

VISIBLE SULPHIDES INTERSECTED ACROSS MULTIPLE ZONES AT NARNDEE

Highlights

- Completion of two (2) diamond holes on targeted IP anomalies with visible disseminated sulphides intersected at depth in both holes.
- Hole NDD0031 intersected four (4) zones of visible sulphides, most significantly a ~49 metre sulphide zone across a pyroxenite-basalt contact boundary.
- An additional drillhole east of NDD0031 will be strategically planned based on the significant length of visible sulphide zones encountered.
- Drilling of third diamond hole currently underway and progressing well.

Aldoro Resources Ltd ("Aldoro", "The Company") (ASX: ARN) is pleased to provide positive preliminary results from the planned four diamond hole program targeting Induced Polarisation (IP) geophysical anomalies. A total depth of 918.3m was drilled for the two completed holes, NDD0030 & NDD0031, as part of a 2000m diamond core program.

NDD0031 targeted the sinistral offset of the VC01 Ni-Cu mineralisation, and intersected four (4) zones of visible sulphides:

- 48.96 metres from 223.06m,
- 23.51 metres from 280.33m,
- 13.89 metres from 304.15m and
- 8.66 metres from 323.08m.

The nature of the sulphides is generally pyrite and pyrrhotite, with pXRF data¹ suggesting possible presence of pentlandite based on significant Ni content (Figure 1 below). Due to the significant length of the disseminated sulphide zones intersected at NDD0031, an additional drill hole is being strategically planned to east of this hole that is less than 150m away.

Figure 1: NDD0031 core ~257.7m of possible pentlandite, pXRF indicated **3.29%Ni** and 0.28%Cu.
¹(Note that the use of pXRF data is only used to assist logging interpretation and should not be considered representative in any way and Aldoro advises to wait until laboratory results are available).

Figure 2: NDD0031 from ~258-261.4m with disseminated sulphides and clots.

NDD0030 targeted the northern IP anomaly, with the drill core intersecting two (2) zones bearing visible sulphides across ultramafic/mafic rock contacts from 117.1 – 126.8m across an initial ultramafic-mafic contact and 384.8 – 394m across a second ultramafic-mafic contact boundary. The sulphides were disseminated in nature and identified as generally pyritic.

The tenor of the sulphide mineralisation will be tested through laboratory analysis with these zones to be analysed for Ni, Cu, Co, Pd, Pt and Au.

Please refer to the following pages for a location map, the drill hole collars table and summary drill logs for holes NDD0030 & NDD0031.

Forward Plan

Drilling of the third hole (NDD0032) is underway and progressing well. Aldoro shall update the market on the progress of activities as required.

Authorised for and on behalf of the Board,

Sarah Smith Company Secretary

Figure 3: Location map of the two holes drilled NDD0030-31 and remaining holes NDD0032-33.

Table 1: Diamond Drill Collars

Target	Anomaly	Priority	Easting	Northing	Elevation	Azm	Dip	Depth	Upper contact	Lower contact	Drilled
NDD0030	Northern Target	P1	610600	6808200	497.5	90	70	500	220	>500	Yes
NDD0031	Trough	P2	609840	6805100	460.9	270	75	420	350	400	Yes
NDD0032	West Target	Р3	609740	6806100	462	90	75	600	400	450	No
NDD0033	Eastern Target 2	P2	610870	6806800	472	0	90	250	150	225	No

NDD0030 Summary Log

HoleID	From (m)	To (m)	Lithology	Alteration	Mineralisation	Comments
NDD0030	0	0.8	Transported clay			
NDD0030	0.8	2.5	Cavity			
NDD0030	2.5	5.3	Laterite			
NDD0030	53	5 5	Cavity			
NDD0030	5.5	5.8	Laterite			
NDD0030	5.8	9.0	Laterite			
NDD0030	9.0	9.1	Cavity			
NDD0030	0.2	12.0	Lippor conrolito			
	12.0	13.9				
NDD0050	15.9	20.4	Ottramanc, undirrerentiated			
NDD0030	20.6	20.9	Lower saprolite			
NDD0030	20.4	20.6	Cavity			
NDD0030	20.9	21.2	Cavity			
NDD0030	21.2	25.2	Lower saprolite			
NDD0030	25.2	40.2	Saprock			Ultramatic nontronite?
NDD0030	40.2	64.35	Pyroxenite	serpentinite		
NDD0030	65.35	66.25	Pyroxenite			
NDD0030	66.25	93.03	Pyroxenite			
NDD0030	93.03	99.71	Talc dominated rock			
NDD0030	99.71	100.23	Talc dominated rock			brecciated fault zone cataclasite talc chlorite matrix as fault gouge
NDD0030	100.23	100.8	Talc dom rock			fault zone
NDD0030	100.8	101.8	Cavity			
NDD0030	101.8	109.64	Talc dom rock			
NDD0030	108.644	110.15	"Ultramafic, undifferentiated"			fault zone? Oxidation on joint planes weak breccia
NDD0030	110.15	115.45	High-Mg basalt			
NDD0030	115.45	117.1	"Ultramafic, undifferentiated"			brecciated um
NDD0030	117.1	122.48	High-Mg basalt		pyrite	minor 5-10cm vein breccia with associated Pyrite and siderite
NDD0030	122.48	126.8	High-Mg basalt		sulphides	siderite
NDD0030	126.8	136.97	High-Mg basalt		•	moderate Magnetite
NDD0030	136.97	137.92	High-Mg basalt	silicic		chlorite rich veins
NDD0030	137.92	154.57	High-Mg basalt			moderate Magnetite
NDD0030	154 57	160.25	High-Mg basalt	silicic		
NDD0030	160.25	164 1	High-Mg basalt	Shield		moderate Magnetite
NDD0030	164.1	16/ 9/	High-Mg basalt			weakly bracciated with quartz
NDD0030	164.04	104.54	High Mg basalt			weakly bleccated with dualiz
NDD0030	104.54	104.3	High Mg basalt			minor stringers of quartz
	104.5	195.2	Choor zono and guarta voining			cilico rich over printing
	102.00	195.99	Cabbra			
	220.20	220.35	Basalt	cilicia		hlosshad nassihla shillad margin
NDD0030	220.59	221.75	Basall	SIIICIC		
NDD0030	221.75	259.4	Gabbio			
NDD0030	239.4	255.88	Gabbro			quartz carbonate veiniets up to 10mm long 0.5mm
NDD0030	255.88	259	Gabbro			massive
NDD0030	259	259.36	Gabbro			minor shear silica flooding banded with slickensides
NDD0030	259.36	266.64	Gabbro			
NDD0030	266.64	276.13	Gabbro			trace Magnetite stringers
NDD0030	276.13	283.68	Gabbro			gabbro minor Magnetite veinlets
NDD0030	283.68	291.9	Gabbro			minor stringers of magnetite
NDD0030	291.9	316.43	Gabbro			
NDD0030	316.43	318.1	Gabbro			minor magnetite rich veins
NDD0030	318.1	347.64	Gabbro			massive gabbro with bands of magnetite veining
NDD0030	347.64	350.9	Talc dom rock			flow banding in talcose UM chilled margin
NDD0030	350.9	355.89	Dunite			coarser version of above Um
NDD0030	355.89	357.66	Dunite	silicic		siliceous um? possible chilled margin
NDD0030	357.66	384.76	Dunite			blotchy cumulate textures
NDD0030	384.76	386.1	Dunite		pyrite	blotchy patchy grey UM less dark Olivine? trace disseminated pyrite
NDD0030	386.1	394.04	"Ultramafic, undifferentiated"	silicic	pyrite	chilled UM with strong siliceous overprint
NDD0030	394.04	410.49	High-Mg basalt			patchy foliation
NDD0030	410.49	411.9	High-Mg basalt	silicic		weak patchy silica
NDD0030	411.9	423.2	High-Mg basalt			minor broken zones
NDD0030	423.2	423.5	Cavity			
NDD0030	423.5	442.05	High-Mg basalt			minor bands of quartz- carbonate-magnetite
NDD0030	442.05	443.34	High-Mg basalt			breccia and fault gouge
NDD0030	443.34	452.07	Gabbro			
NDD0030	452 07	453.86	Gabbro	silicic		
NDD0030	453.86	470 87	Gabbro			patchy Magnetite
NDD0030	470 87	472 2	Talc dominated rock			base of flow cumulate?
NDD0030	470.07	475 61	Gabbro			coarse grained
NDD0030	475 61	478 14	Dunite			cumulate textures
NDD0030	479.01	478 21	Dunite		pyrite	7cm of very fine disseminated pyrite at contact
NDD0030	4/0.14	4/0.21	Diorito		pyrite	highly silicoous intermediate to mafie
0500001	4/8.21	498.3	Diofile		pyrite	inging succous intermediate to manc

NDD0031 Summary Log

HoleID	From (m)	To(m)	Lithology	Alteration	Sulphides	Comments
NDD0031	0	0.15	Colluvium			unconsolidated clay and gravel
NDD0031	0.15	16	Lower saprolite			lower sap UM?
NDD0031		27.6	Lower saprolite			
NDD0031	27.6	35.5	Saprock			basalt?
NDD0031	35.5	52 91	Basalt			norphyritic basalt
NDD0031	52.91	55.45	Basalt	silicic		porphyritic basalt
NDD0031	55.45	66.4	Basalt			porphyritic basalt
NDD0031	66.4	67.1	Basalt	silicic		bleached and veined basalt, shear contacts?
NDD0031	00.4	07.1	Dasalt	SILICIC		bleached and venied basait, shear contacts:
NDD0031	07.1	03.42	Basalt			
NDD0031	85.42	87.94	Basalt			snear zone
NDD0031	87.94	88.51	Basait			
NDD0031	88.55	90.95	Basalt			veining associated with darker unit UM ?
NDD0031	90.95	98.07	Basalt			
NDD0031	98.07	99.23	Basalt			chilled very fine grained
NDD0031	99.23	117.77	Basalt			
NDD0031	117.77	117.96	Shear zone		pyrite	qtz hanging wall qtz trace carb foot wall trace pyrite on fractures
NDD0031	117.96	136.24	Pyroxenite			
NDD0031	136.24	137.76	Pyroxenite		pyrite	foliated with bands of quartz veining + pyrite
NDD0031	137.76	143.9	Pyroxenite			patchy coarse
NDD0031	143.9	176	Pyroxenite			
NDD0031	176	182.43	Pyroxenite		pyrite	fine grained UM pyrite in blebby patches
NDD0031	18	201.55	Pyroxenite		17	porphyritic pyroxenite
NDD0031	201 55	201 74	Pyroxenite			
NDD0031	201.55	201.74	Pyrovenite			
NDD0031	201.74	203.10	Durovonito			fault zono?
NDD0031	205.10	200.4	Pyroxenite			
NDD0031	206.4	220.9	Pyrovenite		purito	minor pyrite field lower contact
	220.9	222.94	Pyroxenite		pyrite	minor pyrite increasing towards lower contact
NDD0031	222.94	223.06	"Ultramatic, undifferentiated"			Iviagnetite rich fine grained chilled margin ?
NDD0031	223.06	226.9	Pyroxenite		pyrite	minor clusters of Pyrite and pyrrhotite
NDD0031	226.9	228.1	"Ultramafic, undifferentiated"		pyrite	no remnant pyroxenite texture
NDD0031	228.1	228.85	"Ultramafic, undifferentiated"		pyrite	sheared UM texture
NDD0031	228.85	231.54	Pyroxenite		pyrite	blebs of pyrite
NDD0031	231.54	231.75	"Ultramafic, undifferentiated"		pyrite	small band if sheared foliated UM
NDD0031	231.75	243.38	Pyroxenite		pyrrhotite	fine clusters of pyrrhotite & pyrite
NDD0031	243.38	246.21	Pyroxenite		pyrrhotite	trace sulphides
NDD0031	246.21	247.7	Peridotite		pyrrhotite	trace disseminated pyrrhotite
NDD0031	247.7	247.88	Peridotite	silicic	pyrrhotite	contact with glassy (silica) altered basalt
NDD0031	247.88	2/0 55	Basalt	Silicite	pyrrhotite	moderate pyrrhotite
NDD0021	247.00	245.55	Pasalt		pyrrhotite	blobs and bands of Purrhotito and purito to 10mm
	249.33	249.93	Basalt		pyrrhotite	minor 2 Emm bands of Durrhotite
NDD0051	249.95	255.22	Basalt		pyrnotite	
NDD0031	253.22	253.44	Quartz vein		pyrite	vein breccia with moderate rock flour weak carbonate
NDD0031	253.44	254.4	Basalt		pyrrhotite	basalt with veining at foot wall contact
NDD0031	254.4	261.16	"Ultramatic, undifferentiated"		pyrrhotite	grey soft UM? blebby pyrrhotite to 3cm
NDD0031	261.16	261.54	"Ultramafic, undifferentiated"		pyrrhotite	contact with strong disseminated pyrrhotite and trace pyrite
NDD0031	261.54	262.74	Basalt		pyrrhotite	moderate Pyrrhotite around contact
NDD0031	262.74	279.91	Basalt			
NDD0031	279.91	280.33	Basalt			
NDD0031	280.33	300.15	Basalt		pyrrhotite	trace sulphides throughout weak qtz/carb veining
NDD0031	300.15	306.6	Dolerite		pyrrhotite	coarser grey green Dolerite trace diss po sulphides
NDD0031	303.6	303.84	Basalt		pyrrhotite	chilled zone? moderate blebby pyrrhotite/pyrite
NDD0031	303.84	304.07	Dolerite		. ,	
NDD0031	304 07	304 15	Basalt			
NDD0031	304.15	318 04	Dolerite		pyrite	massive dolerite trace Pyrite rite
NDD0031	312 04	310 4	Basalt	carbonate	- /	weak nervasive Carbonate alteration
NDD0021	210.04	372.00	Dolerite	Surbonale		
NDD0031	272.00	323.08	Bacalt	carbonata	pyrite	chilled margin 2
NDD0031	523.08	324.23		carponate	pyrite	united margin :
	324.23	324.46	Tonalite		pyrite	white relaspar rich leucocratic
NDD0031	324.46	326.13	Doierite		pyrrnotite	reucocratic bands of reidspar rich with minor blebby pyrrhotite
NDD0031	326.18	328.94	Basalt		pyrrhotite	blebs of Pyrrhotite on joints
NDD0031	328.94	331.74	Basalt		pyrrhotite	bands of sulphides
NDD0031	330.74	331.94	Basalt			
NDD0031	331.94	332.6	Basalt		pyrrhotite	
NDD0031	332.6	336.79	Basalt		pyrite	
NDD0031	336.79	337.76	Basalt	silicic	pyrrhotite	Quartz veining minor pyrrhotite
NDD0031	337.76	338.43	Basalt		pyrrhotite	blebby pyrrhotite adjacent to contacts
NDD0031	338.43	338,96	Porphyry	İ	pyrrhotite	felsic porphyry?
NDD0031	338.96	339.28	Basalt		pyrrhotite	minor bands of Pyrrhotite adjacent to porphyry contact
NDD0021	220.20	342 24	Basalt	carbonato	- J	initial condition of the provide and a poly of the contract
NDD0031	242 24	242.24	Pasalt	carbonata	pyrrhotito	modorato guartz (carbonato voining
NDD0031	342.24	343.92	Dasalt	carbonate	ργιτιοτιτέ	
NDD0031	343.92	344.27	Basalt	carbonate		pillow basalt top?
NDD0031	344.27	344.4	Basalt	sericitic	pyrite	
NDD0031	344.4	349.1	Basalt	silicíc		
NDD0031	349.1	356.03	Basalt	carbonate		
NDD0031	356.03	357.15	Basalt	carbonate		
NDD0031	357.15	387.8	Basalt			
NDD0031	387.8	388.49	Basalt			
NDD0031	388.49	426.9	Dolerite			

Figure 4. Location of the ARN landholding over the Murchison Terrane

About Aldoro Resources

Aldoro Resources Ltd is an ASX-listed (*ASX: ARN*) mineral exploration and development company. Aldoro has a portfolio of critical minerals including rare earth, lithium, rubidium and base metal projects, all located in Western Australia. The Company's flagship project the Narndee Igneous Complex, which is prospective for Ni-Cu-PGE mineralisation. The Company's other projects include. are the Kameelburg REE Project, the Wyemandoo lithium-rubidium-tungsten project and the Niobe lithium-rubidium-tantalum Project.

Disclaimer

Some of the statements appearing in this announcement may be in the nature of forward-looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which Aldoro operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward-looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside Aldoro's control.

Aldoro does not undertake any obligation to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, none of Aldoro, its Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as of the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for or purchase securities by Aldoro. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Competent Person Statement

The information in this announcement that relates to Exploration Results and other technical information complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). It has been compiled and assessed under the supervision of Mark Mitchell, technical director for Aldoro Resources Ltd. Mr Mitchell is a Member of the Australasian Institute of Geoscientists and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Mitchell consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Core not cut and sampled yet. IP geophysical surveying has been carried out by Echo Vista Pty Ltd to target massive sulphides associated with magmatic Ni-Cu-PGE's in the Narndee Igneous Complex under Aldoro's Narndee project. The Inducted Polarisation sounding method was used with a 5kW transmitter, Model VIP5000 by IRIS instruments, with 10 true differential inputs (10 channel), operating on transmitter frequency range of 0.0625 to 4Hz (by factors of 2) and using industry standard compliant core receiver and current transmission wires. The stations were at 40m intervals along east-west lines (perpendicular to the local geological strike) at various lengths, 800m to 1520m with line spacings of 100m
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond core drilling was conducted by DDH1 Drilling with collars positioned by handheld GPS with a +/-5m accuracy and using an average technique based on time. The top of the collar was reamed using a Chlore tool using to 6m depth. Holes are drilled by HQ3 to fresh rock, cased off and drilled NQ2 to end of the hole. The NQ2 part of the hole is oriented by a Reflex Act-IQ orientation tool. Bottom of the hole is marked on the core surface using an orientation cradle. All holes will be post drilling surveyed using a down hole gyro collecting continuous readings of dip and azimuth down hole

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recoveries are measured using industry-standard logging techniques. Core recoveries average close to 100% in fresh rock, and 90% in weathered material Sample bias is very unlikely given the very good sample recoveries especially below the base of oxidation. As the core loss is relatively low, no sample bias is considered
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Aldoro core is logged using industry-standard semi-quantitative logging templates on handheld digital devices recording lithologies, colour weathering, alteration, mineralisation, veining, gangue and well as α and β structural information. The logging is generally considered both qualitative and quantitative in nature with all core photographed, both wet and dry. Core lengths are tape measured with any loss recorded both digitally and core markers.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The core is yet to be cut for sampling purposed. All core is onsite
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument 	 No samples for assaying have been collected yet. A Bruker S1 Titan with factory calibration was used for check pXRF readings. These are generally not reported due to a lack of confidence due to the small sampling window and the bias this produces. The units use is primarily to aid logging.

Criteria	JORC Code explanation	Commentary
	 make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Standard reference materials were analysed routinely by pXRF and found to be reporting withing acceptable limits. Quality control methods to be used include external standards and blanks to establish precision from the lab
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Aldoro's visual intersections are logged, interpreted, and reported by the JORC Competent Person QAQC procedures and documentation of primary data are adopted for the core samples. Twinned holes are not being used or reported. No adjustments are made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole collars are measured by handheld GPS and checked several times before drilling. Coordinates presented are in GDA94, UTM Zone 50S. Aldoro holes are surveyed by a Reflex GYRO SPRINT-IQ The holes are yet to be accurately modelled vertically from DEM
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Not relevant as only 2 holes have been completed to test various IP anomalies. The IP survey parameters were designed to give depth penetration to 800m and the orientation to give control in discriminating conductivity changes. A Mineral Resource is not being reported. No sample compositing has been applied, but assay results are reported on a length weighted average
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of drilling is as close to perpendicular to the interpreted key mineralised as possible. The orientation of drilling to key mineralised structures is an evolving interpretation. The geophysical survey has been designed to be orthogonal to the anticipated mineralisation. The interpretated anomalous chargeability/resistivity features identified are consisted with the petrophysical properties targeted, i.e., massive sulphides,

Criteria	JORC Code explanation	Commentary
		however these require validation through drilling to see if they relate to Ni-Cu-PGE mineralisation
Sample security	The measures taken to ensure sample security.	 Core trays are currently at a remote site under supervision of the Project geologist
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have been completed given the early stage of the project

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenements E59/2223, E59/2238 and E59/2258 Held by Gunex Pty Ltd, a 100% owned subsidiary of Altilium Metals Pty Ltd, which in turn is a 100% owned subsidiary of Aldoro Resources Limited GSR to original tenement holder The tenements are in good standing, with no registered native title claimants and no known historical or environmentally sensitive areas with the tenement areas
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Previous relevant exploration was undertaken by: Westralian Nickel-INCO (1960s-70s) BHP-Hunter Resources (1985-90) Wedgetail Resources (2001) Apex Minerals-Mark Creasy (2001-06) Falconbridge-Apex-Mark Creasy (2002-03) Maximus Resources (2005-14)
Geology	• Deposit type, geological setting and style of mineralisation.	• The Narndee Project is located within the Youanmi Terrane of the Yilgarn Craton, close to a major structural boundary between the Murchison and Southern Cross Domains. The regional geology is dominated by Archaean granite-greenstone terranes (greenstone 2.8-3.0 billion years, granites 2.6-2.95 billion years) and the Windimurra Group of layered mafic intrusions (2.847 billion +/- 71 million years).

Criteria	JORC Code explanation	Commentary
		These bodies represent the largest layered mafic-ultramafic intrusive complex in Australia. The Narndee Igneous Complex forms the primary component of the Boodanoo Suite and is divided into three broad units of stratigraphy: Ultramafic Zone, Lower Zone and Main Zone. Historical exploration has generally focused on stratiform PGE-reef mineralisation, whereas Aldoro's focus will be on massive magmatic nickel sulphide deposits
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Summary information of the diamond holes is provided in the text. The relevant details for Aldoro's drilling are contained in the body of this announcement. The use of any data is recommended for indicative purposes only in terms of potential Ni- Cu-PGE mineralisation and for developing exploration targets. XRF data was also not provided as it is considered not representative in nature and is only used for aiding in lithological and mineral context.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Aldoro results will be presented on a length weighted average, in this case 1m intervals. No short interval lengths were reported. No metal equivalent values have been reported,
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 All results referenced are based on down-hole lengths and may not reflect the true width of mineralisation or thickness of host lithologies, which is unknown

Criteria	JORC Code explanation	Commentary
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps and tabulations are presented in the body of the announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All significant and relevant intercepts have been highlighted and key elements have been reported in all tested intervals.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	IP sounding and Gradient array techniques have been utilised.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Short term future work plans are detailed in the body of this announcement. Exploration is at an early stage, and longer-term future work will be results driven

