

06 July 2023

Updated Briggs Resource Exceeds 1Mt Contained Copper

• New Mineral Resource Estimate for the Briggs Copper Project comprises an Inferred Resource of 415Mt @ 0.25% Cu + 31 ppm Mo at a 0.20% Cu cut-off grade:

Tonnes (Mt)	Cu Grade (%)	Mo Grade (ppm)	Cut-Off Grade (Cu %)	Cu Metal (Mt)	Mo Metal (Mlb)
982.3	0.19	34	0.00	1.85	74.39
905.5	0.20	34	0.10	1.84	67.75
694.1	0.22	33	0.15	1.52	50.38
415.0	0.25	31	0.20	1.03	28.61
153.0	0.29	30	0.25	0.45	10.02
47.8	0.34	28	0.30	0.16	2.91

Table 1 Overall MRE (Inferred Resource) for the Briggs Copper Deposit

- The Inferred Resource contains ~1 million tonnes of copper metal and over 28.6 million lbs of molybdenum and extends from surface to a depth of ~650m.
- Briggs is now in the Top 10 largest undeveloped copper projects in Australia, based on contained copper.
- The Mineral Resource Estimate (MRE) comprises inferred resource estimates for the Northern Porphyry and Briggs Central, both of which remain open in all directions (Figure 1).
- The Southern Porphyry Target is not included in the MRE.
- Extensive areas of significant copper-in-soils anomalism lie outside the MRE and are yet to be drilled.
- The MRE is expected to grow substantially with further drilling.
- Drilling will resume in early Q3 2023 targeting further extensions of the mineralisation, as well as assessing multiple higher-grade zones in more detail.

Alma Metals Limited (ASX: ALM, "the Company" or "Alma") has completed a new Mineral Resource Estimate (MRE) for the Briggs Copper Project in central Queensland (Table 1 and Figure 1). The MRE is based on an assessment of core drilling undertaken by Canterbury Resources in 2019, RC percussion drilling by Alma in 2021 and core drilling by Alma in 2022/23, supplemented with geological mapping and surface geochemical sampling (refer Tables 4 and 5 and Appendices 1 and 2).

Alma's Managing Director, Frazer Tabeart, said: "This is a great result for shareholders and confirms our view that Briggs is a nationally significant porphyry copper deposit that is likely to grow substantially with further drilling. With a looming global copper shortage predicted by many market observers, the emergence of this large resource is perfectly timed."

.au

Mineral Resource Estimate

Copper mineralisation at Briggs is related to three early-Triassic (ca. 248Ma) porphyritic granodiorite intrusions (North, Central, South). The intrusions have formed stockworks of mmto cm- scale porphyry style quartz-chalcopyrite-pyrite+/-molybdenite veins, both within the intrusions and extending well over 100m into the surrounding older volcanic sediments (see Figures 2 and 3). Many of the veins and the immediately surrounding wall rock contain potassic alteration (biotite, K-feldspar, anhydrite) and locally intense phyllic alteration (sericite-quartz-pyrite).

The mineralisation outcrops and is readily detectable using low-cost grid-based soil sampling which defines a large copper anomaly measuring >2,000m long and >1,000m wide (Figure 1). Individual mineralisation centres broadly match the 0.1% Cu-in-soils contour.

Figure 1. Plan showing Cu in soil geochemistry, the new Inferred Resource outlines (black) and previous Inferred Resource outline (yellow), plus historic and recently completed drill holes. Copper grade histograms shown for holes used in preparing the MRE. Grey arrows denote areas considered highly prospective for resource expansion.

The total Inferred Resource estimate of 415Mt @ 0.25% Cu and 31ppm Mo (0.2% Cu cut-off) contains just over 1Mt of copper metal, representing a 2.5x increase in contained copper from the maiden resource estimate previously published (refer Alma's ASX release dated 18 August 2021). The new mineral resource estimate also includes molybdenum for the first time.

Mineralisation remains open in all directions, and significant scope exists to substantially increase the size of the resource with further drilling (see Figure 1).

.au

almametals.con

in

i.au

Figure 2. Copper sulphides in *mineralised porphyritic granodiorite*, Briggs Central. Hole 23BRD0016 at 123.5m. Within a 2m interval of 61mm diameter core which assayed 0.31% Cu.

Figure 3. Copper sulphides in *mineralised volcanic sediments* surrounding the porphyritic granodiorite, Briggs Central. Hole BD019-003 at 392.1m. Within a 1m interval of 61mm diameter core which assayed 0.44% Cu.

Drilling density (approx. 160m spaced traverses) is sufficient to classify inferred mineral resources for Briggs Central (Figure 4 and Table 2) and for the Northern Porphyry (Figure 5 and Table 3), but further drilling is required to determine if resource estimation is warranted for the Southern Porphyry Target.

Mineral Resource Estimation methodology is described in Appendix 1 and technical details are provided in Appendix 2.

Briggs Central

Figure 4. Drill Cross-Section through Briggs Central showing extent of thick down-hole intersections plus numerous highergrade near-surface intersections. Location of this cross-section is depicted on Figure 1.

Tonnes (Mt)	Cu Grade (%)	Mo Grade (ppm)	Cut-Off Grade (Cu %)	Cu Metal (Mt)	Mo Metal (Mlb)
737.7	0.20	37	0.00	1.45	59.38
678.1	0.21	36	0.10	1.41	53.46
569.8	0.22	33	0.15	1.27	41.86
364.5	0.25	31	0.20	0.91	25.07
134.7	0.29	30	0.25	0.40	8.76
44.4	0.34	27	0.30	0.15	2.69

Table 2	Rriggs	Central	Inferred	Resource
I abie 2.	DIIggs	Central	interreu	Resource

Northern Porphyry

Figure 5. Drill Cross-Section through Briggs Northern Porphyry showing extent of thick down-hole intersections plus highergrade near-surface intersections. Location of this cross-section is depicted on Figure 1.

Tonnes (Mt)	Cu Grade (%)	Mo Grade (ppm)	Cut-Off Grade (Cu %)	Cu Metal (Mt)	Mo Metal (Mlb)
244.5	0.16	28	0.00	0.40	14.99
227.4	0.17	29	0.10	0.38	14.30
124.3	0.20	31	0.15	0.25	8.51
50.5	0.24	32	0.20	0.12	3.54
18.3	0.28	31	0.25	0.05	1.26
3.4	0.32	30	0.30	0.01	0.22

Table 3. Northern	Porphyry	Inferred	Resource
-------------------	----------	----------	----------

almametals.cor

🔰 in

.au

Briggs, Mannersley and Fig Tree Hill Project Background

Alma is sole-funding exploration under an Earn-In Joint Venture agreement and can earn up to a 70% interest from owner Canterbury Resources Limited (ASX: CBY) via a staged earn-in on the Briggs, Mannersley and Fig Tree Hill Project in Central Queensland (for location see Figure 6 and see ASX release dated 18 August 2021 for earn-in details).

The Project includes the Briggs Central copper deposit, where an Inferred Mineral Resource of 415Mt at 0.25% Cu and 31ppm Mo has been defined (this release). The Project is situated approximately 60km west of the deep-water port of Gladstone, and less than 15km to the north of a regionally significant road, rail and power corridor providing excellent infrastructure and logistics connections to the port.

Previously released preliminary metallurgical test-work has shown that high copper recoveries (92-95% recovery) are possible through standard crushing, grinding and flotation to produce viable concentrate grades (see ASX release dated 12 May 2022).

Further drilling to expand the Inferred Resource and to evaluate higher grade zones within the Inferred Resource will commence in Q3 2023.

Figure 6. Regional plan showing proximity of the Briggs copper deposit to key infrastructure elements around Gladstone.

This announcement is authorised for release by Managing Director, Frazer Tabeart.

For further information, please contact the Company directly:

+61 8 6465 5500

investors@almametals.com.au

Mineral Resource Estimate Hole ID Hole Type Max Depth Dip Azimuth Easting Northing RL 21BRC0001 79.0 268969.19 7344838.21 RC -60.0 090 206.70 21BRC0002 RC 181.0 -60.0 225 268905.97 7345144.72 197.10 21BRC0003 179.0 268879.30 7345246.61 194.50 RC -60.0 225 21BRC0004 RC 175.0 -60.0 225 268454.48 7345317.05 182.60 21BRC0005 RC -60.0 268465.28 7345326.28 182.50 169.0 045 21BRC0006 RC 133.0 -60.0 225 267839.31 7345791.51 173.70 21BRC0007 RC 121.0 -60.0 041 267879.00 7345764.00 179.00 21BRC0008 RC 67.0 -60.0 041 267927.05 7345577.78 168.90 21BRC0009 267910.50 RC 97.0 -60.0 7345563.23 168.80 220 21BRC0010 RC 52.0 -60.0 040 267916.55 7345681.74 172.40 268965.47 21BRC0011 RC 108.0 -60.0 039 7344865.92 206.10 21BRC0012 RC 85.0 -60.0 044 268572.36 7345244.39 184.40 7345664.07 171.67 22BRD0013 DDH 449.5 -60 045 267899.58 267833.77 7345816.32 22BRD0014 DDH 536.5 -60 045 174.25 23BRD0015 DDH 608.3 -50 220 268359.03 7345429.04 181.27 268566.91 23BRD0016 DDH 442.5 -50 025 7345238.85 183.57 BD019001 DDH 203.6 -55 225 268566.84 7345241.77 183.96 BD019002 -75 268568.74 DDH 375.2 230 7345243.72 183.90 BD019003 DDH 398.8 -55 225 268702.51 7345205.95 189.18 268792.36 BD019004 DDH 452.8 -55 240 7345055.26 232.43 BD019005 638.8 268704.18 7345211.75 189.41 DDH -65 225

Table 4. Collar Location Data (GDA94_Z56) for the Drill Holes used in the

Hole ID	Depth From	Depth To Length		Cu	Мо	Cut-off	
22BRD0013	8.0	449.5	441.5	0.21	31	min envelope	
including	8.0	330.0	322.0	0.22	33	0.1	
including	12.0	24.0	12.0	0.36	58	0.2	
and	34.0	80.0	46.0	0.36	28	0.2	
and	86.0	106.0	20.0	0.27	26	0.2	
and	202.0	246.0	44.0	0.34	77	0.2	
and	426.0	438.0	12.0	0.41	41	0.2	
22BRD0014	6.0	306.0	300.0	0.11	8	min envelope	
and	306.0	528.7	222.7	0.20	36	0.1	
including	322.0	338.0	16.0	0.25	16	0.2	
including	350.0	366.0	16.0	0.24	65	0.2	
including	466.0	528.7	62.7	0.28	37	0.2	
including	478.0	512.0	34.0	0.31	24	0.3	
23BRD0015	8.1	332.0	323.9	0.20	95	min envelope	
including	8.1	63.3	55.3	0.28	108	0.1	
including	22.0	62.0	40.0	0.33	131	0.2	
including	36.0	60.0	24.0	0.39	126	0.3	
including	108.0	134.0	26.0	0.23	53	0.2	
including	144.0	166.0	22.0	0.25	114	0.2	
including	196.0	240.0	44.0	0.21	106	0.2	
including	266.0	276.0	10.0	0.25	121	0.2	
23BRD0016	6.3	416.0	409.7	0.22	30	min envelope	
including	6.3	372.0	365.7	0.23	28	0.1	
including	6.3	62.0	55.7	0.28	7	0.2	
including	8.3	40.0	31.7	0.33	9	0.3	
and	96.0	262.0	166.0	0.28	29	0.2	
including	134.0	160.0	26.0	0.36	47	0.3	
and	216.0	230.0	14.0	0.32	20	0.3	
and	282.0	306.0	24.0	0.24	72	0.2	
21BRC0001	6.0	79.0	73.0	0.18	13	min envelope	
including	30.0	40.0	10.0	0.19	7	0.1	
and	50.0	79.0	29.0	0.27	19	0.1	
including	58.0	78.0	20.0	0.33	17	0.2	
21BRC0002	6.0	181.0	175.0	0.15	60	min envelope	
including	6.0	78.0	72.0	0.16	77	0.1	
and	92.0	102.0	10.0	0.19	37	0.1	
and	128.0	181.0	53.0	0.20	47	0.1	
including	154.0	178.0	24.0	0.29	38	0.2	
21BRC0003	24.0	42.0	18.0	0.19	20	0.1	
and	48.0	104.0	56.0	0.19	45	0.1	
including	50.0	86.0	36.0	0.22	56	0.2	

Table 5 Drill Intersections used in the Mineral Resource Estimate

ALMA METALS LIMITEDSuite 1, 245 Churchill Avenue, Subiaco 6008 WA AustraliaABN 45 123 316 781+61 8 6465 5500investors@almametals.com.au

ALMA*METALS

Hole ID	Depth From	Depth To	Length	Cu	Мо	Cut-off	
and	110.0	179.0	69.0	0.25	34	0.1	
21BRC0004	8.0	175.0	167.0	0.14	20	min envelope	
including	8.0	128.0	120.0	0.15	24	0.1	
and	142.0	175.0	33.0	0.17	6	0.1	
21BRC0005	4.0	169.0	165.0	0.14	35	min envelope	
including	4.0	108.0	104.0	0.15	28	0.1	
including	18.0	32.0	14.0	0.23	28	0.2	
and	124.0	169.0	45.0	0.16	50	0.1	
including	156.0	166.0	10.0	0.25	60	0.2	
21BRC0006	30.0	42.0	12.0	0.38	19	0.1	
and	64.0	78.0	14.0	0.18	50	0.1	
21BRC0007	6.0	26.0	20.0	0.15	15	0.1	
and	46.0	60.0	14.0	0.13	16	0.1	
21BRC0008	26.0	67.0	41.0	0.17	47	min envelope	
including	48.0	67.0	19.0	0.27	38	0.1	
21BRC0010	8.0	52.0	44.0	0.31	13	min envelope	
including	22.0	52.0	30.0	0.37	12	0.2	
including	30.0	50.0	20.0	0.43	6	0.3	
21BRC0011	40.0	96.0	56.0	0.18	24	min envelope	
including	56.0	78.0	22.0	0.23	20	0.2	
21BRC0012	0.0	34.0	34.0	0.50	17	0.1	
including	2.0	32.0	30.0	0.54	17	0.3	
and	40.0	85.0	45.0	0.19	11	0.1	
including	40.0	54.0	14.0	0.28	14	0.2	
BD019-001	6.0	203.6	197.6	0.22	7	0.1	
including	37.0	110.0	73.0	0.25	2	0.2	
and	129.0	173.7	44.7	0.24	19	0.2	
and	184.0	203.6	19.6	0.24	2	0.2	
BD019-002	4.5	375.0	370.5	0.27	10	0.1	
including	5.0	112.0	107.0	0.35	10	0.2	
including	6.0	45.0	39.0	0.53	14	0.3	
BD019-003	5.2	398.8	393.6	0.26	19	min envelope	
including	152.0	398.8	246.8	0.30	11	0.2	
including	226.0	254.0	28.0	0.83	17	0.3	
and	289.0	311.0	22.0	0.35	7	0.2	
and	369.7	398.8	29.1	0.37	19	0.3	
BD019-004	7.8	452.8	445.0	0.27	42	0.1	
including	7.8	40.0	32.2	0.45	81	0.2	
and	442.0	452.8	10.8	0.45	24	0.3	
BD019-005	8.5	568.8	560.3	0.21	15	min envelope	
including	31.2	76.6	45.4	0.33	17	0.2	
and	267.0	312.0	45.0	0.29	9	0.2	
and	440.0	568.8	128.8	0.24	21	0.1	

ALMA METALS LIMITED Suite 1, 245 Churchill Avenue, Subiaco 6008 WA Australia +61 8 6465 5500 investors@almametals.com.au

COMPETENT PERSONS STATEMENT

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the 'JORC Code') sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves. The information contained in this announcement has been presented in accordance with the JORC Code (2012 edition) and references to "Measured, Indicated and Inferred Resources" are to those terms as defined in the JORC Code (2012 edition).

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is based on information compiled by Dr Frazer Tabeart (Executive Director of Alma Metals Limited) who is a member of the Australian Institute of Geoscientists and Mr Michael Erceg (Executive director of Canterbury Resources Ltd), who is a member of the Australian Institute of Geoscientists and a Registered Professional Geologist. Dr Tabeart and Mr Erceg have sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Tabeart and Mr Erceg consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information in this report that relates to the Estimation of Mineral Resources, has been prepared by Mr Geoff Reed, who is a Member of the Australasian Institute of Mining and Metallurgy and is a Consulting Geologist of Bluespoint Mining Services. Mr. Reed is a geologist with over twenty years of diverse mining and exploration industry experience with various major mining and junior exploration companies in Australia. Mr. Reed's strength is in the analysis and calculation of resources for both operating mines and new developments. Mr. Reed has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 Edition). Mr. Reed consents to the inclusion in this report of the matters based on that information in the form and context in which it appears.

There is information in this announcement extracted from:

- (i) the Mineral Resource Estimate for the Briggs Central Copper Deposit, which was previously announced on 18 August 2021, and
- (ii) exploration results which were previously announced on 18 February 2022, 11 April 2022, 12 May 2022, 4 July 2022, 24 November 2022, 30 January 2023, 28 February 2023, 12 April 2023, 15 June 2023 and 28 June 2023.

The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Exploration Targets and Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD LOOKING STATEMENTS:

Any forward-looking information contained in this news release is made as of the date of this news release. Except as required under applicable securities legislation, Alma Metals does not intend, and does not assume any obligation, to update this forward-looking information. Any forward-looking information contained in this news release is based on numerous assumptions and is subject to all the risks and uncertainties inherent in the Company's business, including risks inherent in resource exploration and development. As a result, actual results may vary materially from those described in the forward-looking information. Readers are cautioned not to place undue reliance on forward-looking information due to the inherent uncertainty thereof.

.au

almametals.cor

20

in

APPENDIX 1: BRIGGS CENTRAL RESOURCE ESTIMATION METHODOLOGY

Geology and interpretation

At Briggs, granodiorite porphyry stocks with dimensions of at least 500m by 200m have been drilled to a depth of approximately 500m at the Central Porphyry and Northern Porphyry prospects. These stocks have intruded volcanoclastic sediments with broad zones of mineralised hornfels along their contacts. The Central Porphyry and Northern Porphyry are two of at least three intrusive centres comprising the Briggs copper and molybdenum porphyry prospect. Limited drilling, geological mapping, soil geochemistry and magnetics indicate the existence of at least one other centre, referred to as the Southern Porphyry, which has been comparatively underexplored.

Copper as chalcopyrite and molybdenum dominate the potentially economic minerals. A relatively thin (5-40m thick) weakly oxidised zone occurs from surface. The granodiorite porphyry is generally pervasively altered to potassic style alteration (biotite – k-feldspar) and locally overprinted by phyllic (sericite) alteration. Calc-silicate skarns occur within the volcanic sediments. Distribution of copper grade is relatively consistent and predictable within the granodiorite porphyry and in the mineralised hornfels.

Observations are that the timing of alteration and mineralisation are late to post- granodiorite porphyry and associated with a post-magmatic hydrothermal event.

Sampling and sub-sampling techniques

Twenty-one most recent drill holes have been used to inform the mineral resource estimation process, all drilled by Canterbury Resources or Alma Metals.

Core holes have all been drilled in HQ or NQ triple tube size. The drill core was halved longitudinally using an Almonte-type diamond saw. Samples were collected on either a nominal 1m or 2m interval.

Twelve reverse circulation drill holes were drilled using a 110mm face-sampling hammer. Samples were collected in a cyclone, split using a cone splitter and 2-3kg sent to ALS laboratories.

Core and reverse circulation samples were dried and crushed at ALS and pulverized in a LM-5.

Drilling techniques

All holes were core or hammer drilled from surface. Sampling was continuous to bottom of hole. Core and sampling recovery was maximized. Ground conditions are very good and core recovery generally well above 90%. Ground water inflow prevented reverse circulation holes from reaching targeted hole depths.

All holes were drilled across the structural grain of the deposit. The drill holes were angled at between 50° and 75°. All holes were downhole surveyed and collar co-ordinates surveyed by differential GPS.

Criteria used for classification.

The mineral resource estimation is classified as an Inferred Mineral Resource based on the relatively broad spacing of drill sections (maximum 200m) combined with the geologist's interpretation of the continuity and predictability of the mineralisation system.

Sample analysis method

Samples were dried, then crushed in a Jaw Crusher, riffle split to a maximum sample size of 3kg if required, and then pulverised in an LM5 to 85% passing 75µm.

Pulps were assayed by ME-MS61 (a four-acid digestion on a 0.25g sample). The analyte suite included Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn. Zr (48 elements).

Gold was analysed routinely in early drill programs and found to be overwhelmingly below detection. Routine gold analysis was abandoned in subsequent programs.

Appropriate commercially available Standards and Blanks were inserted to monitor QA/QC.

Estimation methodology

The mineral resource was estimated using inverse distance (IVD) and ordinary kriging (OK) methods, constrained by resource domains based on geology and mineralised intervals interpreted by project geologists. No minimum width was used in the interpretation of the resource.

Globally the estimates derived from the IVD and OK methods were very similar, which supported the confidence in the estimate.

OK was used to estimate the fresh rock component of the mineral resource which has a substantial dataset and appropriate variography parameters. IVD was used to estimate the minor oxide rock component of the mineral resource due to the limited data available in this domain.

The block dimensions used in the model were 20m NE-SW x 70m NW-SE x 20m vertical, with sub-cells of 2m x 7m x 2m respectively. The 20m x 70m x 20m size was based on the Kriging Neighbourhood Analysis derived by external consultants Conarco Consulting.

Cut-off grades

Cut-off grades are reported from 0.0% Cu to 0.5% Cu in increments of 0.05% Cu. This was deemed appropriate at this stage of the economic evaluation.

Copper and molybdenum are the only metals identified of potentially significant economic value. Other commonly payable by-products in porphyry copper-molybdenum systems, such as gold and silver, are at subdued levels to date.

In order to assess a potential economic cut-off grade for Briggs, comparisons were made to existing bulk tonnage, low grade porphyry copper-molybdenum style operations and projects.

A contemporary example is the July 2022 Pre-Feasibility Study by Caravel Minerals (ASX CVV) for the Caravel Copper Project in WA which has Mineral Resources of 1.18Bt at 0.25% Cu and 48ppm Mo, including Reserves of 583.4Mt at 0.24% Cu and 50ppm Mo. The cut-off grade for Caravel's Reserves was derived as part of the mine optimisation studies, factoring in processing costs, the copper recovery factor and the copper price with associated selling costs. The result was a cut-off grade of 0.1% Cu.

Mining and metallurgical methods and parameters, and other modifying methods considered to date.

Bulk densities were determined on 140 samples of drill core from BD019-001 to BD019-004 by water immersion. A bulk density of 2.6t/m³ was used for the GDP domain and 2.7t/m³ for the MINSED domain.

The assumption is that hypogene ore will be extracted by bulk mining open cut methods. It is currently assumed that the volumetrically insignificant supergene mineralisation is of little or no economic significance.

The assumption is that the ore is amenable to standard comminution methods used in large scale, lowgrade operations and the hypogene copper ore can be extracted by flotation methods. Preliminary metallurgical test work has been completed across representative types of mineralisation and delivered copper flotation recoveries of 92-95% and concentrate grades of 17-20% copper with no trace metals of concern.

The assumption is that there would be no social or environmental impediment to establishing a large tonnage low grade copper-molybdenum mine.

20

ALMA *METALS

APPENDIX 2 - JORC TABLES

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 New drill hole data used to support the increased inferred mineral resource is derived from a 2021 12-hole reverse circulation program and a 4-hole core program completed in 2023. Results of the 2021 reverse circulation program are reported in ASX release 18 February 2022 and the 4-hole core program detailed here. Drill holes 22BRD0013 & 14 and 23BRD0015 & 16 were drilled by a contractor utilising a track-mounted Alton 900 core rig (see photograph below). All four holes were core drilled from surface. The core was cut, sampled, crushed and pulverised, and assayed at ALS Laboratories.
	 Sample intervals were nominally 2m sampling intervals. Core recovery was continuously monitored by the Project Geologist. Coarse chalcopyrite was observed occasionally in quartz veins up to 1cm scale (see photograph below), however most of the copper mineralisation is disseminated at less than 1cm grain size in diameter and generally less than 1mm. Examples of coarser chalcopyrite mineralisation associated with quartz veins in sediment and granodiorite respectively (drill hole 22BRD0014 126m & 23BRD0016 123.5m, width of core 61mm):

ALMA*METALS

Criteria	Commentary
Drilling	Core HQ3 (61.1mm) size drilled from surface.
techniques	Core was not orientated.
	Core was placed in commercially available plastic core trays with core blocks indicating hole
	depth at the end of each drill run.
	The Project Geologist, monitored the drill program.
Drill sample	• Actual recovered core lengths were compared with drill runs (up to 3m) and recoveries
recovery	monitored.
	 Drilling conditions were generally good, however triple tube was used throughout to maximise recoveries.
	• Core recovery over the assayed intervals, other than colluvium, was acceptable.
	Sample bias was not considered a material issue.
Logging	• All drill core was photographed, geologically and geotechnically logged on site to a level of detail
	to support appropriate mineral resource estimation, mining and metallurgical studies.
	 Meter marks were painted on the core. Core was photographed using a digital camera. Digital photo files were labelled with hole number and depth.
	• The Project Geologist logged into Geology, Survey, Geotech, and Structure spreadsheets for
	uploading directly into an Access Database managed by the Database Administrator in Alma's
	office in Perth.
	All core was sampled and assayed.
Sub-sampling	 Drill core was logged on site. Core trays were then palletised, plastic wrapped and transported in hotels as hyperpresented and transported in Section 2.5.
techniques	balcries by commercial carrier to ALS S sample Processing Facility at 2007ere, Brisbane.
and sample	 Sample cut sheets were prepared by the Project Geologist and enhance to ALS. Core was cut using an Almonto type core saw. Core was placed in a V-notch carrier and balved.
preparation	 Core was cut using an Annoncertype core saw. Core was placed in a venoticit carrier and haived length-ways. The cut core was returned to the trav
	 Sampling was of half-core in nominally 2m sample intervals reducing in areas of structures
	and/or geological complexity which was considered appropriate for the grain size of the material
	Define sampled.
	 A field duplicate (EDUP) was collected at regular intervals by quarter coring the half core sample.
Quality of	 Samples were dried, crushed and pulverized using Australian Laboratory Services codes DRY-21.
assav data and	CRU-21 and PUL-24. Samples were crushed in a Jaw Crusher, riffle split to a maximum sample size of
laboratory	3kg if required, and then pulverised in an LM5 to 85% passing 75μm.
tests	 Reject samples and pulps were returned and are stored at Canterbury's Core Storage Facility at Caboolture.
	• Pulps were assayed by ME-MS61 (a four-acid digestion on a 0.25g sample). The analyte suite included
	Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb,
	Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn. Zr (48 elements).
	 Appropriate commercially available Standards or Blanks were inserted according to the
	following sampling strategy:
	Sample number string starts at BRD00001 Blanks samples insorted as samples anding in BBDww00 and BBDwwE0
	 Blattks samples inserted as samples BRDyyy25 and BRDyyy25 Standards inserted as samples BRDyyy25 and BRDyyy25
	 Standards inserted as samples BRDxxx23 and BRDxxx40/41 BRDxxx60/61 and Field duplicates BRDxxx20 and BRDxxx21 BRDxxx40/41 BRDxxx60/61 and
	BRDxxx80/81
	5. That will achieve 8 QAQC samples per 100, which is adequate.
	• Blank or Standard inserted every 25 th sample. QA/QC was monitored by the Alma Database
	Administrator and reported to the Project Geologist on receipt of assays.
	• The results of the assaying of the Standard (Geostats GBM320-8) did not indicate any major
	issues with laboratory method.

😏 in almametals.com.au

ALMA[‡]METALS

• A Blank was made up from clean sand. The results of the assaying of the Blank material did not indicate any major issues with contamination between samples nor suggested any mix up in samples.

• Field duplicates (FDUP=56 samples) using ¼ core were collected and sent to Australian Laboratory Services for assay. The variability is generally within one standard deviation.

No referee laboratory checks on pulps have been sent to date.

•

.au

J

ALMA*METALS

Criteria	Commentary
Verification of sampling and assaying	 Significant intersections were determined by weighted average and reported by the Exploration Manager. No holes were twinned. Data was collected in fit-for-purpose data entry templates and stored in the company database. No adjustment was made to any assay data.
Location of data points	 Coordinates are in GDA94 MGA Zone 56. Down hole survey data is being collected systematically at approximately 50m intervals using an Axis Champ Magshot 2310 digital directional survey tool. Topographic control has been obtained by Lidar survey. Drill collars are captured by DGPS using a commercial surveying company.
Data spacing and distribution	 The 2022 & 2023 drill holes were designed to test Exploration Targets being (1) NW &NE extensions to the Central Porphyry and (2) Northern Porphyry. Step outs were no more than 200m from an existing hole, other than the Northern Porphyry which is a new target for the company. Data spacing and distribution was considered sufficient to establish the degree of geological and grade continuity appropriate for the inferred mineral resource estimate.
Orientation of data in relation to geological structure	 Drill hole sections were designed to test across the regional northwest – southeast structural trend. No material sampling bias was introduced.
Sample security Audits or	 The Briggs drill site and core logging area (both on Fig Tree Station) was under the supervision of the Project Geologist. Core was palleted and plastic wrapped before being transported by a contractor directly to ALS in Zillmere, Brisbane. No audits or reviews have been undertaken of sampling techniques or data.
reviews	

💓 in almametals.com.au

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral	• EPM19198 (Briggs), EPM18504 (Mannersley), EPM28588 application (Don River) and EPM27317
tenement and	(Fig Tree) are located 50km west southwest of Gladstone in central Queensland.
land tenure	• EPM19198, EPM18504, EPM28588 application and EPM27317 are 100% owned by Canterbury
status	Resources Limited (ASX: CBY). Rio Tinto holds a 1.5% NSR interest in EPM19198 and EPM18504.
	• In July 2021, Alma Metals committed to a joint venture covering EPM19198, and adjoining
	tenements whereby it has the right to earn up to 70% interest by funding up to \$15.25M of
	assessment activity.
	 Drill holes 22BRD0013 & 14 and 23BRD0015 & 16 were all collared within EPM19198. Bringe (EBM40100) (section many)
	Briggs (EPM19198) location map:
	Mount Morgan
	GLADSTONE
	DON RIVER
	3 EPM 28588 MANNERSLEY
	EPM 1939
	Down Participant
	> Castrad covert > and > 1 to an > and > 1 to an > 1
	Road X X RESOURCES
	Mine 0 NBriggs-Mannersley-Fig Tree Hill-Don River
Exploration	• Refer to ASX release from 18 August 2021 covering work by Noranda (1968-1972), Geopeko
done by other	(early 1970s), Rio Tinto (2012-2016) and Canterbury Resources (2019-2022).
parties	• A 12-hole RC drilling program was completed testing the Central, Northern and Southern
	porphyry prospects in 2021 (ASX announcement 18 February 2022).
Geology	• At Briggs, a granodiorite porphyry stock (GDP) with dimensions in excess of 500m by 200m has
	been drilled to a depth of ~500m at the Central Porphyry prospect. This stock has intruded
	volcanoclastic sediments with a zone of hornfels along the contact. The Central Porphyry is one
	of at least three intrusive centres comprising the Briggs Cu \pm Mo porphyry prospect. Intrusive
	outcrop, soil geochemistry and magnetics (depressed susceptibility) indicate the existence of at
	least two other centres, referred to as the Northern and Southern Porphyry.
	Conner as chalconwrite with miner melyhdenum deminete the notentially economic minerals.
	copper as charcopyrite with minor morpudential dominate the potentially economic minerals. A
	relatively thin oxide zone blankets the deposit. The GDP is pervasively altered to potassic style
	alteration (biotite – k-teldspar) overprinted by phyllic (sericite) alteration. Distribution of copper
	grade is relatively consistent and predictable within the GDP and in the contact hornfels.
	Banded silica bodies with UST textures have been observed at Northern. Central and Southern
	Porphyries, Similar quartz zones have been intersected in drilling. These siliceous bodies appear
	to be sub-vertical and dyke-like in character and may have formed at contacts between intrusive
	nhases. The silica hodies are generally well mineralized. It is suggested that they represent
	phases. The since boulds are generally well initialised. It is suggested that they represent

ALMA*METALS

Criteria	Commentary							
	magmatic manifestations in the cupola region of the intrusion(s).							
	Mineralisation is a multi-stage hydrothermal event, with an earlier event associated with quartz							
	- k-feldspar - chalconvrite - molybdenum veins and a later cross-cutting event dominated by							
		ortz coricito	chalconvrit	0				e deninated 2,
	qua	artz - sericite	- chalcopyrit	e.				
	Th	o oprior conn	or overt is pr	odominantly	, bostod withi	n the graped	liorito porphy	ry and the latter
			ei event is pi					
	alo	ng the conta	ict between	the intrusive	e stock and v	olcanoclastic	c sediments,	probably taking
	adv	vantage of _l	permeability	afforded a	long intrusiv	e contacts	and faults v	with deposition
	cor	ntrolled by br	ittle fracture	and reaction	n with Fe-rich	host rocks.		
Drill hole	• Tw	o drill progra	ms have beer	n completed	on the Briggs	Project since	the 2020 Res	ource Estimate.
Information	202	21 - 12-hole r	everse circul	ation progra	m (1446m)	-		
	201				(<u> </u>			
	202	22 & 2025 - 2	F-noie core p		0.0111)			
	• The	e drill holes u	sed in the mi	ineral resour	ce estimatior	n are:-		
	DataSet	Hole_ID	Hole_Type	Max_Depth	NAT_Grid_ID	NAT_East	NAT_North	NAT_RL
	Briggs	21BRC0001	RC	79	MGA94_56	268969.19	7344838.21	206.7
	Briggs	21BRC0002	RC	181	MGA94_56	268905.973	7345144.72	197.1
	Briggs	21BRC0003	RC	179	MGA94_56	268879.298	7345246.612	194.5
	Briggs	21BRC0004	RC	175	MGA94_56	268454.476	7345317.047	182.6
	Briggs	21BRC0005	RC	169	MGA94_56	268465.277	7345326.283	182.5
	Briggs	21BRC0006	RC	133	MGA94_56	26/839.311	7345791.513	1/3./
	Briggs	21BRC0007	RC	67		267879	7345764	1/9
	Briggs	21BRC0008	RC	97	MGA94_56	267927.034	7345563 228	168.8
	Briggs	21BRC0010	RC RC	57	MGA94_56	267916 545	7345681 744	172 4
	Briggs	21BRC0010	RC	108	MGA94_56	268965.465	7344865.918	206.1
	Briggs	21BRC0012	RC	85	MGA94 56	268572.363	7345244.385	184.4
	Briggs	22BRD0013	DDH	449.5		267899.584	7345664.066	171.669
	Briggs	22BRD0014	DDH	536.5	MGA94_56	267833.769	7345816.317	174.249
	Briggs	23BRD0015	DDH	608.3	MGA94_56	268359.03	7345429.042	181.273
	Briggs	23BRD0016	DDH	442.5	MGA94_56	268566.914	7345238.853	183.574
	Briggs	BD019001	DDH	203.6	MGA94_56	268566.84	7345241.77	183.96
	Briggs	BD019002	DDH	375.2	MGA94_56	268568.74	7345243.72	183.9
	Briggs	BD019003	DDH	398.8	MGA94_56	268702.51	7345205.95	189.18
	Briggs	BD019004	DDH	452.8	MGA94_56	268792.36	7345055.26	232.43
	Briggs	BD019005	DDH	638.8	MGA94_56	268704.18	/345211./5	189.41
	Tre	atment of hi	storic data					
		torio drill bol			مايتا مامعمامه			are paties of far
			es were uplo					ere not used for
	mii	neral resourc	e estimation	other than t	o inform the	geological m	odel.	
Data	 Ass 	say data in t	he database	is as receiv	ed from the	laboratory.	During reso	urce estimation
aggregation	cor	npositing of a	assays and ap	plication of	top cuts beer	n applied as e	explained in S	ection 3
methods								
Relationshin	• Rei	norted signifi	cant drill hol		are down hol	e lengths and	d not true wid	ths
hotwoon		ported signin		e intercepts		e lengtils and		
Detween								
mineralisation								
widths and								
intercept								
lengths								
Diagrams	Ref	fer Figures 4	and 5 this rep	port and ASX	releases 30 th	January 202	3, 27 th Febru	ary 2023, 12 th
	aA	ril 2023, 28 th	June 2023.			1	,	
Balanced	● Thi	s report is co	nsidered hal	anced				
reporting	- 111							
reporting								

💓 in almametals.com.au

ALMA*METALS

Criteria	Commentary
Other substantive exploration data	• Relevant other exploration data has been adequately reported in CBY ASX release 10 July 2020.
Further work	• Drilling will continue in 2023 to test extensions of the mineralisation discovered to date, and to evaluate higher grade zones.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in Section 1, and where relevant in Section 2, also apply to this section.)

Criteria	Commentary
Database	• A drill and surface sampling Master Database was set up in Access and administered by
integrity	Canterbury's database administrator in head-office.
	Data collected in the field, including geological logging, structural data (oriented core), alteration
	and mineralization, and downhole surveys, was entered directly into logging templates. Data
	was uploaded into Alma Metals Access Database.
	 Similarly drill core sampling cut sheets were uploaded to the Database and matched with digital assay data received from the laboratory.
	• Checks on data integrity was performed by the Database Manager and the Project Geologist validated the Database.
Site visits	Frazer Tabeart (Geology Manager Alma Metals) and Mike Erceg (Geology Manager Canterbury
	Resources) both visited site on numerous occasions during the drilling program.
	Geoff Reed (independent Resource Estimation Consultant) visited site, acting as site geologist
	supervising the drill program from 17 June 2019 to 23 June 2019, 9 September 2019 to 18
	September 2019, 1 November 2019 to 11 November 2019.
Geological	• The results of detailed surface mapping by Canterbury in the central porphyry area combined
interpretation	with down-hole geology contributed to a robust model of the granodiorite porphyry stock (GDP
	domain), hosting volcanoclastic sediments and mineralised hornfelsed contact zone (MSD domain).
	• Although logging of drill core indicated several different phases of GDP, the phases were
	combined into one domain for resource estimation purposes.
	Although surface mapping suggested the GDP stock extended both to the north-west and
	southeast, the GDP domain was limited to 100m beyond the last drill section.
	• The MSD domain is nominally a halo 100m thick surrounding the GDP on all margins.
Estimation and	Geological Modelling
modelling techniques	The geology was modelled on drill cross sections generated in Leapfrog, from surface to a depth of -500mRL.
	3D geological modelling enabled the definition of two primary domains. An inner domain of
	mineralised GDP and a surrounding domain of MINSED (MSD).
	The base of oxidation (TOFR) is modelled as a surface. Cutting the GDP and MSD domain with
	the TOFR surface produced seven mineralised domains:-
	GDP_NP_FR (code 30),
	GDP_CP_FR (code 31),
	MSD_NP_FR (code 32),
	MSD_CP_FR (code 33),
	GDP_NP_OX (code 34) – not used as not intersected in drilling
	GDP_CP_OX (code 35),
	MSD_NP_OX (code 36),
	MDS_CP_OX (code 37)
	Wireframe Construction
	Wireframes were digitised on each drill section in Leapfrog modelling the limits of the GDP and
	MINSED. Geology was projected to a depth of -500mRL approximately 150m beyond the deepest
	drill hole. Similarly, geology was projected no further than 100m along strike beyond the last
	drill section. Sectional geological wireframes were then turned into solids in Leanfrog generating
	the GDP and MINSED solids. The GDP solid was cut from the MINSED solid to generate the GDP

ALMA *METALS

domain and MINSED domain. The 3D dxf wireframes files of the domains were exported from Leapfrog into Vulcan and into 3D wireframes, snapped to the drill holes. Briggs Geological Domains: The 2D dxf wireframes frame, snapped to the drill holes. Briggs Geological Deprint State 2D dxf wireframes frame, snapped to the drill holes. Briggs Geological Deprint State 2D dxf wireframe frame, snapped to the drill holes. Briggs Geological Deprint State 2D dxf wireframe frame code 3A, as there is no drill hole data within the GDP_NP_OX domain. Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045T or 225T, perpendicular to the regional Structural of the broader Briggs mineralisation system. The drill holes are utils for 5 of between 50° an and were designed to intersect copper mineralisation developed within the grance porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Wenty-one drill holes were selected for resource estimation and geological interprese. Note: Statistics Contero Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Serven wireframes were provided to Conarco which included the mineralised porphyry (NP). The TOFW interframe was used to split the four mineralised wiref (GDP and MINSED) and TOFR (four of fresh rock) for the Central Porphyry (NP). The TOFW interframe was us	Criteria	Commentary										
The 3D dxf wireframes, snapped to the domains were exported from Leapfrog into Vulcan and into 3D wireframes, snapped to the drill holes. Briggs Geological Domains: Bit Gov 200808, PD FR Bit Gov 20080, PD FR<		domain	and MINSED do	omain.								
Into 3D wireframes, snapped to the drill holes. Briggs Geological Domains: The domain of the start of th		The 3D	dxf wireframes	files of the dom	ains were expo	orted fron	n Leapfrog ir	nto Vulcan and				
Briggs Geological Domains: bit constraints Second Sec		into 3D	wireframes, sna	pped to the dril	holes.							
Briggs Geological Domains:Total statusStatisticsStatisticsControl Domain StatisticsControl Domain StatisticsConstatistic statistic domains statistic domains.An analysis of the samples for each domain stagests two discrete dominant sampling int of an analysis of the samples for each domain stagests two discrete dominant sam												
Sector Description Description Westbering 31_COP_20008_CP_FR 31 Canadicate		Briggs (Geological Doma	iins:								
30. GDP 230060, MP_FR 30 Grandolorite Instructure Prophyry Freah 32. MSD 230060, MP_FR 32 Metasedments Northern Prophyry Freah 33. MSD 230060, MP_FR 32 Metasedments Northern Prophyry Freah 33. GDP 230060, MP_FR 32 Metasedments Control Prophyry Oxdised 33. GDP 230060, MP_FR 32 Metasedments Control Prophyry Oxdised 33. GDP 230060, MP_FR 32 Metasedments Control Prophyry Oxdised 7. MSD 230060, MP_FR 32 Metasedments Control Prophyry Oxdised 7. MSD 230060, MP_FR 33 Metasedments Control Prophyry Oxdised 7. MSD 230060, MP_FR 32 Metasedments Control Prophyry Oxdised 7. MSD 230060, MP_FR 34 As there is no drill hole data within the GDP_NP_OX Oxdised 8. Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° an and dwer designed to interset copper mineralisation system. The drill holes The drill holes			Wireframe Nam	e Code	Rock Type	Depos	it	Weathering				
13. GOP 20060 CP FR 11 Generalization Central Porphyry Fresh 13. MSD 20060 CP FR 13 14 Exactiments Central Porphyry Fresh 13. MSD 20060 CP FR 13 13 General Porphyry Tresh 13. CP 20060 CP FR 13 14 General Porphyry Tresh 13. MSD 20060 CP FR 13 General Porphyry Tresh 13. MSD 20060 CP FR 13 General Porphyry Tresh 13. MSD 20060 CP FR 13 General Porphyry Tresh 13. MSD 20060 CP OX 13 The dental Porphyry Tresh 13. MSD 20060 CP OX 13 The dental Porphyry Toxidised 14. MSD 20060 CP OX 13 The dental Porphyry Toxidised 15. MSD 20060 CP OX 13 The dental Porphyry Toxidised 15. MSD 20060 CP OX 13 The dental Porphyry Toxidised 14. MSD 20060 CP OX 13 The dental Porphyry Toxidised 15. MSD 20060 CP OX 14 Toxidised Toxidised 15. MSD 20060 CP OX 14 14 Toxidi Toxidi		Opmentary Answer As 3D dxf wireframes files of the domains were exported from Leapfrog into 3D wireframes, snapped to the drill holes. Brigs Geological Domains: The 3D of the domain shapped to the drill holes. Brigs Geological Domains: The 3D of the domain shapped to the drill holes. Brigs Geological P = R Brigs Geological Domains Brigs Geological P = R Brigs Geological Domains State	rn Porphyry	Fresh								
 Source 1, Source 1, Sou		31_GDP_	_230608_CP_FR	31	Granodiorite	Centra	l Porphyry	Fresh				
 ¹⁵ GOP 20008 CP 0X ¹⁵ Or another Control Porphyry Oxidiaed ¹⁵ GOP 2008 NP 0X ¹⁵ GOP 2008		32_MSD	_230608_NP_FR	32	Metasediments	Centra		Fresh				
Statistics Statistics Control Digital		35 GDP	230608 CP OX	35	Granodiorite	Centra	l Porphyry	Oxidised				
37 MEAsediments Central Porphyry Oaddeed Note: There is no wireframe code 34, as there is no drill hole data within the GDP_NP_OX domain. • Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the grance porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interprepurposes. <u>Viele Code</u> <u>Drillholes</u> <u>128RC</u> Canterbury/Alma 12 1,446 <u>228RD</u> Canterbury/Alma 2 1,050.8 <u>BD019</u> Canterbury/Alma 1 0,5552 • Statistics Conarco Con		36_MSD	_230608_NP_OX	36	Metasediments	Northe	rn Porphyry	Oxidised				
 Note: There is no wireframe code 34, as there is no drill hole data within the GDP_NP_OX domain. Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the grance porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code Series Number Metres</u> 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (IC) a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefi (GDP and MINSED) and TOFR (top of fresh rock) for the Central Porphyry (IC) a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefi (GDP and MINSED) resulting in seven mineralised domains. 		37_MSD	_230608_CP_OX	37	Metasediments	Centra	l Porphyry	Oxidised				
domain. • Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the grance porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> <u>Drillholes</u> <u>12BRC</u> <u>Canterbury/Alma</u> 12BRD <u>Canterbury/Alma</u> 23BRD <u>Canterbury/Alma</u> 21BRC <u>Canterbury/Alma</u> 21BRC <u>Canterbury/Alma</u> 21_050.8 <u>BD019</u> <u>Canterbury/Alma</u> <u>2</u> 17_total <u>2</u> 21_050.8 <u>BD019</u> Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Ci a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wireff (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominate		Note: T	here is no wirefr	ame code 34, as	there is no dri	ill hole da	ta within the	GDP NP OX				
 Drill Hole Data The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the granoc porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. Hole Code Drillholes <u>Villholes</u> <p< td=""><td></td><td>domain</td><td></td><td></td><td></td><td></td><td></td><td></td></p<>		domain										
 The drill spacing at the Central Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the granoc porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> <u>Drillholes</u> <u>Metres</u> <u>21BRC</u> <u>Canterbury/Alma</u> <u>12</u> <u>1,446</u> <u>22BRD</u> <u>Canterbury/Alma</u> <u>2</u> <u>986</u> <u>23BRD</u> <u>Canterbury/Alma</u> <u>2</u> <u>1,050.8</u> <u>BD019</u> <u>Canterbury/Alma</u> <u>2</u> <u>1,050.8</u> <u>BD019</u> <u>Canterbury 5</u> <u>2,069.2</u> <u>Total</u> <u>21</u> <u>5,552</u> Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Cr a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo 		• Drill Ho	le Data									
 Ine um spacing at the Celtural Porphyry and Northern Porphyry does not exceed 200m holes are orientated nominally at 045°T or 225°T, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the granod porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> Drillholes Metry Series Number Metres 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (CP a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling intro of 1m and 2m lengths. Although most domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo 		The det	l chacing at the	Control Doroh	nu and North-	n Dorah	ini daac act	averad 200				
 holes are orientated nominally at 045^rT or 225^rT, perpendicular to the regional structural of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the granod porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. Hole Code Drillholes Veres Series Number Metres 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Cr a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) esulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling intro of 1m and 32 are shown below. These lengths have therefore been used when compo 		ine dri	i spacing at the		iy anu Northel	in Forbuy	i y uoes not	exceed 200m				
of the broader Briggs mineralisation system. The drill holes are at dips of between 50° ar and were designed to intersect copper mineralisation developed within the granod porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. Hole Code Drillholes 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo		holes ar	re orientated no	minally at 045°T	or 225°T, perp	pendicula	r to the regio	onal structural				
and were designed to intersect copper mineralisation developed within the grand porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> <u>Drillholes</u> <u>21BRC Canterbury/Alma 12 1,446</u> <u>22BRD Canterbury/Alma 2 986</u> <u>23BRD Canterbury/Alma 2 1,050.8</u> <u>BD019 Canterbury/Alma 2 1,050.8</u> <u>BD019 Canterbury 5 2,069.2</u> <u>Total 21 5,552</u> • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Cf a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) esulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam		of the b	roader Briggs m	nineralisation system	stem. The drill	holes are	at dips of b	etween 50° ar				
 and were designed to intersect copper initeralisation developed within the grandou porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> <u>Drillholes</u> <u>Number Metres</u> <u>21BRC Canterbury/Alma 12 1,446</u> <u>22BRD Canterbury/Alma 2 986</u> <u>23BRD Canterbury/Alma 2 1,050.8</u> <u>BD019 Canterbury 5 2,069.2</u> <u>Total 21 5,552</u> Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Gr a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo 		and we	ro docignod to	intersect con	or minoralicat	tion days	lonod withi	n the graped				
 porphyry host and along the hornfelsed contact zone of the adjacent volcanoclastic sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. <u>Hole Code</u> <u>Drillholes</u> <u>21BRC Canterbury/Alma 12 1,446</u> <u>22BRD Canterbury/Alma 2 986</u> <u>23BRD Canterbury/Alma 2 1,050.8</u> <u>BD019 Canterbury 5 2,069.2</u> <u>Total 21 5,552</u> Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) esulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling int of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when component on the seneral state of the same tene provide seneral state of the same tene provide domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when component proves the same provide of the same therefore been used when component domains 31 and 32 are shown below. These lengths have therefore been used when component provide same tenes the same tenes of the same tenes		allu we	ie designed to				elopeu with					
sequence. Twenty-one drill holes were selected for resource estimation and geological interpret purposes. Hole Code Drillholes 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (C a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling into of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo		porphyi	ry host and alo	ong the hornfel	sed contact zo	one of th	ne adjacent	volcanoclastic				
Twenty-one drill holes were selected for resource estimation and geological interpret purposes.Mole CodeDrillholes21BRCCanterbury/Alma121,44622BRDCanterbury/Alma298623BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		sequen	ce.									
Twenty-one drill holes were selected for resource estimation and geological interpret purposes. Hole Code Drillholes 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Crimineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CR a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefring (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling intro of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo												
Hole Code Drillholes 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (Cr a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling into of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example domains 31 and 32 are shown below. These lengths have therefore been used when compo												
Hole Code Drillholes Series Number Metres 21BRC Canterbury/Alma 12 1,446 22BRD Canterbury/Alma 2 986 23BRD Canterbury/Alma 2 1,050.8 BD019 Canterbury 5 2,069.2 Total 21 5,552 • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (CP a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling into of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example		Twonty	ono drill holos	wore colocted	for recourse	octimatio	n and goolo	gical interpret				
Hole CodeDrillholes21BRCSeriesNumberMetres21BRCCanterbury/Alma121,44622BRDCanterbury/Alma298623BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		Twenty	one drill holes-	were selected	for resource e	estimatio	n and geolo	gical interpre				
SeriesNumberMetres21BRCCanterbury/Alma121,44622BRDCanterbury/Alma298623BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		Twenty purpose	-one drill holes es.	were selected	for resource e	estimatio	n and geolo	gical interpre				
21BRCCanterbury/Alma121,44622BRDCanterbury/Alma298623BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		Twenty purpose	-one drill holes es. Hole Code	were selected	for resource of Dr	estimation	n and geolo	gical interpre				
22BRDCanterbury/Alma298623BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		Twenty purpose	one drill holes es. Hole Code	were selected	for resource e	estimation illholes umber	n and geolo	gical interpre				
23BRDCanterbury/Alma21,050.8BD019Canterbury52,069.2Total215,552		Twenty purpose	-one drill holes es. Hole Code 21BRC	were selected Series Canterbury	for resource of Dr	estimation illholes umber 12	n and geolo Metres 1,446	gical interpre				
BD019 Canterbury 5 2,069.2 Total 21 5,552 • Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CP a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example		Twenty purpose	-one drill holes es. Hole Code 21BRC 22BRD	were selected Series Canterbury Canterbury	for resource of Dr Dr //Alma //Alma	estimation illholes umber 12 2	n and geolo Metres 1,446 986	gical interpret				
Total215,552• Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography).Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CP a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains.An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example		Twenty purpose	-one drill holes es. Hole Code 21BRC 22BRD 23BRD	were selected Series Canterbury Canterbury Canterbury	for resource of Dr Dr //Alma //Alma	estimation illholes umber 12 2 2	n and geolo Metres 1,446 986 1,050.8	gical interpret				
 Statistics Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inter of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exame domains 31 and 32 are shown below. These lengths have therefore been used when compo 		Twenty purpose	Hole Code 21BRC 23BRD 23BRD BD019	were selected Series Canterbury Canterbury Canterbury Canterbury	for resource of Dr Nu //Alma //Alma //Alma	estimation illholes umber 12 2 2 5	n and geolo Metres 1,446 986 1,050.8 2,069.2	gical interpret				
 Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inter of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example 		Twenty purpose	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total	were selected Series Canterbury Canterbury Canterbury Canterbury	for resource of Dr Nu //Alma //Alma //Alma	estimation illholes umber 12 2 2 2 5 21	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552	gical interpret				
Conarco Consulting was engaged to review data files and comment on the general statistic provide a spatial analysis (variography). Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp		Twenty purpose	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total	were selected	for resource of Dr Dr //Alma //Alma //Alma	estimation illholes umber 12 2 2 2 5 21	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552	gical interpret				
Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp		Twenty purpose • Statistic	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total	were selected	for resource of Dr Dr //Alma //Alma //Alma	estimation illholes umber 12 2 2 5 21	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552	gical interpret				
Seven wireframes were provided to Conarco which included the mineralised porphyry (mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp		 Statistic Conarco provide 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs o Consulting was a spatial analys	were selected Series Canterbury Canterbury Canterbury Canterbury canterbury canterbury is engaged to rev is (variography).	for resource of Dr Nu //Alma //Alma //Alma	estimation illholes umber 12 2 2 5 21 nd comm	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g	gical interpret				
mineralised sediments (MINSED) and TOFR (top of fresh rock) for the Central Porphyry (CF a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs c Consulting was a spatial analys	were selected Series Canterbury Canterbury Canterbury Canterbury canterbury canterbury canterbury canterbury canterbury	for resource of Dr Nu //Alma //Alma //Alma	estimation illholes umber 12 2 2 5 21 nd comm	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g	gical interpret				
a Northern Porphyry (NP). The TOFR wireframe was used to split the four mineralised wirefr (GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs o Consulting was a spatial analys	were selected Series Canterbury	for resource of Dr Nu //Alma //Alma //Alma //Alma	estimation illholes umber 12 2 2 5 21 nd comm	n and geolo Metres 1,446 986 1,050.8 2,069.2 5,552 ent on the g he mineralis	gical interpret				
(GDP and MINSED) resulting in seven mineralised domains. An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v mineral 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs o Consulting was a spatial analys vireframes were ised sediments of	were selected Series Canterbury c	for resource of Dr Nu //Alma //Alma //Alma //Alma //Alma //Alma //Alma //Alma //Alma //Alma	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) fo	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g he mineralis or the Centra	gical interpret				
An analysis of the samples for each domain suggests two discrete dominant sampling inte of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An examp domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v mineral 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs o Consulting was a spatial analys vireframes were ised sediments (were selected Series Canterbury c	for resource of Dr Nu //Alma //Alma //Alma //Alma //Alma //Alma //DFR (top of free pframo was use	estimation illholes umber 12 2 2 2 5 21 nd comm ncluded t sh rock) fo	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g he mineralis or the Centra	eneral statistic ed porphyry (CF				
An analysis of the samples for each domain suggests two discrete dominant sampling into of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo		• Statistic Conarco provide Seven v mineral a North (GDP ar	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total cs consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu	were selected Series Canterbury c	for resource of Dr Nu //Alma /	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) fo ed to split ains.	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the generalis for the Centra the four min	gical interpret				
of 1m and 2m lengths. Although most domains have a mixture of both, GDP CP domain dominated by 1m lengths and the remaining domains dominated by 2m lengths. An exam domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v mineral a North (GDP ar 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu	were selected Series Canterbury c	for resource of Dr Nu //Alma	estimation illholes umber 12 2 2 2 5 21 nd comm ncluded t sh rock) fo ed to split ains.	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g he mineralis or the Centra the four min	gical interpret				
dominated by 1m lengths and the remaining domains dominated by 2m lengths. An example domains 31 and 32 are shown below. These lengths have therefore been used when compo		• Statistic Conarco provide Seven v mineral a North (GDP ar An anal	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu	were selected Series Canterbury c	for resource of Dr Nu 7/Alma 7	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) for ed to split ains. :wo discret	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the generalis for the Centra the four min	Weathering Fresh Fresh Fresh Oxidised o				
domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v mineral a North (GDP ar An anal of 1m a 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu ysis of the samp and 2m lengths.	were selected Series Canterbury C	for resource of Dr Nu //Alma /	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) for ed to split ains. wwo discre- a mixture	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the g he mineralis or the Centra the four min ete dominan e of both, G	gical interpret				
domains 31 and 32 are shown below. These lengths have therefore been used when compo		 Statistic Conarco provide Seven v mineral a North (GDP ar An anal of 1m a domina 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total 55 5 Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu ysis of the samp and 2m lengths. ted by 1m lengt	were selected Series Canterbury C	for resource of Dr Nu 7/Alma 7	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) for ed to split ains. :wo discret a mixture dominate	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the generalis or the Centra the four min ete dominan e of both, Gi	eneral statistic ed porphyry (Porphyry (CF eralised wirefr t sampling inter DP CP domain gths. An exam				
		 Statistic Conarco provide Seven v mineral a North (GDP ar An anal of 1m a domina 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu ysis of the samp and 2m lengths. ted by 1m lengt	were selected Series Canterbury C	for resource of Dr Nu 7/Alma 7	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) for ed to split ains. wo discret a mixture dominate	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the generation the mineralis for the Centra the four mineralis for the Centra the four mineralis for the Centra the four mineralis	gical interpret				
		 Statistic Conarco provide Seven v mineral a North (GDP ar An anal of 1m a domina domain 	-one drill holes es. Hole Code 21BRC 22BRD 23BRD BD019 Total Consulting was a spatial analys vireframes were ised sediments (ern Porphyry (Ni ad MINSED) resu ysis of the samp ind 2m lengths. ted by 1m lengt s 31 and 32 are s	sengaged to rev is (variography). conterbury Canterbury Canterbury Canterbury Canterbury canterbury	for resource of Dr Nu 7/Alma 7	estimation illholes umber 12 2 2 5 21 nd comm ncluded t sh rock) for ed to split ains. wo discre- a mixture dominate ve therefor	Metres 1,446 986 1,050.8 2,069.2 5,552 eent on the generation the mineralis for the Centra the four min ete dominan e of both, Gi ed by 2m len pre been use	eneral statistic ed porphyry (al Porphyry (CF eralised wirefr t sampling inte DP CP domain gths. An exam d when compo				

😏 📊 almametals.com.au

ALMA[‡]METALS

the data. For molybdenum, there was a relatively high Coefficient of Variation (CV) suggesting top cuts are required.

The summary statistics shows the comparison between the raw samples and the composited samples and are listed below. This data suggests that there is no material difference between the two datasets.

Domain	Element	Comp	Number o	fSamples	Mean	Grade	Std	Dev	Coeff V	aria tion	RawSam	ple Range	Comp Sam	ple Range
Domain	Liemenc	Leng th	Raw	Comp	Raw	Comp	Raw	Comp	Raw	Comp	Minimum	Maximum	Minimum	Maximum
30	a	2	206	205	1473.0	1482.0	1091.0	1087.0	0.7	0.7	33.0	6430.0	86.7	6430.0
31	Ð	1	1995	2195	2302.0	2282.0	1792.0	1634.0	0.8	0.7	0.0	25400.0	18.8	25400.0
32	a	2	424	423	1754.0	1756.0	1419.0	1418.0	0.8	0.8	28.0	10250.0	28.0	10250.0
33	Ð	2	812	521	1807.0	1985.0	1619.0	1291.0	0.9	0.7	0.0	21500.0	22.8	11920.0
35	a	2	51	40	2294.0	1941.0	1783.0	1659.0	0.8	0.9	83.1	7290.0	83.1	6712.0
36	P	2	19	18	458.0	484.0	332.0	323.0	0.7	0.7	0.0	1275.0	97.2	1275.0
37	a	2	16	16	1138.0	1138.0	691.0	691.0	0.6	0.6	24.4	2150.0	24.4	2150.0
30	Mo	2	206	205	16.6	16.7	24.3	24.3	1.5	1.5	1.3	198.0	1.3	198.0
31	Mo	1	1995	2195	18.1	18.4	43.9	37.9	2.4	21	0.0	790.0	0.2	514.0
32	Mo	2	424	424	26.5	26.6	45.1	45.1	1.7	1.7	0.4	521.0	0.4	521.0
33	Mo	2	44.84	521	44.8	59.1	74.8	74.0	1.7	1.3	0.0	866.0	1.2	744.0
35	Mo	2	51	40	45.4	36.9	83.1	64.1	1.8	1.7	1.2	486.0	1.2	397.3
36	Mo	2	19	18	8.6	9.1	44	4.0	0.5	0.4	0.0	18.1	3.0	18.1
37	Mo	2	16	16	42.7	42.4	35.7	35.8	0.8	0.8	2.5	148.5	2.5	148.5

For copper, all domains show a log-normal distribution. The composited data resulted in a low Coefficient of Variation (CV) with the domains with larger number of samples having a relatively well formed "bell curve". This was less so for smaller domains, especially those in the oxide zone. In addition, there are only minor inflections on the log probability plot. This would normally suggest that top-cuts are not required. However, the large jump in grade from the normal distribution histogram suggests that there is "disintegration" of grade and therefore a top-cut is required for domain 31 at 16,000 ppm and domain 33 at 7,000 ppm. These are shown in the figures below.

.au

Y

ALMA[‡]METALS

Histogram and log probability plots for domain 33.

The table below shows the comparison between the composited data and the top-cut data and suggests that using top-cuts will not result in a material change to the Mineral Resource estimate.

	-	-			-	-								
Domain	Lode	Flement	Number o	f Samples		Mean Grade		Top-Cut	Standard	Deviation	Coeff of	Variation	Max Un-	Top-Cut
5000	Louic	Lienen	Un-Cut	Top-Cut	Un-Cut	Top-Cut	% Diff	Value	Un-Cut	Top-Cut	Un-Cut	Top-Cut	Cut Grade	%ile
31	CP	Cu	2195	3	2282	2,274.0	99.6%	16000	1634	1,555.0	0.7	0.7	25400	99.9
33	CP	Cu	521	2	1985	1,968.0	99.1%	7000	1291	1,193.0	0.7	0.6	11920	99.6
30	NP	Mo	205	205	16.66	15.1	90.7%	80	24.34	15.7	1.46	1.0	198	98.2
31	CP	Mo	2195	11	18.39	18.0	97.7%	300	37.89	33.8	2.06	1.9	514	99.5
32	NP	Mo	424	4	26.59	25.8	97.0%	250	45.07	38.5	1.69	1.5	521	99.3
33	CP	Mo	521	3	59.05	58.1	98.3%	400	74.03	67.5	1.25	1.2	744	99.5
35	CP	Mo	40	2	36.89	29.1	79.0%	100	64.06	29.2	1.74	1.0	397.33	96.1

Comparison of composite data and top-cut data for each domain.

.au

Criteria Commentary

Data for the Oxide domains comprised a small population, therefore making it difficult to assess. It was suggested that top-cuts not be used for these domains. For the molybdenum mineralisation, there was a relatively high CV suggesting that top-cut's are required. The histograms and probability plots are shown below. The comparison between composited data and top-cut data is listed in the table above.

p Cut Analysis Top cut: 80 Domain: 30 Elemen Мо top cut %ile top cut # sample # raw % Domain max top cut samples mean top cut differend mean 30 205 16.7 80 98.2 15.1 0.91 198 205 listogram for mo_ppr 30 - mo_ppm > 0 Log mo ppr

Molybdenum histogram and log probability plots for Domain 30

Molybdenum histogram and probability plots for domain 35

.au

ASX:ALM ANNOUNCEMENT

ALMA[‡]METALS

Criteria

Histogram and probability plots for domain 32

Histogram and probability plots for domain 33

Commentary

• Variography

Variography for Domain 31 was completed using Snowden's Supervisor V8 software (see below).

The composited top-cut data from each domain were used for geostatistical modelling.

To determine the nugget value, a downhole variogram with a 1 m lag was used. Then directional semi-variograms were produced in the horizontal, across-strike and dip plane directions. The results of the nugget and semi-variograms were then fitted to a nested spherical model with up to two structures if required. The semi-variograms were then modelled to produce a sill and range in each of the principal directions.

Results of copper variography

Domain	Element	Dir 1	Dir 2	Dir 3	Rotation 1	Rotation 2	Rotation 3	CO	C1	A1	C2	A2
										19.0	I	189.0
31	Cu	090>000	000>335	000>065	0	90	-115	0.13	0.43	154.0	0.44	274.0
										5.0	ĺ	56.0
										61.0		203.0
31	Mo	014>316	-069>004	015>050	316	14.5	-74.5	0.22	0.512	48.0	0.264	199.0
										13.0	Í	56.0

Overall, the result was a well-constructed two structure variogram (Figures 12 and 13). There is some "noise" as small distances, especially in the semi-major direction. A normal scores variogram was required for molybdenum.

Ellipsoid illustrating orientation of copper variography

.au

Y

ALMA[‡]METALS

A kriging efficiency above 80% and a slope of regression above 0.9 is considered a robust estimate. It recommended that block values less than this should be reflected by the Mineral Resource classification.

Y

in almametals.com

.au

Criteria Commentary

A block size of 20(X) x 70(Y) x 20(Z) was chosen (figure below) as this resulted in the best overall kriging efficiencies and also slope of regression, although the results are relatively low. The figure below also suggests that small block sizes results in better kriging efficiencies and SOR however, the drill density must be considered. These results are most likely caused by the estimation of small blocks close to the drill hole samples and do not represent the result of blocks between the drillholes. The figure below shows that there are no negative kriging weights affecting the estimate.

Negative kriging weights at different block sizes

A minimum of 8 samples and a maximum of 40 samples were chosen whereby there is little change to the kriging efficiency and slope of regression when more samples are used. Therefore, choosing more samples does not improve the estimation (figure below). A review of the negative weights (figure below) over this sample range suggests they are at a minimum and should not grossly affect the estimation.

J

.au

ALMA[‡]METALS

Negative kriging weights

From these results, a comparison of the discretisation steps showed a single discretisation point had the best kriging efficiencies and slope of regression. However, the size of the parent block must be considered and therefore it is suggested that a $3(X) \times 3(Y) \times 3(Z)$ regime be used (figures below).

i.au

ALMA[‡]METALS

Negative kriging weights at different discretisation steps

Block Model

A Vulcan block model was created by Blues Point Mining Services (BMS) for the estimate with a block size of 20m NE-SW x 70m NW-SE x 20m vertical with sub-cells of 2m x 7m x 2m. The block model was constrained to the GDP and MINSED domains. Parameters of the model are shown below. Copper and molybdenum were modelled.

i.au

Commentary

Criteria

ALMA[‡]METALS

Model Name	e	vie20	7020bgs23julo	ok.bmf
		X	Y	Z
Origin		268350	7344840	-600
Offset		-800	-1320	-200
Offset		100	640	1100
Block Size (S	ub-blocks)	20 (2)	70 (7)	20 (2)
ock Model Paramete	ers for all Block Mo	dels		
Rotation	227			
Attributes:				
Cu	Grade ppm	- reportable		
Мо	Grade ppm	- reportable		
Bd	Bulk density	,		
Rsc_cat	Measured =	1, indicated	d = 2, inferred	= 3
Min_domain	Mineralisati	on domain		
Ox	Oxidised,tra	nsitional,fre	esh	
Rocktype	Rocktype			
Cuflg	Cu Estimatio	on flag		
Moflg	Mo Estimati	on flag		
Hole_count	Number of I	Drillholes		
Avedist	Average dist	tance to sam	nples	
Numsam	Average dist	tance to sam	nples	
Cu_bv	Block varian	ce for cu		
Cu_kv	Kriging varia	ince for cu		
Cu_ke	Kriging effic	iency for cu		
Cu_lgp	lagrange for	cu		
Cu_sor	Slope of reg	ression for o	cu	
Cu_pct	Copper %			
Cu_mingrhwg	t Min kriging	weight for c	u	

Grade Interpolation

Ordinary Kriging (OK) interpolation with an oriented ellipsoid search was used to estimate Cu and Mo grade in the geology domains GDP and MINSED for fresh rock. Inverse Distance (IVD) interpolation with an oriented ellipsoid search was used to estimate Cu and Mo grade in the geology domains GDP and MINSED for oxide rock.

A first pass long axis radius of 189m with a minimum number of informing samples of 8 was used. The major axis radius was increased to 378m for the second pass. A third pass with an increased search radius of 1032m and a decrease in the minimum number of samples from 8 to

ALMA METALS

Criteria Commentary 2 was required to fill blocks within the extremities of the resource wireframes (see tables below). ~48% of the resource volume filled in the 1st pass, ~35% in the 2nd pass and the remainder in the 3rd pass. A high-grade copper cut of 16,000ppm Cu was applied to the GDP Fresh CP (Domain 31) and 6,000ppm Cu to the MSD Fresh CP (Domain 33), as recommended by Conarco. An Octant Search with a maximum of 8 samples was applied to the fresh rock domains. A bulk density value of 2.6t/m3 was applied to the GDP domains and 2.7t/m3 was applied to MINSED domains. Search Parameters Pass Min Sample **Max Sample** Distance 1 8 40 189 40 2 8 378 3 2 40 1032 **Estimation Parameters**

Search	Bearing	Plunge	Dip	Discretisation
GDP Fresh CP (Domain 31) Cu	0	90	-115	3x:3y:3z
GDP Fresh CP (Domain 31) Mo	316	14.5	-74.5	3x:3y:3z

Ellipsoid illustrating orientation of copper variography

Model Validation

To check that the interpolation of the Block Model correctly honored the drilling data and domain wireframes, BMS carried out a validation of the estimate using the following procedures:

Y

ALMA METALS

Criteria Commentary								
- Compar - A comp for each - Visual so - Spatial o orientat The volumes	ison of volur arison of the domain, ectional com comparison ions. were almost i	mes defi e compc oparison of comp identical	ned by t osited sa of drill oosite gr . The ove	he do mple hole g ades a erall vo	main wir grade sta rades ve and block olume diff	eframes and atistics with rsus estimat grades by erence is wit	d the associate Block Model ted block grac elevation, NE hin 0.01%. BM	ed Block Model, grade statistics les, and -SW and NW-SE S considered this
Comparison to for each dom up to approxi	between the option of the opti	copper g er, doma but they	rade sta ains 35 ar have th	tistics nd 36 p e lowe	from the I present th est amour	Block Model e highest dif nt of samples	and composite ference (a mea s.	es are acceptable an grade variance
The distance greater than largest amou	between con 10% for dom nt of compos	nposites ains 35 a ites has	and the and 36. T a variatio	amou he ma on witl	nt of com aterial do hin 5%.	posites may mains 30 to	contribute the 33 with the lar	e variation range gest volume and
Comparison o to the compo	of the block v sites for all d	alues an omains.	d compo	sites r	esults sho	owed the Blo	ock Model grac	le was very close
A visual secti which reveale Summary of I	on compariso ed satisfactor resource block	on was u y compa k <i>model</i>	undertak rable gra validatio	en of ades. <i>n by d</i>	drill hole omain:	grades vers	us the estimat	ed block grades,
		Re	source	Block	Model V	alidation b	y Domain	
			Wirefr	ame	B	ock Model	Com	posites
Domain	Doma	in	Poo	I	Resourc	e Cu	Number of	Cu
Name	Numb	er	Volu	ne	Volume	%	Comps	%
F31_GDP_CP FF	R 31		114,949	,551	114,950,3	84 0.22	2,280	0.23
F33_MSD CP FF	33		152,709	,022	152,670,7	31 0.18	619	0.20
F35_GDP_CP 02	K 35		3,630,	520	3,632,80	4 0.16	34	0.22
<u>F37_MSD_CP_0</u>	X 3/	1	0,372,	769	0,374,50	8 0.10	21	0.10
	* Discrepancy	in volumes	277,001	,700	211,020,4	20 0.19	2,954	0.22
	2	77,661,768	277,	628,426	33	3,341 99.	99%	
		Reso	ource B	lock	Model V	alidation	by Domain	
		Wiref	rame		Block Me	odel	Compos	sites
Domain	Domain	Po	bd	Res	ource	Cu	Number of	Cu
Name	Number	Volu	ıme	Vo	lume	%	Comps	%
F30 GDP NP	-R 30	23.87	3 149	23.8	72 351	0.15	240	0.15
	-R 32	65 72	6 696	65.7	23 225	0.17	391	0.18
	10 36	1 850	0,000	1 96	51 080	0.06	10	0.05
	Total	01 45	0.900	1,00	AG 656	0.00	650	0.03
	* Discroner	91,45	0,009	91,4	+0,000	0.10	000	0.17
	01 450 900		1/16 656		1 152	100 00%		
	31,400,009	9	,++0,000		4,100	100.00%		

ALMA[‡]METALS

💓 📊 almametals.com.au

ASX:ALM ANNOUNCEMENT

ALMA[‡]METALS

Criteria Commentary SW-NE drill section through Cross Section S2 viewed NW MSD_CP_OX Cross Section S2 Central Porphyry Drilling and Block Model Legend – Cu % 21BRC003 Surface TOFR 200 (DRILL : CU 0.000 <= <pre> < 0.100 0.100 <= <pre> < 0.200 0.200 <= <pre> < 0.300 0.300 <= <pre> < 0.400 0.400 <= <pre> < 30.000</pre> 100 | 0 L BLOCK : CU BLOCK : CU 0.000 <= < 0.100 0.100 <= < 0.200 0.200 <= < 0.300 0.300 <= < 0.400 0.400 <= < 30.000 -100 | GDP CP FR BDO19004 200 | Scale MSD CP FR 250m -300 L Looking North West Step Distance 20m Section influence+/ 10m 400 | ш 90 ш 269500 E CBY and ALM 268500 Briggs Project 2023 Cross Section View CP 52 -500 L Drill section through Cross Section S3 viewed NW Cross Section S3 Central Porphyry Drilling and Block Model Legend – Cu % USD CP ox Surface 200 TOFR DRILL : CU DRLL : CO0.000 <= < 0.1000.100 <= < 0.2000.200 <= < 0.3000.300 <= < 0.4000.400 <= < 30.000100 L 01 BLOCK : CU 0.000 <=</td> < 0.100</td> 0.100 <=</td> < 0.200</td> 0.200 <=</td> < 0.300</td> 0.300 <=</td> < 0.400</td> 0.400 <=</td> < 30.000</td> -100 L BDO19003 GDP CP FR -200 L BDO19005 Scale MSD CP FR -300 | 250m Looking North West Step Distance 20m Section influence+/ 10m -400 | Ш 00 CBY and ALM Briggs Project 2023 Cross Section View CP 53 268 -500 L Drill section through Cross Section S4 viewed NW Cross Section S4 Central Porphyry MSD CP OX Drilling and Block Model Legend – Cu % Surface 10 DRILL : CU TOFR DRILL : CU 0.000 <= < 0.100 0.100 <= < 0.200 0.200 <= < 0.300 0.300 <= < 0.400 0.400 <= < 30.000 100 L 21BRC012 BD19001 L (BLOCK : CU BLOCK : CU 0.000 <= < 0.100 0.100 <= < 0.200 0.200 <= < 0.300 0.300 <= < 0.400 0.400 <= < 30.000 100 | BD19002 200 | MSD CP FR Scale 250m -300 L Looking North West Step Distance 20m Section influence +/ 10m

ALMA METALS LIMITED Suite 1, 245 Churchill Avenue, Subiaco 6008 WA Australia +61 8 6465 5500 investors@almametals.com.au

400 |

-500 L

.au

CBY and ALM Briggs Project 2023 Cross Section View CP S4

ALMA[‡]METALS

Criteria Commentary

Drill section through Cross Section S6 viewed NW

Drill section through Cross Section S7 viewed NW

.au

ASX:ALM ANNOUNCEMENT

ALMA[‡]METALS

Criteria Commentary

Drillhole long-section through Northern Porphyry (LHS) and Central Porphyry (RHS viewed NE

A spatial comparison was undertaken of composite volumes and grades, with block model volumes and grades. There was a close match of overall volumes between the block model and composites (see below). Similarly, a close match was achieved for grades between the block model and the composite data, demonstrating the robustness of the model.

Y

Criteria Com

Commentary

ALMA[‡]METALS

Criteria Commentary

The above table illustrates 40m sliced sections parallel to the direction of drilling (i.e. cross sections). This highlights that the drilling data is concentrated on three sections, approximately 200m apart, and that the block model has generated grades consistently between sections.

ALMA[‡]METALS

Criteria Commentary

ALMA*METALS

Criteria Commentary

Section Mode Volume Mode Volume Number of Comps Catcor Comps Tactor Comps Tactor Sample Ratio 200 165995.00 0.07 140587 Cu.% BCMComp 180 1297181.00 0.09 - - - 180 1297181.00 0.11 46 6.471.610 0.1 49301 140 2237370.00 0.14 71 9.988.789 0.2 3342 120 2286528.00 0.15 45 6.330.922 0.2 52242 100 22965428.00 0.15 23 3.225.805 0.14 107004 20 246490.00 0.15 23 3.225.805 0.13 106630 -20 225183.00 0.16 23 3.225.805 0.13 110704 -40 226240.00 0.15 24 3.376.442 0.20 100769 -40 2262540.00 0.16 23 3.225.805 0.13 111142 -140 2262540			BIOCK MO	del Validation b	Elevation		
Section Model Number of Comps Comps factor Comps Sample Ratio 20 15696:00 0.07 446677 Cu.% BCMcomp. 180 122718:00 0.09 6.471.610 0.1 49301 180 22578:32:00 0.11 46 6.471.610 0.1 49301 120 2289296:00 0.15 63 8.683.271 0.2 35432 120 22982920 0.15 3.4 4.7783.54 0.14 7049 60 2295920 0.15 2.7 3.798.53 0.11 89977 40 2445080 0.15 2.3 3.225.805 0.13 106013 20 248490:00 0.15 2.3 3.225.805 0.20 109428 -40 223442:00 0.16 2.4 3.376.442 0.20 105769 -100 256978:00 0.16 2.4 3.376.442 0.14 106707 -120 25684:00 0.16		Block Mode	3		Composite	es	
200 101 000 100 1000 1000 1000 190 2297720.00 0.11 46 6.471.910 0.1 49001 190 2297720.00 0.11 47 9.968.789 0.2 37342 190 2297720.00 0.15 45 6.200.022 0.2 573247 190 2298128.00 0.15 45 6.200.022 0.2 573247 40 249940.00 0.15 2.7 3.798.553 0.11 799677 40 249108.00 0.15 2.3 3.226.505 0.13 109977 40 249108.00 0.15 2.3 3.226.505 0.13 109913 20 2469406.00 0.16 2.4 3.376.442 0.20 109139 21 2291638.00 0.16 2.4 3.376.442 0.11 109913 20 2469406.00 0.16 2.4 3.376.442 0.10 1111627 20 2469240.00 </th <th>Section</th> <th>Model Volume BCM</th> <th>Model</th> <th>All Elements</th> <th>Comps*factor</th> <th>Comp</th> <th>Sample Ratio</th>	Section	Model Volume BCM	Model	All Elements	Comps*factor	Comp	Sample Ratio
190 1297184.00 0.09 6.771.610 0.1 440301 140 2373700.00 0.14 71 9.988.729 0.2 33432 130 2398256.00 0.15 63 8.83.291 0.2 53327 130 2398296.00 0.15 34 4783.384 0.14 70469 60 2428392.00 0.15 23 3.285.805 0.11 99977 40 2481980.00 0.15 23 3.285.805 0.13 109933 20 248490.00 0.15 23 3.285.805 0.13 109839 20 2516336.00 0.16 23 3.285.805 0.20 1197294 40 253878.00 0.16 24 3.376.442 0.20 106739 40 255878.00 0.16 24 3.376.442 0.11 1106934 410 255878.00 0.16 24 3.376.442 0.17 108037 410 255878.00 <td< td=""><td>200</td><td>156996.00</td><td>0.07</td><td>All Elements</td><td>140001</td><td><u> </u></td><td>Democinp</td></td<>	200	156996.00	0.07	All Elements	140001	<u> </u>	Democinp
160 2267832.00 0.11 46 6.471.610 0.1 49901 140 237970.00 0.15 63 8.83.291 0.2 33432 120 238926.00 0.15 63 8.83.291 0.2 37925 80 239940.00 0.15 34 4.783.364 0.14 70498 60 2493920.00 0.15 23 3.255.905 0.13 1109013 20 249409.00 0.15 23 3.255.905 0.13 1109033 -20 251695.00 0.15 23 3.255.905 0.13 1109033 -40 255240.00 0.15 23 3.255.905 0.13 110933 -40 255240.00 0.15 23 3.256.905 0.13 11162 -40 255240.00 0.16 23 3.256.905 0.13 11162 -40 255240.00 0.16 23 3.256.905 0.14 114715 -40 255236.0	180	1297184.00	0.09				
140 2373700.00 0.14 71 9.988.789 0.2 33432 120 23962500 0.15 63 8.683.291 0.2 53265 100 23964400 0.15 44 4783.584 0.14 770498 60 2429392.00 0.15 27 3.788.533 0.11 89977 40 2461980 0.15 23 3.225.905 0.13 109630 20 2444300.00 0.15 23 3.225.905 0.13 109630 20 22916336.00 0.16 23 3.225.905 0.13 109630 20 22916336.00 0.16 23 3.225.905 0.13 109630 20 22916336.00 0.16 23 3.225.905 0.20 109428 40 259275.00 0.16 23 3.225.905 0.13 119630 -100 2562940.00 0.16 24 3.376.482 0.17 109377 -140 252316.00 0.16 24 3.376.482 0.17 109937 -140 252316.00 0.15 2.3 3.226.905 0.14 114715 -160 254.943.906 0.16 24 3.37	160	2267832.00	0.11	46	6,471,610	0.1	49301
120 238226.00 0.15 63 8.83.291 0.2 37925 80 2396940.00 0.15 34 4.783.364 0.14 70498 60 244392.00 0.15 27 3798.55.30 0.11 7099.55.30 0.114 707044 20 2444008.00 0.15 23 3.225.905 0.14 107004 20 2448406.00 0.15 23 3.235.905 0.13 106930 -20 251838.00 0.16 23 3.235.905 0.20 105769 -40 2538452.00 0.16 23 3.235.905 0.14 109346 -40 2538452.00 0.16 23 3.235.905 0.14 109345 -40 2538452.00 0.16 24 3.376.492 0.14 109345 -40 2538452.00 0.16 24 3.376.492 0.17 109813 -100 256964.00 0.16 24 3.376.492 0.17 1098037 -140 32525.00 0.16 1.6 1.7 109813	140	2373700.00	0.14	71	9,988,789	0.2	33432
100 2396128.00 0.15 45 6.30.922 0.2 58247 60 2429392.00 0.15 27 3.798.553 0.11 89977 40 246198.00 0.15 23 3.225.905 0.14 107004 20 2484300.00 0.15 23 3.225.905 0.13 109913 0 249496.00 0.15 23 3.225.905 0.20 109428 -20 251898.00 0.16 23 3.225.905 0.20 109428 -40 25587.60.00 0.16 24 3.376.492 0.14 106779 -40 25567.80.00 0.16 24 3.376.492 0.17 109037 -140 252561.60 0.15 23 3.225.805 0.14 11172 -120 29684.00 0.15 23 3.235.805 0.14 114715 -160 253440.00 0.15 23 3.258.905 0.14 114715 -160 <td< td=""><td>120</td><td>2389296.00</td><td>0.15</td><td>63</td><td>8,863,291</td><td>0.2</td><td>37925</td></td<>	120	2389296.00	0.15	63	8,863,291	0.2	37925
80 2398940.00 0.15 34 4.783.364 0.14 70498 80 2461088.00 0.15 27 3.789.553 0.114 107004 20 2464008.00 0.15 23 3.235.905 0.13 109633 20 246490.00 0.15 23 3.235.905 0.13 109630 -20 251693.60 0.16 23 3.235.905 0.13 109639 -40 253452.00 0.16 24 3.376.492 0.20 105789 -60 2552340.00 0.16 24 3.376.492 0.17 109313 -100 2569964.00 0.16 24 3.376.492 0.17 109313 -140 3253605 0.14 116707 120 259284.00 0.15 23 3.235.905 0.14 116707 -120 259284.00 0.15 23 3.265.905 0.14 116707 -140 32536.90 0.16 12 3.876.492	100	2396128.00	0.15	45	6,330,922	0.2	53247
60 242392.00 0.15 27 3.798.553 0.11 89977 40 246198.00 0.15 23 3.235.805 0.14 107004 20 2484300.00 0.15 23 3.235.805 0.13 108013 20 251835.00 0.16 23 3.235.805 0.20 1094428 40 2558240.00 0.16 24 3.376.492 0.20 1094428 40 255678.00 0.16 24 3.376.492 0.14 106348 -100 2566964.00 0.16 24 3.376.492 0.17 108037 -140 2525816.00 0.15 24 3.376.492 0.17 108037 -140 2525816.00 0.15 23 3.225.805 0.14 114715 -160 253440.00 0.15 23 3.256.492 0.17 108037 -140 25259.00 0.16 12 3.68.492 0.15 1106722 -200	80	2396940.00	0.15	34	4,783,364	0.14	70498
40 2461083.00 0.15 23 3.225.805 0.13 100013 0 2498496.00 0.15 23 3.225.805 0.20 109428 -40 2538452.00 0.16 24 3.376.492 0.20 109799 -60 25523452.00 0.16 24 3.376.492 0.20 109428 -80 2556736.00 0.16 24 3.376.492 0.14 106534 -100 2569264.00 0.16 24 3.376.492 0.17 108037 -120 258284.00 0.16 24 3.376.492 0.17 108037 -140 2523516.00 0.15 23 3.258.805 0.14 114715 -180 2584304.00 0.15 25 3.517.179 0.15 110891 -220 2684136.00 0.16 12 1.882.492 0.29 224445 -240 2598430.00 0.16 13 1428.933 0.27 220021 -280 <td>60</td> <td>2429392.00</td> <td>0.15</td> <td>27</td> <td>3,798,553</td> <td>0.11</td> <td>89977</td>	60	2429392.00	0.15	27	3,798,553	0.11	89977
20 2444300.00 0.15 23 3.225,805 0.13 108033 -20 2516336.00 0.16 23 3.225,805 0.20 109428 -40 2538420.00 0.16 24 3.376,482 0.20 109428 -60 2556240.00 0.16 24 3.376,482 0.14 106769 -100 256064.00 0.16 24 3.376,482 0.14 106707 -120 256084.00 0.16 24 3.376,482 0.17 109313 -160 2533440.00 0.15 23 3.258,805 0.14 110772 -200 256137.00 0.16 24 3.376,482 0.17 109313 -160 2533440.00 0.15 23 3.258,805 0.14 110720 -200 256137.200 0.16 24 3.376,482 0.12 108931 -200 256137.200 0.16 12 1.682,933 0.27 2209437 -240<	40	2461088.00	0.15	23	3,235,805	0.14	107004
0 2488496.00 0.15 23 3.235,805 0.13 108630 -40 2538452.00 0.16 24 3.376,492 0.20 109428 -60 2552340.00 0.16 24 3.376,492 0.14 108348 -80 2566736.00 0.16 23 3.325,805 0.13 111162 -100 2560964.00 0.16 24 3.376,492 0.14 100637 -120 2582884.00 0.16 24 3.376,492 0.17 108037 -140 252316.00 0.15 24 3.376,492 0.17 108037 -160 263404.00 0.15 25 3.517,179 0.15 110720 220 2684136.00 0.16 12 1.688,246 0.22 20962 -240 2699407.00 0.16 12 1.688,246 0.22 209021 -280 2704268.00 0.16 13 1.628,933 0.27 209021 -3300 <td>20</td> <td>2484300.00</td> <td>0.15</td> <td>23</td> <td>3,235,805</td> <td>0.13</td> <td>108013</td>	20	2484300.00	0.15	23	3,235,805	0.13	108013
-20 2516836.00 0.16 23 3.235.805 0.20 109428 +60 2553240.00 0.15 24 3.375.492 0.20 105769 +60 2556340.00 0.16 24 3.375.492 0.14 109348 -100 2560964.00 0.16 24 3.375.492 0.17 108037 -140 2523916.00 0.15 24 3.375.492 0.17 108037 -140 2523916.00 0.15 24 3.375.492 0.17 108037 -140 2523916.00 0.15 23 3.258.805 0.14 114715 -160 2539440.00 0.15 25 3.517.179 0.15 105720 -200 2561372.00 0.16 22 3.956.118 0.24 122006 -240 2589540.00 0.16 12 1.888.246 0.29 224945 -280 2704368.00 0.16 1 1405.872 0.149 270637 -3	0	2498496.00	0.15	23	3,235,805	0.13	108630
-40 233442.00 0.16 24 3.376.492 0.20 105769 -60 2555736.00 0.16 23 3.25.905 0.13 111162 -100 2569264.00 0.16 24 3.376.492 0.14 106707 -120 259284.00 0.16 24 3.376.492 0.17 108037 -140 2623616.00 0.15 24 3.376.492 0.17 108037 -140 2623616.00 0.15 24 3.376.492 0.17 108037 -160 2638440.00 0.15 25 3.517.179 0.15 105720 -200 2661372.00 0.16 24 3.376.492 0.15 108707 -200 2661372.00 0.16 12 1.688.246 0.29 224945 -240 269340.00 0.16 13 1.628.933 0.27 208021 -280 2704268.00 0.16 1 1.488.933 0.27 208021 -330 2879548.00 0.16 1 1.428.933 0.27 208021 -340 2829716.00 0.16 1 1.446.672 0.149 270637 -340 28297916.00 0.16 <td< td=""><td>-20</td><td>2516836.00</td><td>0.16</td><td>23</td><td>3,235,805</td><td>0.20</td><td>109428</td></td<>	-20	2516836.00	0.16	23	3,235,805	0.20	109428
-00 2502340.00 0.15 24 3.376.492 0.14 106348 -80 2565736.00 0.16 24 3.376.492 0.14 106707 -120 256098.400 0.16 24 3.376.492 0.17 109037 -140 2623516.00 0.15 24 3.376.492 0.17 109037 -160 2638440.00 0.15 23 3.225.005 0.14 114715 -180 2643004.00 0.15 23 3.235.005 0.14 116720 -200 2661372.00 0.16 24 3.376.492 0.15 1106720 -200 2684136.00 0.16 12 1.688.246 0.29 224945 -260 2704268.00 0.16 13 1.828.933 0.27 206021 -280 2704268.00 0.16 1 4.02 206376 0.16 1 -280 2704268.00 0.16 1 4.02 270637 2.0149 2.70637 </td <td>-40</td> <td>2538452.00</td> <td>0.16</td> <td>24</td> <td>3,376,492</td> <td>0.20</td> <td>105769</td>	-40	2538452.00	0.16	24	3,376,492	0.20	105769
-b0 230/56.00 0.16 23 3.250,605 0.13 111162 -100 2560964.00 0.16 24 3.376,492 0.17 1060707 -140 2823516.00 0.15 24 3.376,492 0.17 1060313 -160 2638440.00 0.15 23 3.235,605 0.14 114715 -180 2643004.00 0.15 25 3.577,179 0.15 106720 -200 2661372.00 0.16 24 3.376,492 0.15 106720 -200 2661372.00 0.16 12 1.68,246 0.29 224945 -200 2661372.00 0.16 13 1.828,933 0.27 200021 -240 2699340.00 0.16 13 1.828,933 0.27 200021 -280 2706368.00 0.16 1 406,872 0.149 270637 -300 2744476.00 0.16 1 406,372 0.149 270637 -34	-60	2552340.00	0.15	24	3,376,492	0.14	106348
-100 2500804.00 0.16 24 3.376.492 0.14 106707 -140 2623816.00 0.15 24 3.376.492 0.17 1060313 -160 2638440.00 0.15 23 3.235.805 0.14 114715 -180 2643004.00 0.15 25 3.517.179 0.15 106720 -200 266137.200 0.16 22 3.035.482 0.15 110891 -220 2684136.00 0.16 12 1.688.246 0.29 224945 -240 2699340.00 0.16 13 1.828.983 0.27 206037 -280 2706368.00 0.16 1 1.406.872 0.149 270637 -300 2744476.00 0.16 1 1.406.872 0.149 270637 -340 2827916.00 0.16 1 1.406.72 0.149 2.402 -340 2837916.00 0.16 1 1.406.72 0.146 1.400 -	-80	2556736.00	0.16	23	3,235,805	0.13	111162
-1:20 2:942384 0.00 0.16 24 3.376.492 0.17 109037 -160 2:83346.00 0.15 23 3.235.805 0.14 114715 -180 2:83440.00 0.15 23 3.235.805 0.14 114715 -200 2:861372.00 0.16 24 3.376.492 0.15 105720 -220 2:864136.00 0.16 22 3.055.118 0.24 122066 -240 2:899340.00 0.16 12 1.688.246 0.29 2:24945 -260 2:704268.00 0.16 13 1.828.933 0.27 208021 -360 2:87946.00 0.16 1 1.406.872 0.149 270637 -360 2:85636.00 0.16 1 1.406.872 1.49 270637 -360 2:857916.00 0.16 1 1.406.872 1.49 270637 -360 2:85836.00 0.16 1 1.406.872 1.406.872 1.406.872	-100	2560964.00	0.16	24	3,376,492	0.14	106/07
-140 2623516.00 0.15 24 3.376.492 0.17 109313 -160 2638440.00 0.15 23 3.258.805 0.14 114715 -200 2661372.00 0.16 24 3.376.492 0.15 106720 -200 2661372.00 0.16 22 3.095.118 0.24 12200 -240 2699340.00 0.16 12 1.688.246 0.29 224945 -260 2704268.00 0.16 13 1.828.933 0.27 208021 -380 2704568.00 0.16 1 1.406.872 0.149 270637 -300 2744476.00 0.16 1 1.406.872 0.149 270637 -300 274476.00 0.16 1 1.406.872 0.149 270637 -300 227970508.00 0.16 1 1.406.872 0.149 270637 -300 2387948.00 0.16 1 1.406 1.400 1.406.29393644.00 0.16	-120	2592884.00	0.16	24	3,3/6,492	0.17	108037
-160 253844000 0.15 23 3.235.055 0.14 114715 -200 266372.00 0.16 24 3.376.492 0.15 110891 -220 2664136.00 0.16 22 3.095,115 0.24 122006 -240 2599340.00 0.16 12 1.688.246 0.29 224945 -260 2704268.00 0.16 13 1.828.933 0.27 200021 -380 2706386.00 0.16 10 1.406.672 0.149 270637 -300 2744476.00 0.16 1 1.406.672 0.149 270637 -300 27490586.00 0.16 1 1.406.672 0.149 270637 -300 274070586.00 0.16 1 1.406.672 0.149 270637 -340 2827916.00 0.16 1 1.406.672 0.149 270637 -360 2856636.00 0.16 16 1 1.406.672 0.149 1.406.672 -440 2901640.00 0.16 1 1.406.770 1.406.770 <td>-140</td> <td>2623516.00</td> <td>0.15</td> <td>24</td> <td>3,376,492</td> <td>0.17</td> <td>109313</td>	-140	2623516.00	0.15	24	3,376,492	0.17	109313
-180 2643004 00 0.15 25 3.317.179 0.15 1108/20 -200 2661372 00 0.16 22 3.376.492 0.15 110891 -220 2684136 00 0.16 12 1.682.446 0.29 224945 -260 2704268 00 0.16 13 1.289.933 0.27 206021 -280 270368 00 0.16 10 1.406.872 0.149 270637 -300 2744476 00 0.16 1 1.289.933 0.27 206021 -300 2790506 00 0.16 1 1.406.872 0.149 270637 -300 2790506 00 0.16 1 1.406.872 0.149 270637 -300 2879548 00 0.16 1 1.406.872 0.149 270637 -380 2879548 00 0.16 1 1.406.446 1.406 1.406 1.406 -440 2901472 00 0.16 1.406 1.406 1.406 1.406 1.406 -500 2972576 00 0.16 50 9.1446,656	-160	2638440.00	0.15	23	3,235,805	0.14	114715
-200 28b135:00 0.16 22 3.376,482 0.15 110891 -220 2864136:00 0.16 12 1.688,246 0.29 224945 -260 2704288:00 0.16 13 1.229,933 0.27 208021 -280 2704368:00 0.16 10 1.406,872 0.149 270637 -300 2744476:00 0.16 1 1.406,872 0.149 270637 -300 2740508:00 0.16 1 1.406,872 0.149 270637 -300 2740508:00 0.16 1 1.405,872 0.149 270637 -300 2879548:00 0.16 1 1.406,872 0.149 270637 -360 2879548:00 0.16 1.400 291704:00 1.6 1.400 291704:00 1.6 -420 2904972:00 0.16 1.400 1.400 1.40687 1.40687 Nde: Catulated validation grades may differ from resource grades due to weighting by volume, not tonnes. 1.40687<	-180	2643004.00	0.15	25	3,517,179	0.15	105720
-220 2654136.00 0.16 22 3.095,118 0.24 122006 -240 269934.00 0.16 12 1.688,246 0.29 224945 -260 2704268.00 0.16 13 1.828,933 0.27 208021 -280 2705368.00 0.16 10 1,406,872 0.149 270637 -300 2744476,00 0.16	-200	2661372.00	0.16	24	3,3/6,492	0.15	110891
-240 2589540.00 0.16 12 1,688,945 0.29 224945 -260 2704268.00 0.16 13 1,828,933 0.27 208021 -300 2744476.00 0.16 10 1,406,872 0.149 270637 -300 2744476.00 0.16 - - - - - -320 2790508.00 0.16 -	-220	2684136.00	0.16	22	3,095,118	0.24	122006
-260 2704268.00 0.16 13 1.828.933 0.27 208021 -380 2704586.00 0.16 10 1.406,872 0.149 270637 -320 2790508.00 0.16 10 1.406,872 0.149 270637 -340 2827916.00 0.16 10 1.406,872 0.149 270637 -360 285635.00 0.16 10 1.406,872 0.149 270637 -360 287916.00 0.16 10 1.406,872 1.49 270637 -360 287916.00 0.16 10 1.406,872 1.49 2.77 -380 2879543.00 0.16 10 1.420 2.904972.00 0.16 1.440 2.901972.00 0.16 1.440 2.903544.00 0.16 1.440 2.903544.00 0.16 1.446,856 0.17 1.40687 Nde: Cat ulated validation grades may differ from resource grades due to weighting by volume, not tonnes. 1.446,856 0.17 1.40687 10000000.00 10	-240	2699340.00	0.16	12	1,688,246	0.29	224945
-200 2/05385.00 0.16 10 1,406,872 0.149 2/0637 -300 274447,600 0.16 1 1 1 1 -320 279956.00 0.16 1 1 1 1 -340 2827916.00 0.16 1 1 1 1 -360 2856935.00 0.15 1 1 1 -400 289714.00 0.16 1 1 1 -400 290172.00 0.16 1 1 1 -440 290354.00 0.16 1 1 1 -440 290354.00 0.16 1 1 1 -440 290354.00 0.16 1 1 1 -450 293652.00 0.16 1 1 1 -460 293652.00 0.16 1 1 1 -500 2975676.00 0.16 1 1 1 -1200000.00 0.16 1 1 1 1 12000000.00 0.16 0.16 1 1 1 12000000.00 0.16 0.16 1 1 1 10000000.00 0.0 <	-260	2704268.00	0.16	13	1,828,933	0.27	208021
	-280	2706368.00	0.16	10	1,406,872	0.149	270637
-340 279008.00 0.16 -360 2857916.00 0.16 -380 2879548.00 0.16 -400 2897104.00 0.16 -400 2897104.00 0.16 -400 2897104.00 0.16 -400 2904972.00 0.16 -440 2904972.00 0.16 -440 290363.00 0.16 -440 290363.00 0.16 -440 2933628.00 0.16 -450 2933628.00 0.16 -500 2972676.00 0.16 Total 91,446,656 0.17 140687 Note: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. 1200000.00 Comparison of ID and Composite Cu Grades by Elevation 1200000.00 0.10 0.1000000.00 0.10 0.1000000.00 0.10 0.1000000.00 0.11 0.1000000.00 0.11 0.1000000.00 0.12 0.1000000.00 0.13 0.1000000.00 0.14 0.11	-300	2/444/6.00	0.16				
-340 282/916.00 0.16 -360 285636.00 0.16 -380 287944.00 0.16 -400 2897104.00 0.16 -420 2904972.00 0.16 -440 2901640.00 0.16 -440 2903544.00 0.16 -440 2903544.00 0.16 -440 2903544.00 0.16 -450 2903544.00 0.16 -460 29038628.00 0.16 -500 2972676.00 0.16 500 2972676.00 0.16 -500 2972676.00 0.16 Vote: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. Comparison of ID and Composite Cu Grades by Elevation 1200000.00 0. 600000.00 0.0 600000.00 0.0 900000.00 0.0 900000.00 0.0 900000.00 0.0 900000.00 0.0 900000.00 0.0	-320	2/90508.00	0.16				
-380 2879548.00 0.16 -400 2897104.00 0.16 -420 2904972.00 0.16 -440 2901640.00 0.16 -440 2901640.00 0.16 -440 2901640.00 0.16 -440 2901640.00 0.16 -460 2938628.00 0.16 -480 2938628.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -600 200000.00 0.16 -1000000.00 -1446,856 0.17 140687 0.0 -1000000.00 -1000000.00 0.10 0.10 0.00000.00 -1000000.00 -1000000.00 0.10 0.10 0.00000.00 -10000000.00 -100000	-340	2827916.00	0.16				
	-360	2855636.00	0.15				
-400 209104.00 0.16 -420 2094972.00 0.16 -440 2091640.00 0.16 -460 2093544.00 0.16 -480 2093628.00 0.16 -500 297276.00 0.16 Total 91,446,656 0.17 140687 Note: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. Comparison of ID and Composite Cu Grades by Elevation 1200000.00 600000.00 600000.00 600000.00 0.0 200000.00 0.0 0.0 0.0	-380	28/9548.00	0.16				
-420 29049/2200 0.16 -440 2901640.00 0.16 -460 2903540.00 0.16 -480 2938628.00 0.16 -500 2932676.00 0.16 -500 2932676.00 0.16 -500 2932676.00 0.16 -500 2972676.00 0.16 -500 2972676.00 0.16 -6000000.00 Comparison of ID and Composite Cu Grades by Elevation 12000000.00 0.00 1000000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 0.00000.00 0.00 <td>-400</td> <td>2897104.00</td> <td>0.16</td> <td></td> <td></td> <td></td> <td></td>	-400	2897104.00	0.16				
-440 2901540.00 0.16 -460 2903544.00 0.16 -480 2936528.00 0.16 -500 2972676.00 0.16 Total 91,446,656 0.17 Note: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. 0.17 Note: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. 0.10 1200000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00 0.00000.00 0.00 0.00	-420	2904972.00	0.16		-		_
	-440	2901640.00	0.16				
-480 28/386/28/00 0.16	-460	2903544.00	0.16				1
	400	0000000.00	0.40				
Intel 91,446,556 0.17 140697 Note: Calculated validation grades may differ from resource grades due to weighting by volume, not tonnes. 0 Comparison of ID and Composite Cu Grades by Elevation 0 <td>-480</td> <td>2938628.00</td> <td>0.16</td> <td></td> <td></td> <td></td> <td></td>	-480	2938628.00	0.16				
Note: Calculated validation drades may other from resource grades due to weighting by volume, not tornes. 12000000.00 Comparison of ID and Composite Cu Grades by Elevation 10000000.00 0 8000000.00 0 6000000.00 0 4000000.00 0 2000000.00 0 4000000.00 0 2000000.00 0	-480	2938628.00 2972676.00	0.16 0.16				
	-480 -500 Total Note: Calculated	2938628.00 2972676.00 91,446,656 validation grades may dif Compa	0.16 0.16 0.16 ffer from resour rison of ID a	650 ce grades due to weighti and Composite Cu	91,446,656 ng by volume, not ton Grades by Elevat	0.17 nes.	140687
	-480 -500 Total Note: Calc ulated 12000000.00	2938628.00 2972676.00 91,446,656 validation grades may dif Compar	0.16 0.16 0.16 ffer from resour rison of ID a	650 ce grades due to weighti Ind Composite Cu	91,446,656 ng by volume, not ton Grades by Elevat	0.17 nes. iion	0.0
	-480 -500 Total Note: Calc ulatex 12000000.00 10000000.00 - 8000000.00 - 6000000.00	2938628.00 2972676.00 91,446,656 I validation grades may dif Compar	0.16 0.16 0.16 Ifer from resour	650 ce grades due to weight and Composite Cu	91,446,656 ng by volume, not ton Grades by Elevat	0.17 nes	0.0000000000000000000000000000000000000
	-480 -500 Total Note: Caic ulatex 12000000.00 - 8000000.00 - 6000000.00 - 2000000.00 - 2000000.00 - 80.00000.00 - 80000000.00 - 80000000.00 - 80000000.00 - 80000000.00 - 800000000.00 - 80000000000000 - 800000000000 - 80000000000	2938628.00 2972676.00 91,446,656 Ivalidation grades may dif Compar	0.16 0.16 0.16 Ter from resour rison of ID a	650 ce arades due to weight and Composite Cu	91,446,656 na by volume, not ton Grades by Elevat	0.17 nes. iion	
Model Volume Comps*factor	-480 -500 Total Note: Caic ulatex 12000000.00 - 8000000.00 - 8000000.00 - 8000000.00 - 2000000.00 - 2000000.00 - 80000000.00 - 80000000.00 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 8000000000 - 80000000000	2938628.00 2972676.00 91,446,656 Ivalidation grades may dif Compar	0.16 0.16 ifer from resour rison of ID a	<u>650</u> ce grades due to weight and Composite Cu	91,446,656 na by volume, not ton Grades by Elevat	0.17 nes. iion	

The above table illustrates 20m slice sections perpendicular to the direction of drilling (i.e. long section). In the core of the model grades and volumes compare well, again indicating a robust model.

ALMA METALS LIMITEDSuite 1, 245 Churchill Avenue, Subiaco 6008 WA AustraliaABN 45 123 316 781+61 8 6465 5500investors@almametals.com.au

🈏 📊 almametals.com.au

Criteria (

Commentary

The above table illustrates 20m sliced sections parallel to the direction of drilling (i.e. cross sections). This highlights that the drilling data is concentrated on two sections, approximately 200m apart, and that the block model has generated grades consistently between sections.

J

.au

ALMA *METALS

		Diook Med	Block	lodel Validation I	by NW-SE			_
	Section	Model Volume	Model	Number of Comps	Comps*factor	Comp	Sample Ratio	
	267780	BCM 130564.00	Cu_% 0.13	All Elements	140687	Cu_%	BCMicomp	
	267800	2122988.00	0.12	5	703,436	0	424598	
	267820	5649392.00	0.11	39	5,486,799	0.13	144856	
	267860	6866300.00	0.13	27	3,798,553	0.09	254307	
	267880	6441484.00	0.13	58	8,159,855	0.11	111060	
	267900	6093948.00 7579964.00	0.13	85	11,958,409	0.15	71694	
	267940	7504056.00	0.16	63	8,863,291	0.16	119112	
	267960	7663152.00	0.17	46	6,471,610	0.19	166590	
	268000	7294896.00	0.16	43	6,049,548	0.15	169649	
	268020	6758892.00	0.16	43	6,049,548	0.15	157184	
	268040	5060552.00	0.15	42	5,908,861	0.22	143997	
	268080	2556960.00	0.20	2	281,374	0.34	1278480	
	268100	496748.00	0.19					
	Total	91,446,656	0.16	650	91,446,656	0.17	140687	
	Note: Calculated	validation grades may di	ffer from resou	rce grades due to weight	ng by volume, not tonr	ies.		
		Com	parison of	ID and Composite C	u Grades by NW-	-SE		_
	1400000.00 T							0.70
				_				
	12000000.00							0.60
	1000000.00							0.50
	8000000 00							0.40
	800000.00				_			0.40
						,		_
	6000000.00					- /		0.30
	4000000.00							0.20
					╋┼╞╋┥╷			_
	2000000 00							0.40
	200000.00							0.10
								_
	0.00							0.00-
	CW	800	888			040	1 2 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0	5.00
	e (B	267 267 267 267	267	26i 26i	266	26	266 261 26	(% n
	<u>n</u>			Section (X)			Ũ
	×							rad
			Model V	′olume 📩 Comps*factor ·	📥 Model —= Comp			o
					-			
loisture	Tonnages	are estimated	with nat	ural moisture				
ut-off	Cut-off gr:	ades are renor	ted from	0.0%(11 to 0.5%	«Cu in increm	nents of C	1%() The	was
arameters		to at this stars	of the e		tion			
	appropria		or the e					
	 Copper is 	the only m	etal ide	ntified to date	e ot potenti	ally sign	ificant ecor	iomi
	Molybden	um occurs at	30ppm,	and requires	further evalu	ation to	determine	ts e
	significand	e. Other comn	non paya	ble by-product	s in porphyry	copper s	ystems, sucl	ו as
	silver, are	at subdued lev	els and a	also require fur	ther evaluatio	on.		
	In order t	o assess a pot	ential ed	onomic cut-of	grade for B	riggs, con	nparisons w	ere
	existing bu	ulk tonnage, lov	w grade r	orphyry coppe	r style operat	ions and i	orojects. Wit	:hin
	the Carav	el denosit in M	/Δ that I	nas Mineral Re	sources of 1	18Rt at 0	25% (u and	12
			, unat 1	ias ivincial ite	5001003 01 1.			-+0
				<u> </u>	· · · ·			-

🕥 in

almametals.com.au

ALMA*METALS

Criteria	Commentary					
	2022 Pre-Feasibility Study by Caravel Minerals (ASX CVV) the cut-off grade was derived as part					
	of the mine optimisation fa	of the mine optimisation factoring in processing costs, the copper recovery factor and the copper				
	price with associated sellir	price with associated selling costs. The result was a cut-off grade of 0.1% Cu.				
National Constants		· · · · · · · · · · · · · · ·				
iviining factors	 The assumption is that ny also assumed that the sup 	 The assumption is that hypogene ore will be extracted by bulk mining open cut methods. It is also assumed that the supergene mineralisation is of little or no economic significance. 				
assumptions	uso assumed that the sup				ionne signinee	nee.
Metallurgical	• The assumption is that the	The assumption is that the ore is amenable to standard comminution methods used in large-				
factors or	scale, low-grade operation	scale, low-grade operations and the hypogene copper ore can be extracted by flotation methods.				
assumptions						
Environmental	The assumption is that the	The assumption is that there would be no social or environmental impediment to establishing a				
factors or	large tonnage low grade co	large tonnage low grade copper mine.				
Bulk density	Bulk densities were deter	minod on 140 c	amples of dri	ll core from P	D010-001 to B	D010-004 by
Durk density	water immersion (refer tal	water immersion (refer table below).				
	Results of Bulk Density Det	erminations in	Briggs Drill Co	ore:		
		Number of S	amples Av	verage Bulk Den	sity	
	Volcanogenic sandstone (VSST)	8		2.0		
	Diorite (DIOM)	5		2.7		
	Quartz feldspar porphyry (PFQ) Andesite (AND)	3		2.6 2.6		
	Quartz (QTZ) Total	5 140		2.7		
		·				
Classification	 The briggs Mineral Resource estimate has been classified according to JORC 2012 guidelines based on the drilling density, grade continuity and the level of geological understanding. The Briggs resource shows good continuity at 0.2% Cu. Within the GDP and MINSED domains there is a reasonable expectation that further infill and step-out drilling will increase the geological confidence and allow for the estimation of an Indicated or Measured Resource in the 					
	tuture. As noted, the drill spacing is regular but relatively wide spaced, and is regarded as suitable for the current resource estimate.					
	BMS believes the current estimated grade is at a relatively low level of confidence in detail and further drilling is likely to impact the internal distribution of block grades. As a result, the global resource is classified as an Inferred Mineral Resource.					
	Summary of Briggs Inferred Mineral Resource Estimate:					
	Classification	Cut off	Tonnes	Cu	Mo	
		Cu %	Mt	%	ppm	
	Inferred	0	982.3	0.19	34	
	Inferred	0.1	905.5	0.20	34	
	Inferred	0.15	694.1	0.22	33	
	Inferred	0.2	415.0	0.25	31	
	Inferred	0.3	47.8	0.34	28	
	Inferred 0.4 3.0 0.44 27					
	Inferred	0.5	0.2	0.54	23	

ALMA *METALS

Criteria Co	mmentary				
	The Mineral Resource wa	s estimated using i	overse distance	(IVD) and ordinary krig	ing (OK)
	methods, constrained by resource domains based on geology and mineralised intervals				
	interpreted by Canterbury. No minimum width was used in the interpretation of the resource.				
	Globally there was no difference between the estimates derived from the inverse distance and				
	ordinary kriged methods. OK was used to estimate the fresh rock component of the Mineral				
	to estimate the oxide rock component of the Mineral Resource estimate due to the limited data				
	available in this domain.				
	The block dimensions used in the model were 20m NE-SW x 70m NW-SE x 20m vertical, with				
	sub-cells of 2m x 7m x 2m. The 20m x 70m x 20m size was based on the Kriging Neighbourhood				
			condico consult		
	The Mineral Resource est	imate is classified	as an Inferred N	Vineral Resource based	on the
	relatively broad spacing of drill sections (approximately 200m) combined with the documented				
	all blocks in the model for	conner are shown b	non system. Gra Slow	ue-connage curves repr	esenting
	2023 Grade/Tonnage curve	es for Briggs Minera	Resource Estimo	ate	
	2023 Mineral	Resource Estimate			
	Briggs Grad	le Tonnage Curve	ralisation		
	Grade	Tonnes	Cu		
	%	Mt	%		
	0.00	982.3	0.19		
	0.10	905.5	0.20		
	0.15	694.1	0.22		
	0.20	415.0	0.25		
	0.30	47.8	0.34		
	0.35	11.3	0.39		
	0.40	3.0	0.44		
	0.45	1.1	0.48		
	0.55	0.1	0.56		
	Briggs grade tonnage curve	e (All)			
Briggs Grade-Tonnage Curve					
	1,200.0			0.50	
	1.000.0		_	- 0.45	
		_		- 0.40	
	800.0			- 0.35	
				- 0.30	
	600.0	\mathbf{X}		0.25	
	400.0	<u> </u>		- 0.15	
				- 0.10	
	200.0			- 0.05	
	0.0		 .	0.00	
	0.05 0.15 0.15	0.20 0.25 0.30	0.40 0.45 0.50	0.55	
		Cut-off Grade %		S CL	
		← MTonnes — Cu	%		

ALMA METALS LIMITEDSuite 1, 245 Churchill Avenue, Subiaco 6008 WA AustraliaABN 45 123 316 781+61 8 6465 5500investors@almametals.com.au

ALMA[‡]METALS

Criteria Commentary

	Briggs 2023			
C	P Grade Tonnage	Curve		
Cu Cut-off	Cu Cut-off Cumulative Mineralisation			
Grade	Tonnes	Cu	Mo	
%	Mt	%	ppm	
0.00	/3/./	0.20	36.5	
0.01	/3/./	0.20	36.5	
0.02	736.3	0.20	36.5	
0.03	732.6	0.20	36.6	
0.04	731.3	0.20	36.6	
0.05	723.5	0.20	36.3	
0.06	721.8	0.20	36.3	
0.07	719.3	0.20	36.3	
0.08	715.2	0.20	36.2	
0.09	700.9	0.20	36.0	
0.10	678.1	0.21	35.8	
0.11	665.6	0.21	35.5	
0.12	649.5	0.21	35.2	
0.13	627.3	0.21	34.7	
0.14	602.3	0.22	34.0	
0.15	569.8	0.22	33.3	
0.16	535.8	0.23	32.7	
0.17	489.0	0.23	32.2	
0.18	451.4	0.24	31.8	
0.19	407.0	0.24	31.6	
0.20	364.5	0.25	31.2	
0.21	318.2	0.26	31.1	
0.22	256.3	0.26	29.7	
0.23	199.2	0.28	29.7	
0.23	162.1	0.20	20.5	
0.24	134.7	0.20	20.5	
0.25	112.2	0.20	20.0	
0.20	02.0	0.30	20.4	
0.27	75.0	0.31	28.4	
0.28	73.0 F7 F	0.32	20.1	
0.29	57.5	0.33	27.5	
0.30	44.4	0.34	27.5	
0.31	34.5	0.35	27.6	
0.32	27.1	0.36	27.2	
0.33	20.7	0.36	27.5	
0.34	15.2	0.38	27.0	
0.35	10.8	0.39	28.6	
0.36	7.1	0.40	29.1	
0.37	5.9	0.41	26.9	
0.38	4.6	0.42	27.1	
0.39	3.4	0.44	26.3	
0.40	3.0	0.44	27.4	
0.41	2.6	0.45	27.6	
0.42	2.1	0.46	29.4	
0.43	1.5	0.47	30.0	
0.44	1.3	0.48	27.3	
0.45	1.1	0.48	27.5	
0.46	0.7	0.50	19.7	
0.47	0.5	0.51	19.9	
0.48	0.5	0.51	19.7	
0.49	0.3	0.53	26.2	
0.50	0.2	0.54	23.4	

CP Briggs grade tonnage curve (Central Porphyry)

ALMA*METALS

Criteria Commentary

	Briggs 2023		
NP	Grade Tonnage	Curve	
Cu Cut-off	Cumu	Ilative Mineralisation	1
Grade	Tonnes	Cu	Mo
<u>%</u>	Mt	%	ppm
0.00	244.5	0.16	28
0.01	244.5	0.16	28
0.02	244.5	0.16	28
0.03	244.3	0.16	28
0.04	244.2	0.16	28
0.05	244.0	0.16	28
0.06	242.8	0.16	28
0.07	241.4	0.16	28
0.08	237.9	0.16	28
0.09	232.4	0.17	28
0.10	227.4	0.17	29
0.11	220.2	0.17	29
0.12	205.8	0.17	29
0.13	179.8	0.18	30
0.14	150.8	0.19	30
0.15	124.3	0.20	31
0.16	99.5	0.21	32
0.17	83.2	0.22	32
0.18	70.1	0.23	32
0.19	61.6	0.23	32
0.20	50.5	0.24	32
0.20	43.3	0.24	32
0.22	34.8	0.25	32
0.22	27.5	0.20	31
0.23	27.5	0.27	21
0.24	22.9	0.27	21
0.25	10.3	0.20	31
0.26	14.5	0.29	31
0.27	71.4	0.29	31
0.28	7.3	0.30	30
0.29	5.0	0.31	30
0.30	3.4	0.32	30
0.31	1.7	0.33	31
0.32	0.9	0.35	32
0.33	0.7	0.36	31
0.34	0.7	0.36	31
0.35	0.6	0.36	31
0.36	0.2	0.37	32
0.37	0.1	0.40	25
0.38	0.1	0.40	25
0.39	0.1	0.40	25
0.40	0.01	0.41	13
0.41	0.01	0.41	13

NP Briggs grade tonnage curve

i.au

ALMA*METALS

Criteria	Commentary
Audits or reviews	No external independent audits or reviews have been undertaken.
Discussion of relative accuracy/ confidence	 The Briggs Project has been tested with high quality drilling, sampling and assaying. Drilling and logging have defined the limit within the GDP and MINSED domains to provide an accurate volume. The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource. The Mineral Resource has been classified as an Inferred Mineral Resource as per the guidelines of Australasian Code for the Reporting of identified Mineral Resources and Ore Reserves (JORC 2012).
	 These Mineral Resource estimates are global in nature until relevant tonnages and relevant technical and economic evaluations are required and have been undertaken in further sections of the Australasian Code for the Reporting of identified Mineral Resources and Ore Reserves (JORC 2012).