ASX: BUS ABN 17 654 970 751 W:www.bubalusresources.com.au T: +618 6188 8181 E: admin@bubalusresources.com.au Level 2, 22 Mount Street Perth WA 6000 # Wednesday 26th July 2023 #### **ASX Announcement** # SUBSTANTIAL REE ANOMALIES AT NOLANS EAST ### **Highlights** - Substantial REE anomalies defined in surface sampling at Nolans East - Anomalies over 5km in length (aggregate), along a WNW-ESE trend - Nolans East Project located 15km from Nolans Bore (ASX.ARU) - Drilling targets to be delineated using surface mapping and other datasets to refine and prioritise surface anomalies Bubalus Resources Limited (ASX: BUS) (**Bubalus** or **the Company**) is pleased to provide raw assay results from surface sampling at its 100% owned Nolans East Project. Nolans East is located 15km south east of the Nolans Bore deposit owned by Arafura Resources Limited (**Arafura**) (Figures 2 and 3). A Mineral Resource of 56 million tonnes at an average grade of 2.6% total rare earth oxides (**TREO**), including a high proportion of neodymium-praesidium oxides (Nd₂O₃+Pr₆O₁₁, **NdPr**), and 11% phosphate (P₂O₅) has been defined by Arafura at Nolans Bore¹. Arafura's market capitalisation has recently grown to over A\$1 billion (ASX.ARU). Sampling has defined 7 large-scale rare earth element (**REE**) anomalies at surface across the target area, extending those identified previously² as well as identifying new ones. Anomalies are based on assay results from 1687 samples from which 267 returned > 500ppm TREO. Sampling was carried out at spacings of 400m x 100m and 200m x 100m, with 50m x 50m spacing completed over anomalies within the original sampling area (Figure 1). The anomaly initially sampled by the Company² now measures 2.4km x 1.3km, with the aggregate strike length of all anomalies over 5km in length. The anomalies lie along a WNW-ESE trend, consistent with the Company's previous interpretation (Figure 1). Importantly, high value NdPr averages 22% of the TREO content in the Nolans East surface samples (Appendix 1), a similar content to that reported at Nolans Bore (26%¹). Sampling encountered a range of regolith settings, from washplain and sandplain to lithic/stoney pediment and subcrop. The next step is to carry out "levelling" of the raw assay data to enhance anomalies from regolith settings which are likely to provide a more subdued response. In addition rockchip data collected from around the project area will be used to try and characterise the likely source of the REE anomalies, allowing further refinement of these targets ahead of drilling. ¹ https://www.arultd.com/projects/nolans.html; also refer ARU.ASX Announcement 7 June 2017. ² ASX Announcement 24 January 2023 Figure 1. Results from surface sampling at Nolans East Project. Figure 2. Soil Sampling at the Nolans East Project over magnetics (TMI – NTGS data). Figure 3. Location of Nolans East Project and surrounding tenure This announcement has been authorised by the Board of Directors of Bubalus Resources Limited. ### For more information, please contact: Mr Alec Pismiris M: +61 402 212 532 Level 2, 22 Mount Street Perth WA 6000 P: +61 8 6188 8181 E: admin@bubalusresources.com.au W: www.bubalusresources.com.au PO Box 7054, Cloisters Square Perth WA 6850 #### **ABOUT BUBALUS RESOURCES** Bubalus has four projects, the Amadeus Project (prospective for Manganese), the Coomarie Project (prospective for Heavy Rare Earths), the Nolans East Project (prospective for Light Rare Earths) and the Pargee Project (prospective for Heavy Rare Earths), which are located in premier geological provinces in the Northern Territory and Western Australia: Amadeus Project (Mn) - Significant land package with 150kms of strike containing outcropping high grade manganese covering 5,436km², located 125km south of Alice Spring where historical exploration has identified 11 manganese occurrences, along with cobalt and Ni-Zn-Cu also identified. *Nolans East Project* (Light REEs) - The project covers 380km² of the Arunta Province, analogous to Nolan's Bore light rare earth deposit and is prospective for light rare earths, located only 15kms east of Arafura's (ASX:ARU) 56Mt NPV \$1.011Bn light rare earth deposit. Coomarie Project (Heavy REEs) - The project covers 1,153 km² and presents as a geological analogue to Browns Dome, host to Northern Minerals' (ASX:NTU) Browns Range heavy rare earths deposit where mineralisation is hosted on margins of granite dome intrusive where the unconformity between Gardiner Sandstone and Browns Range Metamorphics exist and located in the Tanami Region. Pargee Project (Heavy REEs) - The project is prospective for heavy rare earths and located 30kms from PWV Resources' (ASX:PVW) Watts Rise heavy rare earths discovery. #### **COMPETENT PERSONS STATEMENT** Information in this report relating to Exploration Results is based on information compiled, reviewed and assessed by Mr. Bill Oliver, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr. Oliver is a Director of Bubalus Resources and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**). Mr. Oliver consents to the inclusion of the information in the form and context in which it appears. Some of the information is extracted from the Independent Geologist's Report contained within the Prospectus released to the ASX on 11 October 2022 and available to view on the Bubalus Resources Limited website, www.bubalusresources.com.au or on the ASX website, www.asx.com.au under the ticker code BUS. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. ### Appendix 1. Summary of Surface Sampling Results from the Nolans East Project - Data from all 1687 samples has been included in the frequency graphs above. - For further information on sampling and assay procedures please refer to Appendix 2. ## Appendix 2. ### The following tables are presented in accordance with requirements under the JORC Code, 2012 Edition # Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Surface sampling using a shovel to remove top 2cm of material. Samples were sieved using – 80 mesh. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | | | | Aspects of the determination of mineralisation that are Material to
the Public Report. | | | | In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | No drilling results are reported. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | No drilling results are reported. | | | Measures taken to maximise sample recovery and ensure | | | Criteria | JORC Code explanation | Commentary | |--|---|---| | | representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | | | Logging | Whether core and chip samples have been geologically and
geotechnically logged to a level of detail to support appropriate
Mineral Resource estimation, mining studies and metallurgical
studies. | Geological observations were recorded for all samples. No core or chip samples are being reported. | | | Whether logging is qualitative or quantitative in nature. Core (or
costean, channel, etc) photography. | | | | The total length and percentage of the relevant intersections logged. | | | Sub-sampling | If core, whether cut or sawn and whether quarter, half or all core | Entire sieved sample submitted for analysis. | | techniques
and sample
preparation | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | | | | • For all sample types, the nature, quality and appropriateness of the sample preparation technique. | | | | Quality control procedures adopted for all sub-sampling stages to
maximise representivity of samples. | | | | Measures taken to ensure that the sampling is representative of the
in situ material collected, including for instance results for field
duplicate/second-half sampling. | | | | Whether sample sizes are appropriate to the grain size of the
material being sampled. | | | Quality of
assay data
and laboratory | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | Samples collected were prepared at Intertek Genalysis Alice Springs (dried and pulverised). | | tests | For geophysical tools, spectrometers, handheld XRF instruments, | | | Criteria | JORC Code explanation | Commentary | |--|---|--| | | etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | Samples were analysed at Intertek Genalysis Perth using a 4 acid digest and ICP-MS. This method is predicted to give a complete or near complete recovery for rare earth elements and other elements | | duplicates, external laboratory checks | duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been | of interest. | | Verification of sampling and | The verification of significant intersections by either independent or alternative company personnel. | Data recorded in field and entered into spreadsheet. | | assaying | The use of twinned holes. | REE assays have been converted from elemental into oxide using molar weights. | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | | | | Discuss any adjustment to assay data. | | | Location of | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. | Sample points surveyed using handheld GPS. | | data points | | Data is in AMG Zone 53. | | | | Open file topographic data is being used. | | | Quality and adequacy of topographic control. | | | Data spacing | Data spacing for reporting of Exploration Results. | Sample spacing was 200m x 100m or 400m x 100m as shown on | | and
distribution | Whether the data spacing and distribution is sufficient to establish
the degree of geological and grade continuity appropriate for the
Mineral Resource and Ore Reserve estimation procedure(s) and
classifications applied. | Figures 1 and 2. Certain areas were infilled to 50m x 50m. Not applicable for Mineral Resources. | | | Whether sample compositing has been applied. | | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | Further data required to confirm orientation of anomalies and links to structures observed in magnetic data. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | | | Sample
security | The measures taken to ensure sample security. | Delivered to laboratory by company representatives. | | Criteria | JORC Code explanation | Commentary | |-------------------|---|--------------------------------| | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been completed. | # Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Nolans East Project consists of 1 granted Exploration License (EL32957) The tenement is 100% owned by Bubalus via its subsidiary Jarrah Nia Exploration Pty Ltd. The project is covered by a pastoral lease as well as the Ngwarray native title determination. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Historical exploration at Nolans East has comprised mapping and sampling by the Northern Territory Geological Survey. The area of EL32957 was previously held by Arafura Resources Ltd. No significant exploration is understood to have been carried out. | | Geology | Deposit type, geological setting and style of mineralisation. | The Nolans East Project is situated in the Aileron Province of the Arunta Region in the southern part of the Northern Territory. The Aileron Province predominantly comprises Palaeoproterozoic greenschist to granulite facies metamorphosed sedimentary and igneous rocks. The Arunta region was subjected to a long-lived event from 450-300 Ma. The Alice Springs Orogeny is expressed in the Aileron Province as west-north-west trending greenschist to upper amphibolite shear zones. Large scale fluid flow during the Alice Springs Orogeny is believed to be responsible for REE mineralisation. | | Criteria | JORC Code explanation | Commentary | |--------------------------------|---|--| | | | Exploration at Nolans East is targeting REE mineralisation in a similar setting to Arafura's Nolans Bore Project, which is located 15km west. Nolans Bore is a complex stockwork vein-style deposit with mineralisation occuring in in two stages (1) massive to granular fluorapatite with inclusions of REE silicates, phosphates and (fluoro) carbonates, and (2) calcite-allanite with accessory REE-bearing phosphate and (fluoro) carbonate minerals that vein and brecciate the earlier stage. Nolans Bore was discovered by mapping and sampling of these veins at surface. The Nolans East Project area is 90% covered in sand cover with poor outcrop defined. Outcrops are principally Granite – Gneiss. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | No drilling results are reported. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No aggregation of data. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | No drilling results are reported. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Refer to figures within this report. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All meaningful information has been included in the body of the text, including all results shown on Figure 1 and a summary of all assay results as Appendix 1. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All material data and information has been included in the body of this announcement. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further work, including review and analysis of results and drill planning, detailed in the body of the announcement. |