

Market Announcement

2 August 2023

Dreadnought Deposit and Empress – Dreadnought Low Grade Stockpile Mineral Resource Update

Highlights:

- 24.1% increase in total Dreadnought Open Pit Mineral Resource ounces
- Empress Dreadnought Low Grade Stockpile Mineral Resource is mine ready with approved mine proposal

West Australian gold company Focus Minerals Limited (**ASX: FML**) (**Focus** or the **Company**) is pleased to announce updated Mineral Resource estimation for the Dreadnought Deposit, part of the Company's 100%-owned Coolgardie Gold Operations (**Coolgardie**).

Coolgardie comprises 141km² of highly prospective tenements on the outskirts of the Coolgardie township in the Goldfields region (Figure 1). Dreadnought is located 300m south of the Tindals/Empress mine complex.

Dreadnought mineralisation is primarily hosted by diorite and hornblende-feldspar porphyries that have intruded the Brilliant Ultramafic unit (Figure 2). The Dreadnought Deposit and low grade (LG) stockpiles are located adjacent to the Tindals Haul Road 4.4 km south of Coolgardie townsite (Figure 2).

The new Dreadnought Open Pit Mineral Resource is reported on a dry tonnage basis using 0.6g/t cut off to 280mRL (140m below surface) and compared with previously reported Mineral Resource Estimate in 2013.

Classification	Tonnage (Mt)	Change Tonnage %	Au Grade (g/t)	Change Grade %	Au Oz	Change Oz %
Indicated	2.82	+48.4%	1.51	-24.4%	137,000	+12.3%
Inferred	0.51	+252.4%	1.48	-12.7%	24,400	+204.8%
Total open pit Mineral Resource	3.33	62.8%	1.51	-23.8%	161,400	+24.1%

Commenting on the updates to the Dreadnought Open Pit and Empress – Dreadnought Low Grade Stockpile Mineral Resources, Focus' Executive Chairman, Mr Wanghong Yang, said:

"The updated Mineral Resource for the Empress - Dreadnought Low Grade Stockpile provides flexibility for Focus's mining plan. The full review of the Dreadnought Deposit has improved our confidence in the Mineral Resource estimate and provides flexibility to our future LOM plan." Following Mineral Resource updates for the Dreadnought Open Pit and Empress – Dreadnought Low Grade Stockpile, the Company's total Measured, Indicated and Inferred Mineral Resources at Coolgardie comprise:

Classification	Tonnage (Mt)	Au Grade (g/t)	Au Contained Moz
Total Measured	4.4	1.5	0.205
Total Indicated	25.8	1.9	1.545
Total Inferred	15.4	2.0	1.011
Total Mineral Resource	45.6	1.9	2.762

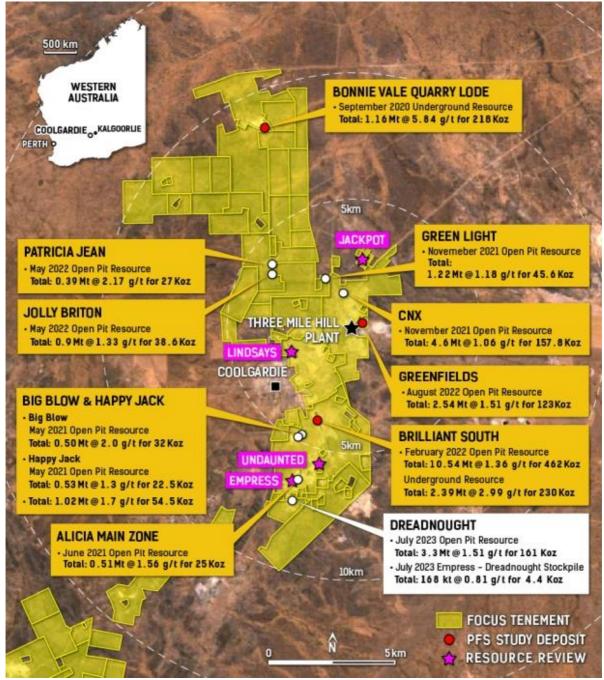


Figure 1: Key Coolgardie project deposits with recent Mineral Resource Estimates including remnant Empress – Dreadnought Low Grade Stockpile Mineral Resource

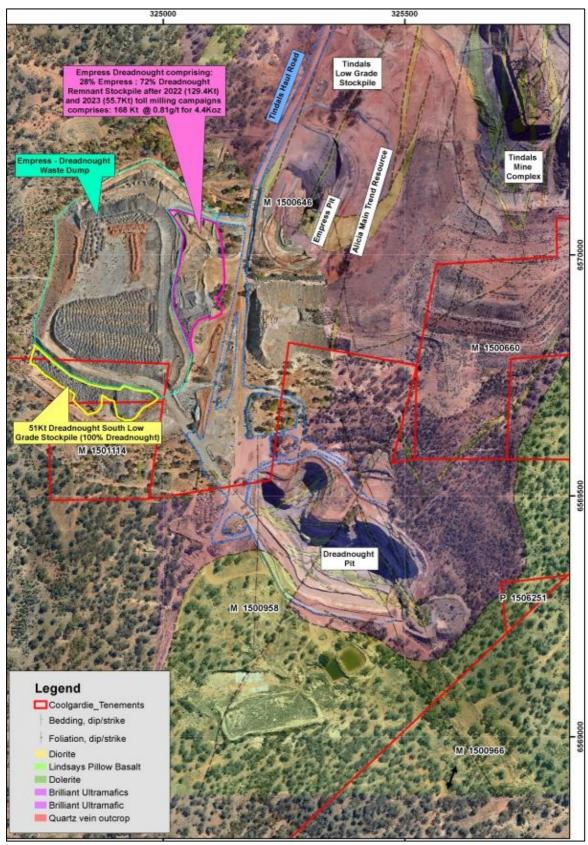


Figure 2: Satellite image with semitransparent geology covering the areas around Dreadnought Open Pit and extending to the Empress – Tindals Mine Complex. The footprint of the Empress – Dreadnought Low Grade Stockpile prior to 2022/2023 toll milling is marked by a magenta polyline. 2022 toll treatment mining comprised 129,3890 t @ 0.89 g/t (head grade) for 3,700 oz mined - 3,460oz recovered (95.6% recovery). A smaller toll milling campaign was completed in the June Quarter 2023 comprising 55,763 t @ 0.81 g/t (head grade) for 1,450oz mined.

Mineral Resource Estimation

Dreadnought is a structurally/geologically very complex deposit. The deposit contains eight primary structural/geological domains which have variable mineralisation style and orientation. An additional low-grade domain envelope has also been estimated that encompasses each of the eight primary domains.

The Dreadnought Open Pit Mineral Resource has been completed using a combination of detailed Ordinary Kriged (**OK**) modelling of lodes within each domain and within the overall low grade envelope domain.

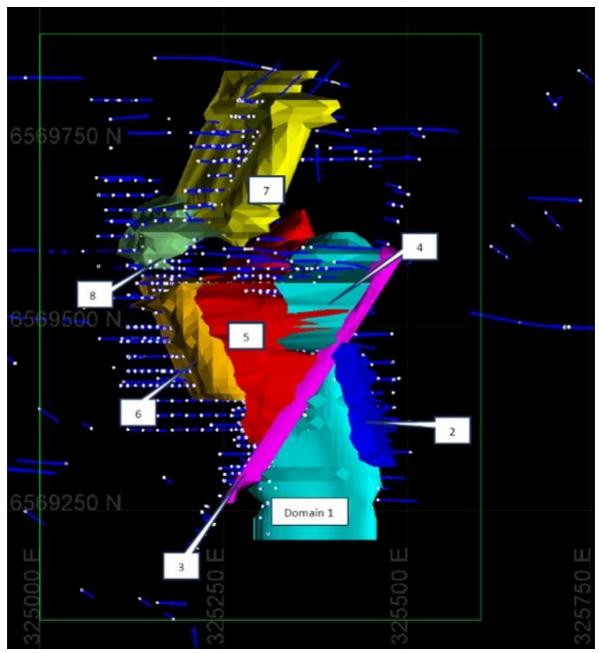


Figure 3: Plan view of Dreadnought OP MRE. Green rectangle shows model extents, eight primary Dreadnought structural/geological domains are coloured/labelled, drill traces are also shown.

During May and June 2023, Focus completed 23 reverse circulation (**RC**) holes for 2,736m drilling targeting some of the shallow Inferred Category Mineral Resources at Dreadnought for conversion to Indicated Category. Significant intersections returned by this drilling include (refer to JORC Table 1 for full details of drill holes):

- 23DNRC007 27.00m @ 4.87g/t from 43m for (GxM 131)
- 23DNRC008 41.00m @ 1.26g/t from 95m for (GxM 52)
- 23DNRC010 29.00m @ 1.76g/t from 85m for (GxM 51)
- 23DNRC002 24.00m @ 1.46g/t from 95m for (GxM 35)

The drilling was successful and allowed a final phase of Mineral Resource review, modelling and estimation prior to pit optimisation and design. Additional care was taken to identify consistently highergrade mineralised structures and model these into separate high-grade domains such as Domain 2 (Figures 8 and 9). This improves the spatial control on the location of higher-grade mineralisation and restricts its ability to influence material outside the high-grade domains.

It is noted that a significant up dip and from surface part of Domain 2 has not been sufficiently drill tested beneath the east wall of the pit up to its intersection with the Dreadnought Fault (Domain 3 – Figures 8 and 9). This remains a potentially high-grade drill target for follow up. This area has not been previously drilled due to the historic location of now removed dumps and focus of mining further to the west of Domain 2.

The new Dreadnought Open Pit Mineral Resource is reported on a dry tonnage basis using 0.6g/t cut off to 280mRL (140m below surface) and compared with previously reported Mineral Resource Estimate in 2013.

Classification	Tonnage (Mt)	Change Tonnage %	Au Grade (g/t)	Change Grade %	Au Oz	Change Oz %
Indicated	2.82	+48.4%	1.51	-24.4%	137,000	+12.3%
Inferred	0.51	+252.4%	1.48	-12.7%	24,400	+204.8%
Total open pit Mineral Resource	3.33	62.8%	1.51	-23.8%	161,400	+24.1%

Despite Dreadnought having a significant Mineral Resource the reporting depth has been limited to only 140m depth taking into consideration:

- Depth of RC drilling.
- Future pit will be a cut back on a 65m deep pit impacting economic depth of extraction.
- Applicable royalties.
- Mineralisation geometries are complicated and will impact open pit production rate.
- Mineralisation geometries are complicated and will impact recovery/dilution.

It is noted that the new (JORC 2012) Mineral Resource estimate contains significantly more tonnes at a lower grade that the 2013 (JORC 2004) Mineral Resource estimate. This is partially as a result of reporting at 0.6 g/t cut off rather than 1 g/t cut off. However, the main difference relates to comprehensive geology driven remodelling of this complex deposit.

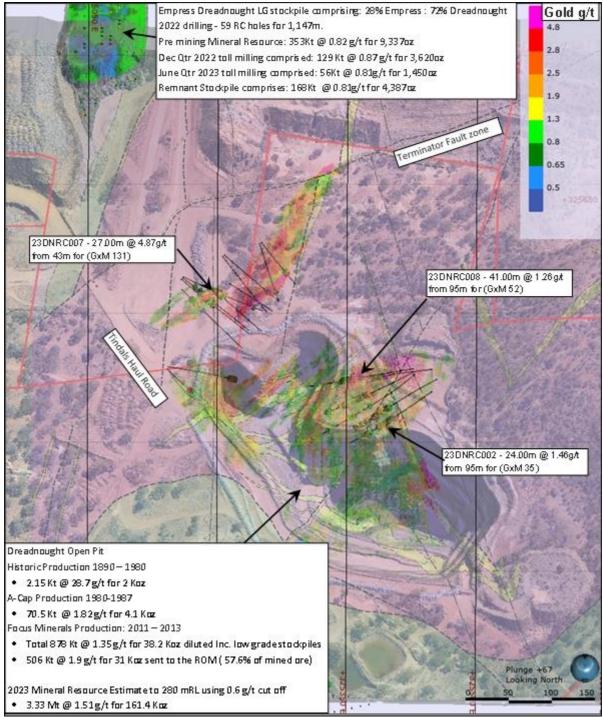


Figure 4: View looking down and to the north at the 2023 remnant Indicated and Inferred Dreadnought Open Pit Mineral Resource Estimate. Block model centroids are coloured by Au g/t (see inset legend). Semi – transparent mapped geology is draped on the digital terrain model. 2023 RC drilling traces (black lines) are marked with grades cut at 0.6g/t and coloured as per inset legend. Select significant intersections calculated using 0.5 g/t cut off and up to 3m internal dilution are labelled.

The Empress - Dreadnought Low Grade Stockpile comprises 28% from Empress Open Pit: 72% from Dreadnought Open Pit. To deliver a reliable Mineral Resource, a program of 59 RC grade control holes was implemented at 10m to 15m lateral spacing for 1,147m. In addition, 10m spaced rock chip samples were collected over the entirety of the dump and any paddock dumped areas to provide further details on the nature of the stockpile.

Drill sampling stockpiled material can be problematic as it is common to encounter intervals with poor or even no sample return. These issues are typically found in less consolidated areas of stockpile such as the tip head and surrounding rill slopes that are poorly compacted.

Nine RC holes proximal to the southern rill edge of the stockpile were significantly affected by poor sample return (Figures 5 and 6). This part of the stockpile is considered under sampled and is defined by a 58.7Kt south dipping wedge of mostly fresh rock material. It is also noted the rill slopes that surround the central part of the stockpile are similarly under sampled.

For the purposes of Mineral Resource Estimation mine production data has been reviewed for both the Empress and Dreadnought deposits. Material mined for low grade stockpile between 2011 -2013 had an in-situ grade of 0.8 g/t and was diluted by mining to 0.62g/t.

During toll milling the head grade of feed from the Empress - Dreadnought LG Stockpile ranged from 0.75 g/t to 1.25 g/t with a weighted average of 0.89 g/t. This indicates that the estimated diluted grade of material historically assigned to low grade from the Empress and Dreadnought deposits was significantly under called by about 40%. For the purpose of Mineral Resource estimation material with insufficient follow up sampling within the Empress – Dreadnought LG Stockpile has been assigned a set grade of 0.85 g/t. Which is slightly less than the median grade achieved during toll milling in 2022.

Of the remaining 50 grade control holes covering the majority of the stockpile, five scattered holes had significantly worse sample return (Figure 5). These holes are surrounded by reasonably close spaced holes with acceptable recovery and as such the remainder of the stockpile is considered to be effectively sampled.

Of the 45 holes with better sample recovery, 41 have recorded cumulative intersections exceeding 7 gram x meters (GxM). Some of the significant intersections recorded by this drilling include holes partially impacted by poor sample return. A selection of some intersections calculated using 0.5 g/t cut of and up to 2m internal dilution include (refer to JORC Table 1 for full details of drill holes):

- 22DNRC037 19.00m @ 2.72g/t from 3m for (GxM 52)
- 22DNRC005 8.00m @ 3.86g/t from 2m for (GxM 31)
- 22DNRC004 2.00m @ 15.43g/t from 6m for (GxM 31)
- 22DNRC049 14.00m @ 1.32g/t from 3m for (GxM 18)
- 22DNRC030 16.00m @ 1.09g/t from 6m for (GxM 17)
- 22DNRC038 14.00m @ 1.16g/t from 9m for (GxM 16) 9m sample loss at start of hole
- 22DNRC031 14.00m @ 1.02g/t from 4m for (GxM 14)
- 22DNRC045 9.00m @ 1.39g/t from 9m for (GxM 12)
- 22DNRC019 10.00m @ 1.15g/t from 3m for (GxM 11)
- 22DNRC036 7.00m @ 1.5g/t from 16m for (GxM 10)
- 22DNRC012 3.00m @ 3.41g/t from 10m for (GxM 10)
- 22DNRC029 10.00m @ 1g/t from 10m for (GxM 10)
- 22DNRC009 8.00m @ 1.24g/t from 10m for (GxM 10) 7m sample loss at start of hole

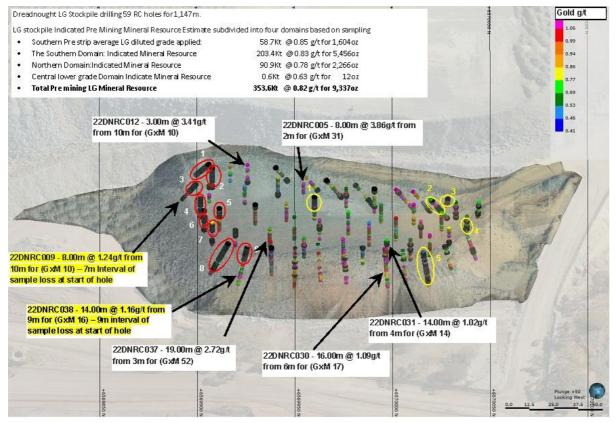


Figure 5: View looking down and to the west of the Dreadnought Low Grade Stockpile which pre mining comprises 353.6Kt of material. The location of 59 grade control holes for 1,147m drilling completed are shown. Intervals affected by poor sample return are marked by black discs. Intervals with acceptable sample return are coloured by gold grade as per the inset legend. Holes at the southern rill slope affected by poor sample recovery are highlighted by red ellipses. Other scattered holes that were affected by poor sample return are marked by yellow ellipses.

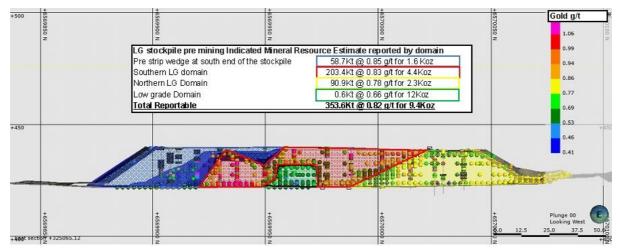


Figure 6: North-south cross section looking west through central part of the Dreadnought LG Stockpile. Drilling and block model centroid gold grades (g/t) are coloured as per inset legend. The LG Stockpile pre toll milling Indicated Mineral Resource Estimate has been sub-domained with details listed in the inset legend. It is noted that the low-grade stockpile grade exceeds estimated cut offs for processing at the refurbished Three Mile Hill Mill.

The Empress – Dreadnought LG Stockpile has been domained into four minable volumes (Figure 6) reflecting different estimated grades:

- Pre- strip Southern Domain is mostly fresh rock material extending from the southern part of the stockpile and onlapping the southern edge of the Southern Domain. This material was originally unclassified due to lack of successful grade control sampling. As such pre-stripping for resampling was considered as a possible option for this material. During the 2022 toll milling campaign 15,586t of this pre-strip domain was processed confirming it has average stockpile grade. As such there is no longer any reason to consider pre-stripping this material in follow up mining campaigns.
- Southern Domain is mostly well sampled material with generally elevated grade compared to the remainder of the stockpile. The northern margin of this domain is defined by a 30 degree rill slope that extends generally east west across the stockpile and is potentially a minable shape if selective mining of the stockpile is targeted.
- Central Low-Grade Domain 0.6kt block of lower grade material underlying the central part of the Southern domain. This domain could be conceivably left in place if selective mining of higher-grade material was targeted.
- Northern Domain is mostly well sampled material underlying the northern edge of the Southern domain and extending to the northern limit of the stockpile.

The pre mining Empress – Dreadnought LG Stockpile Mineral Resource is reported on a dry tonnage basis. All material reported by domain exceeds 0.4 g/t economic cut off for treatment at Three Mile Hill Mill.

Domain	Tonnage (Kt)	Au Grade (g/t)	Au Contained Oz
Southern Pre strip/rill slopes Indicated Category	58.7	0.85	1,604
Southern Domain Indicated Category	203.4	0.83	5,456
Low Grade Domain Indicated Category	0.6	0.66	12
Northern Domain Indicated Category	90.9	0.78	2,266
Total Empress – Dreadnought Low Grade Stockpile Indicated Mineral Resource	353.6	0.82	9,337

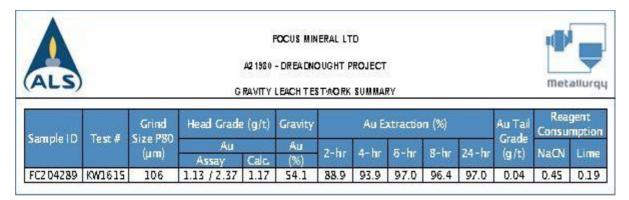
The Empress – Dreadnought LG Stockpile contains approximately 70% oxide and transition material with the remainder, particularly the Southern – Pre-strip Domain - composed of fresh and partially weathered material.

First campaign toll milling of the Empress - Dreadnought LG stockpile was completed in the December Quarter 2022. Reporting the Mineral Resource vs Milling data provides the following positive reconciliation:

Description	Tonnage (t)	Au Grade (g/t)	Au Contained Oz
Mined material reported from the Mineral Resource Estimate	127,611	0.84	3,433
Toll Milling Reported Material with head grade	129,389	0.87	3,620
Toll Milling difference to Mineral Resource Estimate	1,778	0.03	187
Toll Milling % difference to Mineral Resource Estimate	+1%	+4%	+5%
Remnant material reported from the Mineral Resource Estimate after 2022 toll milling comprising 129,389t	224,211	0.81	5,839

Additional toll milling of the Empress - Dreadnought LG stockpile was completed in the June Quarter 2023. Reporting the Mineral Resource versus Milling data provides the following reconciliation:

Description	Tonnage (t)	Au Grade (g/t)	Au Contained Oz
Mined material reported from the Mineral Resource estimate	53,588	0.81	1,447
Toll Milling Reported Material	55,763	0.81	1,450
Toll Milling difference to Mineral Resource Estimate	2,175	0.00	3
Toll Milling % difference to Mineral Resource Estimate	+4.1%	+0%	+0.2%
Remnant material reported from the Mineral Resource estimate after 2023 toll milling comprising 55,763t	168,448	0.81	4,387


Based on two toll milling campaigns comprising 185,152t the Mineral Resource estimate for the Empress - Dreadnought Low Grade Stockpile remains robust. It is anticipated the remaining Empress - Dreadnought Low Grade Stockpile will be processed in the second half of 2023 as the Three Mile Hill Mill comes online.

Empress – Dreadnought LG Stockpile Metallurgy

A bulk composite metallurgical sample was tested at ALS using Perth water under conditions that simulate processing at Three Mile Hill Mill.

Flowsheet:

- Control Crush <3.35mm
- Homogenise and split into 1kg samples
- Head Assay Au (dup), Ag (LDL), As, C(ORG) C(TOT), Cu, Hg, Sb, S(TOT), S(-2), Te, ME ICP SCAN
- Grind P80: 106 micron
- Gravity Separation (Knelson) Knelson Tail (Intensive Leach) Assay: Au
- Gravity Tail Direct Cyanidation Bottle Roll Test
- 40% Solids (w/w) with tap water
- pH 9 (Lime), Maintain >9
- NACN: (0.035% (W/V) Maintain >0.03% (W/V)
- Oxygen sparge, 20ppm maintain > 10ppm
- Monitor pH, DO, NaCN
- Duration 24 hrs
- Sampling & Reagent checks @ 2, 4, 6, 8, 24 Analyse solutions for Au
- Leach residue Analyse Au (Duplicate)

The two new representative samples have delivered strong results:

- High gravity gold recovery at 54.1%,
- Fast leach recovery majority leach in 6 hours and,
- High extraction of 97%.

Toll milling of the Empress – Dreadought LG stockpile completed during the December Qtr 2022 indicates recovery ranges between 88.1 and 98% with weighted average of 95.6%.

Location and Past Production

Dreadnought and the Empress Open Pits were last mined in mid-2013. Dreadnought has been mined in stages. The most recent phase was completed as a 65m deep pit by Focus between June 2011 and July 2013. Reported mining at Dreadnought during this period comprises: 878 Kt @ 1.35 g/t (diluted) for 38.2Koz.

Company	Years	Tonnes	Grade g/t	Ounces
Nimbus Report	1890'S - 1980	2,151	28.7	2,000
A-Cap Historic Mining	1980-1987	70,575	1.82	4,130
Focus Minerals	2011-2013	878,158	1.35	38,220
TOTAL		950,884	1.45	44,350

Material type	Tonnes	Grade	Ounces	% Tonnes
HG ROM	479,958.8	1.96	30,218	54.7%
MG ROM	19,362.9	0.9	539	2.2%
LG ROM	6,593.4	0.63	133	0.8%
LG SP	372,243.7	0.61	7330	42.4%
Total	878,158.8	1.35	38,220	
Milled	505,915.0	1.90	30,890	57.6%

Production records for mining at Dreadnought between 2011 and 2013 comprise:

This period of mining was challenging as a result of:

- changes in Mineral Resource estimation,
- changes in grade control methods,
- selective mining practices targeting higher grade mill feed
- changes in mining personnel

Low grade material from Dreadnought is deposited in two stockpiles adjacent to the Empress - Dreadnought waste dump. The majority of the Dreadnought low grade material has been deposited into the Empress – Dreadnought Low Grade Stockpile immediately east of the Empress - Dreadnought waste dump (Figure 2). According to production records the material in this dump comprises:

Material type	Tonnes	Diluted Grade g/t	Ounces	% Tonnes
LG Empress	123,681	0.64	2,545	28%
LG Dreadnought	321,259	0.61	6,330	72%
Total	444,940	0.62	8,875	100%

The actual tonnage of the Empress Dreadnought LG Stockpile has been refined via reconciliation of 2022 toll milling survey pickup and comparison with trucking and milling figures. The reported pre mining Mineral Resource estimate contains 353.6Kt vs mine records indicating 444.9Kt (91.4Kt less or 20.5% fewer tonnes). This 2011-2013 mining tonnes overcall is likely caused by issues with applied

density and material movement reconciliation. Furthermore, 2022 grade control drilling on the Empress – Dreadnought LG Stockpile and follow up toll milling confirm the grade of this stockpile has been under called by about 40%.

Additional mainly fresh and transitional Dreadnought low grade material is deposited in a stockpile immediately south of the Empress- Dreadnought waste dump (Figure 2). According to production records this stockpile comprises:

Material type	Tonnes	Diluted Grade g/t	Ounces	% Tonnes
LG Dreadnought	50,984	0.61	1,000	100%

In the June Quarter 2023 Focus completed 89 RC grade control holes for 280m drilling over the southern 100% Dreadnought LG stockpile area. Material recovery for this program was good however, returned grades are patchy and mainly sub-economic. A small portion of this 51Kt LG stockpile may be recoverable, however no mineral resource estimate has been completed at this stage.

Summary Geology and Structure

Dreadnought is hosted by diorite and feldspar – hornblende porphyry intrusions in the Brilliant Ultramafic. This is the same geology hosting the Tindals – Empress mine complex. Mineralisation at Dreadnought is more complex and required detailed modelling. The complexity at Dreadnought is related to:

- Structural offsets,
- Structural intersections
- Changes in orientation across faults
- Changes in structural style in different parts of the Mineral Resource

To deal with this complexity the Mineral Resource has been divided into 8 domains.

Domain 1 Triangular shaped domain in the southern part of the system. Mineralisation is hosted by stacked moderate north dipping diorite intrusions. Within the diorite and contacts, eight stacked, low to medium grade lodes dip at ~40° to the north. This domain is truncated on its west side by the NE striking Dreadnought Fault (Domain 3 - fault zone and quartz veins) and on its east side by a sub vertical diorite dyke and associated high grade veining striking to the north (Domain 2)

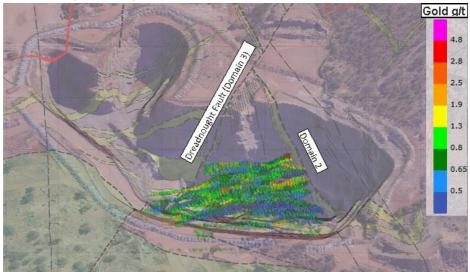


Figure 7: View looking down and to the north highlighting block model centoids for Lodes 1 to 7 within Domain 1 which dip at \sim 40° to the north. The Block model is coloured by Au g/t as per the inset legend.

Domain 2 Mineralisation in the southeast part of the system is hosted by sub vertical 84° towards 250° dipping high grade veins and diorite dykes. Domain 2 truncates the eastern side of Domain 1. Domain 2 is truncated to the north by Domain 3 (Dreadnought Fault).

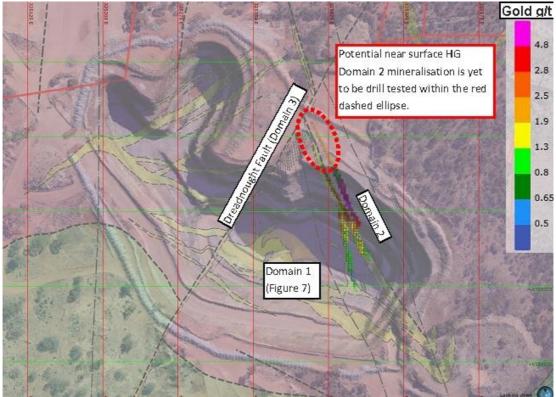


Figure 8: Plan view highlighting block model centoids for Lodes 9 to 11 within Domain 2 which dip at 84° towards 250°. The Block model is coloured by Au g/t as per the inset legend.

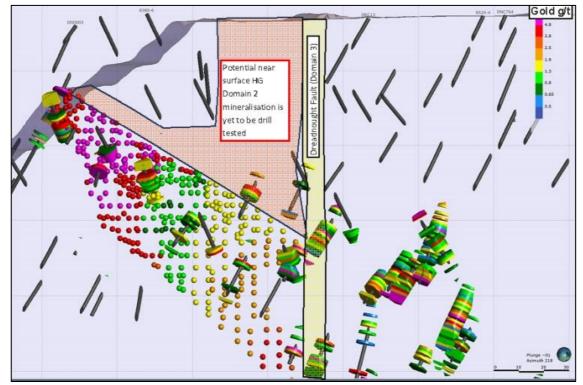


Figure 9: View to West of 10m width long section of Lodes 9 to 11 within Domain 2 which dip at 84° towards 250°. The Block model cut at 0.6 g/t is coloured by Au g/t as per the inset legend. Drilling assays cut at 0.6 g/t are shown coloured as per inset legend. Traces of all drilling are marked.

Domain 3 Mineralisation in the south-central part of the system hosted by sub vertical, 87° towards 123° dipping Dreadnought Fault and quartz veins striking north east. This domain truncates Domains 1 and 2. Furthermore, Domian 3 separates the north and south parts of the Dreadnought system mined by the FML open pit 2011 – 2013.

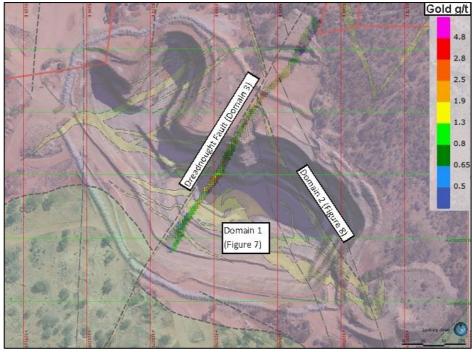


Figure 10: Plan view highlighting block model centroids for Dreadnought Fault Lode 500 within Domain 3 with dip at 87° towards 123°. The block model centroids are coloured by Au g/t as per the inset legend.

Domain 4 Mineralisation from 60m depth in the central eastern part of the system hosted by a thick diorite unit likely to be the northern block of Domain 1 rotated by the cross-cutting Dreadnought Fault. The mineralisation in this domain is thicker and higher grade in general with orientation dipping at 33° towards 330°. The western margin of Domain 4 abuts Domain 5 which trends north north-east. The mineralisation hosted by Domain 4 plunges under the eastern highwall of the open pit.

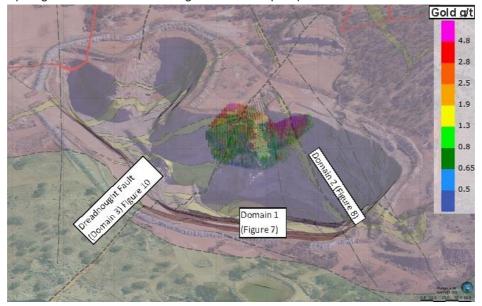


Figure 11: View looking down and to the north highlighting block model centroids for bulk lode 50 within Domain 4 which starts at 62m depth and has general orientation of 33° dip towards 330°. The block model is coloured by Au g/t as per the inset legend.

Domain 5 Mineralisation in the central northern part of the system hosted by a series of sub parallel 75° towards 280° diorite dykes which are crosscut by a series of sub parallel porphyry dykes with orientation 75° towards 310°. Both sets of structures are mineralised with narrow mineralisation appearing to thicken at intersections.

Figure 12: View looking down and to the north highlighting block model centroids for lodes within Domain 5 which comprise sub-parallel diorite dyke hosted mineralisation with orientation 75° dip towards 280° and cross cutting porphyry hosted mineralisation with orientation 75° dip towards 310°. The block model is coloured by Au g/t as per the inset legend.

Domain 6 Mineralisation in the western northern part of the system hosted by a series of sub parallel 75° towards 245° porphyry dykes.

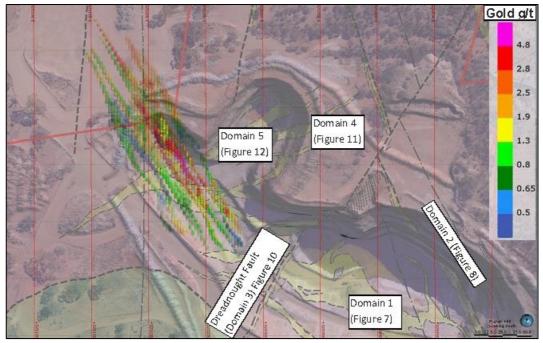


Figure 13: View looking down and to the north highlighting block model centroids for stacked porphyry hosted lodes 13 to 21 within Domain 6 with orientation of 75° dip towards 245°. The block model is coloured by Au g/t as per the inset legend.

Domain 7 Mineralisation extending north northwest away from the Dreadnought Open Pit. This mineralisation is diorite hosted and associated with deeper weathering than the main Dreadnought Open Pit area. The mineralisation has a general orientation of 70° towards 302°. This domain hosts significant higher-grade mineralisation and despite extending to near surface has not been targeted by open pit extraction. The northern part of Domain 7 appears to be truncated by the steeply north north-west dipping Terminator Fault.

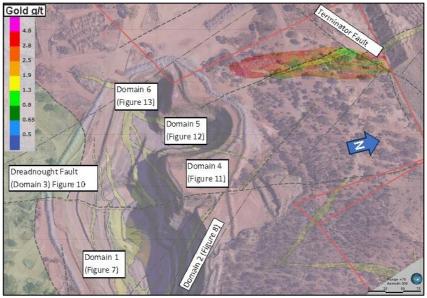


Figure 14: View looking down and to the northwest (towards 305) highlighting block model centroids for stacked diorite hosted lodes 22 to 24 within Domain 7 with orientation of 70° dip towards 302°. The block model is coloured by Au g/t as per the inset legend.

Domain 8 Mineralisation extending north northwest away from the Dreadnought pit. This mineralisation is diorite hosted and associated with deeper weathering than the main Dreadnought Open Pit area. The mineralisation has a general orientation of 76° towards 335°. This domain hosts significant higher-grade mineralisation and despite extending to near surface has not been targeted by open pit extraction.

Figure 15: View looking down and to the northwest highlighting block model centroids for stacked diorite hosted lodes 25 to 27 within Domain 8 with orientation of 76° dip towards 335°. The block model is coloured by Au g/t as per the inset legend.

The release of this ASX announcement was authorised by

Mr Wanghong Yang, Executive Chairman of Focus Minerals Ltd.

For further information please contact:	For media and investor enquiries please contact:
Alex Aaltonen	Nicholas Ong
General Manager Exploration	Company Secretary
Focus Minerals Ltd.	Focus Minerals Ltd.
Phone: +61 8 9215 7888	Phone: +61 8 9215 7888
Email: info@focusminerals.com.au	Email: info@focusminerals.com.au
Focus Minerals Ltd. Phone: +61 8 9215 7888	Focus Minerals Ltd. Phone: +61 8 9215 7888

About Focus Minerals Limited (ASX: FML)

Focus Minerals is Western Australia's newest gold producer and focused on delivering shareholder value from its 100%-owned Coolgardie Gold Operation and Laverton Gold Project, in Western Australia's Goldfields.

Focus is committed to delivering shareholder value from the Coolgardie Gold Operation, a 138km² tenement holding that includes a 1.2Mtpa processing plant at Three Mile Hill, with commencement of mining activities in mid-2023. A new Life of Mine plan with 7-year production for 402,000oz of gold was announced to the ASX on 24 October 2022.

The Laverton Gold Project covers 362km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm sufficient gold mineralisation at the Beasley Shear Zone, Lancefield-Wedge Thrust, Karridale and Burtville to support a Stage 1 production restart at Laverton. In parallel, Focus is working to advance key Laverton resource growth targets including Sickle, Ida-H and Burtville South. Focus has delivered first results from a progressive Pre-Feasibility Study (Pre-Tax NPV_{5.0%} A\$132M) and is advancing study work utilising Laverton's expanded Mineral Resource position.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Aaltonen is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

The Mineral Resource estimates were undertaken by Ms Hannah Kosovich, an employee of Focus Minerals. Ms Hannah Kosovich is a member of Australian Institute of Geoscientists and has sufficient experience to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

Mr Aaltonen and Ms Hannah Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

ASX Listing Rule 5.19.2

Dreadnought Open Pit and the Empress - Dreadnought LG Stockpile Mineral Resources were not included in the Coolgardie LOM plan dated 24 October 2022. Therefore, the material assumptions underpinning the production target, or the forecast financial information derived from the LOM plan continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	 The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML). RC percussion drill chips were collected through a cyclone and cone or riffle splitter. Samples were collected on a 1m basis to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level. The spoils were collected at 1m intervals and either placed directly on the ground or collected in large "green bags". FML also collected composite samples by grab sampling the 1m spoils and the corresponding 1m samples collected off the drill rig were submitted if the composite returned an assay >0.2ppm Au. FML diamond core was drilled at NQ2 core size and ½ core sampled. A-Cap collected samples off the rig cyclone in 1m intervals that were riffle split into a sealed small, numbered bag for analysis. Nimbus Resources NL riffle split 1m samples when dry and spear sampled when wet. Outside of known mineralisation zones 4m composite values returned > 0.2g/t Au. New Hampton Goldfields Ltd (New Hampton) also took 4m composites and 1m riffle split samples. Composite samples were re-submitted as 1m intervals where results returned >0.2g/t Au. South Kal Mines Pty Ltd collected 1m samples and also 4m composites that were initially submitted for analysis. Where composite samples returned >0.2g/t the corresponding 1m splits were submitted.
Drilling techniques	 All FML drilling was completed using a Reverse Circulation (RC) face sampling hammer with booster auxiliary or by NQ2 sized diamond drill bit. EHGM drilling was by RC methods with 1 diamond tail added to the end of an RC hole. A-Cap holes were predominantly drilled by an RC face sampling hammer rig. Nimbus drilled RC samples using an RC rig with 5 ¼ inch diameter drill bit and a booster compressor to counter the hard ground conditions. New Hampton drilled RC samples with a booster compressor at 5 ¼ inch diameter. South Kal drilled RC samples with an auxiliary compressor.
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. Historic sample recovery is poorly recorded.
Logging	 FML RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. The entire length of all holes is logged. RC chips were washed and stored in chip trays, while diamond core was orientated and photographed prior to being ½ core sampled with remaining core stored at the TMH core yard.

	Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
Sub-sampling techniques and sample preparation	 FML RC samples were drilled dry to maximise recovery where possible. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. FML utilised various laboratories over the years, Amdel Laboratories, KAL Assay, ALS and Jinning Laboratory. However, the sample preparation remained the same. Samples were collected in a pre-numbered calico bag bearing a unique sample ID. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. FML samples were analysed by 30g to 50g Fire Assay for individual samples with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes are considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. A-Cap submitted its RC samples to Genalysis Laboratories for a fire assay analysis by FA50 method, following mixer mill preparation. Nimbus submitted samples to Amdel laboratory for a 50g Fire Assay. New Hampton submitted samples to Amdel laboratories for a fire assay with AAS finish to a 10ppb detection limit. South Kal submitted samples to Amdel for a 40g Fire Assay with an AAS finish.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. FML QAQC checks involved inserting a standard or blank every 10 to 20 samples in RC or diamond core and taking a field duplicate every 20 samples in RC. Field duplicates were collected from the cone splitter on the rig. A minimum of 1 standard was inserted for every sample batch submitted. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. In November 2004 test work comparing results from fire assay versus leachwell methods was conducted using the 1m residues from the earlier 2004 drill program to investigate the possibility of a coarse gold issue. Results showed significant proportion of the grade was from the coarse fraction and as such results varied between the FA and leachwell results. A-Cap used field duplicates, laboratory repeats and standards as QAQC checks. Nimbus used a check screen fire assay. New Hampton and South Kal do not list QAQC practices.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project.

	 No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. Holes were open hole surveyed upon completion of drilling using an electronic multi-shot camera or north-seeking gyroscope tool whilst drilling was in progress. FML short RC grade control holes drilled in 2022 on the low-grade stockpile were not downhole surveyed. FML 2023 resource development holes at Dreadnought open pit were down hole surveyed using a north seeking gyro. FML 2023 short vertical RC grade control holes targeting Dreadnought stockpiles and tails were not downhole surveyed given average depth approximated less than 3m. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. A-Cap have not stated surveyor to capture the drill collar locations and holes were down hole surveyed using a Gyro-Probe gyroscopic down hole instrument. New Hampton used a licensed surveyors Kalgoorlie to pick up drill collars using a DGPS and Surtron of Kalgoorlie to down hole survey the holes using an in-rod gyroscope.
Data spacing and distribution	 Within the existing Dreadnought Open Pit, close spaced, 10m x 10m grid drill pattern exists. Outside of the main pit it extends to 20m x 20m following known mineralisation trends. On top of the low-grade stockpile drill spacing is approximately 10m x 10m.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Drill holes were oriented at right angles to strike of the main deposit, however given the differing nature of the Dreadnought mineralisation orientation not all holes were orientated to best delineate the geology. A mixture of vertical and angled holes was drilled on the low-grade Stockpile to give best coverage with available drilling positions. 2023 stockpile and tails grade control drilling only used vertical oriented RC holes
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded.
Audits or reviews	• A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

Criteria		ig section also apply to this section) Explanation			
Mineral tenement and land tenure status	subsidiary • The Maliny	tion was conducted on tenements 100% owned by Fo companies Focus Operations Pty Ltd. All tenements a uu Ghoorlie 2017 Claim cover the majority of the Cool rdie claims have progressed to determined status.	are in good s	standing.	
Exploration done by other parties	2,000 oun More rece 1.82g/t Au FML comm site was p comprise: ROM Emp Drea Other expl	ght has been historically mined by underground shafts ces of gold was recovered from 2,150 tonnes mined a nt open pit mining by A-Cap in the 1980s recorded pro- for 4,130 ounces. menced Dreadnought Open Pit mining operations in Jul laced on care and maintenance in July 2013. Products of Ore delivered 505,915 t @ 1.9 g/t for 30,890 oz ress- Dreadnought LG stockpile 321259 t @ 0.61 g/t for dnought LG South Stockpile 50,984 t @ 0.61 g/t for 1 loration works carried out consisted of mapping, soil s drilling, aerial surveys, ground magnetics	t a grade of oduction figu une 2011 thi ion figures fo for 6,330 oz ,000oz.	28.7g/t Au. ires of 70,57 rough until ti or this period	75t @ he
Geology	Menzies G occurring The domin rocks over are intrude undifferen Structurall and assoc deposit. W southern a This cross mineralisa	A the deposit is located on the western margin of the A Greenstone Belt. The province is sub-divided into three within the Kalgoorlie Terrane and further sub-divided in hant rock types throughout the Coolgardie Domain are rain by a thick succession of felsic volcanic and volca- ed by a suite of felsic to intermediate porphyries and o tiated dolerites and gabbros. By the N-S Redemption Fault corridor, a major structure riated with other mineralised deposits, runs directly to dithin the deposit a NW trending fault crosscuts the en and northern zones of mineralisation. Incutting fault is known as the Dreadnought Lode and we tion targeted by early mining companies. tion is also present within the diorite intrusions and is licification and base metal sulphides.	e Terranes, with the Cool e mafic to ultiniclastic rock lifferentiated e in the Cool the west of t tire deposits vas the main	with Dreadn Igardie Dom ramafic volc ks which in t to Igardie regic he Dreadno separating it host of	ain. anic turn on ught t into
Drill hole Information	Historic dr Company	illing information has been validated against publicly a Drill Hole Number	available WA WAMEX Report A-	MEX report WAMEX Report	ts.
	GEM	DRC11, DRC13, DRC14, DRC15, DRC16, DRC17, DRC18, DRC19, DRC20, DRC21, DRC22, DRC23, DRC24, DRC25, DRC27, DRC28, DRC29, DRC30, DRC31, DRC32, DRC36, DRC37, DRC38, DRC40	23580	Date	
	NIMBUS	8240-1, 8240-2, 8280-2, 8280-3, 8280-5, 8280-6, 8320- 1, 8320-1B, 8320-3, 8320-4, 8360-1, 8360-2, 8360-4, 8360-5, 8400-1, 8400-2, 8400-3, 8400-4, 8440-1, 8440- 2, 8440-3, 8440-4, 8440-5, 8480-1, 8480-2, 8480-3, 8520-1, 8520-2	52738	Aug-97	
		8460-3, 8500-2, 8620-1, 8660-2, 8700-1, 8740-2, 1998, RC, 8420-1, 8420-2, 8420-3, 8480-5, 8680-8, 8700-4, 8740-3, 8740-5, 8760-1, 8760-2, 8740-4, 8440-7, 8440- 9, 8460-2, 8460-4, 8520-3, 8520-4, 8540-2, 8560-2, 8580-1, 8280-1, 8280-4, 8320-2, 8360-3, 8480-4, 8500- 1, 8600-2, 8620-2, 8640-2, 8640-3, 8660-1, 8660-3, 8680-4, 8680-7, 8700-2, 8700-3, 8720-3, 8720-4, 8720- 5, 8400-5, 8440-10, 8460-5, 8480-1A, 8500-4, 8600-1, 8640-1, 8680-1, 8720-1, 8740-1	56811	Sep-98	

GOLDFAN	TNG1648-RD				60	899	Jan-99		
NEW HAMPTO	1, 8300-2, 83	00-3, 8300-4,	8340-1, 8340	, 8280-8, 8300 -2, 8340-3, , 8380-8, 8400	8340-3, 61565 Nov				
SOUTH KA MINES	9, 8440-11, 8 8500-6, 8560 8500-5, 8520	500-3, 8560-5 -4, 8380-10, 8	5, 8760-3 3480-6, 8760-4 520-3, 8640-4	4, 8660-4, , 8720-12,		208	Nov-03		
	c drilling that was 6 of the data. Col					ble WA	AMEX repo		
Hole ID		MGA 94 Zone 51 Dept							
	Easting	Northing	RL	Azimuth	Dip				
8340-4	325440.6	6569390	411.776	270	60	1	50		
8460-1	325214	6569505	414.408	90	60	1	37		
8540-1	325448.5	6569579	349.498	90	60	1	25		
8560-3	325159	6569605	415.142	90	60	(50		
8580-4	325122	6569625	345.531	90	60	1	61		
8600-1	. 325259.9	6569647	414.799	90	60	1	07		
8620-4	325235.9	6569665	351.874	90	60	1	20		
8640-1	. 325279.4	6569688	381.481	90	60	1	00		
8640-5	325237.1	6569686	348.55	90	60	1	43		
8640-6	325225.6	6569681	298.405	90	60	1	80		
8680-1	325280.7	6569727	410.917	90	60	00			
8680-2	325338.6	6569729	59729 382.448 90 60 100				00		
8700-9	325253.3	6569744	330.450	90	60	1	74		
8720-1	325299.6	6569766	410.558	90	60	1	00		
8720-1	3 325255.9	6569762	327.764	90	60	1	80		
8740-1	325302.2	6569788	396.553	90	60	1	07		
8740-8	325301.3	6569793	395.19	120	90	2	28		
8760-5	325377	6569800	416.793	90	60	(50		
• Focus	drilling informatio	n available V	VAMEX repo	orts.		1			
Company	,	Drill Hol	e Number		Rep	MEX ort A- mber	WAMEX Report Date		
	D8580-6, D8660-6, D D8620-6, D8620-7, D8	D8500-7, D8560-7, D8560-8, D8580-10, D8580-5, D8580-6, D8580-7, D8580-8, D8620-5, D8622-1, D8660-6, D8680-10, D8700-10, D8700-11, D8600-7				430	Nov-05		
FOCUS	05DNC00 05DNC00 05DNC01 05DND00 06DNC01 06DNC01	1, 05DNC002 16, 05DNC007 1, 05DNC013 3, 05DND004 4, 06DNC015 8, 06DND007 1, 06DND012	, 05DNC004, , 05DNC009, , 05DND001, , 05DND005, , 06DNC016, , 06DND008,	DNC004, 05DNC005, DNC009, 05DNC010, DND001, 05DND002, DND005, 05DND006, DNC016, 06DNC017, DND008, 06DND009, DND013, 06DND014,					
	TNDC015	5, TNDC0156		TNDC0158,	85	889	Feb-10		
), TNDD0011,	TNDC0264	89	322	Feb-11		

	 DNC510, DNC511, DNC512, DNC513, DNC514, DNC515, DNC516, DNC517, DNC518, DNC519, DNC520, DNC521, DNC522, DNC523, DNC524, DNC525, DNC528, DNC529, DNC530, DNC531, DNC532, DNC533, DNC534, DNC535, DNC536, DNC537, DNC538, DNC544, DNC545, DNC546, DNC547, DNC548, DNC549, DNC550, DNC551, DNC552, DNC553, DNC554, DNC550, DNC556, DNC557, DNC558, DNC559, DNC560, DNC567, DNC568, DNC594, DNC595, DNC596, DNC592, DNC593, DNC594, DNC595, DNC596, DNC597, DNC603, DNC604, DNC600, DNC601, DNC602, DNC609, DNC610, DNC611, DNC612, DNC613, DNC616, DNC617, DNC619, DNC620, DNC644, DNC625, DNC638, DNC639, DNC640, DNC641, DNC642, DNC643, DNC644, DNC645, DNC646, DNC647, DNC648, DNC644, DNC655, DNC656, DNC657, DNC658, DNC661, DNC665, DNC657, DNC652, DNC656, DNC657, DNC666, DNC667, DNC674, DNC664, DNC665, DNC667, DNC674, DNC664, DNC665, DNC667, DNC674, DNC675, DNC676, DNC677, DNC678, DNC679, DNC680, DNC681, DNC682 	92766	Feb-12
		I	
Compan	Drill Hole Number	WAMEX Report A- Number	WAMEX Report Date
Focus	Drill Hole Number DDN004, DDN005, DDN006, DDN006A, RC, DNC683, DNC684, DNC685, DNC686, DNC687, DNC688, DNC689, DNC690, DNC691B, DNC692, DNC693, DNC694, DNC695, DNC696, DNC697, DNC698, DNC699, DNC700, DNC701, DNC702, DNC703, DNC704, DNC705, DNC706, DNC707, DNC708, DNC709, DNC710, DNC711, DNC712, DNC713, DNC714, DNC715, DNC716, DNC717, DNC718, DNC719, DNC720, DNC721, DNC722, DNC723, DNC724, DNC725, DNC726, DNC727, DNC728, DNC729, DNC730, DNC731, DNC732, DNC733, DNC734, DNC735, DNC736, DNC737, DNC738, DNC739, DNC740, DNC741, DNC742, DNC743, DNC744 DNC745, DNC746, DNC750, DNC751, DNC752,	Report A-	Report

Hole ID		MG	A 94 Zone 51			Depth (n
	Easting	Northing	RL	Azimuth	Dip	1
06DNC019	325445.6	6569430.2	393.798	265.069	57.03	155
06DNC020	325404.5	6569409.3	418.005	270.639	71.77	130
06DNC021	325322.6	6569447.3	413.468	91.8957	59.67	160
06DNC022	325391.5	6569548.9	355.612	94.36	60.59	119
06DNC023	325379.7	6569468.8	411.766	88.2952	58.15	119
06DNC024	325393.6	6569491.1	380.062	91.899	58.68	120
8680-9	325252.8	6569726.8	351.931	94.407	60.11	139
8700-5	325264.5	6569746.7	365.526	95.65	60.5	120
8720-6	325269.5	6569766.7	354.61	93.36	61.18	129
DNC001	325278.9	6569540.4	408.078	88.04	60	30
DNC002	325286.8	6569540.2	414.301	90.04	60	30
DNC003	325295.6	6569540.3	415.211	87.04	59	30
DNC004	325303.8	6569540	415.497	90.04	60	30
DNC005	325315	6569539.9	415.777	90.04	60	30
DNC006	325254.8	6569520.4	413.457	90.04	60	30
DNC007	325264.6	6569520	414.597	90.04	60	30
DNC008	325274.7	6569519.7	414.817	90.04	60	30
DNC009	325285.2	6569519.5	414.586	85.04	58	30
DNC010	325294.8	6569519.6	414.286	91.04	58	30
DNC013	325326.4	6569519.8	414.626	85.04	58	30
DNC014	325206.1	6569500.3	414.777	90.05	60	30
DNC015	325215.2	6569500.2	414.357	90.05	60	30
DNC018	325252.5	6569500	402.402	90.04	60	30
DNC019	325256.9	6569500.4	412.118	90.04	60	30
DNC020	325264.9	6569500.7	414.427	90.04	60	30
DNC021	325274.2	6569500.2	414.327	90.04	60	30
DNC022	325284.8	6569499.9	414.147	90.04	60	30
DNC025	325312	6569500.3	408.927	90.04	60	30
DNC026	325326.8	6569500.1	414.257	90.04	60	30
DNC027	325195.8	6569480.3	414.627	90.05	60	30
DNC028	325205.1	6569479.9	414.517	90.05	60	30
DNC029	325215.3	6569480	414.257	90.05	60	30
DNC030	325223	6569480.3	414.047	90.05	60	30
DNC031	325234.8	6569480	413.867	90.05	60	30
DNC033	325255.4	6569480	412.927	94.04	60	30
DNC034	325264.6	6569480	413.036	90.04	58	30
DNC035	325274.5	6569480.2	413.086	90.04	58	30
DNC036	325284.6	6569480.2	412.846	92.04	58	30
DNC037	325295.2	6569479.9	411.397	95.04	60	30
DNC038	325304	6569479	410.857	90.04	60	30
DNC040	325325.9	6569480	413.527	90.04	60	30

 DNGG	225406.0	6569469 9	440.071	00.07	~~	20	
DNC041	325196.2	6569460.3	413.951	90.05	60	30	
DNC042	325205.6	6569460.2	414.367	90.05	60	30	
DNC043	325215.6	6569460.3	414.117	90.05	60	30	
DNC044	325225.5	6569460.5	413.707	90.05	60	30	
DNC045	325234.9	6569460.3	413.547	90.05	60	30	
DNC046	325245.5	6569460.2	413.237	90.05	60	30	
DNC047	325254.2	6569460.3	413.867	90.05	60	30	
DNC048	325264.7	6569460.3	412.591	88.04	59	30	
DNC049	325274.7	6569460.3	412.447	90.04	60	30	
DNC050	325284.3	6569460.3	412.758	91.04	62	30	
DNC051	325294.5	6569459.9	413.208	90.04	62	30	
DNC052	325304.5	6569459.8	413.287	93.04	60	30	
DNC053	325314.3	6569459.9	413.667	90.04	60	30	
DNC055	325367.7	6569450	400.861	87.04	62	30	
DNC056	325369.2	6569450.2	414.247	90.04	60	30	
DNC057	325202.7	6569440.1	403.528	90.05	60	30]
DNC058	325205.6	6569440	414.527	90.05	60	30	
DNC059	325215.6	6569440	414.267	90.05	60	31	
DNC060	325225.9	6569440.2	413.877	90.05	60	31	
DNC061	325235.6	6569440.3	413.417	90.05	60	30	
DNC062	325245.9	6569440.1	413.157	90.05	60	30	
DNC063	325255.8	6569440.2	412.827	90.05	60	30	
DNC065	325277.3	6569440	408.452	90.04	60	30	
DNC066	325284.7	6569439.9	411.257	90.04	60	30	
DNC067	325295.5	6569439.7	411.877	90.04	60	30	
DNC068	325305.4	6569440.4	412.807	90.04	60	30	
DNC069	325314.6	6569440	413.066	92.04	58	30	
DNC070	325325.1	6569440.2	413.197	90.04	60	30	
DNC071	325235.1	6569419.9	413.607	90.05	60	30	
DNC072	325245.8	6569420.7	413.457	90.05	60	30	
DNC073	325254.9	6569420.2	413.187	90.05	60	30	
DNC075	325274.9	6569420	412.326	90.04	58	30	
DNC076	325285.2	6569420.4	410.477	90.04	60	30	
DNC077	325295.2	6569420.6	410.337	90.04	60	30	
DNC078	325305.3	6569419.9	410.998	91.04	62	30	
DNC079	325314.7	6569419.3	412.008	93.04	62	30	
DNC080	325324.9	6569419.4	412.587	92.04	60	30	
DNC081	325250.3	6569409.7	413.217	90.05	60	30	
DNC082	325270.7	6569409.4	412.247	90.04	60	30	
DNC083	325282	6569410	408.931	90.04	58	30	
DNC084	325290.1	6569410.3	410.267	85.04	60	30	
DNC085	325300.8	6569409.9	409.957	90.04	60	30	
DNC086	325309.8	6569409.7	409.897	95.04	60	30	
DNC087	325318.3	6569409.9	410.267	90.04	60	30	
5100007	323310.3	0303403.3	710.207	50.04	00	50	

				00.0 -	~~		<u></u>
DNC088	325255.6	6569400.4	413.037	90.05	60	30	
DNC089	325265.8	6569399.9	413.247	90.05	60	30	
DNC090	325275.9	6569400.1	412.277	90.04	60	30	ļ
DNC091	325282.5	6569389.8	389.691	90.04	62	30	
DNC092	325282.5	6569390.3	407.823	90.04	62	30	
DNC093	325290.7	6569390.2	412.157	93.04	60	30	
DNC094	325282.5	6569381	401.19	95.04	62	31	
DNC095	325284.5	6569379.6	412.856	95.04	58	30	ĺ
DNC097	325284.1	6569369.9	405.928	95.04	60	30	ĺ
DNC098	325289.6	6569370.7	412.827	93.04	60	30	
DNC101	325286.3	6569359.7	409.192	95.04	60	30	
DNC103	325286.2	6569349.6	402.193	95.04	62	30	
DNC106	325361.2	6569370	411.834	90.04	60	30	
DNC107	325370.4	6569370.4	413.067	90.04	60	30	
DNC108	325380.9	6569370.3	412.967	90.04	60	30	
DNC109	325391.2	6569370.1	413.117	90.04	60	30	
DNC110	325401.4	6569370.2	413.207	90.04	60	30	
DNC111	325410.5	6569370.3	413.287	90.04	60	30	
DNC112	325420	6569370.5	413.637	90.04	60	30	
DNC113	325428.8	6569370.8	413.136	85.04	58	30	
DNC115	325376.3	6569360.4	412.857	90.04	60	30	
DNC116	325385.2	6569360.4	412.757	90.04	60	30	
DNC117	325395.7	6569360.6	413.077	90.04	60	30	
DNC118	325405.4	6569360	412.847	90.04	60	30	
DNC119	325415.4	6569360.2	412.977	90.04	60	30	
DNC120	325424.7	6569359.8	413.067	90.04	60	30	
DNC122	325369.9	6569349.6	412.617	90.04	60	30	
DNC123	325378.4	6569353	412.827	90.04	60	30	
DNC124	325390.6	6569350.4	412.817	90.04	60	30	
DNC125	325410.4	6569350.2	412.797	90.04	60	30	
DNC127	325369	6569340	412.567	90.04	60	30	
DNC128	325376	6569340.5	412.747	90.04	60	30	
DNC129	325385.7	6569339.9	412.597	90.04	60	30	
DNC130	325395.7	6569340.2	412.507	90.04	60	30	
DNC131	325405.9	6569340.1	412.677	90.04	60	30	
DNC132	325415.6	6569340.1	412.027	90.04	60	30	
DNC133	325425.1	6569340.4	412.097	90.04	60	30	
DNC134	325365.5	6569329.4	412.707	90.04	60	30	
DNC135	325369.8	6569330.2	412.778	90.04	62	30	
DNC136	325383.6	6569330.6	412.767	90.04	60	30	
DNC137	325390.9	6569330.2	412.367	90.04	60	30	
DNC138	325400.6	6569329.8	412.317	90.04	60	30	
DNC139	325412	6569329.9	412.557	90.04	60	30	
DNC140	325421	6569330.1	412.457	90.04	60	30	
DINC140	525421	0009330.1	412.43/	50.04	00	50	

[[
	DNC141	325420.9	6569330	412.547	90.04	60	30	
	DNC142	325285.4	6569319.4	411.734	90.05	60	30	
	DNC143	325294.2	6569319.7	412.128	85.04	62	30	
	DNC144	325297.7	6569317.1	412.077	90.04	60	30	
	DNC145	325316	6569317.5	410.397	90.04	60	30	
	DNC146	325325.6	6569319.6	409.357	90.04	60	30	
	DNC147	325333.5	6569319.9	409.587	90.04	60	30	
	DNC148	325344.8	6569320.5	409.767	90.04	60	30	
	DNC149	325355.4	6569320.3	409.097	90.04	60	30	
	DNC150	325365.5	6569319.8	412.428	95.04	62	30	
	DNC151	325374.8	6569320.4	412.597	90.04	60	30	
	DNC152	325385.7	6569320.3	412.167	90.04	60	30	
	DNC153	325395.2	6569319.9	411.987	90.04	60	30	
	DNC154	325405.6	6569320	412.197	90.04	60	30	
	DNC155	325415.5	6569319.9	412.307	90.04	60	30	
	DNC156	325425.1	6569319.9	413.357	90.04	60	30	
	DNC157	325433.4	6569320.9	411.357	90.04	60	30	
	DNC158	325310.8	6569309.8	411.857	90.04	60	30	
	DNC159	325321.1	6569309.9	411.117	90.04	60	30	
	DNC163	325349.6	6569799.7	419.517	91.04	60	30	
	DNC164	325359.6	6569799.2	420.247	87.04	60	30	
	DNC165	325368.9	6569799.8	420.947	92.04	60	30	
	DNC166	325340.2	6569789.8	418.577	91.04	60	30	
	DNC167	325350.1	6569790	419.191	90.04	59	30	
	DNC168	325360.5	6569790	420.232	90.04	61	30	
	DNC169	325370.3	6569790.1	421.036	88.04	58	30	
	DNC170	325310.2	6569779.8	417.161	90.04	59	30	
	DNC171	325320.2	6569779.9	417.337	88.04	60	30	
	DNC172	325330.2	6569779.9	417.621	88.04	59	30	
	DNC173	325340	6569780.4	418.491	89.04	59	30	
	DNC175	325360.6	6569780.3	419.707	90.04	60	30	
	DNC176	325369.9	6569779.6	420.516	92.04	58	30	
	DNC177	325310	6569769.8	417.021	90.04	59	30	
	DNC178	325330.7	6569770.4	417.417	88.04	60	30	
	DNC179	325350.4	6569770.2	418.636	92.04	58	30	
	DNC180	325295	6569759.6	408.046	92.04	60	30	
	DNC181	325300.8	6569760.2	416.847	90.04	60	30	
	DNC183	325320.4	6569759.8	416.817	90.04	60	30	
	DNC184	325330.4	6569759.8	417.377	90.04	60	30	
	DNC185	325340.7	6569759.8	417.727	95.04	60	30	
	DNC186	325292.2	6569750.2	413.889	93.04	59	30	
	DNC187	325300.2	6569749.5	416.601	90.04	59	30	
	DNC188	325320.4	6569750.4	417.006	90.04	58	30	
	DNC190	325279.8	6569739.7	401.999	92.04	58	30	
			·		-	-		

I	DNG101	2252244	6560700 6	400 504	02.04	50	20	1
	DNC191	325284.1	6569739.9	409.594	93.04	59	30	
	DNC192	325289.7	6569739.8	416.267	90.04	60	30	
	DNC194	325310.4	6569739.5	416.406	91.04	58	30	
	DNC195	325319.5	6569740.5	416.797	95.04	60	30	
	DNC196	325277	6569730.1	405.301	94.04	58	30	
	DNC197	325280.8	6569729.7	415.407	92.04	58	30	
	DNC198	325300.6	6569729.8	416.686	91.04	58	30	
	DNC199	325310.3	6569731.2	416.767	90.04	60	30	
	DNC200	325273.7	6569719.7	410.738	90.04	59	30	
	DNC201	325280.2	6569720	416.137	90.04	60	30	
	DNC202	325300.5	6569720.1	416.626	90.04	58	30	
	DNC203	325310.2	6569720.5	416.746	88.04	58	30	
	DNC205	325280.5	6569710.2	416.327	89.04	60	30	
	DNC206	325290.5	6569710.1	416.631	88.04	59	30	
	DNC207	325300.6	6569710	416.721	90.04	59	30	
	DNC208	325262.9	6569699.9	411.735	90.04	59	30	
	DNC209	325270.2	6569699.9	416.286	90.04	58	30	
	DNC210	325280.5	6569700	416.367	88.04	60	30	
	DNC211	325290.3	6569700	416.611	89.04	59	30	
	DNC212	325300.2	6569699.8	416.757	86.04	60	30	
	DNC213	325270.6	6569689.9	416.106	88.04	58	30	
	DNC214	325280.1	6569690	416.301	95.04	59	30	
	DNC215	325289.6	6569689.9	416.376	95.04	58	30	
	DNC216	325269.8	6569679.8	416.066	94.04	58	30	
	DNC217	325282.2	6569680.7	416.387	95.04	60	30	
	DNC218	325289.8	6569680.4	416.466	95.04	58	30	
	DNC219	325270.6	6569670.3	415.826	90.04	58	30	
	DNC220	325280.1	6569669.7	415.996	95.04	58	30	
	DNC221	325290.5	6569670	416.396	94.04	58	30	
	DNC222	325271.1	6569660.5	415.912	96.04	61	30	
	DNC223	325280.3	6569659.8	416.187	90.04	60	30	
	DNC224	325290.7	6569659.8	416.367	88.04	60	30	1
	DNC225	325270.4	6569650	415.907	90.04	60	30	
	DNC226	325280.6	6569650	416.076	88.04	58	30	
	DNC227	325260.9	6569639.3	415.766	86.04	58	30	
	DNC228	325270.7	6569640.1	415.716	85.04	58	30	
	DNC229	325280.7	6569640	416.016	86.04	58	30	
	DNC230	325270.5	6569629.5	415.776	88.04	58	30	
	DNC231	325280.8	6569629.9	416.027	90.04	60	30	
	DNC232	325290.6	6569629.8	416.307	90.04	60	30	
	DNC232 DNC242	325152.7	6569630	413.392	90.04	60	30	
	DNC242	325161.2	6569629.8	414.924	90.04	60	30	
	DNC243	325101.2	6569620	414.377	90.04	60	30	
	DNC248 DNC251	325180.2	6569619.2	408.178	90.04 85.04	60	30	
	DIACTOT	525214./	0009019.2	400.170	05.04	00	50	<u> </u>

DNG252	225440.0	6560640	447.240	05.04	62	20	1
DNC252	325140.9	6569610	417.318	95.04	62	30	
DNC253	325149.2	6569610.5	416.668	95.04	62	30	
DNC254	325159.6	6569610.2	417.078	94.04	62	30	
DNC255	325171.3	6569609.8	414.657	94.04	60	30	
DNC256	325180.4	6569610.2	414.437	94.04	60	30	
DNC257	325189.8	6569610	416.276	96.04	58	30	
DNC260	325150.6	6569600.2	416.417	94.04	60	30	
DNC261	325159.9	6569599.7	416.508	95.04	62	30	
DNC262	325171.9	6569600	415.597	95.04	60	30	
DNC263	325182.4	6569600.4	413.009	90.04	59	30	
DNC276	325186.1	6569560	406.587	92.04	58	30	
DNC277	325191.4	6569559.8	413.038	90.04	60	30	
DNC278	325200.2	6569560.2	415.397	90.04	60	30	
DNC279	325172.3	6569549.9	413.598	85.04	60	30	ļ
DNC280	325180.8	6569550	416.046	90.04	58	30	
DNC281	325190.7	6569549.9	415.666	86.04	58	30]
DNC282	325200.6	6569549.9	415.306	86.04	58	30]
DNC284	325190.6	6569539.8	415.437	94.04	60	30	
DNC285	325200.6	6569539.9	415.077	95.04	60	30	
DNC286	325210.6	6569540	415.017	88.04	60	30	
DNC287	325220.1	6569540.1	415.077	92.04	60	30	
DNC288	325243.8	6569540.1	390.558	90.04	60	30	
DNC289	325251.7	6569540.1	393.918	90.04	60	30	
DNC290	325259.3	6569540	397.242	90.04	60	30	
DNC291	325266.8	6569540.7	400.696	90.04	60	30	
DNC297	325180.4	6569532.9	415.517	89.04	60	30	
DNC299	325200.2	6569530.1	414.686	95.04	58	30	
DNC300	325210.6	6569530.8	414.787	90.04	60	30	
DNC301	325184.4	6569526.5	415.417	80.04	60	30	
DNC302	325201.1	6569520.1	414.867	95.04	60	30	
DNC303	325210.1	6569520.7	414.507	90.04	60	30	
DNC305	325230.2	6569520.7	413.857	96.04	60	30	
DNC306	325190.6	6569510.5	415.386	89.04	58	30	
DNC307	325200.5	6569510.5	414.747	90.04	60	30	
DNC308	325210.3	6569510.6	414.546	90.04	58	30	1
DNC314	325173.9	6569500.4	393.234	95.04	60	30	
DNC315	325177	6569498.8	404.758	89.04	60	30	1
DNC316	325179.5	6569498.3	415.067	93.04	58	30	
DNC317	325190.8	6569500.3	415.561	92.04	59	30	
DNC318	325200.1	6569500.4	414.867	90.04	60	30	
DNC319	325200.7	6569490	415.747	90.04	60	30	
DNC321	325221	6569490.5	414.107	90.04	60	30	
DNC323	325245.5	6569491.5	414.757	95.04	60	30	
DNC320	325182.9	6569479.9	395.799	91.04	59	30	
DIVC330	323102.3	0505475.5	333.133	91.04	23	50	

	DNC222	225101 2	6560460.2	207.25	05.04	60	20	1
	DNC338	325191.3	6569460.2	397.25	85.04	60	30	
	DNC354	325205.1	6569420.2	391.05	90.04	59	30	
	DNC355	325209.9	6569420.3	400.529	94.04	59	30	
	DNC356	325212.9	6569420.3	409.895	93.04	58	30	
	DNC357	325220.6	6569420.4	413.961	89.04	59	30	
	DNC359	325370.2	6569390	414.567	95.04	60	30	
	DNC360	325379.5	6569390.2	413.437	94.04	60	30	
	DNC361	325390.6	6569390.3	413.556	88.04	58	30	
	DNC362	325421.3	6569390.6	413.264	90.04	60	30	
	DNC363	325429.5	6569390.4	414.028	90.04	62	30	
	DNC364	325440.5	6569390.5	413.197	90.04	60	30	
	DNC365	325449.5	6569390.4	413.707	90.04	60	30	
	DNC369	325370.6	6569380.5	413.277	95.04	60	30	
	DNC370	325379.9	6569380.4	413.286	94.04	58	30	
	DNC371	325390.9	6569380.6	413.196	94.04	58	30	
	DNC372	325400.9	6569380.3	413.407	90.04	60	30	
	DNC373	325411.1	6569380.2	413.676	86.04	58	30	
	DNC374	325420.8	6569381	414.377	85.04	60	30	
	DNC375	325430.8	6569380.6	413.336	90.04	58	30	
	DNC377	325279.8	6569310.3	396.626	88.04	60	30	
	DNC378	325279.7	6569310.6	413.596	85.04	58	30	
	DNC379	325290.8	6569310.6	412.567	92.04	60	30	
	DNC380	325300.4	6569311.1	412.087	90.04	60	30	
	DNC381	325359.4	6569310.2	410.931	85.04	59	30	
	DNC382	325371.1	6569310.4	411.987	90.04	60	30	
	DNC383	325380.6	6569310.4	412.007	85.04	60	30	
	DNC384	325390.5	6569310.6	412.047	89.04	60	30	
	DNC385	325400.5	6569309.6	411.857	95.04	60	30	
	DNC386	325411.1	6569310.2	412.217	94.04	60	30	
	DNC387	325420.5	6569309.8	412.336	92.04	58	30	
	DNC388	325431.4	6569310	412.227	90.04	60	30	
	DNC389	325440.1	6569310.1	412.097	90.04	60	30	
	DNC391	325274.2	6569300.8	394.282	85.04	58	30	
	DNC392	325273.8	6569300.8	409.695	88.04	58	30	1
	DNC393	325280	6569300.8	413.456	85.04	58	30	1
	DNC394	325288.6	6569300.2	413.337	90.04	60	30	1
	DNC395	325300.1	6569300.6	412.067	90.04	60	30	1
	DNC396	325311.8	6569300.4	409.389	88.04	60	30	1
	DNC397	325321.1	6569300.4	411.577	90.04	60	30	1
	DNC398	325331.3	6569300.3	410.997	90.04	60	30	1
	DNC399	325342.2	6569298.6	411.187	95.04	60	30	1
	DNC400	325350.3	6569300	411.876	88.04	58	30	1
	DNC401	325359.9	6569300.1	411.467	90.04	60	30	
	DNC405	325295	6569500	408.5	0	90	30	1
	5110-05	323233	0.00000	.00.5	v	50		

	1					1
DNC406	325300	6569500	408.5	0	90	30
DNC407	325295	6569490	408.5	0	90	30
DNC408	325300	6569490	408.5	0	90	30
DNC409	325305	6569490	408.5	0	90	30
DNC410	325350.3	6569329.7	408.391	95.04	59	30
DNC411	325337.6	6569328.5	408.55	0	90	30
DNC412	325326.1	6569327.7	408.76	0	90	30
DNC413	325317.3	6569329.3	408.72	0	90	30
DNC414	325353	6569340.2	407.371	275.04	59	30
DNC415	325353.2	6569340.2	407.3	0	90	30
DNC416	325292.2	6569337.1	405.75	0	90	30
DNC417	325288.7	6569337.9	403.926	85.04	60	30
DNC418	325369.7	6569340.4	412.37	0	90	30
DNC419	325369.4	6569349.5	412.536	275.04	58	30
DNC421	325366.6	6569360.1	412.94	0	90	30
DNC422	325366.3	6569360.2	413.001	275.04	59	30
DNC423	325375.8	6569360.2	412.99	0	90	30
DNC424	325364.4	6569370.4	412.29	0	90	30
DNC425	325361	6569371.1	411.405	270.04	75	30
DNC426	325360	6569390	414.5	0	90	30
DNC427	325370	6569390	413.5	0	90	30
DNC428	325310.7	6569433.4	412.876	95.04	58	30
DNC429	325320.4	6569430.6	413.071	95.04	59	30
DNC430	325330.7	6569426.6	412.976	95.04	58	30
DNC432	325361.2	6569440	388.522	90.04	60	30
DNC433	325380.1	6569460.9	414.717	90.04	60	30
DNC434	325373.9	6569460.3	391.724	90.04	60	30
DNC435	325305.4	6569401.5	409.607	90.04	60	30
DNC436	325300.2	6569390	409.567	90.04	60	30
DNC437	325360.9	6569380.1	411.21	0	90	30
DNC438	325356.8	6569380.9	408.256	270.04	60	30
DNC439	325359.7	6569390	413.571	275.04	59	30
DNC440	325345.2	6569400	413.567	90.04	60	30
DNC441	325350.2	6569400	413.567	90.04	60	30
DNC442	325360.2	6569420	413.567	85.04	60	30
DNC443	325365.3	6569420	413.576	87.04	58	30
DNC444	325380.3	6569440	413.576	91.04	58	30
DNC445	325375.7	6569439.2	408.427	90.04	60	30
DNC446	325395	6569461	412.177	90.04	60	30
DNC446	325395	6569461	412.177	90.04	60	30

Hole ID	Easting (MG	Northing A 94 Zone 51)	RL	Dip	Azimuth (MGA94)	EOH (m)	Intersection
Dre			control	signific			ated at 0.5g/t Au cut off an up to 3m in
		in the grade is		o.ge			22DNRC001 - 2.00m @ 1.35g/t from (
22DNRC001	325076	6570019	439	-90	0	20	22DNRC001 - 10.00m @ 0.86g/t from
22DNRC002	325080	6569974	440	-90	0	20	22DNRC002 - 20.00m @ 0.88g/t from
22DNRC003	325081	6569937	440	-90	0	20	22DNRC003 - 16.00m @ 1.05g/t from
							22DNRC004 - 2.00m @ 0.89g/t from (
22DNRC004	325030	6569917	439	-90	0	20	22DNRC004 - 2.00m @ 15.43g/t from
22DNRC005	325040	6569954	439	-90	0	20	22DNRC004 - 1.00m @ 0.53g/t from 2 22DNRC005 - 8.00m @ 3.86g/t from 2
22DNRC005	325055	6569994	439	-90	0	20	22DNRC005 - 8.00m @ 5.86g/t from 22DNRC006 - 14.00m @ 0.84g/t from
22DNRC000 22DNRC007	325061	6570025	439	-90	0	20	22DNRC000 - 14.00m @ 0.84g/t from 22DNRC007 - 14.00m @ 0.89g/t from
22DNRC008	325030	6569906	440	-60	227	20	22DNRC008 - 1.00m @ 2.56g/t from 8
22DNRC009	325040	6569901	439	-60	182	20	22DNRC009 - 8.00m @ 1.24g/t from 2
22DNRC010	325043	6569906	439	-90	0	17	22DNRC010 - 1.00m @ 0.61g/t from (
	525045	000000	-135	.50	v	±′	22DNRC010 - 6.00m @ 0.88g/t from 8
22DNRC011	325041	6569924	440	-90	0	18	22DNRC011 - 8.00m @ 0.54g/t from 4
					-	<u> </u>	22DNRC011 - 2.00m @ 0.99g/t from 2
22DNRC012	325030	6569926	440	-90	0	18	22DNRC012 - 6.00m @ 1.04g/t from
22010/0012	375022	6560040	440	.60	0	10	22DNRC012 - 3.00m @ 3.41g/t from 2
22DNRC013	325032	6569940	440	-60	0	18	22DNRC013 - 6.00m @ 0.68g/t from 2 22DNRC014 - 11.00m @ 1g/t from 1r
22DNRC014	325038	6569941	440	-90	0	18	22DNRC014 - 11.00m @ 1g/t from 1 22DNRC014 - 1.00m @ 0.8g/t from 10
22DNRC015	325037	6569954	440	-60	0	18	22DNRC014 - 1.00m @ 0.8g/t from 1 22DNRC015 - 9.00m @ 0.79g/t from
							22DNRC016 - 12.00m @ 0.76g/t from
22DNRC016	325041	6569966	440	-60	0	19	22DNRC016 - 1.00m @ 0.64g/t from
22010/017	225042	65,0000	440	60	0	22	22DNRC017 - 1.00m @ 0.56g/t from
22DNRC017	325043	6569980	440	-60	0	22	22DNRC017 - 1.00m @ 0.8g/t from 1
22DNRC018	325046	6569976	440	-90	0	18	22DNRC018 - 5.00m @ 1.03g/t from
22DINKC018	323040	0303370	440	-90	0	10	22DNRC018 - 8.00m @ 0.81g/t from
22DNRC019	325046	6569991	440	-90	0	19	22DNRC019 - 10.00m @ 1.15g/t from
					-		22DNRC019 - 2.00m @ 1.2g/t from 1
22DNRC020	325046	6570001	440	-60	0	20	22DNRC020 - 2.00m @ 1.22g/t from
	-						22DNRC020 - 16.00m @ 0.89g/t from
220100024	2250.40	6570040		60		10	22DNRC021 - 6.00m @ 0.76g/t from
22DNRC021	325048	6570010	440	-60	0	19	22DNRC021 - 5.00m @ 0.7g/t from 1
							22DNRC021 - 1.00m @ 0.58g/t from 22DNRC022 - 7.00m @ 0.95g/t from
22DNRC022	325056	6570011	439	-90	0	18	22DNRC022 - 5.00m @ 0.68g/t from
	1						22DNRC022 - 3.00m @ 0.00g/t from 22DNRC023 - 1.00m @ 0.77g/t from
22DNRC023	325053	6570019	439	-60	0	20	22DNRC023 - 3.00m @ 1.33g/t from
							22DNRC023 - 4.00m @ 0.91g/t from
22DNRC024	325072	6570037	438	-60	52	20	22DNRC024 - 11.00m @ 0.87g/t from
2201111024	323072	03/003/	458	-00	52	20	22DNRC024 - 4.00m @ 1g/t from 15
22DNRC025	325072	6570029	439	-90	0	20	22DNRC025 - 7.00m @ 0.7g/t from (
-2014110023	525072	0370023	-133	.50	v	20	22DNRC025 - 2.00m @ 0.62g/t from
22DNRC026	325082	6570026	439	-60	62	26	22DNRC026 - 1.00m @ 0.7g/t from
							22DNRC026 - 6.00m @ 0.74g/t from

22DNRC027 22DNRC028 22DNRC029 22DNRC030 22DNRC031 22DNRC031 22DNRC033 22DNRC033 22DNRC035	dnought LGS 325087 325079 325086 325086 325081 325082 325084	A 94 Zone 51) 5P - RC grade 6570015 6570009 6570005 6569996 6569997 6569984	439 439 440 440	signific -60 -90 -60	72 0	(m) ns calcul 24 18	ated at 0.5g/t Au cut off an up to 3m internal dilu 22DNRC027 - 1.00m @ 0.52g/t from 1m for (Gx 22DNRC027 - 1.00m @ 0.51g/t from 7m for (Gx 22DNRC027 - 1.00m @ 0.59g/t from 14m for (G 22DNRC027 - 2.00m @ 0.85g/t from 19m for (G 22DNRC028 - 4.00m @ 0.91g/t from 1m for (Gx
22DNRC027 22DNRC028 22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC033 22DNRC035	325087 325079 325086 325086 325081 325082 325084	6570015 6570009 6570005 6569996 6569997	439 439 440 440	-60 -90	72 0	24	22DNRC027 - 1.00m @ 0.52g/t from 1m for (Gx 22DNRC027 - 1.00m @ 0.51g/t from 7m for (Gx 22DNRC027 - 1.00m @ 0.59g/t from 14m for (G 22DNRC027 - 2.00m @ 0.85g/t from 19m for (G
22DNRC028 22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325079 325086 325086 325081 325082 325084	6570009 6570005 6569996 6569997	439 440 440	-90	0		22DNRC027 - 1.00m @ 0.51g/t from 7m for (Gx 22DNRC027 - 1.00m @ 0.59g/t from 14m for (G 22DNRC027 - 2.00m @ 0.85g/t from 19m for (G
22DNRC028 22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325079 325086 325086 325081 325082 325084	6570009 6570005 6569996 6569997	439 440 440	-90	0		22DNRC027 - 1.00m @ 0.59g/t from 14m for (G 22DNRC027 - 2.00m @ 0.85g/t from 19m for (G
22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325086 325081 325082 325084	6570005 6569996 6569997	440 440			18	22DNRC027 - 2.00m @ 0.85g/t from 19m for (G
22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325086 325081 325082 325084	6570005 6569996 6569997	440 440			18	
22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325086 325081 325082 325084	6570005 6569996 6569997	440 440			18	22DNRC028 - 4.00m @ 0.91g/t from 1m for (Gx
22DNRC029 22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325086 325081 325082 325084	6570005 6569996 6569997	440 440			18	
22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325081 325082 325084	6569996 6569997	440	-60			22DNRC028 - 3.00m @ 1.37g/t from 6m for (G>
22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325081 325082 325084	6569996 6569997	440	-60			22DNRC028 - 8.00m @ 0.91g/t from 10m for (0
22DNRC030 22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325086 325081 325082 325084	6569996 6569997	440		82	20	22DNRC029 - 5.00m @ 0.63g/t from 1m for (G
22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325081 325082 325084	6569997					22DNRC029 - 10.00m @ 1g/t from 10m for (G>
22DNRC031 22DNRC032 22DNRC033 22DNRC034 22DNRC035	325081 325082 325084	6569997		-60	82	26	22DNRC030 - 4.00m @ 2.34g/t from 0m for (G
22DNRC032 22DNRC033 22DNRC034 22DNRC035	325082 325084						22DNRC030 - 16.00m @ 1.09g/t from 6m for (
22DNRC032 22DNRC033 22DNRC034 22DNRC035	325082 325084		440	-90	0	19	22DNRC031 - 1.00m @ 0.7g/t from 0m for (Gx
22DNRC033 22DNRC034 22DNRC035	325084	6569984			-		22DNRC031 - 14.00m @ 1.02g/t from 4m for (
22DNRC034 22DNRC035			440	-90	0	18	22DNRC032 - 12.00m @ 0.56g/t from 6m for (0
22DNRC034 22DNRC035							22DNRC033 - 3.00m @ 1.31g/t from 3m for (G
22DNRC034 22DNRC035		6569975	440	-60	82	24	22DNRC033 - 2.00m @ 1.73g/t from 10m for (
22DNRC035		02022/2	440	-00	02	24	22DNRC033 - 1.00m @ 0.75g/t from 13m for (
22DNRC035						I	22DNRC033 - 4.00m @ 8.27g/t from 18m for (
22DNRC035			1			1	22DNRC034 - 1.00m @ 0.66g/t from 0m for (G
22DNRC035	325083	6569962	440	-60	82	24	22DNRC034 - 2.00m @ 0.97g/t from 5m for (G
	323003	3303302	440	55	02	2-7	22DNRC034 - 12.00m @ 0.86g/t from 9m for (0
				┢──┨		 	
	325078	6569954	440	-90	0	18	22DNRC035 - 6.00m @ 0.84g/t from 2m for (G
						┣───	22DNRC035 - 8.00m @ 0.87g/t from 10m for (0
							22DNRC036 - 8.00m @ 0.69g/t from 0m for (G
22DNRC036	325086	6569950	440	-60	92	24	22DNRC036 - 2.00m @ 2.71g/t from 9m for (G
2201010000	323080	0303330	440	-00	52	24	22DNRC036 - 3.00m @ 0.89g/t from 12m for (
							22DNRC036 - 7.00m @ 1.5g/t from 16m for (G:
22DNRC037	325086	6569938	440	-90	0	22	22DNRC037 - 19.00m @ 2.72g/t from 3m for (0
22DNRC038	325084	6569926	440	-60	117	24	22DNRC038 - 14.00m @ 1.16g/t from 9m for (0
22DNRC039	325082	6569916	440	-60	152	24	22DNRC039 - 1.00m @ 0.62g/t from 13m for (
22DNRC039	325082	6569916	440	-60	152	24	22DNRC039 - 3.00m @ 1.39g/t from 19m for (
2201010035	323002	0505510	440	-00	152	24	
220100000	225072	65 60040				10	22DNRC040 - 1.00m @ 0.51g/t from 3m for (G
22DNRC040	325073	6569919	440	-90	0	18	22DNRC040 - 1.00m @ 1.51g/t from 6m for (G
							22DNRC040 - 3.00m @ 0.94g/t from 11m for (
							22DNRC041 - 1.00m @ 1.01g/t from 4m for (G
22DNRC041	325051	6569901	439	-90	0	19	22DNRC041 - 1.00m @ 0.57g/t from 7m for (G
2201110041	525051	0505501	435	50	0	15	22DNRC041 - 2.00m @ 0.65g/t from 12m for (
							22DNRC041 - 1.00m @ 1.18g/t from 16m for (
							22DNRC042 - 1.00m @ 1.18g/t from 4m for (G
22DNRC042	325031	6569908	439	-90	0	18	22DNRC042 - 1.00m @ 1.09g/t from 7m for (G
						1	22DNRC042 - 2.00m @ 1.21g/t from 12m for (0
						1	22DNRC043 - 1.00m @ 0.78g/t from 0m for (G
22DNRC043	325068	6569907	439	-90	0	18	22DNRC043 - 1.00m @ 1.23g/t from 10m for (0
					J.		22DNRC043 - 1.00m @ 1.35g/t from 17m for (0
22DNRC044	325060	6569903	439	-90	0	18	22DNRC043 - 1.00m @ 1.35g/t from 1711101 (22DNRC044 - 4.00m @ 0.85g/t from 9m for (G
22010110044	323000	0303303	435	- 50	0	10	
22DNRC045	325059	6569911	439	-90	0	19	22DNRC045 - 1.00m @ 0.79g/t from 1m for (G
222.15	0.0				-	<u> </u>	22DNRC045 - 9.00m @ 1.39g/t from 9m for (G
22DNRC046	325057	6569930	440	-90	0	18	22DNRC046 - 13.00m @ 0.96g/t from 3m for (0
22DNRC047	325054	6569946	440	-90	0	18	22DNRC047 - 14.00m @ 0.98g/t from 2m for (0
22DNRC048	325052	6569960	440	-90	0	18	22DNRC048 - 2.00m @ 1.43g/t from 6m for (G
2201110040	525052	0303300		50	5	10	22DNRC048 - 9.00m @ 0.74g/t from 9m for (G
22DNRC049	325071	6569937	440	-90	0	18	22DNRC049 - 14.00m @ 1.32g/t from 3m for (0
					_		22DNRC050 - 1.00m @ 0.56g/t from 0m for (G
22DNRC050	325065	6569950	440	-90	0	18	22DNRC050 - 9.00m @ 0.9g/t from 9m for (Gx
				<u> </u>		1	22DNRC051 - 5.00m @ 1.1g/t from 1m for (GxI
						I	
22DNRC051	325066	6569962	440	-90	0	18	22DNRC051 - 1.00m @ 1.15g/t from 7m for (G
						I	22DNRC051 - 3.00m @ 0.55g/t from 9m for (G
						<u> </u>	22DNRC051 - 1.00m @ 1.35g/t from 16m for (0
22DNRC052	325062	6569977	440	-90	0	18	22DNRC052 - 18.00m @ 0.64g/t from 0m for (0
220 N D COT 2	325069	6569988	440	-90	0	18	22DNRC053 - 18.00m @ 0.79g/t from 0m for (0
22DNRC053	325065	6570002	439	-90	0	18	22DNRC054 - 18.00m @ 0.73g/t from 0m for (
22DNRC053 22DNRC054						1	
	325066	6570014	439	-90	0	18	22DNRC055 - 4.00m @ 0.99g/t from 1m for (G)

	Easting (MG)	Northing A 94 Zone 51)	RL	Dip	Azimuth (MGA94)	EOH (m)	Intersection
Dre			control	signific			lated at 0.5g/t Au cut off an up to 3m internal dilution
220.0000000	325052	6570028	438	-60	267	10	22DNRC056 - 1.00m @ 1.03g/t from 3m for (GxM 1)
22DNRC056	325052	6570028	438	-60	267	18	22DNRC056 - 2.00m @ 0.67g/t from 9m for (GxM 1)
							22DNRC057 - 4.00m @ 1g/t from 0m for (GxM 4)
22DNRC057	325053	6570032	438	-90	0	15	22DNRC057 - 3.00m @ 1.49g/t from 5m for (GxM 4)
							22DNRC057 - 2.00m @ 0.68g/t from 10m for (GxM 1)
							22DNRC058 - 4.00m @ 0.65g/t from 1m for (GxM 3)
22DNRC058	325062	6570038	438	-90	0	17	22DNRC058 - 3.00m @ 0.67g/t from 6m for (GxM 2)
							22DNRC058 - 1.00m @ 0.96g/t from 12m for (GxM 1)
							22DNRC059 - 3.00m @ 0.64g/t from 0m for (GxM 2)
22DNRC059	325052	6570044	436	-85	147	14	22DNRC059 - 4.00m @ 0.93g/t from 4m for (GxM 4)
							22DNRC059 - 2.00m @ 1.37g/t from 10m for (GxM 3)
22DNRC060	325431	6569563	426	-60	285	12	
22DNRC061	325434	6569571	426	-60	304	12	
22DNRC001	325439	6569576	426	-60	318	12	
22DNRC062	325459	6569582	426	-60		12	22DNRC063 - 2.00m @ 0.83g/t from 0m for (GxM 2)
22DINRC005	525445	0309382	420	-60	338	12	
22DNRC064	325451	6569580	426	-59	35	12	22DNRC064 - 3.00m @ 0.55g/t from 1m for (GxM 2)
220 NID COCE	225455	6560574	426	60	75	12	22DNRC064 - 1.00m @ 0.5g/t from 8m for (GxM 1)
22DNRC065	325455	6569574	426	-60	75	12	
		65 605 67				12	22DNRC066 - 1.00m @ 0.5g/t from 0m for (GxM 1)
22DNRC066	325458	6569567	426	-60	82		22DNRC066 - 1.00m @ 0.7g/t from 2m for (GxM 1)
							22DNRC066 - 1.00m @ 0.57g/t from 9m for (GxM 1)
22DNRC067	325458	6569559	425	-60	133	12	22DNRC067 - 2.00m @ 1.05g/t from 1m for (GxM 2)
				\vdash			22DNRC067 - 1.00m @ 0.73g/t from 8m for (GxM 1)
22DNRC068	325448	6569562	426	-88	5	9	22DNRC068 - 1.00m @ 1.09g/t from 1m for (GxM 1)
					-	_	22DNRC068 - 1.00m @ 0.63g/t from 5m for (GxM 1)
22DNRC069	325439	6569563	426	-90	102	9	22DNRC069 - 1.00m @ 0.56g/t from 5m for (GxM 1)
22DNRC070	325450	6569569	426	-90	0	9	
22DNRC071	325446	6569575	427	-88	225	9	22DNRC071 - 1.00m @ 0.67g/t from 0m for (GxM 1)
22DNRC072	325439	6569570	426	-89	279	9	22DNRC072 - 1.00m @ 11.28g/t from 2m for (GxM 11
22DNRC073	325440	6569559	426	-60	176	12	22DNRC073 - 5.00m @ 1g/t from 1m for (GxM 5)
22DNRC074	325433	6569560	426	-60	194	12	22DNRC074 - 7.00m @ 0.59g/t from 1m for (GxM 4)
ZZDINKC074	525455	0309300	420	-00	194	12	22DNRC074 - 1.00m @ 0.5g/t from 10m for (GxM 1)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
	(MGA	94 Zone 5	51)		(MGA94)	(m)	
	-	-			1		ed at 0.5g/t Au cut off and up to 3m internal dilution
23DNRC001	325213	6569629	416	-45	104	72	$22DND(COO) = 12.00 \text{m} \otimes 0.54 \text{s}/\text{s} \text{from } 122 \text{m} \text{for } (COM(C))$
							23DNRC002 - 12.00m @ 0.54g/t from 132m for (GxM 6) 23DNRC002 - 3.00m @ 2.9g/t from 88m for (GxM 9)
23DNRC002	325449	6569493	418	-61	272	174	23DNRC002 - 1.00m @ 0.55g/t from 151m for (GxM 1)
							23DNRC002 - 24.00m @ 1.46g/t from 95m for (GxM 35)
23DNRC003	325188	6569628	417	-45	114	96	23DNRC003 - 19.00m @ 1.29g/t from 9m for (GxM 25)
							23DNRC004 - 26.00m @ 1.13g/t from 99m for (GxM 29)
23DNRC004	325449	6569521	418	-53	293	210	23DNRC004 - 33.00m @ 0.65g/t from 129m for (GxM 21)
							23DNRC004 - 3.00m @ 0.95g/t from 177m for (GxM 3)
23DNRC005	325159	6569620	417	-52	120	120	23DNRC005 - 12.00m @ 0.69g/t from 19m for (GxM 8) 23DNRC005 - 1.00m @ 0.64g/t from 42m for (GxM 1)
							23DNRC006 - 1.00m @ 0.8g/t from 173m for (GxM 1)
							23DNRC006 - 22.00m @ 0.99g/t from 116m for (GXM 22)
23DNRC006	325454	6569508	418	-55	276	174	23DNRC006 - 10.00m @ 1.34g/t from 147m for (GxM 13)
							23DNRC006 - 1.00m @ 0.72g/t from 161m for (GxM 1)
							23DNRC006 - 8.00m @ 1.24g/t from 101m for (GxM 10)
23DNRC007	325160	6569636	417	-45	96	126	23DNRC007 - 27.00m @ 4.87g/t from 43m for (GxM 131)
							23DNRC007 - 1.00m @ 0.78g/t from 112m for (GxM 1)
23DNRC008	325427	6569521	417	-51	290	192	23DNRC008 - 41.00m @ 1.26g/t from 95m for (GxM 52)
							23DNRC009 - 1.00m @ 0.58g/t from 95m for (GxM 1) 23DNRC009 - 2.00m @ 1.3g/t from 26m for (GxM 3)
23DNRC009	325160	6569635	417	-57	97	144	23DNRC009 - 1.00m @ 0.73g/t from 37m for (GxM 1)
							23DNRC009 - 22.00m @ 0.71g/t from 46m for (GxM 16)
							23DNRC010 - 3.00m @ 0.54g/t from 165m for (GxM 2)
							23DNRC010 - 12.00m @ 1.11g/t from 129m for (GxM 13)
23DNRC010	325427	6569517	417	-54	270	174	23DNRC010 - 3.00m @ 0.6g/t from 118m for (GxM 2)
							23DNRC010 - 29.00m @ 1.76g/t from 85m for (GxM 51)
							23DNRC010 - 1.00m @ 0.83g/t from 162m for (GxM 1)
23DNRC011	325158	6569633	417	-45	114	120	23DNRC011 - 19.00m @ 1.07g/t from 41m for (GxM 20) 23DNRC011 - 1.00m @ 0.98g/t from 33m for (GxM 1)
							23DNRC011 - 1.00m @ 0.75g/t from 113m for (GxM 1)
							23DNRC012 - 1.00m @ 0.56g/t from 105m for (GxM 1)
							23DNRC012 - 5.00m @ 0.72g/t from 119m for (GxM 4)
23DNRC012	325429	6569514	417	-55	252	192	23DNRC012 - 1.00m @ 0.81g/t from 160m for (GxM 1)
							23DNRC012 - 1.00m @ 0.54g/t from 165m for (GxM 1)
							23DNRC012 - 2.00m @ 0.95g/t from 84m for (GxM 2)
225105012	225200	6560664	110	5.0		100	23DNRC012 - 1.00m @ 1.51g/t from 98m for (GxM 2)
23DNRC013 23DNRC014					111 158	102 78	23DNRC013 - 5.00m @ 2.22g/t from 83m for (GxM 11)
23DNRC014 23DNRC015						78 96	23DNRC014 - 4.00m @ 0.5g/t from 63m for (GxM 2)
23DNRC015					1		23DNRC016 - 10.00m @ 1.93g/t from 98m for (GxM 19)
23DNRC017					128		23DNRC017 - 6.00m @ 1.23g/t from 49m for (GxM 7)
							23DNRC018 - 1.00m @ 4.17g/t from 60m for (GxM 4)
23DNRC018	325143	6569520	418	-68	100	162	23DNRC018 - 27.00m @ 1.04g/t from 68m for (GxM 28)
23DNRC019	325773	6569291	420	-50	300	150	
23DNRC020				-67	150	90	
23DNRC021		1	416	-45	150	60	
23DNRC022			417	-48		36	22DNDC022 4.00m @ 0.55-/4.5mm 45m 5m (0.14.0)
23DNRC023	325135	6569617	417	-57	150	54	23DNRC023 - 4.00m @ 0.65g/t from 46m for (GxM 3)
23DNRC024	325150	6569651	417	-48	150	84	23DNRC024 - 1.00m @ 0.63g/t from 52m for (GxM 1) 23DNRC024 - 1.00m @ 0.88g/t from 43m for (GxM 1)
230100024	223130	000000000000000000000000000000000000000	(1)	-10	135	5-1	23DNRC024 - 1.00m @ 0.69g/t from 45m for (GXM 1)
23DNRC102	325139	6569000	420	-90	360	3	
23DNRC103		1	420	-90	360	4	
23DNRC104	325161	6569007	420	-90	360	3	
23DNRC105	325178	6569013	420	-90	360	3	
23DNRC106	325192	6569016	420	-90	360	3	
23DNRC107			420	-90	360	3	
23DNRC108				-90	360	3	
23DNRC109		1		-90	360	3	
23DNRC110			419	-90	360	3	
23DNRC111		1	419	-90	360	3	
23DNRC112				-90	360	3	
000000000000000000000000000000000000000		L P P P P P P P P P P P P P P P P P P P	419	-90	360	3	
23DNRC113							
23DNRC113 23DNRC114 23DNRC115	325312	6569041	419 419	-90 -90	360 360	3	

Hole ID		Northing 94 Zone 5	-	Dip	Azimuth (MGA94)		Intersection
Dre	•		_	Inter			l ed at 0.5g/t Au cut off and up to 3m internal dilution
23DNRC116			-	-	360	3	
23DNRC117	325278	6569046	419	-90	360	3	
23DNRC118	325264	6569042	419	-90	360	3	23DNRC118 - 1.00m @ 0.91g/t from 2m for (GxM 1
23DNRC119	325249	6569039	419	-90	360	3	
23DNRC120			419	-90	360	3	
23DNRC121				-90	360	3	
23DNRC122					360	3	
23DNRC123					360	4	
23DNRC124			420	-90 -90	360 360	4	
23DNRC125 23DNRC126					360	4	
23DNRC126 23DNRC127				-90 -90	360	4	
23DNRC127 23DNRC128					360	3	
23DNRC129					360	4	
23DNRC130				-90	360	4	
23DNRC131			421	-90	360	4	
23DNRC132			421	-90	360	5	
23DNRC133			421	-90	360	4	
23DNRC134					360	4	
23DNRC135				-90	360	4	
23DNRC136	325245	6569054	420	-90	360	4	
23DNRC137	325259	6569057	420	-90	360	4	23DNRC137 - 1.00m @ 0.76g/t from 3m for (GxM 2
23DNRC138	325275	6569060	420	-90	360	4	
23DNRC139					360	4	
23DNRC140			419	-90	360	4	
23DNRC141					360	4	
23DNRC142				-90	360	4	
23DNRC143					360	4	
23DNRC144		6569071	421	-90	360	4	
23DNRC145				-90	360	4	
23DNRC146			421	-90 -90	360 360	3 4	
23DNRC147			421	-90 -90		4	
23DNRC148 23DNRC149			421 421	-90 -90	360 360	4	
23DNRC149 23DNRC150			421	-90 -90	360	4	
23DNRC150				-90	360	4	
23DNRC151				-90	360	4	
23DNRC152					360	4	
23DNRC154						4	
23DNRC155			421	-90	360	3	
23DNRC156	325149	6569060	421	-90	360	4	23DNRC156 - 2.00m @ 0.81g/t from 2m for (GxM 2
23DNRC157				-90	360	3	23DNRC157 - 1.00m @ 0.85g/t from 2m for (GxM 1
23DNRC158	325165	6569066	422	-90	360	3	
23DNRC159	325180	6569070	422	-90	360	3	
23DNRC160	325177	6569079	422	-90	360	2	
23DNRC161			422	-90	360	3	23DNRC161 - 1.00m @ 0.51g/t from 1m for (GxM :
23DNRC162			422	-90	360	2	
23DNRC163			422	-90	360	4	
23DNRC164			422	-90	360	4	
23DNRC165			422	-90	360	4	
23DNRC166				-90	360	4	23DNRC166 - 3.00m @ 0.57g/t from 0m for (GxM 2
23DNRC167			421	-90	360	4	22DNDC109 100m @ 0 55-/6 from 2m from / 0 55-
23DNRC168			420	-90	360	3 1	23DNRC168 - 1.00m @ 0.55g/t from 2m for (GxM)
23DNRC169 23DNRC170		6569109	418 418	-90 -90	0 360	2	23DNRC170 - 1.00m @ 0.58g/t from 0m for (GxM 3
				-90 -90		2	235747CT10 - T.00111 @ 0.308/1 110111011101 (GXML.
23DNRC171 23DNRC172		6569086 6569076		-90 -90	360 360	2	
23DNRC172 23DNRC173		6569075		-90 -90	360	2	
23DIVINCT/3		6569078	418	-90 -90	360	2	
23DNRC174	10001	0100010	710	50	500	-	

	Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection
		(MGA	94 Zone 5	51)		(MGA94)	(m)	
					Inte	rsections ca	lculat	ed at 0.5g/t Au cut off and up to 3m internal dilution
	23DNRC176	325371	6569082	417	-90	360	2	
	23DNRC177	325381	6569084	417	-90	360	2	
	23DNRC178	325377	6569097	416	-90	360	2	
	23DNRC179	325368	6569097	417	-90	360	2	
	23DNRC180	325357	6569094	417	-90	360	2	
	23DNRC181	325348	6569092	418	-90	360	2	
	23DNRC182	325338	6569090	417	-90	360	2	
	23DNRC183	325327	6569087	418	-90	360	2	
	23DNRC184	325322	6569104	417	-90	360	2	
	23DNRC185	325336	6569109	417	-90	360	2	
	23DNRC186	325343	6569106	418	-90	360	2	
	23DNRC187	325355	6569106	417	-90	360	2	
	23DNRC188	325328	6569121	416	-90	360	2	23DNRC188 - 1.00m @ 0.91g/t from 0m for (GxM 1)
	23DNRC189	325316	6569118	416	-90	0	2	
	23DNRC190	325302	6569113	418	-90	0	3	
Data aggregation methods Relationship between mineralisation widths and intercept lengths	 Mineralised intersections are reported at a 0.5g/t Au cut-off with a minimum reporting width of 1m for RC holes and 0.2m for diamond holes, composited to 1m. Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases. 							
Diagrams	Accura	te plan	s are inc	lude	ed in	this ann	ounc	ement.
Balanced reporting								porting style. results are predominantly available on WAMEX.
Other substantive exploration data	There i	s no oti	her mate	erial	expl	loration a	lata t	o report at this time.
Further work	A revie drillhole		e revised	d mo	dell	ing and e	estim	ation is underway, with respect to planning future

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Explanation
Database integrity	 FML data was geologically logged electronically, collar and downhole surveys were also received electronically as were the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling programs for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields. Data extracted from the database were validated visually in Datamine and Seequent Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted. Historic data has been validated against WAMEX reports where possible.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducted regular site visits throughout 2022/2023. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and visited site in 2014.
Geological interpretation	 All available drill hole and pit mapping data was used to guide the geological interpretation of the mineralisation. The mineralised geological interpretation was completed using Seequent Leapfrog software on a section-by-section basis. Dreadnought was modelled using geological and structural controls to identify domains of like mineralisation. In total 8 different domains were identified. A lower cut-off of 0.4Au ppm was used to guide the construction. Within each domain vein sets were modelled with similar orientations of strike and dip. In total 58 different veins were modelled, with varying orientations and strike lengths. An approximate 0.5ppm Au value was used to guide the interpretation of the individual lodes. Several of these mineralised structures were further sub – domained to define consistent HG domains were created. One mass lode with limited structural orientation was modelled adjacent to the Dreadnought fault. After reviewing Alicia and Empress deposits a significant ENE striking "terminator" fault has been modelled that truncates Dreadnought to the north of the current open pit. The low-grade stockpile was drilled at 10m grid spacing to help delineate areas of consistent mineralised grade. Sub domains were constructed in Leapfrog software that encapsulates different material types on the basis of 2022 sampling.
Dimensions	Mineralisation at Dreadnought has been interpreted over a 540m strike that extends from near surface to approx. 245m below surface.

	• The thickness of the individual lodes varies from 0.5m wide to over 14m. While the larger
	• The thickness of the individual lodes varies from 0.5m wide to over 14m. While the larger scale domains vary from 30m to approx. 110m thick.
	 The toe of the low-grade stockpile extends over 195m long and 90m wide. The central part of
	the stockpile grade control sampled during 2022 extends over 165m long and 80m wide,
Estimation and modelling	An Ordinary Kriging (OK) estimate was run using Datamine software, following the process below:
Estimation and modelling techniques	 below: Drill hole data was selected within mineralised domains and then within the internal vein set lodes. Boundaries between veins and the surrounding domain were considered hard boundaries and no data is shared between lodes or between domains and lodes. All drill hole data was composited to 1m downhole intervals – 1m is the dominant raw sampling interval. The composited data was imported into Supervisor software for statistical and geostatistical analysis. After a review of the individual lode statistics, higher Au samples that were outliers to the main population were "top-capped" to a selected value for each lode. An average of 9ppm Au was used with a maximum of 35ppm Au. Variography was modelled on data transformed to normal scores, the variogram models were back transformed to original units before exporting. Variography was performed on the individual lodes with larger sample numbers, in total 23 variograms were modelled. These models were shared with the other lodes that fell within that domain of similar orientations. The back-transformed variogram models had moderate to high nugget effects (18 to 54% of total sill), with a range from 21m to 190m for the lodes. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 10 mE x 10 mN x 5 mRL - this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. The ellipsoid search parameters used the variogram mages, with a minimum of 8 and maximum of 18 and pass was then run with an increased search distance was expanded by a factor of four and the minimum number of samples. Only 3% of blocks estimated blocks and sample data in Datamine. Comparing the estimated block statistics with composited sample data and generate trained (Swath) plots to ensure the estimation process like kriging variance, negative weights, search distance sa
	sample spacing in affected lodes, to samples above 5ppm being used in the estimation of blocks. Outside the 20m search ellipse assays above 5ppm are removed resulting in blocks better honouring the low grades in areas of less drilling.
	 The low-grade stockpile was estimated by using an Inverse Distance Squared approach with a 50m isotropic search and a minimum of 8 samples and a maximum of 20 samples. A top- cap of 1.9ppm Au was applied to the samples to remove any high-grade outliers. The stockpile estimated in a single search pass. Less sampled areas of the LG stockpile that are difficult to estimate using this approach have had slightly conservative average grade applied on the basis of reconciled toll milling results.
Moisture	 Tonnages are estimated on a dry basis. Tonnages for the LG stockpile have been reconciled with toll milling campaign conducted during 2022.

Cut-off parameters	 The Resources for Dreadnought have been reported above a 0.6g/t Au cut-off. The low-grade stockpile has been reported without a lower-grade cut-off as it cannot be selectively mined to cut off and the reconciled toll milling campaign indicates all domains exceed economic cut off at the Three Mile Hill mill.
Mining factors or assumptions	 FML anticipates mining at Dreadnought by open pit methods with a cut-back and extension to the existing open pit. Material to be processed through the Three Mile Hill plant some 8km to the north of Dreadnought. FML anticipates future LG stockpile reclamation as a load and haul operation to the Three Mile Hill plant.
Metallurgical factors or assumptions	 LG stockpile Toll Milling in 2022 Indicates very good recovery of gold averaging 95.6% which compares favourably with 2022 Metallurgical testwork. No new metallurgical testwork has been conducted on the Dreadnought deposit.
Environmental factors or assumptions	The deposits occur within an area of significant previous ground disturbance including open pits and waste dumps.
Bulk density	 Density values were assigned based on lithology type and weathering profile. FML performed water immersion technique density test work on historic diamond core samples and historic figures used by previous operators were used. A single oxide density of 2.1t/m³ was used for all material types; an average of 2.65 t/m³ was used for transitional material and an average of 2.85 t/m³ was used for fresh. The following reconciliation of toll milling campaign the Empress – Dreadnought low-grade stockpile was assigned a density of 1.67 t/m³.
Classification	 Resources have been classified as Indicated and Inferred. Given the close-spaced sampling distances and the successful mining of the deposit by Focus in the past, resources were primarily classified based on confidence of the interpretation. Vein-sets with high confidence in lode geometry, blocks filling in the first search pass and high density of FML drill holes were classified as Indicated. Vein-set lodes that had less data informing their geometry but still had blocks primarily filling in the first search pass were classed as Inferred. Blocks that estimated in the second or third pass were classed as Inferred. All the background Domains have been classified as Indicated.
Audits or reviews	• No independent audits or reviews of the mineral resource estimate have been conducted.
Discussion of relative accuracy/ confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates.