

ASX Announcement

Date: 22nd June 2023

RAS HIGH GRADE ZONES EXPAND WITH NEW DRILLING RESULTS

- Latest assays from 3 drill holes from the Rise and Shine (RAS) deposit continue to return strong results including:

 MDD117R
 15.6m @ 7.6 g/t Au from 262.4m
 MDD120
 5.3m @ 2.0 g/t Au from 145.7m
 17.0m @ 4.2 g/t Au from 177.0m
 15.0m @ 1.4 g/t Au from 198.0m
 4.0m @ 3.8 g/t Au from 214.0m

 MDD140
 6.0m @ 5.5 g/t Au from 207.0m

 The 3 holes are 630m apart along the NNE central core of the RAS deposit and reinforce the consistency of the high-grade zones.
 - Four diamond drill rigs continue infill drilling at RAS to convert inferred resources to indicated.

21 June 2023 Santana Minerals Limited (ASX: SMI) ("Santana" or "the Company") is pleased to announce further results from the 100% owned Bendigo-Ophir Project ("the Project").

Upon reviewing these results, General Manager NZ, Damian Spring said:

" MDD120 has expanded the high-grade zone to the west in the southern part of the RAS deposit, whilst MDD117R has combined with an earlier result from MDD031 to establish a new high-grade contour towards the north. These are exciting results that underscore the work currently underway for the Scoping Study".

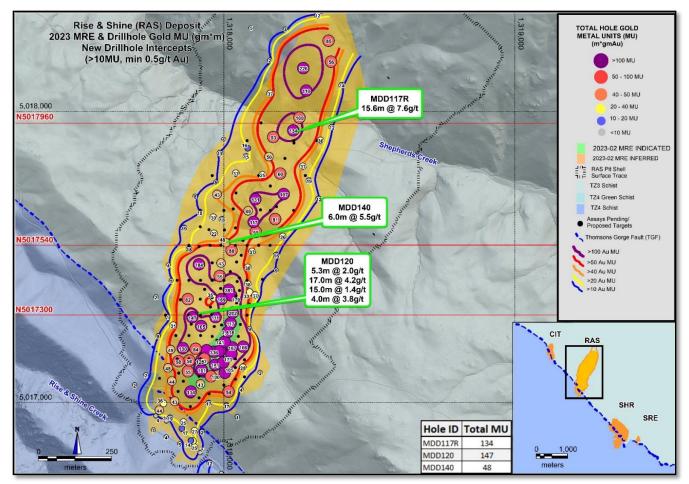


Figure 1 RAS Infill Drilling Latest Results reported on a continuous basis and location of sections in Figures 4, 5, and 6. **Santana Minerals Ltd** | ASX Announcement

The Project area contains **2.9Moz of gold** in the new February 2023 mineral resource estimate (MRE) in four Rise and Shine Shear Zone (RSSZ) deposits as shown in Figure 8 (ASX announcement on 2 Feb 2023), which remain open down-plunge at depth. The MRE includes a maiden indicated resource of **0.3Moz at 4.3g/t Au of gold** (with top-cut and 0.5g/t Au lower cut-off) at the RAS deposit. Drilling is continuing to expand resource potential with 19,647 metres drilled since the completion of the Feb 2023 MRE.

Latest Drill Assay Results from RAS

Assays have been received for three RAS drillholes (Figure 1 and Appendices 1 to 3) from infill drilling at RAS. The holes lie within the Inferred Resource envelope outside the current Indicated Resource (Feb 2023 MRE). Significant intercepts at a cut-off grade of 0.5 g/t and a top cut of 100 g/t Au are reported in Appendix 1. The most significant of these containing >10 m.g/t Au (length x grade or MU) are summarised below:

- Section N5017300 (see Figure 4)
 - MDD120 Mineralisation was intersected over 113 m from 145.7m including:
 - 5.3m @ 2.0 g/t from 145.7m
 - 17.0m @ 4.2 g/t from 177m (including 1m @ 10.2 g/t at 177m and 1m @ 18.2 g/t at 182m, see Figure 2)
 - 15.0m at 1.4 g/t from 198m
 - 4.0 m @ 3.8 g/t from 214m
 - The average grade over the 41 metres from 177m to 218m was 2.6 g/t Au (refer Appendix 3).
- Section N5017540 (see Figure 5)
 - MDD140 Mineralisation was intersected over 27m from 207m including:
 - 6m @ 5.5 g/t from 207m (including 1m @ 28.4g/t from 209m).
- Section N5017960 (see Figure 6)
 - MDD117R Mineralisation was intersected over 37.6m from 262.4m including:
 - 15.6m @ 7.6 g/t from 262.4m (including 1m @ 24.5g/t at 264m, 1m @ 11.6g/t at 265m and 1m @ 65.6 g/t at 277m, see Figure 3).

These assay results have expanded the 100-MU contour to the west around MDD120 (147MU) and has created a new 100-MU contour further north around MDD117R extending to MDD031 (100MU) intercept (Figure 1).

Figure 2 Photographs of drill core from MDD120 showing the 1m @ 10.2g/t at 177m and 1m @ 18.2g/t at 182m.

Figure 3 Photographs of drill core from MDD117R showing the 1m @ 24.5g/t at 264m, 1m @ 11.6g/t at 265m, and 1m @ 65.6g/t at 273m.

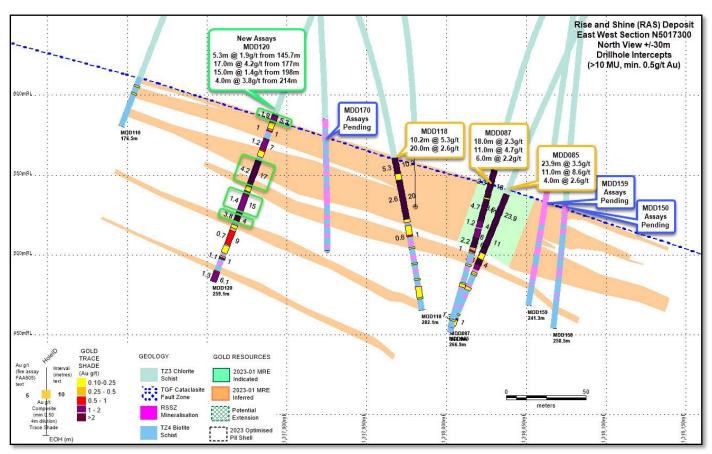


Figure 4 Section N5017300 showing the trace of MDD120 consistent with previously reported high-grade intercepts however with MDD120 mineralisation extending deeper to the end of hole.

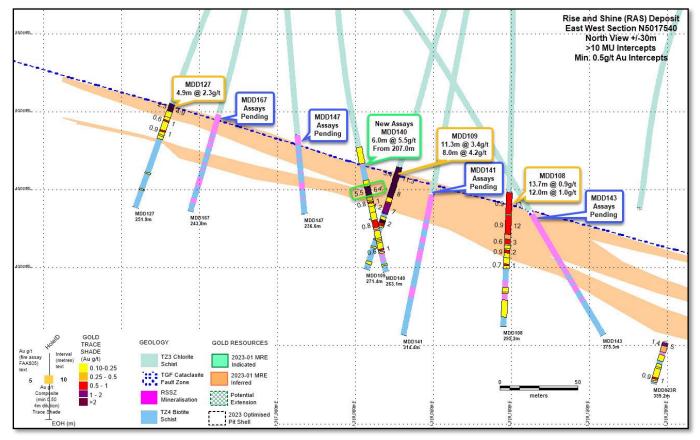


Figure 5 Section N5017540 showing the new assay result for MDD140 against previously reported drillholes and the Feb 2023. resource classification domains.

Santana Minerals Ltd | ASX Announcement

SANTANA

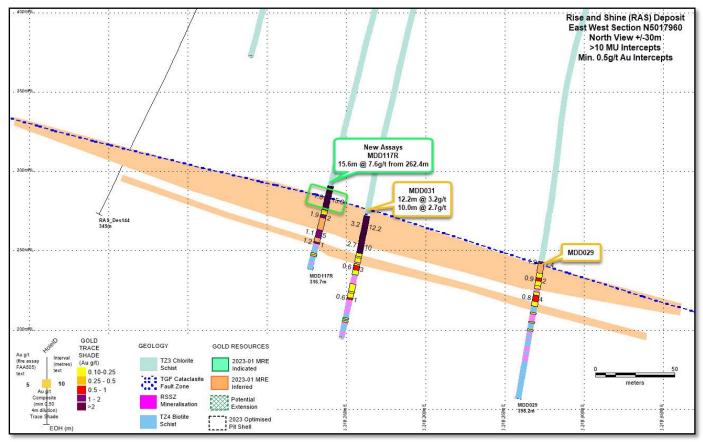


Figure 6 Section N5017960 showing latest results from MDD117R, confirming the high grade extends northwards.

Key Conclusions & Forward Programme

The potential to increase the RAS high-grade zones is shown from these results. An update to the RAS MRE is expected to commence in the coming weeks as samples are prioritized for analysis. This includes sending samples to SGS Townsville to help clear the backlog at the NZ laboratories.

Infill drilling at RAS is focussed on the southern areas at RAS Ridge and RAS Valley to ensure a sizeable conversion of inferred resources to indicated resources in the upcoming MRE update.

RC infill drilling continues at CIT.

The final stage of the Phase 5 metallurgical testing is underway with mineralogy analysis of gravity concentrates to identify the residual free gold component.

An initial review of the available data has been completed as part of the Scoping Study. Further work will commence once the updated MRE is completed.

This announcement has been authorised for release to the ASX by the Board. For further information, please contact:

Damian Spring General Manager New Zealand +64 21 333 943 dspring@santanaminerals.com Cameron Peacock Investor Relations & Business Development +61 439 908 732 cpeacock@santanaminerals.com

About Santana Minerals Limited Bendigo-Ophir Project

The Bendigo-Ophir Project is located on the South Island of New Zealand within the Central Otago Goldfields. The 292km² project area comprises Minerals Exploration Permit (MEP) 60311 (252km²) issued to 100% owned subsidiary Matakanui Gold Ltd (MGL) and Minerals Prospecting Permit Application (MPPA) 60882 (40km²) made by MGL. The Project is located ~90 kilometres northwest of OceanaGold Ltd (OGC) Macraes Gold Mine (Figure 7).

Figure 7 - Bendigo-Ophir Project in the Otago Goldfield, ~90km NW of Macraes

The Company embarked on diamond drilling (DD) and reverse circulation (RC) drilling programmes in November 2020 with the immediate objective to fast-track an increase to the existing Resources by drill testing the down plunge extensions of known mineralisation.

The Company's vision is to develop the Bendigo-Ophir project into a world class, long life, environmentally sustainable mining project that will bring generational employment and prosperity to the Bendigo Region **Santana Minerals Ltd** | ASX Announcement

The Project contains a new Mineral Resource Estimate (MRE) to 0.5 g/t Au lower cut-offs with top-cut, as at Feb 2023 as follows:

Deposit	Category	tonnes (Mt)	Au grade (g/t)	Contained Gold (koz)
DAC	Inferred	31.5	2.4	2,383
RAS	Indicated	2.0	4.3	279
RAS Total	Indicated and Inferred	33.5	2.5	2,662
CIT	Inferred	1.2	1.5	59
SHR	Inferred	4.7	1.1	174
SRE	Inferred	0.3	1.3	11
DCC7 Tetal	Inferred	37.7	2.2	2,628
RSSZ Total	Indicated	2.0	4.3	279
RSSZ Total	Indicated and Inferred	39.7	2.3	2,909

These estimates are based on drill results to Jan 2022 and reported in Feb 2023 which the Company interprets has the potential to be further expanded and developed into a low cost per ounce gravity-leach operation, with ore from bulk tonnage open pits or underground sources.

The Bendigo-Ophir Resources occur in 4 deposits (Figure 8) that are inferred to extend in a northerly direction within the RSSZ which hosts gold mineralisation over a recognised strike length of >20km.

The RSSZ occurs at the contact with TZ3 and TZ4 schist units separated by a regional fault (Thomsons GorgeFault-TGF) and dips at a low angle (25°) to the north-east. The RSSZ is currently interpreted to have upper shear-hosted gold mineralisation (HWS) 10-40 metres in width above quartz vein and stockwork related gold mineralisation extending >120 metres below the HWS.

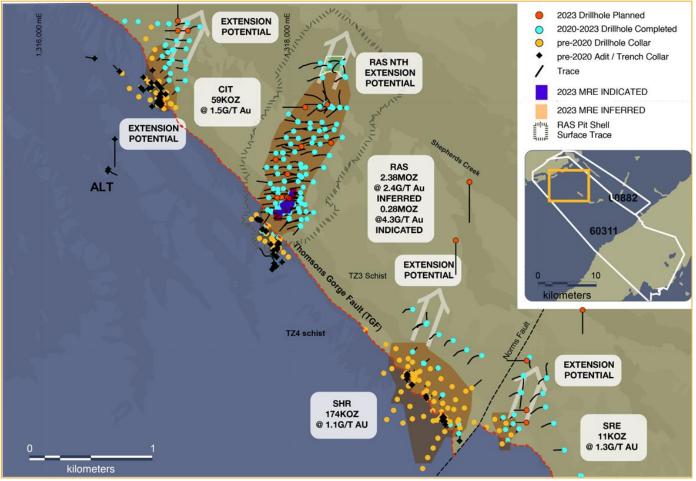


Figure 8 - North Dunstan Range Deposits - February 2023 Resources

Previous Disclosure - 2012 JORC Code

Information relating to Mineral Resources, Exploration Targets and Exploration Data associated with the Company's projects in this announcement is extracted from the following ASX Announcements:

- ASX announcement titled "RAS continues to deliver strong gold grades" dated 2 November 2022
- ASX announcement titled "RAS Glows with more high gold grades over wide intervals" dated 29 November 2022
- ASX announcement titled "RAS Resource Upgrade One Million Ounces Added at Higher Gold Grades" dated 2 February 2023
- ASX announcement titled "More High Gold Grades from RAS Infill Drilling" dated 4 April 2023
- ASX announcement titled "New Gold Assays and Metallurgical Results from RAS" dated 24 April 2023
- ASX announcement titled "New Infill Drilling Gold Assay Results from RAS" dated 3 May 2023
- ASX announcement titled "High Grade Intercept from Infill Drilling South of RAS Ridge" dated 3 June 2023

A copy of such announcement is available to view on the Santana Minerals Limited website <u>www.santanaminerals.com</u>. The reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Companyconfirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the CompetentPerson's findings are presented have not been materially modified from the original market announcements.

Current Disclosure - Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Richard Keevers and Mr Kim Bunting who are Fellows of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Keevers is an Executive Director and Mr Bunting a Director and Bendigo-Ophir Project Manager who have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which thay are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Keevers, Mr Bunting and Mr Batt consent to the inclusion in this report of the matters based on their information in the form and context in which it appears. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Forward Looking Statements

Forward-looking statements in this announcement include, but are not limited to, statements with respect to Santana's plans, strategy, activities, events or developments the Company believes, expects or anticipates will or may occur. By their very nature, forward-looking statements require Santana to make assumptions that maynot materialize or that may not be accurate. Although Santana believes that the expectations reflected in the forward-looking statements in this announcement are reasonable, no assurance can be given that these expectations will prove to have been correct, as actual results and future events could differ materially from those anticipated in the forward-looking statements. Accordingly, viewers are cautioned not to place undue reliance on forward-looking statements. Santana does not undertake to update publicly or to revise any of the included forward-looking statements, except as may be required under applicable securities laws.

Appendix 1- RAS Drillholes – New Mineralised Intercepts (top-cut to 100 g/t and at a 0.5 g/t lower cut-off grade)

Deposit	Drillhole	From (m)	Drill Intercept (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
		262.4	15.6	7.62	118.9
	MDD117R	281.0	2.0	1.94	3.9
	WIDD117K	291.0	5.0	1.12	5.6
		299.0	1.0	1.15	1.2
		145.7	5.3	1.95	10.3
		157.0	1.0	0.99	1.0
		163.0	7.0	1.15	8.1
RAS		177.0	17.0	4.21	71.7
KAS	MDD120	198.0	15.0	1.38	20.7
		214.0	4.0	3.84	15.4
		225.0	9.0	0.68	6.2
		243.0	1.0	1.12	1.1
		253.0	6.1	1.31	8.0
		207.0	6.0	5.51	33.1
	MDD140	217.0	1.0	0.79	0.8
		229.0	5.0	0.81	4.0

Appendix 2- New Drillholes Reported

Deposit	Hole No	East NZTM	North NZTM	RL	Azimuth (T Avg)	Dip (Avg)	Length	Method	Status	Results
RAS	MDD117R	1,318,322.8	5,017,966.0	535.4	252.2	-69	316.7	DD	Completed	Reported
RAS	MDD120	1,317,950.1	5,017,306.3	721.7	256.4	-66	259.1	DD	Completed	Reported
RAS	MDD140	1,317,985.7	5,017,542.4	657.3	71.2	-83	263.1	DD	Completed	Reported

Appendix 3 - RAS Assay Results

ID From (m) To (m) (m) (FAX502) (pXRF) Unit Gold ID From (m) To (m) (m) (FAX502) MDD117R MG29273 260 261 1.0 -0.01 TZ3 MD MDD120 MG21990 143 144 1.0 MC MD MD MG29274 261.0 261.9 0.9 -0.01 TZ3 A MDD120 MG21991 144.0 145.5 145.7 0.0 A MD MD MG29277 263.2 266.4 0.0 0.78 RS52 C MDD120 MG21993 144.5 144.7 148 0.0 C MD MD MD MG21997 265.4 266.5 1.0 0.78 RS52 C MDD120 MG21993 148 149 0.0 C MD MD<	(pXRF) (pXRF)	Unit TZ3 TGF RSSZ RSSZ RSSZ RSSZ RSSZ RSSZ TZ4 RSSZ	Gold
MDD117R MG29274 2610 2619 0.0 -0.01 TZ3 MDD1 MDD120 MG2191 14.40 14.55 1.5 MDD117R MG29275 261.9 262.4 0.6 -0.01 TGF MD1 MD120 MG2192 14.55 145.7 0.02 MDD117R MG29276 262.4 263.0 0.6 1.07 RS52 0.0 MD1010 MG2193 145.7 147.0 1.3 MDD117R MG29277 263 264 1.0 0.78 RS52 0.0 MD1010 MG2193 145.7 147.0 1.3 MDD117R MG29277 263 266 1.0 0.16.0 RS52 0.0 MD1010 MG2193 1.48 149 0.0 MDD117R MG29280 266 2.00 0.16.0 RS52 0.0 MD1100 MG2193 1.48 149 0.0 MDD117R MG29280 2.66 1.0 3.18 RS52 0.0 MD10	0.00	TZ3 TGF RSSZ RSSZ RSSZ RSSZ RSSZ RSSZ TZ4	
MDD117R MG29275 2.61.9 2.62.4 0.6 -0.01 TGF MD MDD120 MG2192 1.45.5 1.45.7 0.02 MDD117R MG29276 2.62.4 2.63.0 0.6 1.07 RSS2 1 MD120 MG2192 1.45.5 1.45.7 0.13 MDD117R MG29277 2.63 2.64 1.0 0.7.8 RSS2 1 MD120 MG2192 1.45.7 1.47.0 1.13 MDD117R MG29277 2.63 2.66 1.0 1.16.0 RSS2 1 MD120 MG2192 1.48 1.49 1.0 MDD117R MG29280 2.66 2.66 1.0 1.16.0 RSS2 1 MD120 MG2199 1.48 1.49 1.0 MD117R MG29280 2.66 2.67 1.0 2.79 RSS2 1 MD120 MG2199 1.51 1.0 1.0 MD117R MG29281 2.67 1.0 3.25 RSS2 1 <td>0.08 5.57 5.57 5.15 5.15 5.33 5.33 5.38 5.38 5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39</td> <td>TGF RSSZ RSSZ RSSZ RSSZ RSSZ RSSZ TZ4</td> <td></td>	0.08 5.57 5.57 5.15 5.15 5.33 5.33 5.38 5.38 5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	TGF RSSZ RSSZ RSSZ RSSZ RSSZ RSSZ TZ4	
MDD117R MG29276 262.4 263.0 0.6 1.07 RSSZ MDD120 MG21993 1.45.7 1.47.0 1.13 MDD117R MG29277 263 264 1.0 0.78 RSSZ 1 MDD120 MG21993 1.45.7 1.47.0 1.13 MDD117R MG29277 263 266 1.0 24.50 RSSZ 1 MDD120 MG21993 1.45.7 1.47.0 1.13 MDD117R MG29279 265 2.66 1.0 1.16.0 RSSZ 1 MDD120 MG21993 1.48 1.49 1.0 1.0 MDD117R MG29280 2.66 2.67 1.0 2.79 RSSZ 1.0 MDD120 MG21997 1.05 1.15 1.0 MDD117R MG29281 2.67 2.68 1.0 3.25 RSSZ 1.0 MDD120 MG21997 1.05 1.0 1.0 MDD117R MG29283 2.69 2.70 1.0 0.23	1.57 1.12 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.19 1.19 1.19 1.19 1.19 1.19	RSSZ RSSZ RSSZ RSSZ RSSZ RSSZ TZ4	
MDD117R MG29277 2.63 2.64 1.0 0.78 RSS2 0 MDD117R MG29278 2.64 2.65 1.0 0.78 RSS2 0 MDD120 MG21994 1.47 1.48 1.0 MDD117R MG29278 2.64 2.65 1.0 0.450 RSS2 0 MDD120 MG21995 1.48 1.49 0 0 MDD117R MG29279 2.65 2.66 1.0 0.11.60 RSS2 0 MDD120 MG21995 1.48 1.49 0.0 MDD117R MG29280 2.66 2.67 1.0 2.79 RSS2 0 MDD120 MG21997 1.50 1.51 0.0 MDD117R MG29281 2.67 2.68 1.0 3.18 RSS2 0 MDD120 MG21997 1.50 1.51 1.0 MDD117R MG29282 2.68 2.69 1.0 3.25 RSS2 0 MDD120 MG21999 1.52 1	0.15 0.12 0.39 0.37 0.38 0.38 0.38 0.39 0.09 0.00	RSSZ RSSZ RSSZ RSSZ RSSZ TZ4	
MDD117RMG292782.642.651.02.4.50RSS2IMDD120MG219951.481.491.0MDD117RMG292792.6552.661.01.1.60RSS2IMDD120MG219951.481.491.0MDD117RMG292802.662.671.02.79RSS2IMDD120MG21997I.50I.51I.51I.0MDD117RMG292812.672.681.03.18RSS2I.6MDD120MG21998I.51I.52I.51I.52I.6MDD117RMG292822.682.691.03.25RSS2C.MDD120MG21999I.51I.52I.63I.6MDD117RMG292832.692.701.00.63RSS2C.MDD120MG22001I.51I.51I.63I.6MDD117RMG292842.772.711.00.63RSS2C.MDD120MG22001I.51I.55I.6I.6MDD117RMG292852.712.721.00.22RSS2C.MDD120MG22001I.54I.55I.6I.6MDD117RMG292862.722.731.00.21RSS2PMDD120MG20201I.55I.56I.6I.6MDD117RMG292872.732.741.06.560RSS2PMDD120MG20204I.57I.58I.6MDD117RMG292872.732.741.06.560 </td <td>0.12 0.39 0.73 0.38 0.19 0.09</td> <td>RSSZ RSSZ RSSZ RSSZ TZ4</td> <td></td>	0.12 0.39 0.73 0.38 0.19 0.09	RSSZ RSSZ RSSZ RSSZ TZ4	
MDD117RMG292792.652.661.01.1.60RSS2IMDD120MG219961.491.501.0MDD117RMG292802.662.671.02.79RSS2IMDD120MG219971.501.511.0MDD117RMG292812.672.681.03.18RSS2IMDD120MG219981.511.521.0MDD117RMG292822.682.691.03.25RSS2CMDD120MG219991.521.531.0MDD117RMG292832.692.701.00.63RSS2CMDD120MG21091.511.521.0MDD117RMG292852.712.721.00.63RSS2CMDD120MG220011.541.551.0MDD117RMG292862.722.731.00.22RSS2CMDD120MG20021.551.561.0MDD117RMG292862.732.741.00.21RSS2PMDD120MG20031.551.561.0MDD117RMG292872.732.741.00.65RSS2PMDD120MG202041.571.581.0	3.39 3.73 9.38 1.19 0.09 0.02	RSSZ RSSZ RSSZ TZ4	
MDD117R MG29280 2.66 2.67 1.0 2.79 RSS2 MD MDD120 MG2197 1.50 1.51 1.0 MDD117R MG29281 2.67 2.68 1.0 3.18 RSS2 1.0 MDD120 MG21997 1.50 1.51 1.0 MDD117R MG29282 2.68 2.69 1.0 3.25 RSS2 1.0 MDD120 MG21999 1.52 1.53 1.0 MDD117R MG29283 2.69 2.70 1.0 1.33 RSS2 1.0 MDD120 MG21999 1.52 1.53 1.0 MDD117R MG29284 2.70 2.71 1.0 0.63 RSS2 1.0 MDD120 MG2200 1.53 1.51 1.0 MDD117R MG29285 2.71 2.72 1.0 0.22 RSS2 1.0 MD120 MG2020 1.55 1.0 1.0 MDD117R MG29286 2.72 2.73 0.0 RSS2 P	3.73 3.38 0.19 0.09 0.02	RSSZ RSSZ TZ4	
MDD117R MG29281 2.67 2.68 1.0 3.18 RSS2 Image: Constraint of the con	0.38 0.19 0.09	RSSZ TZ4	
MDD117R MG29282 2.68 2.69 1.0 3.25 RSS2 Image: Constraint of the con	0.19 0.09 0.02	TZ4	
MDD117R MG29283 2.69 2.70 1.0 1.33 RSS2 MDD120 MG22000 1.53 1.54 1.0 MDD117R MG29284 2.70 2.71 1.0 0.63 RSS2 C MDD120 MG22001 1.54 1.55 1.0 MDD117R MG29285 2.71 2.72 1.0 0.22 RSS2 C MDD120 MG22001 1.54 1.55 1.0 MDD117R MG29286 2.72 2.73 0.21 RSS2 C MDD120 MG22003 1.55 1.65 0.10 MDD117R MG29287 2.73 2.74 0.21 RSS2 P MDD120 MG22003 1.55 1.55 1.0 MDD117R MG29287 2.73 2.74 0.0 65.60 RSS2 P MDD120 MG2004 1.57 1.58 1.0	0.09 0.02		
MDD117R MG29284 270 271 1.0 0.63 RSS2 MDD1 MDD120 MG22001 1.54 1.55 1.0 MDD117R MG29285 271 272 1.0 0.22 RSS2 C MDD120 MG22002 1.55 1.65 1.0 MDD117R MG29286 272 273 1.0 0.21 RSS2 C MDD120 MG22002 1.55 1.65 1.0 MDD117R MG29287 273 2.74 1.0 65.60 RSS2 P MDD120 MG22004 1.57 1.58 1.0	0.02		
MDD117R MG29285 271 272 1.0 0.22 RSS2 MDD120 MG20202 155 156 1.0 MDD117R MG29285 272 273 1.0 0.21 RSS2 CM MDD120 MG2002 155 156 1.0 MDD117R MG29287 273 2.74 1.0 65.60 RSS2 P MDD120 MG2004 157 158 1.0		RSSZ	
MDD117R MG29286 272 273 1.0 0.21 RSS2 MDD120 MG22033 156 157 1.0 MDD117R MG29287 273 274 1.0 65.60 RSS2 P MDD120 MG22003 156 157 1.0		TZ4	
MDD117R MG29287 273 274 1.0 65.60 RSSZ P MDD120 MG22004 157 158 1.0	0.36	RSS7	
	0.99	RSSZ	Р
MDD11/h M022207 2/4 2/7 1.0 2.41 N32 M022200 130 137 1.0	0.09	RSSZ	,
MDD117R MG29290 275 276 1.0 0.21 TZ4 MDD120 MG22007 159 160 1.0		TZ4	
MDD117R MG29290 275 276 1.0 0.21 TZ4 MDD120 MG22007 159 160 1.0 MDD117R MG29291 276 277 1.0 0.56 RSSZ MDD120 MG22008 160 1.0	0.05	TZ4	
	0.02	TZ4	
MDD117R MG29292 277 278 1.0 0.99 RSS2 P MDD120 MG22009 161 162 1.0 MDD117R MG29294 278 279 1.0 0.19 TZ4 MDD120 MG22010 162 163 1.0	0.02	TZ4	
MDD117R MG29294 278 279 1.0 0.19 124 MDD120 MG22010 162 163 1.0 MDD117R MG29298 279 280 1.0 0.07 TZ4 MDD120 MG22011 163 164 1.0	5.93	RSSZ	
MDD117R MG29299 280 2.81 1.0 0.04 TZ4 MDD120 MG22011 103 104 1.0	0.58	RSSZ	
MDD117R MG2930 281 282 1.0 1.84 RSSZ MDD120 MG22015 1.04 1.05 1.05	0.17	TZ4	
MDD117R MG29300 281 262 1.0 1.84 NS2 MDD120 MG22010 100 1.00 MDD117R MG29301 282 283 1.0 2.04 RSSZ MDD120 MG22017 166 167 1.0	0.04	TZ4	
MDD117R MG2301 282 283 1.0 2.04 N32 MDD120 MG22017 100 107 1.0 MDD117R MG2302 283 2.84 1.0 0.35 RSSZ MDD120 MG22018 167 168 1.0	0.03	RSSZ	
MDD117R MG29302 283 284 1.0 0.07 RSSZ MDD120 MG22019 168 169 1.0).47	RSSZ	
MDD117R MG29303 285 285 1.0 0.07 N32 MDD120 MG22019 105 105 105 MDD117R MG29304 285 286 1.0 0.10 RSSZ MDD120 MG22019 105 105 1.0	0.86	RSSZ	
MDD11/R MG2305 286 287 1.0 0.44 RSSZ MDD120 MG22021 170 171 1.0	0.35	TZ4	
MDD11/R MG2305 268 269 1.0 0.04 MD21 MDD10 MD2222 170 171 1.0 MDD117R MG2306 287 288 1.0 0.30 RSSZ MDD120 MG22022 171 172 1.0).24	TZ4	
MDD11/R MG29307 288 289 1.0 0.30 RSSZ MDD120 MG22023 172 173 1.0	0.07	TZ4	
MDD117R MG29308 289 290 1.0 0.17 RSSZ MDD120 MG22024 173 174 1.0	0.01	TZ4	
MDD117R MG29309 290 291 1.0 0.27 RSSZ MDD120 MG22025 174 175 1.0	0.13	TZ4	
MDD117R MG29310 291 292 1.0 0.70 RSSZ MDD120 MG22026 175 176 1.0	0.01	TZ4	
MDD117R MG29311 292 293 1.0 2.23 RSSZ MDD120 MG22027 176 177 1.0	0.08	RSSZ	
	0.20	RSSZ	
MDD117R MG29313 294 295 1.0 0.10 TZ4 MDD120 MG22029 178 179 1.0	5.20	RSSZ	Р
MDD117R MG29314 295 296 1.0 2.49 RSS MDD120 MG22031 179 180 1.0	5.78	RSSZ	Р
MDD117R MG29315 296 297 1.0 0.15 RSZ MDD120 MG22033 180 181 1.0	0.02	TZ4	
MDD117R MG29316 297 298 1.0 0.31 RSZ MDD120 MG22034 181 182 1.0	8.37	TZ4	
MDD117R MG29317 298 299 1.0 0.12 R5SZ MDD120 MG22035 182 183 1.0	3.20	TZ4	
MDD117R MG29321 229 300 1.0 1.15 RSSZ MDD120 MG22036 183 184 1.0	0.21	RSSZ	
MDD117R MG29322 300 301 1.0 0.03 TZ4 MDD120 MG22037 184 185 1.0	2.74	RSSZ	
MDD117R MG29323 301 302 1.0 0.08 RSSZ MDD120 MG22041 185 186 1.0).79	TZ4	
MDD117R MG29324 302 303 1.0 0.04 TZ4 MDD120 MG22042 186 187 1.0).88	RSSZ	
MDD117R MG29325 303 304 1.0 0.04 TZ4 MDD120 MG22043 187 188 1.0	i.87	RSSZ	Р
MDD117R MG29326 304 305 1.0 0.04 TZ4 MDD120 MG22045 188 189 1.0	0.85	RSSZ	
MDD117R MG29327 305 306 1.0 0.01 TZ4 MDD120 MG22046 189 190 1.0	8.30	RSSZ	
MDD117R MG29328 306 307 1.0 0.16 TZ4 MDD120 MG22047 190 191 1.0	7.46	RSSZ	
MDD117R MG29329 307 308 1.0 0.29 RSSZ MDD120 MG22048 191 192 1.0	2.12	TZ4	i –
MDD117R MG29330 308 309 1.0 0.09 TZ4 MDD120 MG22049 192 193 1.0	0.23	RSSZ	i –
MDD117R MG29331 309 310 1.0 -0.01 TZ4 MDD120 MG22050 193 194 1.0	2.43	RSSZ	
MDD117R MG29332 310 311 1.0 -0.01 TZ4 MDD120 MG22051 194 195 1.0	0.45	RSSZ	
MDD117R MG29333 311 312 1.0 0.01 TZ4 MDD120 MG22052 195 196 1.0	0.02	TZ4	
MDD117R MG29334 312 313 1.0 0.05 RSSZ MDD120 MG22053 196 197 1.0	0.03	TZ4	
MDD117R MG29335 313 314 1.0 -0.01 TZ4 MDD120 MG22054 197 198 1.0	0.02	TZ4	
MDD117R MG29336 314 315 1.0 -0.01 TZ4 MDD120 MG22055 198 199 1.0	1.22	RSSZ	
MDD117R MG29337 315 316 1.0 0.14 TZ4 MDD120 MG22056 199 200 1.0	0.18	RSSZ	l –
MDD117R MG29338 316 317 0.7 0.02 TZ4 MDD120 MG22057 200 201 1.0	2.05	RSSZ	i –

etby <th< th=""><th>Hole ID</th><th>Sample</th><th>Depth</th><th>Depth</th><th>Interval</th><th>Au g/t</th><th>As ppm</th><th>Geol</th><th>Visible</th><th>Hole ID</th><th>Sample</th><th>Depth</th><th>Depth</th><th>Interval</th><th>Au g/t</th><th>As ppm</th><th>Geol</th><th>Visible</th></th<>	Hole ID	Sample	Depth	Depth	Interval	Au g/t	As ppm	Geol	Visible	Hole ID	Sample	Depth	Depth	Interval	Au g/t	As ppm	Geol	Visible
Norm Norm <t< th=""><th>indic ib</th><th>ID</th><th>From (m)</th><th>To (m)</th><th>(m)</th><th>(FAA505)</th><th>(pXRF)</th><th>Unit</th><th>Gold</th><th>noic ib</th><th>ID</th><th>From (m)</th><th>To (m)</th><th>(m)</th><th>(FAA505)</th><th>(pXRF)</th><th>Unit</th><th>Gold</th></t<>	indic ib	ID	From (m)	To (m)	(m)	(FAA505)	(pXRF)	Unit	Gold	noic ib	ID	From (m)	To (m)	(m)	(FAA505)	(pXRF)	Unit	Gold
borno birono birono<	MDD120	MG22058	201	202	1.0	1.49		RSSZ		MDD140	MG29703	178	179	1	0.02	4	TZ3	
1000 1000	MDD120	MG22059	202	203	1	0.08		RSSZ		MDD140	MG29704	179		1	0.02	5	TZ3	
num num </td <td>MDD120</td> <td>MG22060</td> <td>203</td> <td>204</td> <td>1</td> <td>1.17</td> <td></td> <td>RSSZ</td> <td></td> <td>MDD140</td> <td>MG29705</td> <td>180</td> <td>180.78</td> <td>0.78</td> <td>0.03</td> <td>247</td> <td>TZ3</td> <td> </td>	MDD120	MG22060	203	204	1	1.17		RSSZ		MDD140	MG29705	180	180.78	0.78	0.03	247	TZ3	
ucros <tr< td=""><td>MDD120</td><td>MG22061</td><td>204</td><td>205</td><td>1</td><td>0.82</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29706</td><td>180.78</td><td>181.3</td><td>0.52</td><td>0.07</td><td>159</td><td>TGF</td><td> </td></tr<>	MDD120	MG22061	204	205	1	0.82		TZ4		MDD140	MG29706	180.78	181.3	0.52	0.07	159	TGF	
Matrix	MDD120	MG22062	205	206	1	0.05		RSSZ		MDD140	MG29707	181.3	182	0.7	0.34	2,259	RSSZ	
Norme Sourde Sourde<	MDD120	MG22066	206	207	1	0.09		TZ4		MDD140	MG29708	182	183	1	0.12	1,023	RSSZ	
borno borno <t< td=""><td>MDD120</td><td>MG22067</td><td>207</td><td>208</td><td>1</td><td>0.89</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29709</td><td>183</td><td>184</td><td>1</td><td>0.49</td><td>3,866</td><td>RSSZ</td><td> </td></t<>	MDD120	MG22067	207	208	1	0.89		TZ4		MDD140	MG29709	183	184	1	0.49	3,866	RSSZ	
weber weber <	MDD120	MG22068	208	209	1	1.59		TZ4		MDD140	MG29710	184	185	1	0.11	1,362	RSSZ	
INCOM	-				1					MDD140				1		2,910		
MADDI MADII MADDI MADII MADIII MADIII MADIII	MDD120	MG22070	210	211	1	2.28		RSSZ		MDD140	MG29712	186	187	1	0.09	154	RSSZ	
webers webrs	MDD120	MG22071	211	212	1	2.44		RSSZ		MDD140	MG29713	187	188	1	0.30	1,589	RSSZ	
b b </td <td>MDD120</td> <td>MG22072</td> <td>212</td> <td>213</td> <td>1</td> <td>1.78</td> <td></td> <td>RSSZ</td> <td></td> <td>MDD140</td> <td>MG29714</td> <td>188</td> <td>189</td> <td>1</td> <td>0.45</td> <td>977</td> <td>RSSZ</td> <td> </td>	MDD120	MG22072	212	213	1	1.78		RSSZ		MDD140	MG29714	188	189	1	0.45	977	RSSZ	
bornow bornow </td <td>MDD120</td> <td>MG22073</td> <td>213</td> <td>214</td> <td>1</td> <td>0.05</td> <td></td> <td>TZ4</td> <td></td> <td>MDD140</td> <td>MG29715</td> <td>189</td> <td>190</td> <td>1</td> <td>0.14</td> <td>5,034</td> <td>RSSZ</td> <td> </td>	MDD120	MG22073	213	214	1	0.05		TZ4		MDD140	MG29715	189	190	1	0.14	5,034	RSSZ	
beach beach <	MDD120	MG22074	214	215	1	8.87		TZ4		MDD140	MG29716	190	191	1	0.35	2,569	RSSZ	
band band </td <td>MDD120</td> <td>MG22075</td> <td>215</td> <td>216</td> <td>1</td> <td>4.75</td> <td></td> <td>RSSZ</td> <td></td> <td>MDD140</td> <td>MG29717</td> <td>191</td> <td>192</td> <td>1</td> <td>0.43</td> <td>1,323</td> <td>RSSZ</td> <td></td>	MDD120	MG22075	215	216	1	4.75		RSSZ		MDD140	MG29717	191	192	1	0.43	1,323	RSSZ	
bandbox	-				1					MDD140				1				
MADD200 MADD200 Curral Curral <td>MDD120</td> <td>MG22077</td> <td></td> <td></td> <td>1</td> <td>1.22</td> <td></td> <td>RSSZ</td> <td></td> <td>MDD140</td> <td>MG29719</td> <td>193</td> <td></td> <td>1</td> <td></td> <td></td> <td>RSSZ</td> <td></td>	MDD120	MG22077			1	1.22		RSSZ		MDD140	MG29719	193		1			RSSZ	
NAME	MDD120	MG22078	218	219	1	0.21		TZ4		MDD140	MG29720	194	195	1	0.06	267	TZ4	
Index Index Index <	MDD120	MG22079	219	220	1	0.06		TZ4		MDD140	MG29721	195	196	1	0.05	203	TZ4	
NODLID MODILO MODILO <td>MDD120</td> <td>MG22080</td> <td>220</td> <td>221</td> <td>1</td> <td>0.04</td> <td></td> <td>TZ4</td> <td></td> <td>MDD140</td> <td>MG29722</td> <td>196</td> <td>197</td> <td>1</td> <td>0.05</td> <td>250</td> <td>TZ4</td> <td></td>	MDD120	MG22080	220	221	1	0.04		TZ4		MDD140	MG29722	196	197	1	0.05	250	TZ4	
NBD210 MB2280 Q229 Q22 Q23 Q23 Q23 Q24 Q24 Q24 Q25 Q26 Q26 <t< td=""><td>MDD120</td><td>MG22081</td><td>221</td><td>222</td><td>1</td><td>0.12</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29726</td><td>197</td><td>198</td><td>1</td><td>0.08</td><td>44</td><td>TZ4</td><td></td></t<>	MDD120	MG22081	221	222	1	0.12		TZ4		MDD140	MG29726	197	198	1	0.08	44	TZ4	
Noncol Machage	MDD120	MG22082	222	223	1	0.18		TZ4		MDD140	MG29727	198	199	1	0.02	32	TZ4	
Noncol Mach Matrix Mach Matrix Mach Mach </td <td>MDD120</td> <td>MG22083</td> <td>223</td> <td>224</td> <td>1</td> <td>0.28</td> <td></td> <td>TZ4</td> <td></td> <td>MDD140</td> <td>MG29728</td> <td>199</td> <td>200</td> <td>1</td> <td>0.03</td> <td>129</td> <td>TZ4</td> <td></td>	MDD120	MG22083	223	224	1	0.28		TZ4		MDD140	MG29728	199	200	1	0.03	129	TZ4	
M001201 M022080 Z22 Z22 L21 L10 M5S2 M00124 M02140 M22971 Z20 L01 M10 M21971 Z20 Z20 <thz20< th=""> Z20 <thz0< th=""> Z2</thz0<></thz20<>	MDD120	MG22084	224	225	1	0.11		RSSZ		MDD140	MG29729	200	201	1	0.05	84	TZ4	
MB0120 MB02300 Z27 Z28 Z28 L D.0.5 MS2 L MB0240 MS2732 Z28 Z20 L.0.5 MS2 L MB0240 MS2732 Z28 Z20 L.0.6 S74 L M00120 M62297 Z28 <	MDD120	MG22085	225	226	1	0.92		RSSZ		MDD140	MG29730	201	202	1	0.02	54	TZ4	
MOD120 MG22091 Q.29 Q.29 <td>MDD120</td> <td>MG22086</td> <td>226</td> <td>227</td> <td>1</td> <td>1.02</td> <td></td> <td>RSSZ</td> <td></td> <td>MDD140</td> <td>MG29731</td> <td>202</td> <td>203</td> <td>1</td> <td>0.05</td> <td>24</td> <td>TZ4</td> <td></td>	MDD120	MG22086	226	227	1	1.02		RSSZ		MDD140	MG29731	202	203	1	0.05	24	TZ4	
MB0120 M42292 M22 M23 M21 M100 M101 M2173 M2010 M20203 M23 M21 M101 M101 M02173 M20205 M203 M23 M21 M101 M1014 M1014 M10173 M20375 M203 M203 M21 M2	MDD120	MG22090	227	228	1	0.52		RSSZ		MDD140	MG29732	203	204	1	0.14	554	TZ4	
M00120 MC22093 2.23 Q.21 Q. Q. Q. MC024 MC0220 MC2208 Q.23 Q.23 Q. Q. Q. Q. MC024 MC0220 MC2230 Q.23 Q.23 Q.23 Q. Q. Q. MC024 MC0220 MC0220 Q.23	MDD120	MG22091	228	229	1	0.24		RSSZ		MDD140	MG29733	204	205	1	0.08	973	RSSZ	
MOD120 MG2094 2.23 2.23 1 0.66 7.4 1 MOD120 MG2095 2.23 2.23 1 0.61 7.4 1 MOD120 MG2095 2.23 2.23 1 0.61 7.4 1 MOD120 MG2097 2.24 2.33 1 0.71 7.4 1 1 2.03 1 0.46 3.30 852 1 MOD120 MG2097 2.24 2.35 1 0.07 7.4 1 1 1 1.45 2.39 8.52 1 MOD120 MG2097 2.28 2.32 1 0.07 7.4 1 1 1.40 1.43 1 1.43 1.4	MDD120	MG22092	229	230	1	0.07		TZ4		MDD140	MG29734	205	206	1	0.02	219	TZ4	
MDD120 M62095 2.23 2.33 1 0.61 T4 N MDD120 M62096 2.33 2.34 1 0.78 6552 C MDD120 M62097 2.39 2.35 1 0.78 6552 C MDD120 M62098 2.35 2.35 1 0.42 852 C MDD120 M62099 2.36 2.35 1 0.01 774 C MDD120 M62099 2.36 2.37 1 0.01 T74 C MDD120 M62209 2.38 2 0.01 T74 C MD0140 M62974 2.31 2.4 1 0.66 131 852 C MDD120 M62102 2.39 2.40 0.01 M.65 MD0140 M62974 2.21 2.13 C.1 0.05 852 C MD120 M62104 2.49 2.40 0.01 M.65 MD0140 M62974 2.21 2.10 0.01 5.65 C MD120 M62105 <th< td=""><td>MDD120</td><td>MG22093</td><td>230</td><td>231</td><td>1</td><td>1.64</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29735</td><td>206</td><td>207</td><td>1</td><td>0.03</td><td>88</td><td>TZ4</td><td></td></th<>	MDD120	MG22093	230	231	1	1.64		TZ4		MDD140	MG29735	206	207	1	0.03	88	TZ4	
MDD101 M62209 Q23 Q24 Q23 Q1 Q42 R52 Q MD0101 M62209 Q24 Q23 Q1 Q42 R52 Q M00102 M62209 Q24 Q23 Q1 Q101 Q1 Q101 Q102 Q11 Q11 Q11 Q12 Q11 <	MDD120	MG22094	231	232	1	0.36		TZ4		MDD140	MG29736	207	208	1	0.64	520	RSSZ	
Model M	MDD120	MG22095	232	233	1	0.61		TZ4		MDD140	MG29737	208	209	1	0.04	320	RSSZ	
MbD101 Mb2208 2.28 2.28 2.28 1 0.01 7.24 Mb104 Mb2794 2.21 2.12 2.11 2.12 2.12 2.13 2.11 2.22 2.28 8.52 8.52 MD1010 M62200 2.33 2.33 2.1 0.01 7.74 MD104 M62704 2.13 2.1 1 0.06 8.52 MD104 M62704 2.13 2.1 0.06 8.52 MD104 M62704 2.15 2.1 0.06 8.52 MD104 M62704 2.15 2.1 0.01 3.637 8.52 MD104 M62704 2.15 2.1 0.01 3.63 8.52 MD104 M62704 2.15 2.1 0.01 3.63 8.52 MD104 M62704 2.1<	MDD120	MG22096	233	234	1	0.78		RSSZ		MDD140	MG29738	209	210	1	28.40	3,738	RSSZ	
MD1010MG22092.282.391.10.0.07.74MD0140MG27412.131.10.10.220.298.828.82MD110MG21012.382.381.10.0.07.740.0MD120MG21012.312.140.00.128.820.0MD120MG21012.382.390.10.0.18.520.0MD1040MG29742.152.160.10.0.81.188.520.0MD1010MG21032.400.410.08.520.0MD1040MG29742.152.160.10.0.81.188.520.0MD1010MG21032.440.410.08.520.0MD1040MG29742.180.210.180.023.688.520.0MD1010MG21052.422.440.10.0.67.740.07.740.0140MG29750.2180.210.011.168.520.0MD1010MG21072.440.440.10.067.740.0140MG29750.2180.210.160.168.520.0MD1010MG21072.440.440.10.007.740.007.740.0140MG29750.2180.210.160.167.740.1MD1010MG21070.240.240.240.210.260.210.260.210.260.210.260.210.260.210.26 <t< td=""><td>MDD120</td><td>MG22097</td><td>234</td><td>235</td><td>1</td><td>0.42</td><td></td><td>RSSZ</td><td></td><td>MDD140</td><td>MG29739</td><td>210</td><td>211</td><td>1</td><td>1.56</td><td>2,939</td><td>RSSZ</td><td></td></t<>	MDD120	MG22097	234	235	1	0.42		RSSZ		MDD140	MG29739	210	211	1	1.56	2,939	RSSZ	
MD1010MG21002.332.4810.01T.4MD10MG20742.132.141.110.009.188.521MD1010MG21022.332.432.332.442.132.142.152.1610.101.128.521MD1010MG21042.332.442.332.442.152.1610.193.878.521MD1010MG21042.442.420.10.01MS22.440.152.160.110.013.878.521MD1010MG21042.442.420.10.01MS21MD10MG297432.160.110.103.878.521MD1010MG21052.442.420.10.01MS21MD10MG297512.190.120.110.031.568.521MD1010MG21050.242.440.10.01MS20.11MD10MG297510.210.120.110.161.571.521.511.5	MDD120	MG22098	235	236	1	0.17		TZ4		MDD140	MG29740	211	212	1	0.21	1,487	RSSZ	
MbD100M6221012.882.3910.18M.SS2MDD140M6297432.142.1510.111.812RS2MDD140MbD120M6221022.392.4010.02M.SS2CMDD140M6297432.162.152.1610.103.867RS2MD140MbD120M6221032.402.4110.04RS52CMDD140M6297432.162.1710.027.57RS2MD140MbD120M6221052.422.4210.04M.SS2CMD140M629792.180.10.011.68RS2MD140MbD120M6221072.442.4510.09T.4CRS2MD140M629752.282.101.011.68RS2MD140MbD120M6221072.442.4510.09T.4CRS2MD140M629752.282.211.110.16RS2MD140MbD120M6221072.442.4510.09RS2CMD140M629752.222.231.110.01T.4T.4MbD120M6221102.472.4810.03RS2CMD140M629752.232.211.110.16R247.4MbD120M6221142.472.4810.03RS2CMD140M629752.232.110.067.47.4MbD120	MDD120	MG22099	236	237	1	-0.01		TZ4		MDD140	MG29741	212	213	1	2.22	2,962	RSSZ	
M02101MG22103C40C41 <td>MDD120</td> <td>MG22100</td> <td>237</td> <td>238</td> <td>1</td> <td>-0.01</td> <td></td> <td>TZ4</td> <td></td> <td>MDD140</td> <td>MG29742</td> <td>213</td> <td>214</td> <td>1</td> <td>0.06</td> <td>913</td> <td>RSSZ</td> <td></td>	MDD120	MG22100	237	238	1	-0.01		TZ4		MDD140	MG29742	213	214	1	0.06	913	RSSZ	
MDD120MG2103Q42Q42Q44Q42Q44Q42Q44	MDD120	MG22101	238	239	1	0.18		RSSZ		MDD140	MG29743	214	215	1	0.18	1,812	RSSZ	
MDD120MG2104Q.21 <t< td=""><td>MDD120</td><td>MG22102</td><td>239</td><td>240</td><td>1</td><td>0.21</td><td></td><td>RSSZ</td><td></td><td>MDD140</td><td>MG29744</td><td>215</td><td>216</td><td>1</td><td>0.19</td><td>3,687</td><td>RSSZ</td><td></td></t<>	MDD120	MG22102	239	240	1	0.21		RSSZ		MDD140	MG29744	215	216	1	0.19	3,687	RSSZ	
MDD120MG22105C42C42C43C44C41C41RS2C40MD140MG2975C41C43C41C40RS2C40MD1010MG2107C44C44C43C41C40C40C74C40MD140MG2975C210C210C41C40C40G40<	MDD120	MG22103	240	241	1	0.04		RSSZ		MDD140	MG29745	216	217	1	0.27	575	RSSZ	
MDD120MG2100CA4CA4CA4CA1CA1RS2MD140MG2971CA1CA2CA1CA3MS2RS2RS2MD1010MG2101CA4	MDD120	MG22104	241	242	1	0.06		TZ4		MDD140	MG29749	217	218	1	0.79	3,165	RSSZ	
MoD210MG2210CA24CA24CA1CA00CA2MD140MG2375CA20CA20CA1CA00CA1CA1MD120MG2103CA25CA24CA24CA1CA00CA10CA20MD140MG2753CA22CA23CA1CA00CA10	MDD120	MG22105	242	243	1	0.41		RSSZ		MDD140	MG29750	218	219	1	0.10	1,508	RSSZ	
MoD20MG22108AvesAvesAvesTetMDD14MDD14MG2975C22C22C1C0.08C1.16C7.4C1MDD10MG2010C42C42C44C1C0.03RS2C0MDD14MG2975C22C22C23C1C0.05C12C1	MDD120	MG22106	243	244	1	1.12		RSSZ		MDD140	MG29751	219	220	1	0.36	960	RSSZ	
MoD20MG221092.462.4710.03RS2MDD14MDD140MG29752.232.1310.051.247.44MDD10MG21102.472.4810.03RS2MDD14MDD140MG29752.232.232.130.090.097.40.097.40.097.40.097.440.097.440.014MDD140MG29752.232.232.232.130.097.44 <t< td=""><td>MDD120</td><td>MG22107</td><td>244</td><td>245</td><td>1</td><td>0.09</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29752</td><td>220</td><td>221</td><td>1</td><td>0.15</td><td>910</td><td>TZ4</td><td></td></t<>	MDD120	MG22107	244	245	1	0.09		TZ4		MDD140	MG29752	220	221	1	0.15	910	TZ4	
MoD20MG2210 2.47 2.48 1 0.03 RSZ $MDD14$ $MG2975$ 2.23 2.24 1 0.09 7.4 1.00 MD100MG2114 2.48 2.49 1 0.00 1.74 1.00 1.74 1.00 1.00 1.00 1.74 1.00	MDD120	MG22108	245	246	1	0.06		TZ4		MDD140	MG29753	221	222	1	0.08	116	TZ4	
MDD10MG2114AvaM24M24M1M000T44MD14MD140MG2975C24M25M1M20M21M23<	MDD120	MG22109	246	247	1	0.03		RSSZ		MDD140	MG29754	222	223	1	0.05	152	TZ4	
MDD120MG22115AvageAvageAvageAvageMDD14MDD140MG29757AvageMDD120MD23MD23MD23MD33RS2MD133RS2MDD120MG22117AvageM251M251M1M06M74M1MD140MG29757M251M251M251M151 <t< td=""><td>MDD120</td><td>MG22110</td><td>247</td><td>248</td><td>1</td><td>0.03</td><td></td><td>RSSZ</td><td></td><td>MDD140</td><td>MG29755</td><td>223</td><td>224</td><td>1</td><td>0.09</td><td>690</td><td>TZ4</td><td></td></t<>	MDD120	MG22110	247	248	1	0.03		RSSZ		MDD140	MG29755	223	224	1	0.09	690	TZ4	
MDD120MG2216C250C251C10.06T4MDD140MG2975C250C27C10.05C14C4MDD120MG2117C251C252C10.06T4MD140MG2975C252C252C10.05C231R52MDD120MG2118C252C253C10.01MS21R522C253C10.05R522MD140MG2976C253C25C10.05C243T4C1MD120MG2121C253C25C10.05C14T4MD140MG2976C23C23C10.05C14T4C1MD120MG2121C255C256C10.07C14T4MD140MG2976C23C23C10.05T4C1MD120MG2123C255C257C10.04MS2C1MD140MG2976C23C23C10.05T4C1MD120MG2123C255C25C10.04MS2C1MD140MG2976C23C23C10.05T4C1MD120MG2123C255C25C10.04MS2C1MD140MG2976C23C23C10.05T4C1MD120MG2123C255C25C10.04MS2C1MD140MG2976C23C23C10.05C33C1C1C1C1C1C1C1C1C1 <t< td=""><td>MDD120</td><td>MG22114</td><td>248</td><td>249</td><td>1</td><td>0.02</td><td></td><td>TZ4</td><td></td><td>MDD140</td><td>MG29756</td><td>224</td><td>225</td><td>1</td><td>0.25</td><td>1,219</td><td>RSSZ</td><td></td></t<>	MDD120	MG22114	248	249	1	0.02		TZ4		MDD140	MG29756	224	225	1	0.25	1,219	RSSZ	
MDD120 MG22117 C25 C25 C1 C0.00 TZ4 MDD140 MG29769 C28 C28 C1 C0.01 RS2 C1 MDD120 MG22118 C25 C25 C1 C0.01 RS2 C1 MDD140 MG29769 C28 C28 C1 C0.01 RS2 C1 MDD120 MG22119 C25 C25 C1 C1.01 RS2 C1 MD140 MG29760 C28 C29 C1 C1.01 C1.01 TZ4 TZ4 MD120 MG2210 C25 C25 C1 C1.01 RS2 C1 MD140 MG29760 C28 C29 C1 C1.01 C1.01 TZ4 TZ4 MD120 MG2210 C25 C25 C1 C1.01 TZ4 MC140 MG29760 C2.01 C2.01 C1.01 MC1 MC140 MC	MDD120	MG22115	249	250	1	0.02		TZ4		MDD140	MG29757	225	226	1	0.23	330	RSSZ	
MDD100 MG22118 Q252 Q253 Q1 Q101 RS2 MDD140 MG29760 Q288 Q29 Q1 Q005 Q101	MDD120	MG22116	250	251	1	0.06		TZ4		MDD140	MG29758	226	227	1	0.15	197	TZ4	
MDD100 MG2219 Q253 Q254 Q1 Q1.77 RS2 MDD140 MG29761 Q299 Q200 Q1 Q1.20 Q1.31 Q200 Q1.31 Q1.31 Q200 Q1.31 Q1.31 Q200 Q1.31 Q1.31 Q1.31 Q200 Q1.31 <	MDD120	MG22117	251	252	1	0.06		TZ4		MDD140	MG29759	227	228	1	0.21	231	RSSZ	
MDD120 MG22120 C25 C25 C1 C0.05 TZ4 MDD140 MG29762 C2.05 C2.01 C1.05 RS2 RS2 MDD120 MG2212 C25 C25 C1 C0.07 TZ4 C1 MDD140 MG29763 C2.01 C2.01 C1.05 C1.05 RS2 C1 MDD140 MG29763 C2.01 C2.01 C1.05 C2.00 TZ4 TZ4 MDD140 MG29763 C2.01 C2.01 C1.05 C2.01 C1.05 C2.01 C1.05 C2.01 C1.01 <	MDD120	MG22118	252	253	1	0.31		RSSZ		MDD140	MG29760	228	229	1	0.05	234	TZ4	
MDD120 MG2212 Q25 Q25 Q1 Q000 T74 MDD140 MG29763 Q200 Q201 Q1 Q000 Q1045 RS2 RS2 MDD120 MG2121 Q255 Q256 Q1 Q000 T74 Q000 MDD140 MG29763 Q231 Q231 Q1 Q000 T44 Q000 T44 MDD140 MG29763 Q231 Q231 Q1 Q000 T44 Q000 T44 Q000 T44 Q000 Q000 Q231 Q10 Q000 Q000 T44 Q000	MDD120	MG22119	253	254	1	1.77		RSSZ		MDD140	MG29761	229	230	1	1.22	1,314	TZ4	
MDD120 MG22122 256 257 1 0.46 RSSZ MDD140 MG29764 233 233 1 0.18 435 TZ4 MDD120 MG2123 257 258 1 4.53 TZ4 MDD140 MG29765 233 233 1 0.18 435 TZ4	MDD120	MG22120		255	1	0.05		TZ4		MDD140	MG29762			1				
MDD120 MG22122 256 257 1 0.46 RSSZ MDD140 MG29764 233 233 1 0.18 435 TZ4 MDD120 MG2123 257 258 1 4.53 TZ4 MDD140 MG29765 233 233 1 0.18 435 TZ4	MDD120	MG22121	255	256	1	0.07		TZ4		MDD140	MG29763	231	232	1	0.15	290	TZ4	
MDD120 MG22123 257 258 1 4.53 TZ4 MDD140 MG29765 233 234 1 2.18 1,987 RS52					1									1				[
					1									1				
100120 100227/0 234 233 1 0.19 1/41/ K32	MDD120	MG22124	258	259.1	1.1	1.03		TZ4		MDD140	MG29766	234	235	1	0.19	1,417	RSSZ	

Hole ID	Sample	Depth	Depth	Interval	Au g/t	As ppm	Geol	Visible
HOLE ID	ID	From (m)	To (m)	(m)	(FAA505)	(pXRF)	Unit	Gold
MDD140	MG29777	242	243	1	0.04	127	TZ4	
MDD140	MG29778	243	244	1	0.26	276	TZ4	
MDD140	MG29779	244	245	1	0.04	1,307	RSSZ	
MDD140	MG29780	245	246	1	0.10	2,584	RSSZ	
MDD140	MG29781	246	247	1	0.21	4,178	RSSZ	
MDD140	MG29782	247	248	1	0.16	1,497	RSSZ	
MDD140	MG29783	248	249	1	0.56	2,752	RSSZ	
MDD140	MG29784	249	250	1	0.09	410	TZ4	
MDD140	MG29785	250	251	1	0.21	691	RSSZ	
MDD140	MG29786	251	252	1	0.09	1,564	RSSZ	
MDD140	MG29787	252	253	1	0.03	309	RSSZ	
MDD140	MG29788	253	254	1	0.02	70	TZ4	
MDD140	MG29789	254	255	1	0.05	72	RSSZ	
MDD140	MG29790	255	256	1	-0.01	896	RSSZ	
MDD140	MG29791	256	257	1	0.01	112	TZ4	
MDD140	MG29795	257	258	1	-0.01	8	TZ4	
MDD140	MG29796	258	259	1	0.25	824	RSSZ	
MDD140	MG29797	259	260	1	0.02	79	TZ4	
MDD140	MG29798	260	261	1	0.02	36	TZ4	
MDD140	MG29799	261	262	1	-0.01	7	TZ4	
MDD140	MG29800	262	263.1	1.1	-0.01	10	TZ4	


MDD117R Core Photos - 262.2m - 281.2m

MDD120 Core Photos - 146.2m - 167.4m

MDD140 Core Photos - 206.5m - 227.4m

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond drill (DD) core samples for laboratory assay are typically 1 metre samples of diamond saw cut ½ diameter core. Where distinct mineralisation boundaries are logged, sample lengths are adjusted to the respective geological contact. RC samples were sub-sampled at 1.0 m intervals using a rotary splitter yielding a 30% sub-sample.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are crushed at the receiving laboratory to minus 2mm (85% passing) and split to provide 1kg for pulverising to -75um. Pulps are fire
	Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	assayed (FAA) using a 50g charge with AAS finish.
		Certified standards, blanks and field replicates are inserted with the original batches at a frequency of ~4% for QAQC purposes.
		All pulps and crush reject (CREJ) are returned from the laboratory for further ~4% QAQC checks which involve pulp FAA re-assays by the original and an umpire laboratory and CREJ re-assayed by 500-gram (+ & -75mu) screen fire assay (SFA), 1kg BLEG (LeachWELL) and 2*500- gram Photon analysis (PHA) for gold.
		Where multiple assays exist for a single sample interval, larger samples are ranked in the database: PHA > BLEG > SFA > FAA.
		All returned pulps are analysed for a suite of 31 elements by portable XRF (pXRF).

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Current drilling techniques are diamond coring (DD) PQ3 and HQ3 size triple tube. Where PQ3 core size (83mm diameter) is commenced this is maintained throughout the DD hole until drilling conditions dictate reduction in size to HQ3 core (61mm diameter).
		RC drilling used a face sample bit with sample collected in a cyclone mounted over a rotary splitter producing 2 x 30% splits and 1 x 40% split. The two 30% splits were used as primary sample and field duplicate (if submitted) with the 40% split used for logging and then stored at the MGL core yard.
		Drillholes are oriented to intersect known mineralised features in a nominally perpendicular orientation as much as is practicable.
		All drill core is oriented to assist with interpretation of mineralisation and structure using a Trucore orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	DD core sample recoveries are recorded by the drillers at the time of drilling by measuring the actual distance of the drill run against the actual core recovered. The measurements are checked by the site geologist. When poor core recoveries are recorded the site geologist and driller endeavour to immediately rectify any problems to maintain maximum core recoveries. DD core logging to date indicate ~95% recoveries. RC sample recovery is measured as sample weight recovered. The drilling contract used states for any given run, a level of recovery is required otherwise financial penalties are applied to the drill contractor to ensure sample recovery priority along with production performance.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All DD holes have been logged for their entire sampled length below upper open hole drilling (nominally 0-450 metres below collar). Data is recorded directly into digital spreadsheets and then uploaded into a PostgreSQL cloud database with sufficient detail that supports Mineral Resource estimations (MRE).
	The total length and percentage of the relevant intersections logged.	Logging is mostly qualitative but there are estimations of quartz and sulphide content and quantitative records of geological / structural unit, oxidation state and water table boundaries.
		Oriented DD core allows alpha / beta measurements to determine structural element detail (dip / dip direction) to supplement routine recording of lithologies / alteration / mineralisation / structure / oxidation / colour and other features for MRE reporting.
		RC chips were sieved and logged for lithology, colour, oxidation, weathering, vein percentage and sulphide minerals.
		All core is photographed wet and dry before cutting. Sieved RC chips are also photographed.

Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the	Industry standard laboratory sample preparation methods are suitable for the mineralisation style and involve, oven drying, crushing and splitting of samples to 1kg for pulverising to -75um. Pulps are fire assayed (FAA) using a 50g charge.
	sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ	50g charge is considered minimum requirement for the coarse nature of the gold. Larger screen fire assays (SFA), 1kg BLEG (LeachWELL) and 2*500gm Photon Analyses (PHA) are conducted periodically as a QAQC check.
	material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	RC samples were sub-sampled by a rotary splitter as described above. Large diameter (83mm) PQ3 core was maintained (where conditions allow) for DD holes to MDD016 and subsequently HQ3 (61mm) for drillholes MDD017 to MDD131.
		DD core drill samples are sawn in ½ along the length of the core on cut lines marked by geologists' perpendicular to structure / foliation or to bisect vein mineralisation for representative samples whilst preserving the orientation line. Intervals required for QAQC checks are ¼ core from ½ sections of core to be sent for assay.
		QAQC procedures include field replicates, standards, and blanks at a frequency of $\sim 4\%$ and also cross-lab assay checks at an umpire laboratory. Field duplicates of RC samples are taken at the time of sampling.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	DD core and RC chip samples for gold assays undergo sample preparation by SGS laboratory Westport and 50g fire assay with an AAS finish (SGS method FAA505 DDL 0.01ppm Au or FAD505 DDL 1ppm Au & FAD52V DDL 500ppm Au) by SGS laboratory Waihi. Portable XRF (pXRF) instrumentation is used onsite (Olympus Innov-X Delta Professional Series model DPO-4000 equipped with a 4 W 40kV
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	X-Ray tube) primarily to identify arsenical samples (arsenic correlates well with gold grade in these orogenic deposits). The pXRF analyses a 31-element suite (Ag, As, Bi, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, V, W, Y, Zn, Zr) utilising 3 beam Soil mode, each beam set for 30 secs (90 secs total).
		pXRF QAQC checks involve 2x daily calibration and QAQC analyses of SiO2 blank, NIST standards (NIST 2710a & NIST 2711a), & OREAS standards (238, 235 & 211).
		For laboratory QAQC, samples (3*certified standards, blanks and field replicates) are inserted into laboratory batches at a frequency of \sim 4% and \sim 5% respectively. Once 1,000 samples have been assayed a \sim 5% selection of retained lab pulps across a range of grades are sent for reassay and to an umpire laboratory for cross-lab check assays.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Significant gold assays and pXRF arsenic analyses are checked by alternative senior company personnel. Original lab assays are initially reported and where replicate assays and other QAQC work require reassay or screen fire assays, the larger sample results are adopted. To date results are accurate and fit well with the mineralisation model.
	Discuss any adjustment to assay data.	Twinned data is available where DD core holes have been sited adjacent to previous RC drillholes and where DD redrills have occurred.
		pXRF multi-element analyses are directly downloaded from the pXRF analyser as csv electronic files. These and laboratory assay csv files are imported into the database, appended and merged with previous data.
		The database master is stored off-site and periodically updated and verified by an independent qualified person.
		There have been no adjustments to analytical data presented.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All drillhole collar locations are accurate (+/- 50mm) xyz coordinates when captured by an experienced surveyor using RTK-GPS equipment. All drill holes reference the NZTM map projection and collar RLs the NZVD2016 vertical datum. DD down hole surveys are recorded continuously with a Precision north seeking Gyro downhole survey tool. RC holes are surveyed at 12m intervals using a Reflex multi-shot camera.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drillhole collar spacing is variable and considered appropriate for determination of geological and grade continuity during this phase of the drilling programme. Site locations in steep terrain are dictated by best access allowed by contour tracks with gentle gradients to allow safe working drill pad excavations. No compositing of samples is being undertaken for analysis. Sampling and assaying are in one metre intervals or truncated to logged features.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The majority of drillholes in this campaign are inclined -60° or -75° to an azimuth between 180°T and 270°T to intercept mineralisation at a reasonable angle and facilitate core orientation measurements. However, due to topographical constraints and the nature of infill drilling where intercepts are being targeted with some accuracy, some drillholes will be drilled at other azimuths and inclinations as noted. True mineralisation widths in these drillholes will be less than downhole intervals. As the deposits are tabular and lie at low angles, there is not anticipated to be any introduced bias for resource estimates. Most RC holes were drilled either vertically or at -60° towards 228°.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 Company personnel manage the chain of custody from sampling site to laboratory. DD drill core samples are transported daily from DD rig by the drilling contractor in numbered core boxes to the Company secure storage facility for logging and sample preparation. After core cutting, the core for assay is bagged, securely tied, and weighed before being placed in polyweave bags which are securely tied. Retained core is stored on racks in secure locked containers. RC samples are also place in polyweave bags and secured with zip ties. Polyweave bags with the calico bagged samples for assay are placed in steel cage pallets, sealed with a wire-tied tarpaulin cover, photographed, and transported to local freight distributer for delivery to the laboratory. Apple AirTags™ are currently being trialled to GPS-track pallets. On arrival at the laboratory photographs taken of the consignment are checked against despatch condition to ensure no tampering has occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An independent competent Person (CP) conducted a site audit in January 2021 and December 2022 of all sampling techniques and data management. No major issues were identified, and recommendations have been followed.
		Snowdon Optiro completed a desktop review of the assay methods and QC sample results and in its report concluded that the sampling and assaying methods are in line with standard industry procedures.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration is being currently conducted within Mineral Exploration Permit (MEP) 60311 (252km²) registered to Matakanui Gold Ltd (MGL) issued on 13th April 2018 for 5 years with renewal date on 12th April 2023. An application to extend the period of duration has been accepted for processing by NZ Petroleum and Minerals. MEP 60311 continues in force in accordance with section 36 (5A) of the Crown Minerals Act 1991. There are no material issues with third parties. MGL applied for a Minerals Prospecting Permit (MPPA) in March 2022, and this is in process with the Government Ministerial Authority (NZPAM) for issue under MPP 60882. The tenure of the Permits is secure and there are no known impediments to obtaining a licence to operate. The Project is subject to a 1.5% Net Smelter Royalty (NSR) on all production from MEP 60311 (and successor permits) payable to an incorporated, private company (Rise and Shine Holdings Limited) which is owned by the prior shareholders of MGL (NSRW Agreement) before acquisition of 100% of MGL shares by Santana Minerals Limited.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Early exploration in the late 1800's and early 1900's included small pits, adits and cross-cuts and alluvial mining. Exploration has included soil and rock chip sampling by numerous companies since 1983 with drilling starting in 1986. Exploration in the 1990's commenced with a search for Macraes style gold deposits along the RSSZ. Drilling included 13 RC holes by Homestake NZ Exploration Ltd in 1986, 20 RC holes by BHP Gold Mines NZ Ltd in 1988 (10 of these holes were in the Bendigo Reefs area which is not part of the MRE area), 5 RC holes by Macraes Mining Company Ltd in 1991, 22 shallow (probably blasthole) holes by Aurum Reef Resources (NZ) Ltd in 1996, 30 RC holes by CanAlaska Ventures Ltd from 2005-2007, 35 RC holes by MGL in 2018 and a further 18 RC holes by MGL in 2019.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The RSSZ is a low-angle late-metamorphic shear-zone, presently known to be up to 120m thick. It is sub-parallel to the metamorphic foliation and dips gently to the north- east. It occurs within psammitic, pelitic and meta- volcanic rocks. Gold mineralisation is concentrated in multiple deposits along the RSSZ. In the Project area there are 4 deposits with Mineral Resource Estimates (MRE) – Come-in-Time (CIT), Rise and Shine (RAS), Shreks (SHR) and Shreks-East (SRE). The gold and associated pyrite/arsenopyrite mineralisation at all deposits occur along micro- shears, and in brecciated / laminar quartz veinlets within the highly- sheared schist. There are several controls on mineralisation with apparent NNW, N and NNE trending structures all influencing gold distribution. Shear dominated mineralisation within the top 20-40m of the shear zone is in a unit termed the "Hanging Wall Shear" (HWS) which lies immediately below the Thomsons Gorge Fault (TGF). The TGF is a regional low-angle fault that separates upper barren chlorite (TZ3) schist from underlying mineralised biotite (TZ4) schists. Stacked stockwork vein swarms (SVS) occur deeper in the RSSZ. Unlike Macraes, the gold mineralisation in the oxide, transition and fresh zones is characterised by coarse free gold and silica-poor but extensive ankerite alteration.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Significant gold intercepts are reported using 0.25g/t Au and 0.50g/t Au lower grade cut-offs with 4m of internal dilution included. Broad zonation is: 0.10g/t Au cut-off defines the wider low-grade halo of mineralisation, 0.25g/t Au cut-off represents possible economic mineralisation, with 0.50g/t Au defining high-grade axes / envelopes. 1.50g/t Au cut-off is possible economically underground exploitable Metal unit (MU) distribution, where shown on maps and in tables are calculated from total drill hole Au * associated drill hole interval metres. pXRF analytical results reported for laboratory pulp returns are considered accurate for the suite of elements analysed. Where gold assays are pending, minimum 1,000 ppm composited arsenic values provide a preliminary representation of potential mineralised zones and include 4m <1,000 ppm internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All intercepts quoted are downhole widths. Intercepts are associated with a major 20-120m thick low-angle mineralised shear that is largely perpendicular to the drillhole traces. Aggregate widths of mineralisation reported up until 2 nd June 2023 are drillhole intervals >0.50g/t Au occurring in apparent low angle stacked zones. Subsequent reporting is on a continuous basis. There are steeply dipping narrow (1-5m) structures deeper in the footwall and the appropriateness of the current drillhole orientation will become evident and modified as additional drill results dictate.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of the text.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant intercepts have been reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	DD infill drilling of existing inferred resources is continuing at RAS on 60*40m metre spacing.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further extensional drilling is about to recommence at CIT, SHR and SRE deposits .followed by target definition drilling elsewhere in the project area.
		A 2021 MRE update (to JORC Code 2012) completed in September 2021 increased Inferred Resources 155% to 643Koz from the 252Koz 2019 MRE (uncut & 0.25g/t lower cut-off).
		A 2022 MRE upgrade of RAS was completed in early July 2022 which increased the Global Inferred resources 3-fold to 2.1Moz (top-cut & 0.25g/t lower cut-off).
		A 2023 MRE upgrade of RAS was completed in early February 2023 which increased the total resources to 2.9Moz (top-cut & 0.5g/t lower cut-off) including the maiden report of Indicated Resources at RAS of 0.3Moz as well as increasing Inferred Resources at RAS to 2.4Moz for total RAS resources of 2.7Moz.
		Potential extensions to mineralisation and resources currently being drill tested are shown in figures in the body of the text.