

#### **CORPORATE PROFILE**

Shares on issue: 53,715,001 Listed options: 14,850,001 Unlisted options: 11,885,000 Cash: \$3.4M (30 June 2023) Market Capitalisation: \$16.1M\* Debt: Nil

#### PROJECTS

#### MICK WELL AND KINGFISHER

Breakthrough high grade rare earth elements discovery in the Gascoyne region of Western Australia

#### BOOLALOO

Exciting copper and gold potential in the Ashburton region of Western Australia

#### **CORPORATE DIRECTORY**

WARREN HALLAM Non-Executive Chairman

JAMES FARRELL Executive Director and CEO

SCOTT HUFFADINE Non-Executive Director

STEPHEN BROCKHURST Company Secretary

#### **MEDIA & INVESTOR ENQUIRIES**

Peter Taylor, NWR Communications P: +61 412 036 231 E: peter@nwrcommunications.com.au

ABN: 96 629 675 216

P: +61 8 9481 0389 E: info@kingfishermining.com.au

Unit 2, 106 Robinson Avenue Belmont WA 6104 AUSTRALIA

\* Based on a share price of \$0.30 as of 4 August 2023

# Lithium-Bearing Pegmatites Confirmed at Highly Prospective Gascoyne Tenure

# First-Pass Results up to 0.34% Li<sub>2</sub>O at Chalby Chalby

- Extensive pegmatites mapped across Kingfisher's highly prospective Gascoyne Tenure.
- Priority 3.3km by 3km target area identified at Chalby Chalby, with initial pegmatite samples returning anomalous lithium and highlighting fertility for lithium mineralisation.
- Chalby Chalby is along strike from known Thirty Three Suite pegmatites which are also the host of lithium mineralisation at Delta Lithium's (ASX:DLI) Yinnetharra Project.
- Initial rock chip results include:
  - 0.34% Li₂O (MWGS2493)
  - 0.25% Li<sub>2</sub>O (MWGS2500)
  - 0.16% Li₂O (MWGS2348)
  - 0.11% Li₂O (MWGS2470)
- High-priority follow-up sampling is underway and is targeting extensions to fertile pegmatites as well as potential additional pegmatites in the centre of the Chalby Chalby target area.

Kingfisher Mining Limited (**ASX:KFM**) ("**Kingfisher**" or the "**Company**") is pleased to announce the first-pass results from its initial exploration targeting lithium-bearing pegmatites in the Chalba area of the highly prospective Gascoyne Province.

Kingfisher's Executive Director and CEO James Farrell commented: **"Our first-pass lithium** exploration sampling has delivered exciting initial results immediately along strike from known Thirty Three Suite Pegmatites; the pegmatites that host Delta Lithium's Yinnetharra Project which is just 45km to the northeast of our tenements.

A large area of pegmatite dykes has been identified at our new Chalby Chalby target, with highly encouraging initial lithium assays and fertility results providing a clear path forward for immediate follow-up to advance the lithium potential of our Gascoyne tenements.

Our team is currently on site and work to advance our lithium targets will continue alongside our on-going mapping and sampling which is targeting large-scale carbonatite intrusions".







### **Chalby Chalby Lithium Exploration**

The first results from Kingfisher's initial exploration for lithium-bearing pegmatites at its Chalba projects in the highly prospective Gascoyne Region of Western Australia have been received. The first-pass mapping and sampling has identified an extensive area of pegmatite dykes that range in thickness from 0.5m to more than 30m. Initial assay results returned from the pegmatite and micaceous pegmatite samples are highly encouraging with anomalous lithium results up to 0.34% Li<sub>2</sub>O from the Chalby Chalby target area which covers an area of 3.3km by 3km (Figure 1).

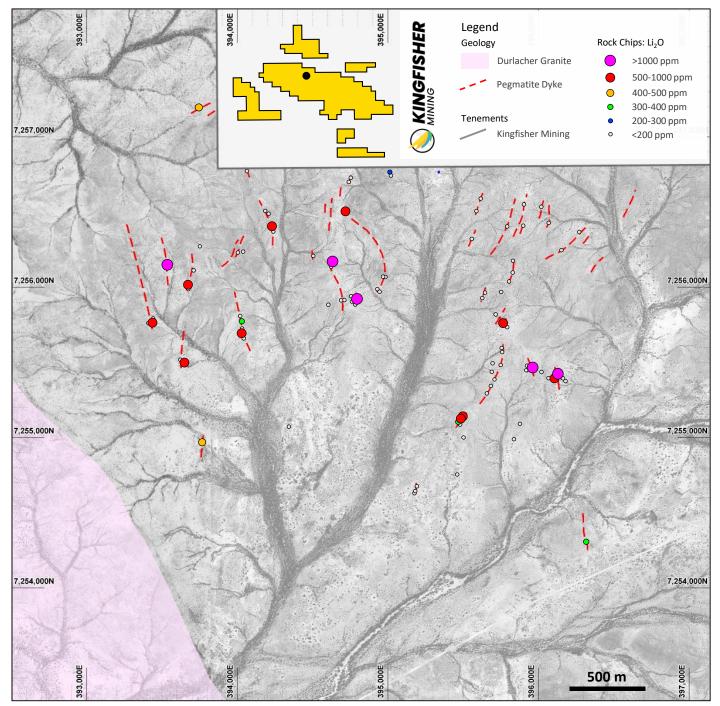
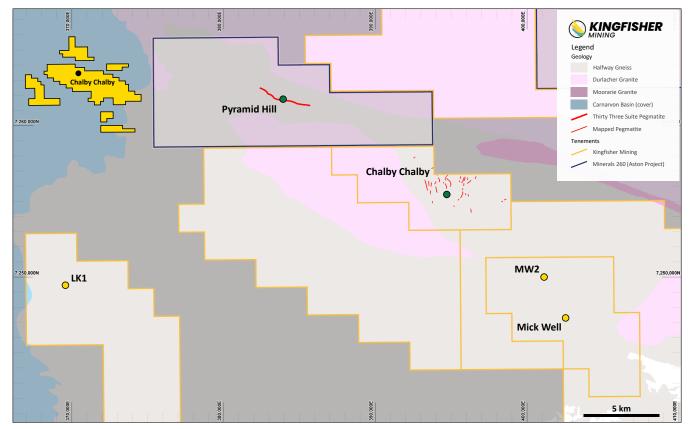


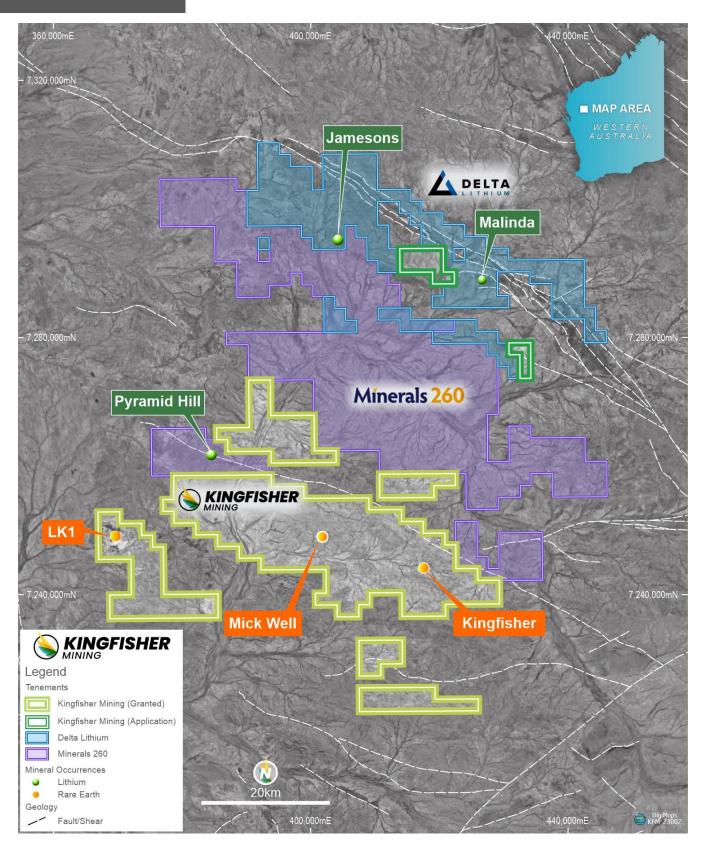

Figure 1: Mapped pegmatites at Chalby Chalby and Li<sub>2</sub>O results from rock chip samples. The location of the pegmatites relative to known Thirty Three Suite Pegmatites is shown in Figure 2.




Significant initial lithium rock chips results from the Chalby Chalby area are shown below. The full lithium assay results together with caesium and rubidium, which can be indicative of LCT-type pegmatites, are included in Annexure 1.

- 0.34% Li<sub>2</sub>O (MWGS2493)
- 0.25% Li<sub>2</sub>O (MWGS2500)
- 0.16% Li<sub>2</sub>O (MWGS2348)
- 0.11% Li<sub>2</sub>O (MWGS2470)
- 0.11% Li<sub>2</sub>O (MWGS2341)

The analytical results indicate that the pegmatites are fractionating and fertile for forming lithium mineralisation, highlighting the potential for the discovery of spodumene mineralisation in more well-developed and fractionated areas either along strike or down-dip at depth.


The Company's initial lithium pegmatite targets along the Chalba zone were identified from tenement-wide targeting using satellite multispectral imagery, aerial photography, airborne magnetics and radiometrics surveys, as well as the interpreted favourable host rocks and target locations close to the margins of known granites. The Chalby Chalby pegmatite field occurs at a similar position off the exposure of the Durlacher Granite as the Thirty Three Suite Pegmatites of Minerals 260 Limited's Pyramid Hill prospect, which is part of their Aston Project (Figure 2).

Recent exploration by Delta Lithium Limited has highlighted the potential of the Gascoyne Thirty Three Suite Pegmatites to host potentially economic lithium mineralisation. Significant and high grade spodumene-related lithium mineralisation has been reported from Delta Lithium's Yinnetharra Project, which is located 40km northeast of the Company's Chalba projects. Recent exploration results from Yinnetharra include drill results of 33m at 1.9% Li<sub>2</sub>O<sup>1</sup> from the Malinda Prospect and rock chips results from Jamesons Prospect that include 4.2% Li<sub>2</sub>O<sup>2</sup> (Figure 3).



**Figure 2:** Simplified geology of Kingfisher's Gascoyne projects showing the location of the Company's Chalby Chalby lithium target and Thirty Three Suite Pegmatite at Minerals 260's Pyramid Hill (Aston Project). The location of the hardrock REE discovery at MW2, clay REE discovery at Mick Well and the large LK1 carbonatite target are also shown.





**Figure 3:** Location of Kingfisher's tenements in the highly prospective Gascoyne Mineral Field. The locations of Delta Lithium's Yinnetharra Project (Malinda and Jamesons Prospects) and Minerals 260's Aston Project (Pyramid Hill) are also shown. Application tenements will be awarded by ballot between Kingfisher and several other companies.



#### Next Steps - Lithium

High priority follow-up sampling is underway with the next round of sampling targeting positions along strike from the most fertile pegmatites as well as additional potential pegmatites in the centre of the Chalby Chalby target area.

#### Gascoyne Rare Earths Exploration Program

Kingfisher is also continuing its high impact and value building exploration programs targeting large-scale carbonatite targets along its 54km Chalba target corridor and its 30km long Lockier target corridor. The program is testing high priority carbonatite targets across the Company's belt-scale tenement holding, building upon the significant carbonatite discoveries, which has confirmed the presence of large scale, high grade REE mineralisation along the Chalba target corridor.

The exploration work planned for the 2023 field season will include:

- Significant on-ground mapping and sampling targeting interpreted "Mt Weld style" carbonatite plugs as well as dyke mineralisation and alteration which can be used to vector towards the large-scale source of intrusions. The results will be used for drill planning of the high priority targets.
- RC drilling to test carbonatite targets at Mick Well, Kingfisher and Arthur River.
- Ground-based gravity at LK1. The gravity survey will be used to model higher density rocks (potential mineralised carbonatites) at depth.
- Surface geochemical survey over the large-scale high priority LK1 target at Arthur River, where mapping is restricted by deep weathering associated with the highly altered rocks and cover.
- Further airborne geophysics to incorporate Mooloo and North Chalba Projects to our early-stage target generation. Magnetics and radiometrics are highly effective for identifying carbonatite mineralisation.

The timeline for the planned and completed activities for 2023 for Kingfisher's projects are shown below.

| _                                         | Q1 2023 | Q2 2023 | Q3 2023 | Q4 2023 |
|-------------------------------------------|---------|---------|---------|---------|
| Mick Well – Kingfisher                    |         | п       | П       | 11      |
| Target generation                         |         |         |         |         |
| Fieldwork, mapping and target progression |         |         |         |         |
| Airborne hyperspectral survey             |         |         |         |         |
| Arthur River                              |         |         |         |         |
| Target generation                         |         |         |         |         |
| Fieldwork, mapping and target progression |         |         |         |         |
| Geochemical program                       |         |         |         |         |
| RC Drilling                               |         |         |         |         |
| Ground-based gravity                      |         |         |         |         |
| Μοοίοο                                    |         |         |         |         |
| Airborne magnetics and radiometrics       |         |         |         |         |
| Fieldwork, mapping and target progression |         |         |         |         |
| Chalba                                    |         |         |         |         |
| Airborne magnetics and radiometrics       |         |         |         |         |
| Boolaloo                                  |         |         |         |         |
| Fieldwork, mapping and target progression |         |         |         |         |



#### **Upcoming News**

- August 2023: Results from airborne geophysical surveys.
- August 2023: Results from on-going surface mapping and sampling targeting large-scale carbonatite intrusions along the 54km long Chalba target corridor.
- September 2023: Results from target generation gravity survey at LK1.

#### About the Kingfisher's Gascoyne Rare Earths Projects

The Mick Well and Kingfisher Projects are located approximately 230km east of Carnarvon, in the Gascoyne region of Western Australia. The Company holds exploration licences covering 969km<sup>2</sup> and has recently increased its interests in the Gascoyne Mineral Field by nearly 40% through the targeted pegging of additional tenure interpreted to be prospective for rare earth elements. The geological setting of the tenure is similar to Hastings Technology Metals' world-class Yangibana Deposit which includes 29.93Mt at 0.93% TREO<sup>#</sup> as well as the recent Yin discovery of Dreadnought Resources which includes mineral resources of 20.06Mt at 1.03% TREO<sup>^</sup>.

The Company recently made discoveries of hard rock and clay rare earth elements mineralisation at Mick Well. Both styles of mineralisation are associated with carbonatites that intruded along a crustal-scale structural corridor, the Chalba Shear, which extends over a strike length of 54km within the Company's tenure. The Company has also identified a second structural corridor along the Lockier Shear which extends for 18km across the Company's Mooloo Project and 12km across the Arthur River Project.

Drilling at the MW2 prospect has intersected five parallel ferrocarbonatite lodes and associated monazite mineralisation within a 300m wide zone and has returned high-grade REE results with 5m at 2.63% TREO with 0.54% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub>, 4m at 3.24% TREO with 0.54% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub>, 5m at 1.54% TREO with 0.30% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub>, 4m at 1.90% TREO with 0.34% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub> and 3m at 2.52% TREO with 0.41% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub>. The results from the ferrocarbonatite mineralisation is 500m northwest of Kingfisher's breakthrough REE discovery where maiden drilling returned 5m at 3.45% TREO with 0.65% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub> as well as 12m at 1.12% TREO with 0.21% Nd<sub>2</sub>O<sub>3</sub> + Pr<sub>6</sub>O<sub>11</sub> from a separate mineralised lode.

This announcement has been authorised by the Board of Directors of the Company.

#### Ends

#### For further information, please contact:

**Kingfisher Mining Limited** James Farrell, Executive Director Ph: +61 (08) 9481 0389 E: <u>info@kingfishermining.com.au</u>

Media & Investor Enquiries Peter Taylor, NWR Communications Ph: +61 412 036 231 E: <u>peter@nwrcommunications.com.au</u>

#### **About Kingfisher Mining Limited**

Kingfisher Mining Limited (**ASX:KFM**) is a mineral exploration company committed to increasing value for shareholders through the acquisition, exploration and development of mineral resource projects throughout Western Australia. The Company's tenements and tenement applications cover 1,676km<sup>2</sup> in the underexplored Ashburton and Gascoyne Mineral Fields.



The Company has made a number of breakthrough high grade rare earth elements discoveries in the Gascoyne region where it holds a target strike lengths of more than 54km along the Chalba mineralised corridor and more than 30km along the Lockier mineralised corridor. The Company has also secured significant landholdings across the interpreted extensions to its advanced copper-gold exploration targets giving it more than 30km of strike across the Boolaloo Project target geology.

To learn more please visit: www.kingfishermining.com.au

#### **Previous ASX Announcements**

- ASX:KFM: Carbonatite Intrusions Confirmed at Large-Scale Chalba Targets 10 July 2023.
- <sup>1</sup> ASX Announcement 'Stunning new drilling results from Yinnetharra'. Delta Lithium Limited (ASX:DLI), 23 June 2023.
- <sup>2</sup> ASX Announcement 'Yinnetharra Lithium Project Continues to Deliver'. Red Dirt Metals Limited (ASX:RDT), 14 April 2023.
- ^ ASX Announcement '40% Increase in Resource Tonnage at Yin Mangaroon (100%)'. Dreadnought Resources Limited (ASX:DRE), 5 July 2023.
- # ASX Announcement 'Drilling along 8km long Bald Hill Fraser's trend Increases Indicated Mineral Resources by 50%'. Hastings Technology Metals Limited (ASX:HAS), 11 October 2022.

#### Forward-Looking Statements

This announcement may contain forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

#### **Cautionary Statement**

The presence of pegmatites and even anomalous assay results does not confirm the presence of lithium in spodumene. Pegmatites are coarse grained igneous rocks and many pegmatites do not contain appreciable or economic quantities of spodumene mineralisation. The presence of lithium mineralisation can only be confirmed with assaying and spodumene has not yet been identified by the Company's geologists.

#### **Competent Persons Statements**

The information in this report that relates to Exploration Results is based on information compiled by Mr James Farrell, a geologist and Executive Director / CEO employed by Kingfisher Mining Limited. Mr Farrell is a Member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Farrell consents to the inclusion in the report of the matters in the form and context in which it appears.



# Annexure 1: Rock Chip Sample Information

| Sample ID | Easting | Northing | Geology             | Be  | Cs    | Li  | Li₂O | Nb  | Rb     | Sn | Τα   |
|-----------|---------|----------|---------------------|-----|-------|-----|------|-----|--------|----|------|
| MWGS2339  | 396183  | 7255376  | Pegmatite           | 4   | 6     | -   | -    | 83  | 373.9  | 7  | 46.8 |
| MWGS2340  | 396165  | 7255394  | Pegmatite           | 4   | 9.3   | -   | -    | 86  | 583.9  | 8  | 56.3 |
| MWGS2341  | 396129  | 7255415  | Micaceous pegmatite | 37  | 95    | 510 | 1098 | 24  | 1314.9 | 7  | 1.8  |
| MWGS2342  | 396125  | 7255405  | Pegmatite           | 7   | 8.1   | 10  | 22   | 97  | 356.7  | 15 | 42.1 |
| MWGS2343  | 396121  | 7255396  | Micaceous pegmatite | 7   | 79.2  | 367 | 790  | 56  | 1956.7 | 63 | 26.9 |
| MWGS2344  | 396088  | 7255406  | Pegmatite           | 7   | 7     | 6   | 13   | 74  | 197.8  | 12 | 49.6 |
| MWGS2345  | 396089  | 7255407  | Micaceous pegmatite | 8   | 19.1  | 79  | 170  | 23  | 252.2  | 6  | 3.8  |
| MWGS2346  | 396073  | 7255402  | Pegmatite           | 6   | 7     | 8   | 17   | 90  | 330.6  | 19 | 63.2 |
| MWGS2347  | 396021  | 7255438  | Pegmatite           | 56  | 4     | -   | -    | 69  | 159    | 9  | 43.2 |
| MWGS2348  | 395961  | 7255451  | Micaceous pegmatite | 11  | 90.4  | 757 | 1630 | 32  | 1685.1 | 27 | 2    |
| MWGS2349  | 395923  | 7255456  | Pegmatite           | 5   | 8     | 16  | 34   | 118 | 541.4  | 14 | 27.9 |
| MWGS2350  | 395921  | 7255441  | Pegmatite           | 4   | 6.8   | 14  | 30   | 77  | 459.9  | 9  | 26.2 |
| MWGS2351  | 395760  | 7255622  | Pegmatite           | 4   | 9.7   | 16  | 34   | 104 | 607.1  | 11 | 20.3 |
| MWGS2356  | 396153  | 7256247  | Pegmatite           | 4   | 14.2  | -   | -    | 79  | 644.1  | 4  | 23.2 |
| MWGS2357  | 396273  | 7256367  | Pegmatite           | 1   | 2.1   | -   | -    | -   | 130.5  | -  | 0.3  |
| MWGS2358  | 396069  | 7256428  | Pegmatite           | 2   | 14.9  | -   | -    | 63  | 1056.7 | -  | 9.9  |
| MWGS2359  | 396021  | 7256542  | Pegmatite           | 4   | 7.7   | 20  | 43   | 91  | 576.5  | 11 | 11.7 |
| MWGS2360  | 395902  | 7256546  | Pegmatite           | 2   | 13.7  | -   | -    | 61  | 1126.7 | 4  | 7.4  |
| MWGS2361  | 395896  | 7256410  | Pegmatite           | 3   | 8.9   | 6   | 13   | 102 | 571.4  | 4  | 44   |
| MWGS2362  | 395788  | 7256399  | Pegmatite           | 3   | 12.6  | 11  | 24   | 91  | 768.3  | 7  | 15.3 |
| MWGS2363  | 395620  | 7256606  | Pegmatite           | 6   | 20.2  | 9   | 19   | 97  | 493.4  | 13 | 26.2 |
| MWGS2364  | 395595  | 7256529  | Pegmatite           | 3   | 5.1   | -   | -    | 90  | 431.6  | -  | 20.2 |
| MWGS2365  | 395554  | 7256322  | Pegmatite           | 6   | 8.9   | 5   | 11   | 105 | 554.1  | 7  | 42.5 |
| MWGS2367  | 395344  | 7256742  | Pegmatite           | 1   | 0.4   | -   |      | 12  | 30.2   | -  |      |
| MWGS2368  | 395337  | 7256766  | -                   | 2   | 1.3   | 119 | 256  | -   | 17.8   | -  | -    |
|           |         |          | Pegmatite           | 213 | 309.7 | 321 | 691  | 61  | 1819.4 | 19 | 12.3 |
| MWGS2369  | 394718  | 7256502  | Micaceous pegmatite |     | 14.2  |     |      | 92  | 835.3  |    | 30   |
| MWGS2370  | 394749  | 7256730  | Pegmatite           | 4   |       | 8   | 17   |     |        | 4  |      |
| MWGS2371  | 394742  | 7256700  | Pegmatite           | 3   | 17.3  | 5   | 11   | 66  | 1037.4 | 2  | 26   |
| MWGS2372  | 394500  | 7256212  | Pegmatite           | 4   | 4.5   | -   | -    | 110 | 283.8  | 4  | 49.7 |
| MWGS2373  | 394276  | 7255865  | Pegmatite           | 2   | 2.7   | 6   | 13   | 15  | 123.4  |    | 1.3  |
| MWGS2374  | 394602  | 7255887  | Pegmatite           | 4   | 12.4  | 9   | 19   | 89  | 784.4  | 8  | 29.9 |
| MWGS2411  | 396326  | 7254309  | Micaceous pegmatite | 100 | 310.7 | 183 | 394  | 24  | 1296.3 | 13 | 3.2  |
| MWGS2412  | 396298  | 7254356  | Pegmatite           | 6   | 5.3   | 6   | 13   | 103 | 172.2  | 9  | 67.7 |
| MWGS2413  | 395831  | 7254991  | Pegmatite           | 2   | 2.6   | -   | -    | -   | 107.5  | -  | 0.9  |
| MWGS2414  | 395874  | 7255092  | Pegmatite           | 8   | 15.9  | -   | -    | 96  | 640.2  | 5  | 58.7 |
| MWGS2415  | 395955  | 7255342  | Pegmatite           | 5   | 12.2  | 5   | 11   | 68  | 889.2  | 11 | 23.7 |
| MWGS2420  | 395172  | 7254627  | Pegmatite           | 2   | 2.4   | -   | -    | -   | 147.7  | -  | 0.2  |
| MWGS2421  | 395178  | 7254643  | Pegmatite           | 8   | 9.8   | -   | -    | 54  | 411.8  | 16 | 38.8 |
| MWGS2422  | 395197  | 7254684  | Pegmatite           | 3   | 2     | 6   | 13   | -   | 54.4   | -  | 0.3  |
| MWGS2423  | 395462  | 7254753  | Pegmatite           | 3   | 0.5   | -   | -    | -   | 16.4   | -  | 0.9  |
| MWGS2424  | 395506  | 7255019  | Pegmatite           | 2   | 1.4   | 6   | 13   | -   | 20.9   | -  | 3    |
| MWGS2425  | 395474  | 7255091  | Pegmatite           | 9   | 14.5  | 13  | 28   | 62  | 366.8  | 10 | 31.7 |
| MWGS2426  | 395472  | 7255099  | Pegmatite           | 5   | 7.1   | -   | -    | 65  | 646.5  | 12 | 33.2 |
| MWGS2427  | 395474  | 7255101  | Pegmatite           | 10  | 29.6  | 171 | 368  | 45  | 911    | 14 | 14.2 |
| MWGS2428  | 395486  | 7255114  | Micaceous pegmatite | 11  | 62.7  | 328 | 706  | 67  | 1960.6 | 42 | 16.3 |
| MWGS2429  | 395494  | 7255134  | Pegmatite           | 4   | 7.2   | -   | -    | 96  | 457.4  | 12 | 46.7 |
| MWGS2430  | 395495  | 7255137  | Micaceous pegmatite | 16  | 84.3  | 394 | 848  | 24  | 1817.8 | 13 | 12.7 |
| MWGS2431  | 393781  | 7254964  | Pegmatite           | 3   | 10.4  | -   | -    | 49  | 613    | -  | 11.8 |
| MWGS2432  | 395628  | 7255934  | Pegmatite           | 6   | 7.1   | -   | -    | 71  | 489    | 7  | 16.6 |
| MWGS2433  | 395648  | 7255965  | Pegmatite           | 5   | 4.1   | -   | -    | 49  | 428.6  | -  | 15.5 |
| MWGS2434  | 395632  | 7255948  | Pegmatite           | 8   | 2.8   | -   | -    | 90  | 186.6  | -  | 20.3 |
| MWGS2435  | 395744  | 7255972  | Pegmatite           | 6   | 6.2   | 11  | 24   | 59  | 386.1  | 8  | 14.8 |
| MWGS2436  | 395802  | 7256038  | Pegmatite           | 5   | 6.4   | -   | -    | 80  | 438.8  | 5  | 23.7 |
| MWGS2437  | 395826  | 7256099  | Pegmatite           | 5   | 5.2   | 7   | 15   | 84  | 362.7  | 14 | 17.8 |
| MWGS2438  | 395828  | 7256178  | Pegmatite           | 6   | 8.6   | 8   | 17   | 191 | 506.9  | 15 | 26.2 |
| MWGS2440  | 394341  | 7255076  | Micaceous pegmatite | 4   | 6.7   | 18  | 39   | -   | 129.8  | -  | 0.3  |



| Sample ID            | Easting | Northing | Geology             | Be  | Cs    | Li   | Li₂O | Nb  | Rb     | Sn | Τα   |
|----------------------|---------|----------|---------------------|-----|-------|------|------|-----|--------|----|------|
| MWGS2441             | 394369  | 7255100  | Pegmatite           | -   | 1.1   | -    | -    | -   | 148.4  | -  | 0.1  |
| MWGS2442             | 393633  | 7255507  | Pegmatite           | 5   | 9.7   | 8    | 17   | 73  | 417.7  | 6  | 12.3 |
| MWGS2443             | 393632  | 7255506  | Micaceous pegmatite | 14  | 64.9  | 241  | 519  | 42  | 1312.5 | 20 | 10.5 |
| MWGS2444             | 393613  | 7255531  | Pegmatite           | 79  | 23.1  | 8    | 17   | 46  | 894.8  | 6  | 12.4 |
| MWGS2445             | 393627  | 7255584  | Pegmatite           | 2   | 1.7   | -    | -    | -   | 202.7  | -  | 0.1  |
| MWGS2446             | 393668  | 7255993  | Pegmatite           | 8   | 22.6  | 10   | 22   | 36  | 896    | 8  | 24.9 |
| MWGS2447             | 393672  | 7256008  | Micaceous pegmatite | 17  | 82.1  | 321  | 691  | 36  | 1671.8 | 14 | 18   |
| MWGS2448             | 393702  | 7256109  | Pegmatite           | 8   | 56.7  | 65   | 140  | 42  | 884.8  | 17 | 41.8 |
| MWGS2449             | 393748  | 7257194  | Pegmatite           | 18  | 31.1  | 212  | 456  | 46  | 998.9  | 27 | 24   |
| MWGS2449             | 393384  |          |                     | -   | 1.1   | -    | 430  | -   | 129.1  | -  | 0.3  |
|                      |         | 7257808  | Pegmatite           |     |       |      |      |     |        |    |      |
| MWGS2451             | 392539  | 7257867  | Pegmatite           | 9   | 12.7  | 12   | 26   | 45  | 432.3  | 19 | 30.4 |
| MWGS2452             | 393770  | 7254970  | Pegmatite           | 13  | 40.7  | 60   | 129  | 41  | 616    | 6  | 28.4 |
| MWGS2453             | 393762  | 7254975  | Pegmatite           | 3   | 17.9  | -    | -    | 91  | 768    | 4  | 22.1 |
| MWGS2454             | 393769  | 7254972  | Micaceous pegmatite | 15  | 75.8  | 200  | 431  | 61  | 701.3  | 12 | 29.3 |
| MWGS2455             | 393726  | 7255137  | Pegmatite           | 10  | 60.8  | 73   | 157  | 54  | 842.3  | 25 | 52.2 |
| MWGS2456             | 393701  | 7255157  | Pegmatite           | 40  | 28.9  | 6    | 13   | 108 | 661.3  | 7  | 97.7 |
| MWGS2457             | 394032  | 7255676  | Pegmatite           | 4   | 20.2  | -    | -    | 64  | 915    | 4  | 17.8 |
| MWGS2458             | 394022  | 7255707  | Pegmatite           | 6   | 20.4  | -    | -    | 64  | 943.7  | 3  | 26.8 |
| MWGS2459             | 394020  | 7255707  | Micaceous pegmatite | 19  | 115.5 | 311  | 670  | 74  | 1812.5 | 31 | 31.7 |
| MWGS2460             | 394029  | 7255716  | Pegmatite           | 4   | 21.4  | -    | -    | 53  | 1090.3 | 3  | 19.1 |
| MWGS2461             | 394021  | 7255782  | Pegmatite           | 13  | 30.5  | 21   | 45   | 59  | 793    | 8  | 28   |
| MWGS2462             | 394027  | 7255765  | Micaceous pegmatite | 18  | 78.2  | 163  | 351  | 69  | 1755.6 | 34 | 17.2 |
| MWGS2463             | 393997  | 7256224  | Pegmatite           | 4   | 4.7   | -    | -    | 55  | 379.9  | -  | 15.2 |
| MWGS2464             | 394041  | 7256235  | Pegmatite           | 5   | 5.6   | -    | -    | 16  | 277.4  | -  | 1.8  |
| MWGS2465             | 394232  | 7256390  | Pegmatite           | 25  | 8.9   | 9    | 19   | 81  | 375.7  | 15 | 46.5 |
| MWGS2466             | 394229  | 7256395  | Micaceous pegmatite | 18  | 190.6 | 365  | 786  | 69  | 2251   | 23 | 50.3 |
| MWGS2467             | 394212  | 7256481  | Pegmatite           | 60  | 53.9  | 28   | 60   | 49  | 534.1  | 3  | 69.3 |
| MWGS2468             | 394184  | 7256507  | Pegmatite           | 8   | 11.7  | -    | -    | 99  | 625.5  | 5  | 48.1 |
| MWGS2469             | 393530  | 7256136  |                     | 4   | 14.8  | -    | -    | 94  | 639    | 9  | 50.7 |
|                      | 393530  | 7256140  | Pegmatite           | 24  | 14.0  | 531  | 1143 | 51  | 2687.2 | 20 | 18.9 |
| MWGS2470             |         | 7255797  | Micaceous pegmatite | 16  | 190   | 7    | 1143 | 79  | 493.4  | 4  | 52.6 |
| MWGS2471             | 393433  |          | Pegmatite           |     |       |      |      |     |        |    |      |
| MWGS2472             | 393422  | 7255772  | Pegmatite           | 134 | 43.1  | 40   | 86   | 48  | 631.7  | 13 | 56.4 |
| MWGS2473             | 393424  | 7255777  | Micaceous pegmatite | 31  | 417.1 | 396  | 853  | 47  | 1728   | 52 | 26.4 |
| MWGS2474             | 392709  | 7256017  | Pegmatite           | 81  | 28.3  | -    | -    | 30  | 785.4  | -  | 12.2 |
| MWGS2475             | 391583  | 7257931  | Pegmatite           | 10  | 16.3  | 21   | 45   | 17  | 434.9  | 7  | 9.9  |
| MWGS2476             | 395672  | 7255321  | Pegmatite           | 7   | 8.8   | 6    | 13   | 96  | 413    | 7  | 44   |
| MWGS2477             | 395695  | 7255367  | Pegmatite           | 7   | 5.8   | 10   | 22   | 97  | 258.1  | 8  | 33.3 |
| MWGS2478             | 395716  | 7255407  | Pegmatite           | 6   | 12.2  | 11   | 24   | 102 | 516.5  | 8  | 40.2 |
| MWGS2479             | 395691  | 7255442  | Pegmatite           | 6   | 10.9  | 8    | 17   | 125 | 442.2  | 7  | 57.4 |
| MWGS2480             | 395696  | 7255496  | Pegmatite           | 6   | 12.1  | 5    | 11   | 73  | 415.4  | 3  | 42.8 |
| MWGS2481             | 395750  | 7255493  | Pegmatite           | 5   | 12.4  | 8    | 17   | 116 | 612.7  | 5  | 46.8 |
| MWGS2482             | 395765  | 7255578  | Pegmatite           | 5   | 11.6  | 12   | 26   | 120 | 610.2  | 8  | 57.9 |
| MWGS2483             | 395780  | 7255745  | Pegmatite           | 5   | 13.2  | 12   | 26   | 111 | 701.5  | 10 | 80.9 |
| MWGS2484             | 395764  | 7255755  | Pegmatite           | 4   | 13.4  | 18   | 39   | 84  | 961.4  | 17 | 17.2 |
| MWGS2485             | 395753  | 7255767  | Pegmatite           | 5   | 6.9   | 18   | 39   | 93  | 437.8  | 11 | 20.3 |
| MWGS2486             | 395740  | 7255793  | Pegmatite           | 4   | 8     | 19   | 41   | 106 | 513.9  | 18 | 23.9 |
| MWGS2487             | 395741  | 7255795  | Micaceous pegmatite | 10  | 22.5  | 252  | 543  | 62  | 816.7  | 16 | 19.2 |
| MWGS2488             | 395714  | 7255823  | Pegmatite           | 3   | 3.7   | 5    | 11   | 135 | 272.1  | 3  | 17.4 |
| MWGS2489             | 394979  | 7256066  | Pegmatite           | 3   | 13.1  | 9    | 19   | 82  | 756.5  | 7  | 28.6 |
| MWGS2489             | 394979  | 7256070  | Pegmatite           | 4   | 10.1  | -    | -    | 103 | 540.2  | 5  | 65.6 |
| MWGS2490<br>MWGS2491 | 394967  |          | •                   | 4   | 8.5   | - 7  | -    | 73  | 540.2  | 5  | 47.2 |
|                      |         | 7256000  | Pegmatite           |     |       |      |      |     |        |    |      |
| MWGS2492             | 394943  | 7255987  | Pegmatite           | 3   | 12.3  | 10   | 22   | 127 | 679.2  | 7  | 45.6 |
| MWGS2493             | 394788  | 7255910  | Micaceous pegmatite | 12  | 130.3 | 1567 | 3374 | 58  | 2651.3 | 68 | 9.9  |
| MWGS2494             | 394779  | 7255906  | Pegmatite           | 5   | 7.2   | 14   | 30   | 72  | 332.2  | 11 | 33.6 |
| MWGS2495             | 394744  | 7255925  | Pegmatite           | 4   | 7.5   | 40   | 86   | 153 | 390    | 21 | 20.1 |
| MWGS2496             | 394738  | 7255941  | Pegmatite           | 5   | 6.6   | 14   | 30   | 106 | 398.4  | 16 | 24.5 |
| MWGS2497             | 394698  | 7255934  | Pegmatite           | 7   | 13.3  | 29   | 62   | 49  | 552.4  | 10 | 22.4 |
| MWGS2498             | 394684  | 7255934  | Pegmatite           | 10  | 8.4   | 8    | 17   | 85  | 422.3  | 13 | 33.9 |



| Sample ID | Easting | Northing | Geology             | Ве   | Cs   | Li   | Li₂O | Nb | Rb     | Sn | Τα   |
|-----------|---------|----------|---------------------|------|------|------|------|----|--------|----|------|
| MWGS2499  | 394620  | 7256148  | Pegmatite           | 6    | 14.6 | 48   | 103  | 50 | 747.8  | 62 | 24.8 |
| MWGS2500  | 394622  | 7256157  | Micaceous pegmatite | 14   | 204  | 1167 | 2513 | 43 | 2827.4 | 51 | 3.6  |
| MWGS2501  | 394059  | 7256786  | Pegmatite           | 2    | 0.9  | -    | -    | -  | 106.5  | -  | 0.1  |
| MWGS2522  | 420310  | 7248613  | Micaceous pegmatite | 5    | 3.3  | 25   | 54   | 12 | 198.8  | 5  | 1.3  |
| MWGS2523  | 420325  | 7248610  | Micaceous pegmatite | 2    | 0.5  | -    | -    | 13 | 25.1   | 4  | 2    |
| MWGS2524  | 420462  | 7249081  | Pegmatite           | 10   | 2.7  | 11   | 24   | -  | 193.6  | -  | 5.3  |
| MWGS2525  | 420465  | 7249098  | Pegmatite           | 34   | 7.6  | 25   | 54   | 27 | 341.3  | -  | 12.1 |
| MWGS2526  | 420283  | 7249080  | Pegmatite           | 6    | 2.7  | -    | -    | 16 | 162    | 3  | 5.2  |
| MWGS2527  | 420282  | 7249082  | Pegmatite           | 9    | 2.5  | -    | -    | 12 | 143.7  | 2  | 6    |
| MWGS2528  | 420273  | 7249077  | Pegmatite           | 12   | 2.2  | -    | -    | 11 | 144.4  | -  | 6.4  |
| MWGS2529  | 420251  | 7249211  | Pegmatite           | 7    | 1.3  | -    | -    | -  | 84.5   | -  | 5    |
| MWGS2530  | 420242  | 7249235  | Pegmatite           | 4    | 0.1  | -    | -    | -  | 2.4    | -  | 0.2  |
| MWGS2531  | 420326  | 7249386  | Pegmatite           | 8    | 3    | 5    | 11   | 19 | 165.3  | -  | 7.5  |
| MWGS2532  | 420431  | 7249294  | Pegmatite           | 9    | 7.4  | 10   | 22   | 22 | 199.5  | -  | 9.4  |
| MWGS2535  | 417479  | 7250563  | Pegmatite           | 3    | 1.2  | 6    | 13   | 14 | 141.2  | -  | 1.8  |
| MWGS2536  | 417391  | 7250503  | Pegmatite           | 3    | 1.2  | 5    | 10   | 14 | 138.1  | -  | 1.1  |
| MWGS2537  | 417388  | 7250622  | Pegmatite           | 4    | 1.9  | 11   | 24   | 24 | 205.3  | 5  | 3.3  |
| MWGS2538  | 417331  | 7250622  | Pegmatite           | 2    | 2    | -    | -    | -  | 203.3  | -  |      |
| MWGS2539  | 417348  | 7250636  | Pegmatite           | 3    | 1.6  | -    | -    | 15 | 146.2  | -  | 2.2  |
| MWGS2539  | 417348  | 7250645  |                     | 2    | 1.0  | 10   | 22   | 22 | 140.2  | 4  | 2.2  |
|           |         |          | Pegmatite           | 5    | 1.4  | 7    |      |    |        | -  |      |
| MWGS2541  | 417326  | 7250693  | Pegmatite           |      |      |      | 15   | 16 | 134.9  |    | 2.1  |
| MWGS2542  | 417260  | 7250712  | Pegmatite           | 3    | 1.2  | 9    | 19   | 20 | 153.4  | 3  | 2.3  |
| MWGS2543  | 417260  | 7250750  | Pegmatite           | 9    | 1.4  | 8    | 17   | 16 | 142.9  |    | 2.3  |
| MWGS2544  | 417211  | 7250761  | Pegmatite           | 2    | 3.6  | -    | -    | -  | 243.2  | -  | 0.5  |
| MWGS2545  | 417180  | 7250810  | Pegmatite           | 4    | 3.2  | 7    | 15   | 29 | 290.4  | -  | 6.3  |
| MWGS2546  | 417110  | 7250825  | Pegmatite           | 4    | 0.8  | -    | -    | -  | 82.1   | -  | 0.7  |
| MWGS2547  | 417135  | 7250901  | Pegmatite           | 3    | 1.3  | 7    | 15   | -  | 98.7   | -  | 0.8  |
| MWGS2548  | 417148  | 7250935  | Pegmatite           | 3    | 2.5  | 10   | 22   | 16 | 214.4  | 2  | 2.9  |
| MWGS2549  | 417076  | 7250947  | Pegmatite           | 2    | 1.8  | 14   | 30   | 33 | 276.4  | 9  | 4.7  |
| MWGS2550  | 417063  | 7250937  | Pegmatite           | 2    | 2.9  | 14   | 30   | 17 | 178    | 5  | 1.5  |
| MWGS2551  | 416973  | 7250986  | Pegmatite           | 5    | 1.6  | 35   | 75   | 13 | 112.6  | 3  | 1.4  |
| MWGS2554  | 417370  | 7251063  | Pegmatite           | 4    | 3.4  | 9    | 19   | 17 | 288.5  | 2  | 4.4  |
| MWGS2556  | 417463  | 7251095  | Pegmatite           | 2    | 1.6  | -    | -    | -  | 278.5  | -  | 0.6  |
| MWGS2558  | 418951  | 7249296  | Pegmatite           | 5    | 1.4  | -    | -    | -  | 141.3  | 3  | 1    |
| MWGS2559  | 418929  | 7249353  | Pegmatite           | 7    | 0.8  | -    | -    | -  | 79.7   | -  | 0.8  |
| MWGS2560  | 419727  | 7249217  | Pegmatite           | 3    | 0.4  | 7    | 15   | 12 | 78.3   | 2  | 0.9  |
| MWGS2561  | 420599  | 7249047  | Pegmatite           | 17   | 10   | -    | -    | 20 | 144.3  | -  | 5.5  |
| MWGS2562  | 420799  | 7248963  | Pegmatite           | 8    | 2.6  | -    | -    | 15 | 134.7  | -  | 7.3  |
| MWGS2563  | 420492  | 7249019  | Pegmatite           | 10   | 3.4  | 8    | 17   | 23 | 163.2  | -  | 5    |
| MWGS2564  | 421286  | 7247641  | Pegmatite           | 11   | 10.7 | -    | -    | 19 | 547    | -  | 2.8  |
| MWGS2565  | 421233  | 7247595  | Pegmatite           | 11   | 4.4  | 11   | 24   | 22 | 122.3  | -  | 4.9  |
| MWGS2566  | 422239  | 7247737  | Pegmatite           | 139  | 2.1  | -    | -    | 14 | 224.2  | -  | 4.3  |
| MWGS2567  | 422240  | 7247737  | Pegmatite           | 208  | 8.5  | -    | -    | 29 | 342.2  | -  | 19.7 |
| MWGS2568  | 422221  | 7247748  | Pegmatite           | 119  | 5.8  | -    | -    | 36 | 261.5  | -  | 33.4 |
| MWGS2569  | 422193  | 7247733  | Pegmatite           | 62   | 16.1 | -    | -    | 48 | 217.6  | -  | 60   |
| MWGS2570  | 422379  | 7247154  | Pegmatite           | 86   | 9.4  | -    | -    | 13 | 518.1  | -  | 1    |
| MWGS2571  | 422562  | 7247082  | Pegmatite           | 162  | 5.6  | -    | -    | 18 | 435.4  | -  | 4.1  |
| MWGS2573  | 422218  | 7247226  | Pegmatite           | 19   | 0.9  | -    | -    | 15 | 49.4   | 2  | 2.9  |
| MWGS2574  | 422069  | 7247339  | Pegmatite           | 1041 | 13   | 22   | 47   | 34 | 250.1  | 4  | 5.9  |

All sample information is parts per million (ppm). 1,000 ppm is equal to 0.1%.

# Attachment 1: JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques                                  | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Rock chip samples were taken as individual rocks representing an outcrop to give an indication of possible grades and widths that can be expected from drilling. Individual rock samples can be biased towards higher grade mineralisation.</li> <li>Rock chip samples were typically between 1 and 2 kg. The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron.</li> <li>A duplicate sample of between 0.1 and 0.2 kg was retained by the Company for some of samples reported.</li> </ul> |
| Drilling<br>techniques                                  | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard<br/>tube, depth of diamond tails, face-sampling bit or other type, whether core is<br/>oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No new drilling results are included in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • No new drilling results are included in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • No new drilling results are included in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • The entire sample received by the laboratory was crushed and pulverised to 85% passing 75 micron.                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                              |
| Quality of<br>assay data<br>and laboratory<br>tests                 | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Samples were analysed by Intertek Genalysis in Perth. The sample analysis uses a sodium peroxide fusion with an Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Mass Spectrometry (MS) and Optical Emission Spectrometry (OES) finish.</li> <li>Li<sub>2</sub>O is derived by multiplying Li by 2.153.</li> </ul> |
| Verification of<br>sampling and<br>assaying                         | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                      | Independent checks or field duplicates were not conducted for rock chips     and are not considered necessary for that type of sample.                                                                                                                                                                                                                       |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Rock chip sample locations were surveyed using a handheld GPS using<br/>the UTM coordinate system, with an accuracy of +/-5m.</li> </ul>                                                                                                                                                                                                            |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                   | No new drilling results are included in this report.                                                                                                                                                                                                                                                                                                         |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul>                                                                                                                                                                                                                                   | • Rock chip samples are collected to represent the outcrop. Where different material types are present within the pegmatites, separate samples were collected to ensure each material is represented.                                                                                                                                                        |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Samples were given individual samples numbers for tracking.</li> <li>The sample chain of custody was overseen by the Company's geologists.</li> </ul>                                                                                                                                                                                               |

| Criteria             | JORC Code explanation                                                                     | Commentary                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                           | Samples were transported to the laboratory in Perth sealed bulka bags.                                                                                                       |
| Audits or<br>reviews | <ul> <li>The results of any audits or reviews of sampling techniques and data.</li> </ul> | <ul> <li>The sampling techniques and analytical data are monitored by the<br/>Company's geologists.</li> <li>External audits of the data have not been completed.</li> </ul> |

# Section 2 Reporting of Exploration Results

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                         | <ul> <li>The project area is located 80km northeast of the Gascoyne Junction and 230km east of Carnarvon.</li> <li>The project includes 12 granted Exploration Licences, E09/2242, E09/2349, E09/2319, E09/2320, E09/2481, E09/2494, E09/2495, E09/2653, E09/2654, E09/2655, E09/2660 and E09/2661.</li> <li>The tenements are held by Kingfisher Mining Ltd.</li> <li>The tenements lie within Native Title Determined Areas of the Wajarri Yamatji People and Gnulli People.</li> <li>All the tenements are in good standing with no known impediments.</li> </ul> |
| Exploration done<br>by other parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>No previous systematic exploration for lithium mineralisation has been previously completed.</li> <li>Exploration for base metals at Kingfisher undertaken was by Pasminco Ltd in 1994, Mt Phillips Exploration Pty Ltd in 2006 and WCP Resources in 2007.</li> <li>Exploration for base metals at Mick Well was completed by Helix Resources Ltd in 1994, WA Exploration Services Pty Ltd in 1996, Mt Phillips Exploration Pty Ltd in 2006 and WCP Resources in 2007.</li> </ul>                                                                           |
| Geology                                       | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                              | • The Company's tenements in the Gascoyne Mineral Field are prospective for rare earth mineralisation associated with carbonatite intrusions and associated fenitic alteration as well as lithium associated with pegmatite dykes.                                                                                                                                                                                                                                                                                                                                   |
| Drill hole<br>Information                     | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> </ul> | No new drilling results are included in this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | <ul> <li>If the exclusion of this information is justified on the basis that the<br/>information is not Material and this exclusion does not detract from the<br/>understanding of the report, the Competent Person should clearly explain<br/>why this is the case.</li> </ul>                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |
| Data aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>No new drilling results are included in this report and no data aggregation<br/>has been applied.</li> </ul>                                                                                                                                                           |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | <ul> <li>No new drilling results are included in this report.</li> <li>Pegmatite outcrops range in thickness from 0.5m to more than 30m. True width is occasionally obscured by thin cover.</li> </ul>                                                                          |
| Diagrams                                                                     | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts<br/>should be included for any significant discovery being reported These<br/>should include, but not be limited to a plan view of drill hole collar locations<br/>and appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                             | • A map showing relevant data has been included in the report.                                                                                                                                                                                                                  |
| Balanced<br>reporting                                                        | <ul> <li>Where comprehensive reporting of all Exploration Results is not practicable,<br/>representative reporting of both low and high grades and/or widths should<br/>be practiced to avoid misleading reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>All rock chip samples from the pegmatites have been reported. The<br/>reported sample batches also included some samples collected as part<br/>of ongoing evaluation of the geology of the area.</li> </ul>                                                            |
| Other<br>substantive<br>exploration data                                     | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density, groundwater,<br/>geotechnical and rock characteristics; potential deleterious or<br/>contaminating substances.</li> </ul>                                                                                                                                                                 | <ul> <li>All of the relevant historical exploration data has been included in this report.</li> <li>All historical exploration information is available via WAMEX.</li> </ul>                                                                                                   |
| Further work                                                                 | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                                                                                                                                                                           | <ul> <li>On-going exploration in the area is a high priority for the Company.</li> <li>Exploration to include tenement-scale acquisition of geophysics data to define the extents of carbonatites, mapping and rock chip sampling as well as additional RC drilling.</li> </ul> |