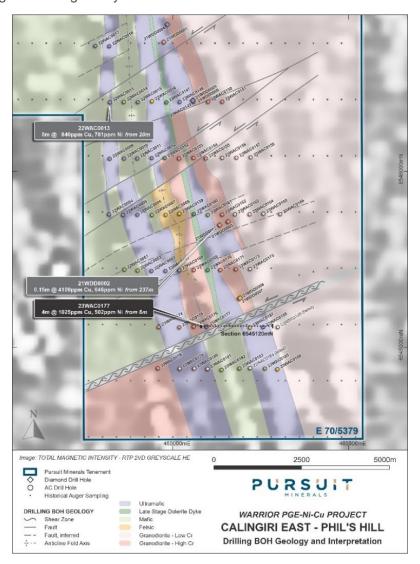


Figure 9: AC drilling, Phils Hill

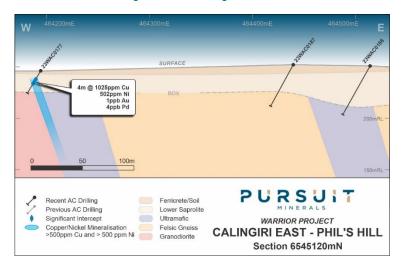


Figure 10: New Ni-Cu mineralisation Phil's Hill

Regional / REE

Twenty-eight (28) holes for 550m were drilled to test for REE potential in downslope or drainage areas for ionic clay mineralisation as recommended by consultant geochemist Richard Carver. Drilling in these areas was generally quite shallow before bedrock was intersected and assay results were generally disappointing. Consultant geochemist Dr Carl Brauhart notes anomalous values to 2,250 ppm TREE's at Ablett and Phil's Hill but drilling to date has not outlined a coherent mineralised domain. An additional review of this data underway.

Bindi Bindi E70/5392

Twenty-four (24) AC holes for 255m were completed at Cranmore Prospect (Figure 11) over a 700m strike of subcropping and outcropping ultramafics, silica cap rock and breccias. Cranmore has been the site of auger geochemistry which located significant Ni-Cu and REE anomalism, as well as MLEM surveying which established a prospective EM trend warranting further work.

Three traverses of AC drillholes were completed to clarify the dip of stratigraphy, Ni-Cu geochemistry at depth as well as explore the nature of REE anomalism previously reported. Drilling intersected intrusive ultramafic rocks of varying widths. Holes were generally shallow, reflecting the relatively fresh nature of the lithologies.

Dr Brauhart noted anomalous Ni to ~2,000ppm which is typically not associated with normal Ni-Cu and PGE pathfinders. Additional fieldwork to further map the areal

Legend
Final 230301
AUGER
— fault/lineament
geol Contact

Figure 11: AC drill traverses Cranmore prospect

extent of the ultramafic to the north and south is warranted and possibly IP surveying to map the silica cap rock at Cranmore.

Next Steps

- Following the receipt of a number of unsolicited approaches from third parties seeking to participate in the development of the Warrior and Commando Projects, Pursuit has initiated a formal internal process in order to co-ordinate an investigation of the various strategic options available to the Company to accelerate available alternatives which could maximise value for all Shareholders.
- >> Report 1m re-assays of significant AC drill intervals once received
- Engage geophysical contractors to complete EM and IP surveys across Ablett following crops harvested Q4
- Review Phil's Hill results and consider geological mapping, IP and further drilling in the proximity of the southern NE-SW cross fault
- >> Potential for deeper RC drilling of targets at Ablett and Phil's Hill defined by geophysics above

This release was approved by the Board.

For more information about Pursuit Minerals and its projects, contact:

Bob Affleck

Managing Director boba@pursuitminerals.com.au T: +61 419 908 302

Mark Freeman

Finance Director markf@pursuitminerals.com.au

T: + 61 412 692 146

Competent Person's Statement

Statements contained in this announcement relating to exploration results, are based on, and fairly represents, information and supporting documentation prepared by Mr. Mathew Perrot, who is a Registered Practicing Geologist Member No 10167 and a member of the Australian Institute of Geoscientists, Member No 2804. Mr. Perrot has sufficient relevant experience in relation to the mineralisation style being reported on to qualify as a Competent Person for reporting exploration results, as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Perrot is a consultant engaged by the Company. In his private capacity Mr Perrot has purchased shares in the Company and received performance shares for his work with Pursuit. Mr Perrot consents to the use of this information in this announcement in the form and context in which it appears.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of Pursuit Minerals Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

Glossary

Glossary	
Term	Meaning
AC Drilling	Air Core drilling utilises high-pressure air and dual walled rods to penetrate the ground and return the sample to the
	surface through the inner tube and then through a sampling system. The ground is cut through with the use of a steel
	blade type bit.
CSAMT	Controlled Source Audio-frequency Magnetotellurics
Diamond Drilling	Diamond Drilling is the process of drilling boreholes using bits inset with diamonds as the rock-cutting tool. By withdrawing
	a small diameter core of rock from the orebody, geologists can analyse the core by chemical assay and conduct petrologic,
Disseminated sulphides	structural, and mineralogical studies of the rock. Sulphides throughout the rock mass – not joined together and not conductive
,	Mineralisation forming after rocks were formed by later mineralising events
Epigenetic Intrusive	Body of igneous rock that has crystallized from molten magma below the surface of the Earth
Lithium brine	Salt rich groundwater containing enriched Li leached from surrounding rocks
Litho-geochemistry	Study of common elemental signatures in different rock types to aid accurate logging by geologists
Magnetotelluric traverses	A passive geophysical method which uses natural time variations of the Earth's magnetic and electric field to measure
(MT)	the electrical resistivity of the sub-surface and infer deep seated structures
Massive Sulphides	The majority of the rock mass consists of various sulphide species
Metamorphism	The solid state recrystallisation of pre-existing rocks due to changes in heat and/or pressure and/or the introduction of
Wetamorphism	fluids. i.e. without meltina
Orogenic Gold Deposit	A type of hydrothermal mineral deposit where rock structure controls the transport and deposition of mineralised fluids.
Gragama Gara Bapaan	Over 75% of all gold mined by humans has been from orogenic deposits
Pegmatite	Exceptionally coarse-grained granitic intrusive rock,
Polymetallic mineralisation	Deposits which contain different elements in economic concentrations
Pyroxenite	A coarse-grained, igneous rock consisting mainly of pyroxenes. It may contain biotite, hornblende, or olivine as
	accessories.
RC Drilling	Reverse Circulation drilling, or RC drilling, is a method of drilling which uses dual wall drill rods that consist of an outer
	drill rod with an inner tube. These hollow inner tubes allow the drill cuttings to be transported back to the surface in a
	continuous, steady flow.
REE	Rare earth element,
Saprolite	Saprolite is a chemically weathered rock. Saprolites form in the lower zones of soil profiles and represent deep weathering
	of bedrock.
Sulphides	Various chemical compounds of sulphur and metals
TEM	Transient Electromagnetics
Ultramafic	Very low silica content igneous and metamorphic rocks – including pyroxenites and peridotites both are known to host
	significant Ni-Cu-PGE deposits

Abbreviation	Abbreviation meaning	Abbreviation	Abbreviation meaning
Ag	Silver	Li	Lithium

Au	Gold	Мо	Molybdenum
As	Arsenic	Ni	Nickel
Со	Cobalt	Pb	Lead
Cr	Chromium	Pd	Palladium
Cs	Caesium	ppm	Parts per million
Ce	Cerium, a rare earth	Pt	Platinum
Cu	Copper	REE	Rare Earth Element
Bi	Bismuth	Sb	Antimony
В	Boron	Te	Tellurium
DHEM	Down Hole Electro-Magnetic surveying	Zn	Zinc
K	Potassium	VHMS	Volcanic Hosted Massive Sulphide
g/t	Grams per ton	W	Tungsten
La	Lanthanum	Υ	Yttrium

Table 1: Significant Results of Drilling. Results in red are very significant gold anomalism, results in purple are very significant Ni-Cu-PGE anomalism [results >100ppb Au, >500ppm Cu, >500ppm Ni, and > 1000ppm TREE]

HOLE ID	PROSPECT	FROM	TO (m)	LENGTH	Cu nnm	Ni ppm	Au nnh	Pd nnh	Pt ppb
TIOLE ID	TROOF EOT	(m)	10 (111)	(m)	ой ррш	тт ррш	Au ppb	т и ррь	i t pps
23WAC0086	Ablett	8	26	18	741	173	262	5	7
23WAC0090	Ablett	20	24	4	1590	1085	6	17	21
23WAC0091	Ablett	8	12	4	1070	664	8	24	13
23WAC0092	Ablett	0	12	12	50	49	137	4	2.5
23WAC0093	Ablett	0	4	4	59	90	106	3	2.5
		20	24	4	1455	950	7	42	29
		28	40	12	620	1655	33	20	16
23WAC0094	Ablett	24	40	16	830	956	36	32	28
23WAC0096	Ablett	28	40	12	1111	2388	14	19	17
		48	50	2	544	369	370	2	2.5
23WAC0097	Ablett	0	4	4	90.1	92.7	141	3	2.5
23WAC0098	Ablett	0	4	4	85	61	100	3	-5
23WAC0101	Ablett	0	4	4	29	46	199	7	-5
23WAC0103	Ablett	24	28	4	772	875	7	4	8
23WAC0106	Ablett	0	4	4	90	44	324	5	6
23WAC0107	Ablett	20	28	8	1243	1406	4.5	34	25
23WAC0108	Ablett	32	36	4	373	218	105	6	7
		36	40	4	645	555	40	4	8
23WAC0109	Ablett	32	44	16	379	37	279	6	7
23WAC0110	Ablett	0	4	4	76	77	103	12	5
23WAC0112	Ablett	24	32	8	854	150	108	15	22
23WAC0113	Ablett	0	4	4	26	49	186	4	2.5
		36	52	16	298	64	167	-1	-5
		56	66	10	255	148	243	-1	-5
23WAC0116	Ablett	0	4	4	47	34	101	7	-5
		12	32	20	523	78	347	5	7
		Including	4m @ 5	70 ppb Au	from 12m				
23WAC0118	Ablett	0	4	4	188	85	153	13	6
23WAC0144	Ablett	8	12	4	1055	978	7	8	7
23WAC0145	Ablett	16	24	8	385	88	293	8	5
		Including	4m @ 4	10 ppb Au	from 20m				
23WAC0177	Phil's Hill	8	12	4	1025	502	1	4	2.5
23WAC0212	Ablett	20	40	20	894	1407	31	21	30
23WAC0213	Ablett	0	8	8	626	722	6	7	8
23WAC0215	Ablett	4	8	4	161	147	173	7	6
		16	20	4	835	2100	11	27	39
23WAC0216	Ablett	32	44	12	915	1698	17	14	13
23WAC0218	Ablett	20	24	4	627	571	35	26	16
23WAC0220	Ablett	28	44	16	615	2040	20	25	22
23WAC0222	Ablett	0	16	16	75	83	149	2	-5
		Including	4m @ 2	00 ppb Au	from 8m				

Table 2: Drill Hole details

HOLE ID	Easting	Northing	RL	Dip	Azimuth	End Depth	Location Tenement
23WAC0059	433546	6616542	290	-60	90	27	Cranmore E 70/5392
23WAC0060	433758	6616173	296	-60	90	4	Cranmore E 70/5392
23WAC0061	433679	6616175	300	-60	90	7	Cranmore E 70/5392
23WAC0062	433639	6616176	301	-60	90	11	Cranmore E 70/5392
23WAC0063	433562	6616178	304	-60	90	15	Cranmore E 70/5392
23WAC0064	433480	6616176	305	-60	90	20	Cranmore E 70/5392
23WAC0065	433382	6616178	285	-60	90	4	Cranmore E 70/5392
23WAC0066	433303	6616176	289	-60	90	8	Cranmore E 70/5392
23WAC0067	433223	6616177	289	-60	90	3	Cranmore E 70/5392
23WAC0068	433842	6616517	293	-60	90	6	Cranmore E 70/5392
23WAC0069	433758	6616519	297	-60	90	3	Cranmore E 70/5392
23WAC0070	433687	6616515	296	-60	90	5	Cranmore E 70/5392
23WAC0071	433600	6616514	297	-60	90	10	Cranmore E 70/5392
23WAC0072	433519	6616519	301	-60	90	7	Cranmore E 70/5392
23WAC0073	433443	6616518	301	-60	90	22	Cranmore E 70/5392
23WAC0074	433408	6616519	304	-60	90	9	Cranmore E 70/5392
23WAC0075	433322	6616518	300	-60	90	7	Cranmore E 70/5392
23WAC0076	433850	6616837	304	-60	90	13	Cranmore E 70/5392
23WAC0077	433764	6616837	305	-60	90	15	Cranmore E 70/539
23WAC0078	433680	6616836	303	-60	90	9	Cranmore E 70/5392
23WAC0079	433597	6616837	305	-60	90	21	Cranmore E 70/5392
23WAC0080	433519	6616840	302	-60	90	15	Cranmore E 70/5392
23WAC0081	433441	6616836	295	-60	90	11	Cranmore E 70/5392
23WAC0082	433365	6616839	293	-60	90	4	Cranmore E 70/5392
23WAC0083	457445	6555766	301	-90	0	48	Ablett E 70/5379
23WAC0084	457501	6555761	300	-90	0	32	Ablett E 70/5379
23WAC0085	457562	6555761	302	-90	0	41	Ablett E 70/5379
23WAC0086	457603	6555676	304	-90	0	26	Ablett E 70/5379
23WAC0087	457543	6555677	301	-90	0	34	Ablett E 70/5379
23WAC0088	457483	6555681	305	-90	0	25	Ablett E 70/5379
23WAC0089	457422	6555682	302	-90	0	34	Ablett E 70/5379
23WAC0090	457465	6555601	308	-90	0	37	Ablett E 70/5379
23WAC0091	457520	6555602	307	-90	0	47	Ablett E 70/5379
23WAC0092	457643	6555519	312	-90	0	56	Ablett E 70/5379
23WAC0093	457563	6555518	311	-90	0	48	Ablett E 70/5379
23WAC0094	457485	6555517	306	-90	0	53	Ablett E 70/5379
23WAC0095	457439	6555443	294	-90	0	38	Ablett E 70/5379
23WAC0096	457497	6555441	301	-90	0	51	Ablett E 70/5379
23WAC0097	457560	6555445	306	-90	0	57	Ablett E 70/5379
23WAC0098	457621	6555444	300	-90	0	43	Ablett E 70/5379
23WAC0099	457685	6555445	315	-90	0	55	Ablett E 70/5379
23WAC0100	457723	6555364	319	-90	0	55	Ablett E 70/5379
23WAC0101	457645	6555362	320	-90	0	46	Ablett E 70/5379

HOLE ID	Easting	Northing	RL	Dip	Azimuth	End Depth	Location	Tenement
23WAC0102	457565	6555364	317	-90	0	55	Ablett	E 70/5379
23WAC0103	457488	6555365	315	-90	0	38	Ablett	E 70/5379
23WAC0104	457764	6555281	318	-90	0	33	Ablett	E 70/5379
23WAC0105	457705	6555278	319	-90	0	37	Ablett	E 70/5379
23WAC0106	457639	6555282	325	-90	0	25	Ablett	E 70/5379
23WAC0107	457584	6555282	325	-90	0	45	Ablett	E 70/5379
23WAC0108	457531	6555287	324	-90	0	48	Ablett	E 70/5379
23WAC0109	457725	6555201	320	-90	0	51	Ablett	E 70/5379
23WAC0110	457641	6555201	324	-90	0	40	Ablett	E 70/5379
23WAC0111	457846	6555116	313	-90	0	32	Ablett	E 70/5379
23WAC0112	457784	6555118	300	-90	0	50	Ablett	E 70/5379
23WAC0113	457721	6555121	323	-90	0	66	Ablett	E 70/5379
23WAC0114	457661	6555121	318	-90	0	49	Ablett	E 70/5379
23WAC0115	457844	6555058	314	-90	0	59	Ablett	E 70/5379
23WAC0116	457782	6555060	321	-90	0	50	Ablett	E 70/5379
23WAC0117	457895	6554919	311	-90	0	29	Ablett	E 70/5379
23WAC0118	457938	6554915	310	-90	0	18	Ablett	E 70/5379
23WAC0119	457978	6554839	301	-90	0	36	Ablett	E 70/5379
23WAC0120	457920	6554839	307	-90	0	18	Ablett	E 70/5379
23WAC0121	458001	6554758	285	-90	0	44	Ablett	E 70/5379
23WAC0122	457943	6554763	300	-90	0	18	Ablett	E 70/5379
23WAC0123	457880	6554760	310	-90	0	37	Ablett	E 70/5379
23WAC0124	459638	6554802	309	-90	0	29	Ablett	E 70/5379
23WAC0125	459720	6554804	318	-90	0	25	Ablett	E 70/5379
23WAC0126	459801	6554802	301	-90	0	6	Ablett	E 70/5379
23WAC0127	459874	6554794	305	-90	0	14	Ablett	E 70/5379
23WAC0128	459958	6554799	312	-90	0	12	Ablett	E 70/5379
23WAC0129	461679	6554392	295	-90	0	23	Ablett	E 70/5379
23WAC0130	461523	6554400	269	-90	0	14	Ablett	E 70/5379
23WAC0131	461369	6554398	300	-90	0	21	Ablett	E 70/5379
23WAC0132	461202	6554398	310	-90	0	6	Ablett	E 70/5379
23WAC0133	461039	6554392	310	-90	0	16	Ablett	E 70/5379
23WAC0134	460881	6554394	313	-90	0	13	Ablett	E 70/5379
23WAC0135	460720	6554395	314	-90	0	3	Ablett	E 70/5379
23WAC0136	460572	6554377	309	-90	0	23	Ablett	E 70/5379
23WAC0137	460395	6554390	306	-90	0	17	Ablett	E 70/5379
23WAC0138	460240	6554397	301	-90	0	26	Ablett	E 70/5379
23WAC0139	461685	6554196	301	-90	0	16	Ablett	E 70/5379
23WAC0140	461523	6554198	306	-90	0	13	Ablett	E 70/5379
23WAC0141	461361	6554197	308	-90	0	14	Ablett	E 70/5379
23WAC0142	461205	6554197	307	-90	0	22	Ablett	E 70/5379
23WAC0143	461040	6554200	312	-90	0	12	Ablett	E 70/5379
23WAC0144	457603	6555775	307	-90	0	33	Ablett	E 70/5379
23WAC0145	457644	6555770	312	-90	0	27	Ablett	E 70/5379

HOLE ID	Easting	Northing	RL	Dip	Azimuth	End Depth	Location	Tenement
23WAC0146	457606	6555817	311	-90	0	21	Ablett	E 70/5379
23WAC0147	463964	6546397	265	-60	270	31	Phils Hill	E 70/5379
23WAC0148	464040	6546400	269	-60	270	28	Phils Hill	E 70/5379
23WAC0149	464118	6546400	265	-60	270	22	Phils Hill	E 70/5379
23WAC0150	464203	6546401	251	-60	270	7	Phils Hill	E 70/5379
23WAC0151	464283	6546401	275	-60	270	31	Phils Hill	E 70/5379
23WAC0152	463955	6546080	262	-60	270	8	Phils Hill	E 70/5379
23WAC0153	464037	6546078	268	-60	270	8	Phils Hill	E 70/5379
23WAC0154	464120	6546081	185	-60	270	27	Phils Hill	E 70/5379
23WAC0155	464189	6546078	280	-60	270	3	Phils Hill	E 70/5379
23WAC0156	464282	6546082	272	-60	270	10	Phils Hill	E 70/5379
23WAC0157	464364	6546082	293	-60	270	6	Phils Hill	E 70/5379
23WAC0158	464445	6546084	291	-60	270	4	Phils Hill	E 70/5379
23WAC0159	464039	6545764	264	-60	270	20	Phils Hill	E 70/5379
23WAC0160	464121	6545762	266	-60	270	16	Phils Hill	E 70/5379
23WAC0161	464201	6545757	276	-60	270	22	Phils Hill	E 70/5379
23WAC0162	464283	6545759	270	-60	270	3	Phils Hill	E 70/5379
23WAC0163	464355	6545761	263	-60	270	2	Phils Hill	E 70/5379
23WAC0164	464438	6545761	264	-60	270	6	Phils Hill	E 70/5379
23WAC0165	464517	6545764	241	-60	270	4	Phils Hill	E 70/5379
23WAC0166	464612	6545761	257	-60	270	7	Phils Hill	E 70/5379
23WAC0167	463960	6545438	263	-60	270	30	Phils Hill	E 70/5379
23WAC0168	464038	6545441	237	-60	270	47	Phils Hill	E 70/5379
23WAC0169	464121	6545443	238	-60	270	9	Phils Hill	E 70/5379
23WAC0170	464200	6545443	254	-60	270	3	Phils Hill	E 70/5379
23WAC0171	464272	6545443	253	-60	270	14	Phils Hill	E 70/5379
23WAC0172	464360	6545447	261	-60	270	22	Phils Hill	E 70/5379
23WAC0173	464441	6545449	256	-60	270	9	Phils Hill	E 70/5379
23WAC0174	463921	6545119	241	-60	270	20	Phils Hill	E 70/5379
23WAC0175	464038	6545117	243	-60	270	22	Phils Hill	E 70/5379
23WAC0176	464121	6545122	243	-60	270	19	Phils Hill	E 70/5379
23WAC0177	464194	6545122	246	-60	270	25	Phils Hill	E 70/5379
23WAC0178	463916	6544885	238	-60	270	9	Phils Hill	E 70/5379
23WAC0179	464040	6544883	150	-60	270	6	Phils Hill	E 70/5379
23WAC0180	464123	6544883	240	-60	270	12	Phils Hill	E 70/5379
23WAC0181	464199	6544881	246	-60	270	18	Phils Hill	E 70/5379
23WAC0182	464279	6544876	251	-60	270	24	Phils Hill	E 70/5379
23WAC0183	464380	6544884	256	-60	270	44	Phils Hill	E 70/5379
23WAC0184	464441	6544886	268	-60	270	19	Phils Hill	E 70/5379
23WAC0185	464525	6544883	263	-60	270	49	Phils Hill	E 70/5379
23WAC0186	464596	6544879	265	-60	270	43	Phils Hill	E 70/5379
23WAC0187	464439	6545116	267	-60	270	46	Phils Hill	E 70/5379
23WAC0188	464516	6545118	251	-60	270	54	Phils Hill	E 70/5379
23WAC0189	464598	6545119	255	-60	270	24	Phils Hill	E 70/5379

HOLE ID	Easting	Northing	RL	Dip	Azimuth	End Depth	Location	Tenement
23WAC0190	464627	6548428	261	-90	0	34	Regional	E 70/5379
23WAC0191	464480	6548327	268	-90	0	41	Regional	E 70/5379
23WAC0192	464237	6548971	269	-90	0	45	Regional	E 70/5379
23WAC0193	464082	6548971	275	-90	0	35	Regional	E 70/5379
23WAC0194	463918	6548969	247	-90	0	36	Regional	E 70/5379
23WAC0195	463999	6549997	265	-90	0	29	Regional	E 70/5379
23WAC0196	463804	6549596	272	-90	0	40	Regional	E 70/5379
23WAC0197	463027	6548798	257	-90	0	10	Regional	E 70/5379
23WAC0198	463402	6548801	254	-90	0	21	Regional	E 70/5379
23WAC0199	463600	6549199	270	-90	0	33	Regional	E 70/5379
23WAC0200	463407	6549602	272	-90	0	17	Regional	E 70/5379
23WAC0201	463200	6549198	254	-90	0	8	Regional	E 70/5379
23WAC0202	462773	6549221	257	-90	0	13	Regional	E 70/5379
23WAC0203	462601	6548803	255	-90	0	25	Regional	E 70/5379
23WAC0204	457563	6555821	304	-60	270	21	Ablett	E 70/5379
23WAC0205	457425	6555646	304	-60	270	19	Ablett	E 70/5379
23WAC0206	457465	6555643	305	-60	270	35	Ablett	E 70/5379
23WAC0207	457367	6555603	220	-60	270	29	Ablett	E 70/5379
23WAC0208	457402	6555603	308	-60	270	13	Ablett	E 70/5379
23WAC0209	457444	6555603	292	-60	270	35	Ablett	E 70/5379
23WAC0210	457485	6555603	293	-60	270	45	Ablett	E 70/5379
23WAC0211	457467	6555563	300	-60	270	35	Ablett	E 70/5379
23WAC0212	457503	6555564	291	-60	270	45	Ablett	E 70/5379
23WAC0213	457382	6555518	290	-60	270	30	Ablett	E 70/5379
23WAC0214	457423	6555521	298	-60	270	44	Ablett	E 70/5379
23WAC0215	457461	6555520	297	-60	270	33	Ablett	E 70/5379
23WAC0216	457506	6555519	299	-60	270	51	Ablett	E 70/5379
23WAC0217	457461	6555477	275	-60	270	43	Ablett	E 70/5379
23WAC0218	457503	6555483	298	-60	270	56	Ablett	E 70/5379
23WAC0219	457475	6555443	308	-60	270	38	Ablett	E 70/5379
23WAC0220	457516	6555444	250	-60	270	56	Ablett	E 70/5379
23WAC0221	457537	6555444	298	-60	270	52	Ablett	E 70/5379
23WAC0222	457574	6555443	309	-60	270	60	Ablett	E 70/5379
23WAC0222	457574	6555443	309	-60	270	60	Ablett	E 70/5379
23WAC0223	457504	6555400	307	-60	270	42	Ablett	E 70/5379
23WAC0224	457545	6555401	310	-60	270	37	Ablett	E 70/5379
23WAC0225	460049	6553935	293	-90	0	12	Regional	E 70/5379
23WAC0226	459800	6553601	291	-90	0	3	Regional	E 70/5379
23WAC0227	459360	6553698	278	-90	0	4	Regional	E 70/5375
23WAC0227	459000	6553683	279	-90	0	6	Regional	E 70/5379
23WAC0228	458599	6553599	279	-90	0	7	Regional	E 70/5379
23WAC0229 23WAC0230	458599	6551598	282	-90	0	25	Regional	
23WAC0231	461605	6551200	267	-90	0	36		E 70/5379
23WAC0232	461267	6551206	265	-90	0	19	Kegional	E 70/5379

HOLE ID	Easting	Northing	RL	Dip	Azimuth	End Depth	Location	Tenement
23WAC0233	461395	6550802	258	-90	0	6	Regional	E 70/5379
23WAC0234	461000	6550800	244	-90	0	10	Regional	E 70/5379
23WAC0235	461418	6551579	261	-90	0	7	Regional	E 70/5379
23WAC0236	462007	6552002	278	-90	0	16	Regional	E 70/5379
23WAC0237	461804	6552395	274	-90	0	9	Regional	E 70/5379
23WAC0238	461480	6551991	264	-90	0	3	Regional	E 70/5379

JORC TABLE

1. JORC Code, 2012 Edition – Table 1 report template

1.1 Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Samples were collected into plastic bags in 1 metre intervals. 4m composite samples were collected by PVC spear, although shorter intervals were often taken based on geological boundaries Spearing was undertaken by experienced personnel in a consistent manner
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	
	• In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling was undertaken by a challenger 150 Air Core rig drilling 4 inch diameter holes to blade refusal Where drilling failed to adequately penetrate bedrock a face sampling AC hammer was then drilled until the supervising geologist was satisfied that drilling had penetrated the bedrock sufficiently

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery was recorded as part of routine logging Sample weights were recorded by the laboratory In general, no sample bias was noted. The level of bias, if any, is not known at this stage
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Qualitative logging of regolith, lithology, colour, weathering, and observation comments on all one metre intervals. All drilling was logged. Chips and clays from each metre of each drillhole were retained in chip trays for reference
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were collected from the rig in plastic bags on a metre basis 4m composite samples were collected by PVC spear, although shorter intervals were often taken based on geological boundaries Spearing was undertaken by experienced personnel in a consistent manner Standards (lab reference material), blanks and field duplicates were taken at approximately 1:25 ratio Sample size is appropriate for expected grain sizes

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were submitted to ALS Perth WA. Gold, Platnium and Paladium were determined by fire assay and ICP-MS finish and is considered to be total Samples for Multiement analysis was submitted to ALS Perth WA. Samples were assayed for 48 elements plus 12 additional Rare Earth Elements. Results are considered near total for the 48 elements but Rare Earth Elements should be considered partial as ALS advised "depending on the minerals hosting the REEs the digestion may not be complete which will provide only the REEs hosted in the labile minerals and adsorbed to mineral surfaces". Standards blanks and field duplicates were inserted by the Company at the rate of 4 per 100 samples, additionally ALS carried out duplicates from crushed samples and used internal standards. Samples have acceptable levels of accuracy and precision is established QAQC results were examined from automatic database outputs and found to be fit for purpose. Resultant data was reviewed by Pursuit Staff and any issues were referred back to the lab for validation and/or re-assay
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Location data was collected by hand held GPS and entered into excel spreadsheets before being transferred to the master database. No assay data has been adjusted Significant intersections were prepared by consultant database managers and checked by the Competent Person No twinning of holes was undertaken Intercepts are reported as a weighted average of assay for intervals
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All hole locations are recorded using a handheld GPS with a +/- 3m margin of error The grid system used for the location of all sample sites is GDA94 - MGA (Zone 50) Relative Levels of collar locations have been determined using SRTM data (Shuttle Radar Topography Mission) which is fit for purpose
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	 Drilling was preliminary and wide spaced in nature targeting Au+pathfinders and Ni-Cu anomalism in the regolith Drilling was planned at 80m x 40m or as single line traverses at 80 m centres Drill spacing is not sufficient for Resource or Reserve estimation

Criteria	JORC Code explanation	Commentary
	estimation procedure(s) and classifications applied.Whether sample compositing has been applied.	Sampling compositing /aggregation has been applied as noted above
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 23WAC0059 to 23WAC0082 were drilled towoard 090 at -60 dip 23WAC0083 to 23WAC0146 were drilled vertically 23WAC0147 to 23WAC0189 were drilled towoard 270 at -60 dip 23WAC0190 to 23WAC0203 were drilled vertically 23WAC0204 to 23WAC0224 were drilled towoard 270 at -60 dip 23WAC0225 to 23WAC0238 were drilled vertically No material sampling bias is anticipated to be derived from drill orientation
Sample security	The measures taken to ensure sample security.	 Samples were collected into labelled calico bags before being taken to ALS by Pursuit Personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Assay data has been reviewed by a consulting geochemist and found to be adequate.

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Sampling was carried out on tenement E 70/5379 and tenement E 70/5392 All tenements are in good standing
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 June, 1997, Kevron completed a MAG/RAD/DEM survey for Stockdale Prospecting Ltd. The survey was acquired with line spacing of 250 m, line orientation of 000/180° and a mean terrain clearance of 60 m. (MAGIX ID - 1164) June 2003, UTS Geophysics completed a MAG/RAD/DEM survey for Geoscience Australia. The survey was acquired with line spacing of 400 m, line orientation of 000/180° and a mean terrain clearance of 60 m. November, 2010, Fugro Airborne Surveys completed a MAG/RAD/DEM survey for Brendon Bradley. The survey was acquired with line spacing of 50 m, line orientation of 090/270° and a mean terrain clearance of 35 m. (MAGIX ID - 3288) Dominion Mining Limited undertook auger sampling on the project in 2010. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a86032 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme Kingsgate Consolidated Limited undertook aircore drilling within the area of Calingiri East Tenement Application in 2011. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a89716 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme= Poseidon N.L. undertook auger soil sampling and rock chip sampling within the area of Bindi Bindi Tenement Application in 1968. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a7292 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme Washington Resources Limited undertook rock chip sampling within the area of Bindi Bindi Tenement Application in 2008. The results of this work are summarised in the ASX announcement. Further details can be obtained by accessing WAMEX Report a82005 at: https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoVIEW&layerTheme Magnetic Resources Limited undertook aircore and RC drill

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	• The western margin of the Archean Yilgarn Craton is highly prospective for Platinum Group Elements ("PGE") and Nickel (Ni) – Copper (Cu) mineralisation associated with intrusive mafic to ultramafic rocks. The discovery of PGE-Ni-Cu mineralisation at the Julimar Project held by Chalice Gold Mines Limited (see Chalice Gold Mines ASX Announcement 23 March 2020), is the first significant PGE-Ni-Cu discovery in the region which previously only had early-stage indications of mineralisation (Yarawindah, Bindi-Bindi). Increasingly it is becoming apparent that prospective ultramafic-mafic intrusions are far more widespread than previously thought throughout the western margin of the Yilgarn Craton. The project area is located within the >3Ga age Western Gneiss Terrane of the Archean Yilgarn Block, which comprises a strongly deformed belt of gneisses, schists, quartzites, Banded Iron Formation, intruded by mafic to ultramafic rocks. The terrane is up to 70km wide, and possibly wider, and is bounded to the west of the Darling Fault and younger Archean rocks to the east. The general geological strike in northwest. The bedrock Archean metasedimentary gneisses, migmatites and intrusive mafic and ultramafic rocks occur in structurally complex settings. Dolerite dykes of Proterozoic age are widespread. Outcrops are rare and the basement geology is largely obscured by lateritic ironstones and deep saprolitic weathering.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	See Table 2 in the text of the announcement
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	o hole length.	
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent 	

Criteria	JORC Code explanation	Commentary
	Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	 No Top cuts have been applied to the data All significant intercepts have been reported Commercial software has been used to determine weighted averages (by length)
	Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	 Significant intercepts for gold has been reported for results over 0.1 g/t Au over 4m in thickness with up to 4m internal dilution Significant intercepts for Ni-Cu results has been reported for results of over 500ppm for BOTH Copper and Nickel in the same interval over 4m in thickness with up to 4m internal dilution
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between	 These relationships are particularly important in the reporting of Exploration Results. 	Only down hole widths are reported, true width is not known at this time
mineralisation widths and	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results are reported
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test	All relevant and material data and results are reported

Criteria	JORC Code explanation	Commentary
	results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	May include Further geophysical work to better target anomalism Further drilling