Further exceptional drilling results from Yinnetharra ### Highlights: - The Yinnetharra Lithium Project is an early-stage exploration project that covers a **large area** of 505km² within the Gascoyne Lithium Province of **Western Australia**. - Six (6) well defined mineralised pegmatites at Malinda - o Lithium mineralisation defined from surface to 350 metres depth so far - Malinda boasts a 'Lithium Mile', comprising two major parallel ore zones M1 and M36 each now drilled out over 1.6km in strike length, remaining open down plunge. - New drilling results, all from M36 include: - o **29m @ 1.5% Li₂O** from 203m Inc. **11m @ 3% Li₂O** from 221m in YRRD120 - o **36m @ 1.1% Li₂O** from 254m Inc. **6m @ 3.1% Li₂O** from 282m in YRRD095 - o 30m @ 1.1% Li₂O from 291m Inc. 10m @ 2.2% Li₂O from 310m in YRRD071 - o **29m @ 1.0% Li₂O** from 199m in YRRD133 - o **9m @ 1.3% Li₂O** from 279m in YRRD132 - The Yinnetharra exploration results continue to show consistent improvement, with each round of results informing and improving our knowledge of the orebody. - Our confidence that Yinnetharra will become a project of global scale has increased with each round of results delivered. **Delta Lithium Limited (ASX:DLI) ("Delta" or the "Company")**, is pleased to announce an update for activities at its 100% owned Yinnetharra Lithium Project in the Gascoyne region of Western Australia. At Yinnetharra, new assay results received from M36 pegmatite at the Malinda Prospect continue to show excellent grade mineralisation. **Commenting on the results** Executive Chairman, David Flanagan said; "The Yinnetharra project is a big system, 240 holes in and we have multiple pegmatites defined along 1.6 kilometres of strike, stacked in a package more than a kilometre wide. This is another batch of terrific results. Intercepts like 11 metres at 3% Li₂O within 29 metres at 1.5% Li₂O also pointing to some very high value mineralisation. Our brilliant exploration team is just getting started and we love what they do." "Western Australia became the single biggest lithium producing region on the planet because of the industry's ability to bring online big spodumene projects quickly. It's not just an amazing place to explore for minerals" To date the Company has completed 240 holes for 54,920 metres at Yinnetharra. This announcement relates to results received from 18 Reverse Circulation (RC) drill holes. A further 95 holes from Yinnetharra project are in the process of being assayed with results due in batches throughout the next few months. The Company is also on track to complete an additional ~100 holes before September 2023 at Yinnetharra. **Figure 1:** Yinnetharra plan showing general location of drilling at the Malinda Prospect and the newly discovered Jamesons Prospect (note Licence area change due to compulsory relinquishment of tenure under the Mining Act). ### New Results at the Malinda Prospect show thick, high-grade pegmatite. Drilling on site at the Malinda Lithium Prospect is rapidly defining the scale of several lithium bearing pegmatites (Figure 1). These results demonstrate excellent tenor and continuity of mineralisation within the M36 pegmatite. The results are significant showing good continuity to high grade results intercepted within the M36 pegmatite. The M36 pegmatite is a continuous pegmatite body approximately 1.7km long, 5-40m wide and 100-300m in down dip extent. Figure 2: Plan view showing drilling at Malinda. ### ASX ANNOUNCEMENT 4 July 2023 Figure 3: Cross Section at Malinda Release authorised by the Executive Chairman on behalf of the Board of Delta Lithium Limited. For further information, please contact: ### **Delta Lithium** David Flanagan, Chairman +61 8 6109 0104 info@deltalithium.com.au ### **Investor/Media Enquiries** Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969 ### **About Delta Lithium** Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With a strong balance sheet and an experienced team driving the exploration and develop- ment workstreams, Delta Lithium is rapidly advancing its Mt Ida Lithium Project towards production. The Mt Ida Lithium Project holds a critical advantage over other lithium developers with existing Mining Leases and heritage agreements in place. To capitalise on the prevailing buoyant lithium market, Delta Lithium is pursuing a rapid development pathway to unlock maximum value for shareholders. Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company is currently undergoing an extensive 400 drill hole campaign to be completed throughout 2023. ### **Competent Person's Statement** Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Refer to www.deltalithium.com.au for past ASX announcements. Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates. #### Disclaimer This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, that could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing Rules. Table 1: New drill hole assay intercepts | HoleID | | From | То | Length | Li2O pct | Ta2O5 ppm | Fe2O3 pct | |---------|------|------|-----|--------|----------|-----------|-----------| | YRRD071 | | 291 | 321 | 30 | 1.1 | 128 | 3.87 | | | Inc. | 310 | 320 | 10 | 2.2 | | | | YRRD073 | | 343 | 348 | 5 | 0.6 | 111 | 1.14 | | YRRD087 | NSR | | | | | | | | YRRD089 | NSR | | | | | | | | YRRD091 | | 176 | 187 | 11 | 0.5 | 79 | 1.42 | | YRRD093 | NSR | | | | | | | | YRRD095 | | 254 | 290 | 36 | 1.1 | 84 | 6.01 | | | Inc, | 282 | 288 | 6 | 3.1 | | | | YRRD097 | NSR | | | | | | | | YRRD099 | NSR | | | | | | | | YRRD116 | NSR | | | | | | | | YRRD120 | | 203 | 232 | 29 | 1.5 | 79 | 6.62 | | | | 221 | 232 | 11 | 3 | | | | YRRD122 | NSR | | | | | | | | YRRD131 | NSR | | | | | | | | YRRD132 | | 257 | 263 | 6 | 0.3 | 88 | 5.30 | | | and | 271 | 289 | 18 | 0.9 | 140 | 0.99 | | | Inc. | 279 | 288 | 9 | 1.3 | | | | YRRD133 | | 199 | 228 | 29 | 1 | 55 | 6.33 | | | Inc. | 216 | 228 | 12 | 1.7 | | | | YRRD134 | NSR | | | | | | | Table 2: New hole collar details | HoleID | E | N | RL | EOH Depth | Dip | Azi | |---------|--------|---------|-----|-----------|--------|--------| | YRRD071 | 426411 | 7289176 | 320 | 342 | -55.08 | 6.22 | | YRRD073 | 426411 | 7289096 | 320 | 390 | -55.72 | 4.17 | | YRRD087 | 426553 | 7289075 | 322 | 319 | -68.23 | 358.02 | | YRRD089 | 427225 | 7288814 | 323 | 210 | -89.9 | 301.9 | | YRRD091 | 425832 | 7289321 | 321 | 450 | -56.15 | 357.23 | | YRRD093 | 426071 | 7289503 | 320 | 342 | -54.71 | 2.65 | | YRRD095 | 426311 | 7289220 | 317 | 317 | -55.56 | 6.93 | | YRRD097 | 426319 | 7289140 | 314 | 348 | -61.02 | 6.71 | | YRRD099 | 426151 | 7289220 | 317 | 318 | -61.01 | 7.56 | |---------|--------|---------|-----|-----|--------|--------| | YRRD116 | 426391 | 7289343 | 320 | 252 | -50.95 | 2.98 | | YRRD120 | 426311 | 7289300 | 317 | 282 | -61.11 | 0.97 | | YRRD122 | 426951 | 7289263 | 320 | 224 | -54.34 | 0.96 | | YRRD131 | 426471 | 7289300 | 317 | 300 | -59.89 | 10.59 | | YRRD132 | 426471 | 7289220 | 316 | 324 | -60.01 | 0.52 | | YRRD133 | 426231 | 7289300 | 321 | 264 | -61.55 | 3.87 | | YRRD134 | 426231 | 7289220 | 316 | 312 | -61.69 | 358.04 | Table 3: Previous hole collar details | HoleID | Е | N | RL | EOH Depth | Dip | Azi | |---------|----------|---------|---------|-----------|--------|--------| | YRRD035 | 425869.4 | 7289888 | 307.303 | 252 | -55.84 | 184.48 | | YRRD036 | 425754.7 | 7289595 | 314.746 | 96 | -55.64 | 6.71 | | YRRD037 | 425743.5 | 7289550 | 314.639 | 120 | -55.04 | 2.05 | | YRRD038 | 425725.2 | 7289502 | 313.087 | 145 | -55.92 | 359.55 | | YRRD039 | 425911.9 | 7289542 | 311.452 | 300 | -54.08 | 6.98 | | YRRD040 | 425877.8 | 7289930 | 307.513 | 78 | -56.66 | 176.68 | | YRRD041 | 425911.2 | 7289507 | 312.03 | 252 | -55.16 | 0.1 | | YRRD042 | 425711.3 | 7289825 | 305.689 | 198 | -56.29 | 171.21 | | YRRD043 | 425912.8 | 7289473 | 312.134 | 294 | -54.81 | 6.42 | | YRRD044 | 425711.7 | 7289844 | 305.975 | 120 | -56.48 | 177.83 | | YRRD045 | 425912.3 | 7289382 | 313.797 | 379 | -54.96 | 1.92 | | YRRD046 | 425712 | 7289864 | 305.407 | 198 | -56.04 | 177.94 | | YRRD047 | 425910.7 | 7289343 | 312.515 | 397 | -54.06 | 2.08 | | YRRD048 | 425711.9 | 7289886 | 305.249 | 198 | -56.61 | 178.56 | | YRRD049 | 425914.1 | 7289226 | 313.741 | 481 | -54.77 | 2.4 | | YRRD050 | 425711.7 | 7289905 | 306.145 | 204 | -55.77 | 179.78 | | YRRD051 | 425913.2 | 7289142 | 312.107 | 199 | -55.32 | 359.42 | | YRRD052 | 425711.8 | 7289924 | 306.235 | 132 | -55.66 | 180.35 | | YRRD054 | 425717.1 | 7289740 | 308.536 | 150 | -89.14 | 24.79 | | YRRD056 | 425630.2 | 7289763 | 306.907 | 216 | -55.81 | 181.31 | | YRRD057 | 425751 | 7289203 | 320 | 277 | -54.41 | 359.39 | | YRRD058 | 425632 | 7289802 | 308.241 | 216 | -56.16 | 181.06 | | YRRD059 | 425591 | 7289123 | 320 | 211 | -54.84 | 3.99 | | YRRD060 | 425633.2 | 7289846 | 306.559 | 204 | -55.98 | 181.54 | | YRRD061 | 425587 | 7288962 | 320 | 157 | -55.7 | 3.77 | | YRRD062 | 425631.5 | 7289887 | 307.945 | 204 | -56.99 | 174.34 | | YRRD063 | 426071 | 7289463 | 320 | 396 | -71.96 | 3.54 | | YRRD064 | 425551.7 | 7289762 | 307.072 | 258 | -55.75 | 178.87 | | YRRD065 | 426071 | 7289143 | 320 | 193 | -53.27 | 359.62 | | YRRD066 | 425470.4 | 7289761 | 307.133 | 174 | -55.85 | 180.58 | | YRRD067 | 426550 | 7289100 | 322 | 337 | -50.69 | 1.12 | | YRRD068 | 425473.7 | 7289922 | 306.357 | 198 | -56.66 | 179.24 | | YRRD069 | 426550 | 7289200 | 320 | 199 | -55.75 | 5.33 | | YRRD070 | 425793.3 | 7289802 | 308.4 | 198 | -55.61 | 175.34 | | YRRD072 | 425790.5 | 7289841 | 307.135 | 186 | -55.75 | 180.07 | YRRD074 425790.7 7289886 307.341 180 -55.82 180.54 YRRD075 426411 7289016 320 301 -55.42 1.28 425791.7 306.84 198 -55.98 186.53 YRRD076 7289925 YRRD077 426492 7289176 320 211 -69.91 357.84 YRRD078 425711 7289962 320 204 -55.79 185.64 YRRD079 426552 7289520 318 157 -55.1 1.27 YRRD080 425952 7289802 320 192 -56.4 182.35 YRRD081 426552 7289440 317 211 -55.35 4.96 YRRD082 425952 7289843 320 204 -56.01 181.79 YRRD083 426552 7289360 319 199 -54.99 1.51 YRRD084 425952 7289883 320 204 -55.14 185.42 YRRD085 426552 7289280 321 199 -55.57 5.12 YRRD086 425952 7289923 320 198 -56.7 185.06 YRRD088 426112 7289763 320 336 -55.57 183.71 YRRD092 426171 7289087 320 240 -54.71 2.65 YRRD094 426171 7288987 320 258 -56.18 5.1 426261 7288987 1.7 YRRD096 320 324 -55.8 YRRD098 426070 7289032 320 198 -54.3 5.47 163 -55.94 1.81 YRRD100 426100 7288780 320 YRRD102 425940 7288780 320 90 -54.86 3.16 YRRD103 426231 7289116 315 378 -55.78 2.74 81 YRRD104 425940 7288700 320 -55.54 357.63 YRRD105 426316 7289417 323 222 -69.574.43 YRRD106 426100 7288700 320 102 -54.83 1.19 YRRD107 7289423 264 352.96 426151 323 -84.9 YRRD108 425780 7288780 320 60 -55.09 0.43 YRRD109 426151 7289463 323 264 -75.04 359.97 YRRD110 426391 7289563 320 204 -57.08 0.04 YRRD112 426391 7289483 320 200 -55.84 0.66 426391 YRRD114 7289343 320 348 -69.16 1.07 426373 7289267 282 YRRD118 320 -69.69 356.33 426395 320 90 -55.28 176.59 YRRD121 7289606 YRRD123 426627 7289163 320 240 -55.51 0.3 YRRD124 426710 7289401 300 200 -56.46 4.54 200 5.61 YRRD125 426711 7289323 320 -57.65 YRRD126 426711 7289243 320 300 -56.85 4.9 YRRD136 425891 7289925 327 72 -90 0 0 YRRD137 425451 7289322 327 90 -90 YRRD138 425888 7289403 324 120 -90 0 YRRD139 425476 7289522 327 90 -90 0 YRRD140 427187 7290308 330 120 -55.51 354.85 YRRD141 427267 7290226 330 204 -55.02 356.86 YRRD142 426334 7290181 330 120 -55.63 2.46 YRRD143 426375 7290301 330 120 357.62 -55.27 YRRD144 426293 7290367 330 120 -55.52 359.66 YRRD145 426094 7290099 330 204 -55.75 358.9 YRRD146 426014 7290181 330 96 -55.52 357.53 | YRRD147 YRRD148 YRRD149 YRRD150 YRRD151 YDRD001 YDRD002 | 425281
425281
425281
426071
426071 | 7290325
7290245
7290165
7289303 | 313
313
314 | 120
120
120 | -55.41
-55.64 | 355.14
2.89 | |---|--|--|-------------------|-------------------|------------------|----------------| | YRRD149
YRRD150
YRRD151
YDRD001 | 425281
426071 | 7290165 | | | | | | YRRD150
YRRD151
YDRD001 | 426071 | | 314 | 120 | 55.02 | 055.00 | | YRRD151
YDRD001 | | 7289303 | | | -55.92 | 355.09 | | YDRD001 | 426071 | 00000 | 320 | 210 | -59.83 | 0.89 | | | | 7289418 | 320 | 348 | -62.12 | 3.5 | | YDRD002 | 425431 | 7289323 | 320 | 150.67 | -54.75 | 1.44 | | | 425751 | 7289283 | 320 | 246.2 | -54.65 | 0.54 | | YDRD003 | 425910 | 7289404 | 320 | 358.2 | -55.15 | 0.64 | | YDRD004 | 426904 | 7288551 | 322 | 486.93 | -57.38 | 358.54 | | YDRD005 | 426231 | 7289463 | 320 | 438.63 | -57.82 | 0.87 | | YNEX001 | 426924 | 7288757 | 322 | 354.8 | -56 | 330 | | YNEX002 | 425962 | 7289350 | 322 | 357 | -50 | 0 | | YNEX003 | 425751 | 7289365 | 322 | 177.6 | -50 | 340 | | YNEX004 | 425727 | 7289793 | 323 | 90.7 | -80 | 180 | | YNEX005 | 425863 | 7289824 | 322 | 64.5 | -50 | 180 | | YNEX006 | 425863 | 7289865 | 322 | 201.96 | -50 | 180 | | YNEX007 | 425538 | 7289646 | 322 | 277.3 | -50 | 0 | | YNEX008 | 426121 | 7289662 | 322 | 244.8 | -50 | 0 | | YNEX009 | 425650 | 7289150 | 322 | 403.8 | -50 | 0 | | YNEX010 | 425769 | 7289843 | 323 | 195.3 | -50 | 310 | | YNEX011 | 425782 | 7289801 | 323 | 200.85 | -58.63 | 309.93 | | YNEX012 | 426012 | 7289847 | 324 | 241.2 | -55.77 | 177.59 | | YNEX013 | 425591 | 7289363 | 320 | 196 | -55.3 | 2.33 | | YNEX014 | 425591 | 7289203 | 320 | 287.23 | -26.14 | 1.71 | | YNRD001 | 426663 | 7288933 | 322 | 63.7 | -62 | 0 | | YNRD002 | 426663 | 7288933 | 322 | 119.9 | -72 | 325 | | YNRD003 | 426657 | 7288991 | 325 | 258.5 | -50 | 180 | | YNRD004 | 426722 | 7288891 | 323 | 118.6 | -50 | 310 | | YNRD005 | 426723 | 7288853 | 322 | 223 | -62 | 20 | | YNRD006 | 426531 | 7288796 | 322 | 200 | -60 | 350 | | YNRD007 | 426527 | 7288824 | 322 | 288.6 | -56 | 350 | | YNRD008 | 426902 | 7288795 | 322 | 216.7 | -51 | 0 | | YNRD009 | 425785 | 7289590 | 322 | 300.7 | -55 | 0 | | YNRD010 | 425843 | 7289580 | 323 | 112 | -60 | 0 | | YNRD011 | 425591 | 7289463 | 322 | 108 | -55 | 0 | | YNRD012 | 425591 | 7289443 | 322 | 138 | -55 | 0 | | YNRD013 | 425591 | 7289423 | 322 | 174 | -55 | 0 | | YNRD014 | 425591 | 7289403 | 322 | 200 | -55 | 0 | | YNRD015 | 425591 | 7289383 | 322 | 228 | -55 | 0 | | YNRD016 | 425584 | 7289489 | 322 | 48 | -55.23 | 1.67 | | YNRD017 | 425585 | 7289512 | 322 | 114 | -54.76 | 359.72 | | YNRD018 | 425431 | 7289463 | 322 | 216 | -55.77 | 1.94 | | YNRD019 | 425431 | 7289443 | 322 | 120 | -55.02 | 2.74 | | YNRD020 | 425431 | 7289423 | 322 | 192 | -55.92 | 359.69 | | YNRD021 | 425431 | 7289403 | 322 | 200 | -55.11 | 1.41 | | YNRD022 | 425431 | 7289383 | 322 | 120 | -55.47 | 0.29 | | YNRD023 | 425436 | 7289507 | 322 | 96 | -55.44 | 3.99 | | YNRD025 426951 7288887 321 150 -54.94 333 YNRD026 427181 7288873 319 156 -56.49 2 YNRD027 427083 7288815 319 220 -56.39 359 | .05 | |---|------------| | YNRD026 427181 7288873 319 156 -56.49 2 YNRD027 427083 7288815 319 220 -56.39 359 | .05
.87 | | YNRD027 427083 7288815 319 220 -56.39 359 | .87 | | | | | YNRD028 426924 7288908 318 200 -56.2 3 | .47 | | | | | YRRD001 426924 7288686 321 294 -55.05 5 | .68 | | YRRD002 426792 7288895 320 132 -54.06 | 3.8 | | YRRD003 426764 7288821 321 250 -55.64 10 | .98 | | YRRD004 426764 7288732 321 294 -55.17 1 | .98 | | YRRD005 427242 7288904 321 252 -55.05 358 | .39 | | YRRD006 427243 7288812 323 264 -55.28 | 0.4 | | YRRD007 426606 7288762 321 252 -55.18 357 | .93 | | YRRD008 426602 7288664 320 252 -56.21 358 | .44 | | YRRD009 426444 7288702 321 264 -55.24 350 | .58 | | YRRD010 426445 7288795 321 250 -55.96 5 | .89 | | YRRD011 426446 7288861 321 252 -55.14 4 | .42 | | YRRD012 426448 7288580 318 222 -55.41 0 | .86 | | YRRD013 426447 7288901 321 120 -55.741 2 | .05 | | YRRD014 426445 7288498 320 222 -55.77 1 | .44 | | YRRD015 426287 7288868 321 198 -54.83 359 | .73 | | YRRD016 426287 7288790 321 90 -56.09 17 | .02 | | YRRD017 426286 7288694 319 150 -54.56 5 | .19 | | YRRD018 426286 7288591 316 168 -54.98 10 | .71 | | YRRD019 426605 7288559 321 250 -56.34 35 | 8.6 | | YRRD020 426791 7289063 320 204 -56.07 358 | .67 | | YRRD021 426868 7289101 320 180 -56.09 358 | .02 | | YRRD022 426765 7288620 318 336 -56.18 2 | .02 | | YRRD023 426925 7288620 318 330 -54.51 355 | .98 | | YRRD024 427083 7288735 318 300 -54.39 4 | .19 | | YRRD025 427083 7288735 319 354 -75.27 3 | .45 | | YRRD026 427245 7288808 323 300 -80.13 353 | .48 | | YRRD027 426765 7288620 319 306 -76.31 351 | .28 | | YRRD028 427165 7289065 323 252 -57.09 358 | .96 | | YRRD029 427245 7288808 323 186 -63.99 98 | .09 | | YRRD030 427086 7288894 319 252 -56.34 1 | .92 | | YRRD031 426031 7289763 320 222 -55.7 178 | .16 | | YRRD032 426031 7289803 320 192 -54.95 184 | .72 | | YRRD033 426031 7289885 320 195 -56.46 186 | | | YRRD034 426031 7289923 320 234 -55.74 180 | | JORC Code, 2012 Edition Table 1; Section 1: Sampling Techniques and Data Yinnetharra | Criteria | Explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information | Diamond (DD) and reverse circulation (RC) drilling has been carried out by Delta Lithium at the Yinnetharra project RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0.3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the Project. Historic drilling referenced has been carried out by Segue Resources and Electrostate (prior holder) Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration | | Drilling techniques | Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Diamond drilling is being carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig and is HQ or NQ diameter. RC drilling is carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig Some RC precollars have been completed, diamond tails are not yet completed on these holes Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling | | Criteria | Explanation | Commentary | |-----------------------|--|---| | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies | | Criteria | Explanation | Commentary | |--|--|--| | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were recorded as being mostly dry Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 μm to eliminate preferred orientation | | Quality of assay
data and laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process | | Criteria | Explanation | Commentary | |---|--|---| | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data | Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta₂O₅ | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control | Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1 and PXD using a multishot tool Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied | | Orientation of data
in relation to
geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material | Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined | | Sample security | The measures taken to ensure sample security | Samples are prepared onsite under supervision of Delta Lithium staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | None carried out | JORC Table 2; Section 2: Reporting of Exploration Results, Yinnetharra | Criteria | | Commentary | |---|--|--| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area | Drilling and sampling activities have been carried on E09/2169 The tenement is in good standing There are no heritage issues | | Criteria | | Commentary | |--|---|---| | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022 | | Geology | Deposit type, geological setting and style of mineralisation. | The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rareearth pegmatites have been identified and mined on small scales | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | A list of the drill hole coordinates, orientations and metrics are provided as an appended table | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalents are used Significant intercepts are calculated with a nominal cut-off grade of 0.5% Li ₂ O | | Relationship
between
mineralisation
widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | The pegmatites are interpreted as dipping moderately to steeply toward the south Further drilling is required to confirm the true orientation of the pegmatites across multiple lined | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Figures are included in the announcement. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All drill collars, and significant intercepts have been reported in the appendix | | Criteria | | Commentary | |------------------------------------|---|--| | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | None completed at this time | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | POW's have been submitted to give RDT access to drill a further 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement (work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms). |