

Monday, 7 August 2023

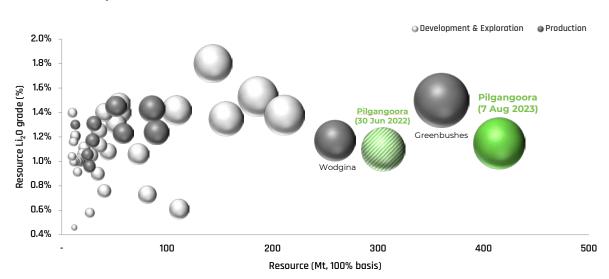
Substantial 109Mt Mineral Resource increase to 414Mt - further extends Pilgangoora's position as a world class lithium project

KEY POINTS

- Mineral Resource update reinforces Pilbara Minerals' 100%-owned Pilgangoora Operation, as one the largest lithium deposits globally.
- FY23 drill program (46,904m) leads to a substantial increase in Mineral Resource for the Pilgangoora Operation, including:
 - 36% increase in the total Measured, Indicated and Inferred Resource to 413.8 million tonnes (Mt) grading 1.15% Li₂O, 112ppm Ta₂O₅ and 0.53% Fe₂O₃, containing 4.75Mt of lithium oxide and 101.8 million pounds of Ta₂O₅;
 - 64% increase in the total Measured and Indicated Resource to 337.3Mt grading 1.17% Li₂O, 103ppm Ta₂O₅ and 0.53% Fe₂O₃, containing 3.94Mt of lithium oxide and 80.9 million pounds of Ta₂O₅; and
 - enhanced overall resource confidence with 82% of the Mineral Resource now classified as Measured and Indicated.
- The updated Mineral Resource includes all results from the FY23, 153-hole exploration and development drilling campaign testing down-dip extensions.
- The updated Mineral Resource will underpin an Ore Reserve update that is currently being progressed for release in the September 2023 Quarter.
- Further extension targets have been identified including the prospective East Extension proximate to the East Pit and Central Extension proximate to the Central Pit which are to be further drill tested during the planned FY24 drilling campaign.

Australian lithium producer, Pilbara Minerals Limited (**Pilbara Minerals** – ASX: PLS) is pleased to announce a substantial increase in Mineral Resource at its 100%-owned Pilgangoora Operation in Western Australia's Pilbara region, reinforcing its position as one of the world's largest hard-rock lithium operations.

The updated Mineral Resource, which represents a 36% increase in total Resource tonnage when compared with the 30 June 2022 Mineral Resource statement, now contains 4.75Mt of lithium oxide at 1.15% Li_2O .


Pilbara Minerals' Managing Director and CEO, Dale Henderson, said:

"This significant Resource upgrade reinforces our 100% owned Pilgangoora Operation as one of the largest hard rock lithium deposits globally. The upgraded Mineral Resource is consistent with our strategy to grow our operating base and therefore maximise value by achieving the full potential from our world class operation.

"We have added 109Mt of additional Mineral Resource at a direct exploration cost of only 13 cents per tonne of additional resource – an outstanding result.

"We are looking forward to completing an updated Ore Reserve this Quarter that will underpin operations for many years to come and may provide an opportunity to further expand production capacity beyond P1000. The FY23 drilling campaign has also identified further prospective target areas including areas in close proximity to the East and Central pits which will be drill tested in our FY24 drill program."

MINERAL RESOURCE UPDATE

The updated JORC 2012 compliant Mineral Resource incorporates all historical data including drilling data acquired through a number of exploration campaigns completed by Pilbara Minerals between November 2014 and June 2023 and accounts for depletion of 5.6Mt due to mining activity from 30 June 2022 to 30 June 2023.

The estimation was carried out by independent resource consultancy, Trepanier Pty Ltd, resulting in the estimation of Measured, Indicated and Inferred Resources. The reporting of all domains (using a cut-off of 0.2% Li₂O and depleted to end of June 2023) results in a Measured, Indicated and Inferred Mineral Resource estimate (**Table 1**) totaling:

Table 1 – Pilgangoora Operation – updated JORC Mineral Resource as at 30 June 2023
(using 0.2% Li2O cut-off)

Category	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Fe₂O₃ (%)	Li₂O (Mt)	Ta₂O₅ (M lb)
Measured	22.1	1.34	146	0.44	0.3	7
Indicated	315.2	1.15	106	0.53	3.6	74
Inferred	76.6	1.07	124	0.54	0.8	21
Total	413.8	1.15	112	0.53	4.8	102

¹ Sources: Company filings as at 31 July 2023. Refer Appendix 4. Note: 'Production' assets defined as those currently in commercial production. 'Development' assets defined as those with a FID declared. 'Exploration; assets defined as pre-FID. All on a 100% basis. Chart excludes Manono (AVZ).

June 2022 to 30	June 2022 to 30 June 2023 (using 0.2% Li2O cut-off)								
Total Mineral Resources	Tonnes (Mt)	Li ₂ O (%)	Ta₂O₅ (ppm)	Fe ₂ O ₃ (%)	Li ₂ O (Mt)	Ta₂O₅ (M lb)			
Mineral Resources as at 30 June 2022	305	1.13	105	0.6	3.5	71			
Mineral Resources as at 30 June 2023	414	1.15	112	0.53	4.8	102			
Total change from 30 June 2022 to 30 June 2023	109	1.19	129	0.35	1.3	31			

Table 2 – Changes to in-situ Mineral Resources at the Pilgangoora Operation from 30 June 2022 to 30 June 2023 (using 0.2% Li2O cut-off)

Note: rounding applied to numbers in Table 1 and 2 above.

The 2023 Pilgangoora Mineral Resource update estimate represents a net increase of approximately 109Mt grading 1.19% Li_2O , containing 1.3Mt of lithium oxide as outlined in **Table 2**. This net increase adjusts for a decrease of 5.6Mt, containing 77,000 tonnes of lithium oxide due to depletion from mining activity at the Pilgangoora Operation from 30 June 2022 to 30 June 2023.

FY23 DRILLING CAMPAIGN AND FUTURE TARGETS

The FY23 drilling program, which informed the 2023 Mineral Resource update had the following objectives:

- drill test and upgrade Inferred Mineral Resources and unclassified material to the Indicated category within the unconstrained pit shell in the near mine areas;
- drill test down dip extensions of the key domains in the Central and Eastern deposits; and
- drill test the most prospective exploration targets within the Pilgangoora Project area.

The FY23 drilling program commenced in November 2022 and comprised 153 holes and 46,904m of drilling comprising 39,627m of reverse circulation and 7,277m of diamond drilling. Refer to **Figure 10** for drill hole locations across the Pilgangoora Project area. Refer to **Appendix 1** for drill collar details.

Significant exploration upside remains within the Pilgangoora Project area, with mineralisation remaining open along strike and at depth to the immediate north west of the Central and East Pits as illustrated in **Figures 6 and 7**, in particular up dip of the new intercepts in PLS1458. Drill hole PLS1458 has an accumulated pegmatite intercept of 74m @ 1.96% Li₂O within a 106m downhole interval. In addition, two new pegmatite domains have been modelled to the west of the Central Pit with pegmatite intercepts including 16m @ 1.32% Li₂O in PLS1445 and 16m @ 1.50% Li₂O in PLS1552. This zone remains open to the north where there has been very limited drilling to date.

Follow up drilling is planned in the FY24 drilling campaign to further drill test targets outlined above to the immediate north west of the Central and East Pits.

FURTHER INFORMATION RELEVANT TO THE MINERAL RESOURCES UPDATE

The envelope was wire-framed using both geological logging information (in particular logging of zoning within the pegmatite) and assay data for Li₂O, Ta₂O₅ and Fe₂O₃. **Table 3** below illustrates the breakdown of the resource by area, and **Figure 8** below shows a typical cross-section through the northern end of the Central Pit (pit surface, June 2023) showing the typical distribution of Measured, Indicated and Inferred categories.

If a lithium cut-off of >0.5% is used in global resource reporting (relative to the assumed 0.20% Li₂O cut-off), this results in a reduction in tonnage but provides a significantly highergrade resource **(Figure 2).**

Details of the drilling data used for the estimation, site inspection information and the quality control checks completed on the data are documented in **Appendix 3 (JORC Tables 1 to 3)**. **Figure 3** below illustrates the distribution of the pegmatites and their domains.

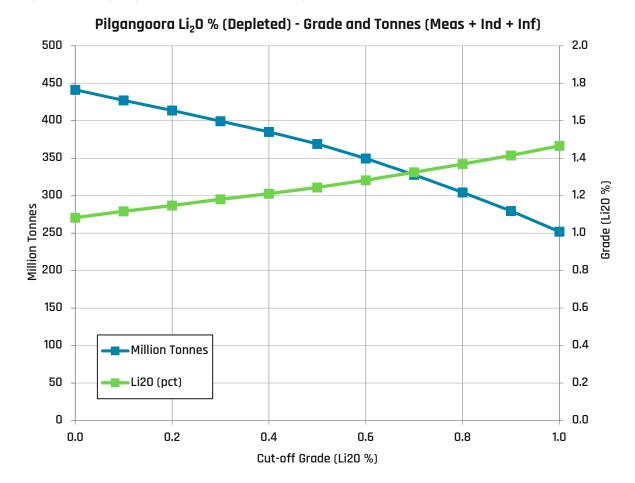


Figure 2 – Pilgangoora – Grade vs. Tonnage curves for the total lithium resource

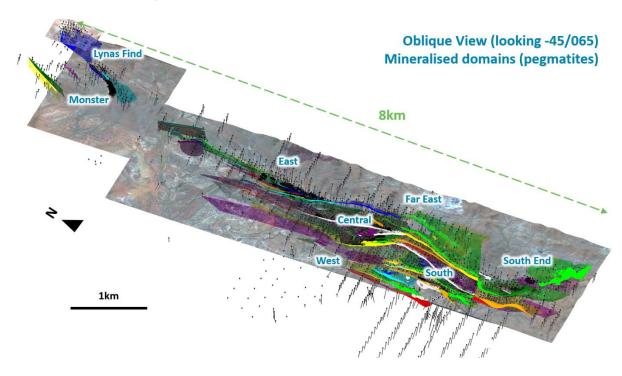


Figure 3 – Oblique View (looking -45/065 of the mineralised domains (pegmatites) modelled in Leapfrog™

Figure 4 – Oblique View (looking -30/290) showing mineralised domains (pegmatites) and 2021 LOM pit designs

Figure 5 – Oblique View (looking -30/290) showing Li2O grade distribution and 2021 LOM pit designs

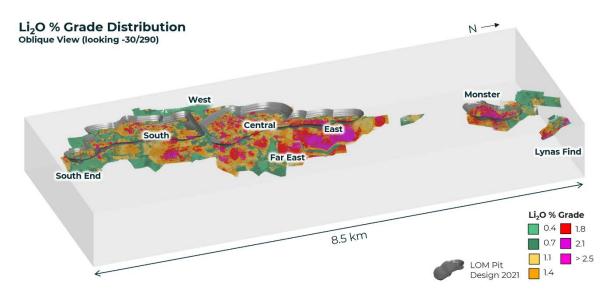
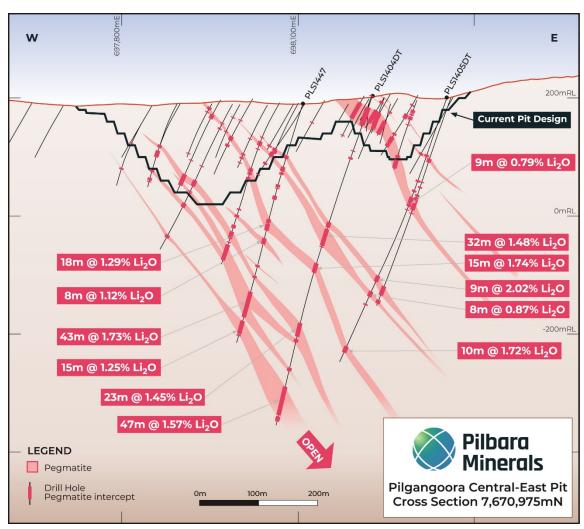



Figure 6 – Cross Section 7,670,975mN – Central-East Pit

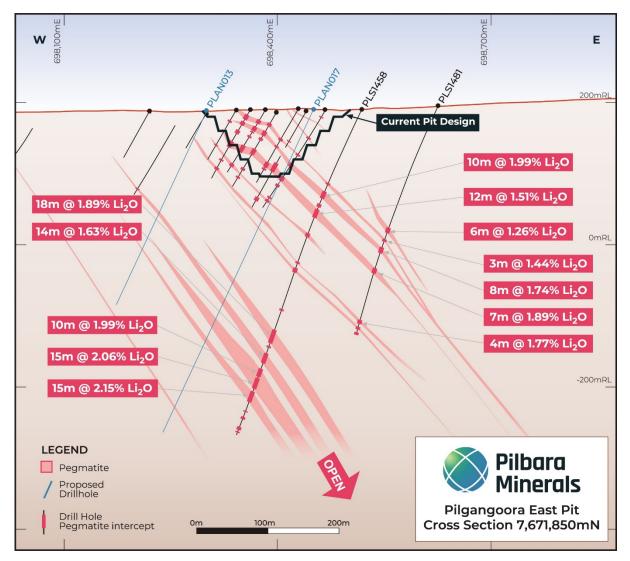
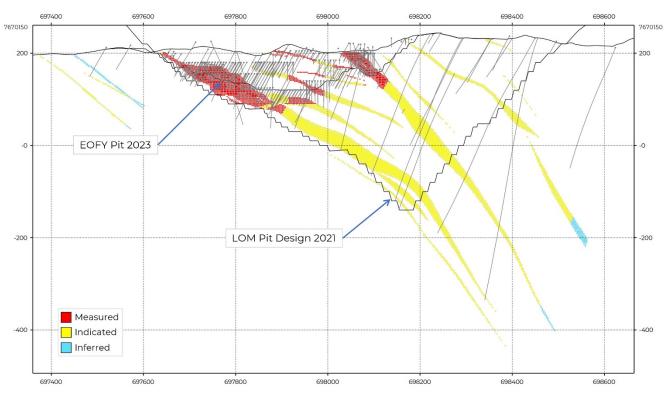



Figure 7 – Cross Section 7,671,850mN – East Pit Cross Section

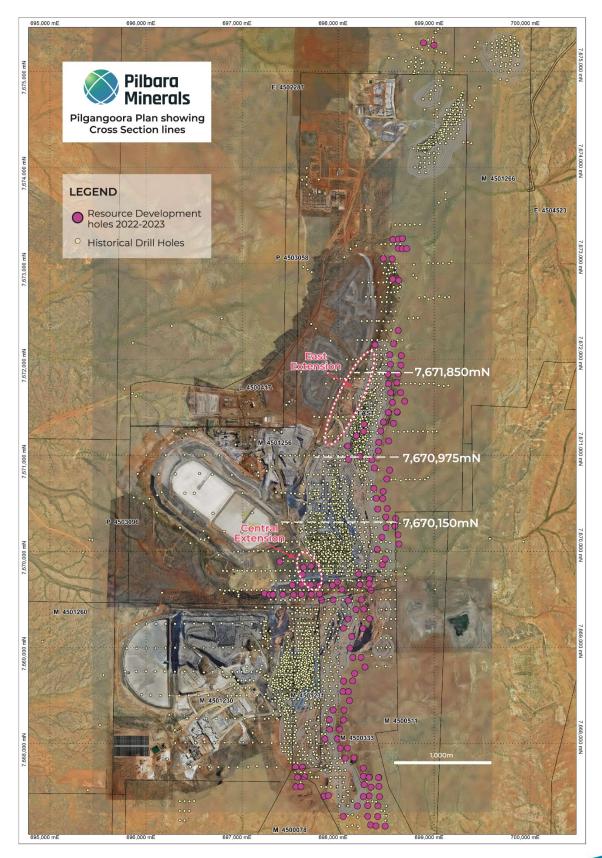

Figure 8 – Central Pit - Cross Section 767,0150mN showing resource classifications

Figure 9 – Drilling at the East Extension Area

Figure 10 – Drill hole location plan Pilgangoora Project area and cross section locations

87% of the updated Mineral Resource is located within three key deposits. This is summarised below and outlined in detail in **Figure 4** and **Table 3**.

- Central Deposit (162 million tonnes);
- South Deposit (127 million tonnes); and
- Eastern Deposit (74 million tonnes).

GEOLOGY

The Pilgangoora Lithium-Tantalum deposit is located on the western flank of the East Strelley greenstone belt, in a sequence of highly deformed, fault bounded mafic dominated supracrustal rocks, which protrude into the Carlindi Batholith. Lithologies within the project area are dominantly tholeiitic metabasalts with thin interflow metasedimentary units.

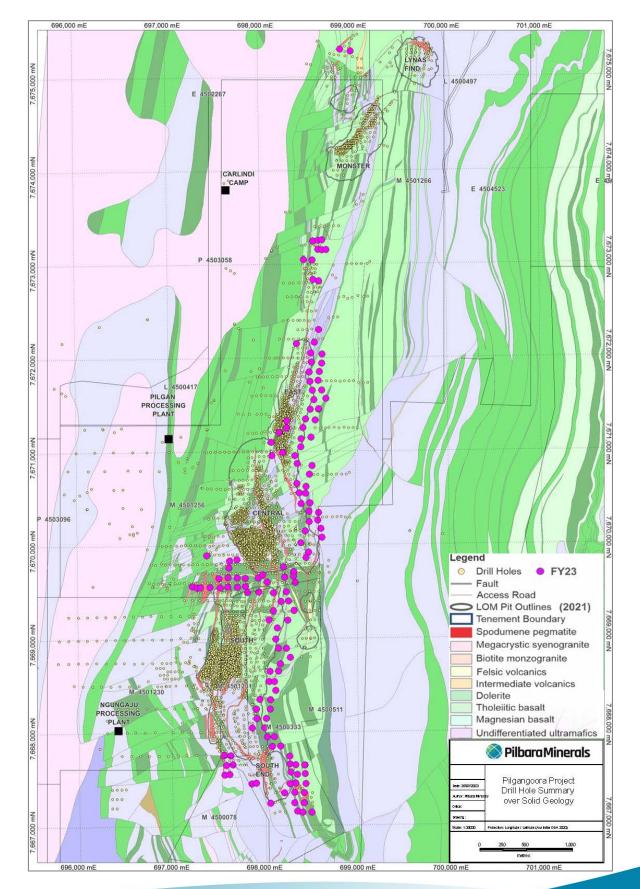
The metabasalts may contain abundant fine to coarse grained actinolite, possibly of hydrothermal origin, within the centre of the project area is an intrusive sequence of layered meta-ultramafic sills, with subordinate metamafic units, are up to 500m thick. This ultramafic sequence is comprised of peridotite, pyroxenite and Mg- and Fe-rich varieties of dolerite, with gradational contacts between units.

Four phases of deformation have been recognised in the project area. The first phase (DI) produced the steeply inclined attitude of the supracrustal rock sequence by the development of a fold and thrust belt. A regional strike slip fault system developed across the greenstone belt in D2, as an interconnected network of layer parallel strike slip faults with discordant cross faults (**Figure 11**).

This faulting pattern is particularly strongly developed in the vicinity of the Central pegmatite domains. The D3 event is related to the pegmatite emplacement – these breach the D2 structures and have a local preference for exploitation of the Ultramafic rock package.

Three principal pegmatite groups or domains are identified in the centre of the project area – Eastern, Central and South. In addition, there are three outlying pegmatite groups, Lynas Find, Monster and South End. Pegmatites of the three principal domains have a strike length of up to 1.4km, and mostly range in thickness from 1-30 metres, although pegmatites of the Central domains may be up to 70m thick.

The distribution of the Pilgangoora pegmatites is shown in **Figure 11**. Drilling has shown that the pegmatites occur as dykes dipping to the east at 20-60° (see **Figures 6 to 8**), striking parallel to sub-parallel to the dominant NNW trending schistose (D3) fabric within the greenstones. Pegmatites of the three principal pegmatite groups typically breach D2 faults. The Central pegmatites generally occur within dip-slip (D3) shear zones, and the Eastern pegmatites within strike slip (D3) shear zones.



	5				,		
Area	Category	Tonnes (Mt)	Li₂O (%)	Ta₂O₅ (ppm)	Fe ₂ O ₃ (%)	Li₂O (Mt)	Ta₂O₅ (M lb)
Central	Measured	10.2	1.41	126	0.37	144,000	2.9
	Indicated	131.8	1.28	101	0.52	1,682,000	29.3
	Inferred	20.1	1.30	104	0.57	262,000	4.6
	Combined	162.2	1.29	103	0.52	2,088,000	36.8
Eastern	Measured	5.9	1.37	231	0.48	82,000	3.0
	Indicated	43.4	1.27	216	0.56	550,000	20.7
	Inferred	24.9	1.30	195	0.44	323,000	10.7
	Combined	74.2	1.29	210	0.52	955,000	34.4
Far East	Measured	-	-	-	-	-	-
	Indicated	8.1	1.36	94	0.61	109,000	1.7
	Inferred	0.5	1.16	67	0.84	6,000	0.1
	Combined	8.6	1.34	93	0.62	115,000	1.8
South	Measured	4.4	1.12	81	0.56	49,000	0.8
	Indicated	104.3	0.97	70	0.52	1,016,000	16.0
	Inferred	18.3	0.64	63	0.56	116,000	2.5
	Combined	127.0	0.93	69	0.52	1,182,000	19.3
South End	Measured	-	-	-	-	-	-
	Indicated	10.0	0.89	74	0.50	89,000	1.6
	Inferred	0.7	0.52	71	0.32	4,000	0.1
	Combined	10.7	0.87	74	0.49	93,000	1.7
West	Measured	-	-	-	-	-	-
	Indicated	5.8	0.74	112	0.73	43,000	1.4
	Inferred	4.4	0.77	109	0.81	34,000	1.1
	Combined	10.2	0.75	111	0.76	77,000	2.5
Monster	Measured	1.6	1.40	135	0.49	22,000	0.5
	Indicated	6.6	1.24	136	0.52	82,000	2.0
	Inferred	5.3	0.93	117	0.56	49,000	1.4
	Combined	13.5	1.14	129	0.53	153,000	3.8
Pilgangoora	Measured	22.1	1.34	146	0.44	297,000	7.1
Sub-Total	Indicated	310.0	1.15	106	0.53	3,571,000	72.7
	Inferred	74.2	1.07	125	0.54	794,000	20.4
	Combined	406.3	1.15	112	0.53	4,662,000	100.3
Lynas Find	Measured	-	-	-	-	-	-
	Indicated	5.1	1.31	89	0.61	67,000	1.0
	Inferred	2.4	0.98	100	0.74	23,000	0.5
	Combined	7.5	1.21	93	0.65	91,000	1.5
Total	Measured	22.1	1.34	146	0.44	297,000	7.1
	Indicated	315.2	1.15	106	0.53	3,639,000	73.7
	Inferred	76.6	1.07	124	0.54	817,000	21.0
	Combined	413.8 applied to numb	1.15	112	0.53	4,753,000	101.8

Table 3 – Pilgangoora Operation – Mineral Resource Breakdown by Area

Note: Appropriate rounding applied to numbers above.

Figure 11 – Geology and drill hole summary

Release authorised by Dale Henderson, Pilbara Minerals Limited's Managing Director.

CONTACTS

Investors / shareholders James Fuller Investor Relations Manager Ph. +61 (0) 488 093 763 E: james.fuller@pilbaraminerals.com.au <u>Media</u> Michael Vaughan Fivemark Partners +61 (0) 422 602 720

ABOUT PILBARA MINERALS

Pilbara Minerals owns 100% of the world's largest, independent hard-rock lithium operation. Located in Western Australia's resource-rich Pilbara region, the Pilgangoora Operation produces a spodumene and tantalite concentrate. The significant scale and quality of the operation has attracted a consortium of high quality, global partners including Ganfeng Lithium, General Lithium, POSCO and Yibin Tianyi. While it continues to deliver a quality spodumene concentrate to market, Pilbara Minerals is pursuing a growth and diversification strategy to become a sustainable, low-cost lithium producer and fully integrated lithium raw materials and chemicals supplier in the years to come.

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr John Holmes (Head of Geology and Exploration at Pilbara Minerals Limited). Mr Holmes is a shareholder of Pilbara Minerals. Mr Holmes is a member of the Australasian Institute of Geoscientists and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Holmes consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to Mineral Resources is based on and fairly represents information compiled by Mr Lauritz Barnes (Consultant with Trepanier Pty Ltd) and Mr John Holmes (Head of Geology and Exploration at Pilbara Minerals Limited). Mr Holmes is a shareholder of Pilbara Minerals. Mr Barnes is a member of both the Australasian Institute of Geoscientists and the Australasian Institute of Mining and Metallurgy, Mr Holmes is a member of the Australasian Institute of Geoscientists and the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (**JORC**) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Barnes and Mr Holmes consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to **Table 1, Sections 1 to 3** included below in **Appendix 3**).

Geology and geological interpretation

The Pilgangoora pegmatites are hosted in the East Strelley greenstone belt, which is a series of steeply dipping, mafic meta volcanic rocks and amphibolites. At Pilgangoora, the greenstones have been intruded by a swarm of north-trending, east-dipping pegmatites extending from Mount York in the south northwards for about 11km to McPhees Mining Centre. Many of the pegmatites are very large, reaching over 1000m in length and 20 to 70 metres in thickness. Despite their large size, mineralisation within these zoned pegmatites appears to be restricted to alteration zones, mainly along vein margins containing quartz, albite, muscovite, and spessartine garnet. These mineralised zones are dominated by lithium bearing mineral spodumene with traces to minor amounts of lepidolite. Tantalite, cassiterite, and traces of microlite, tapiolite, and beryl also occur within or associated with the pegmatite intrusives.

The Pilgangoora pegmatite field is largely confined to the area within tenements M45/1230, M45/1231, M45/1256, M45/333 and M45/1266. Three principal pegmatite groups or domains are identified in the centre of the project area – Eastern, Central and South. Pegmatites range in strike length up to 1.4 km, and mostly range in thickness from 1-30 metres, although pegmatites of the Central domains may be up to 70 metres thick.

The distribution of the Pilgangoora pegmatites is shown in **Figure 11**. Drilling has shown that the pegmatites occur as dykes dipping to the east at 20-60° (see **Figures 6 to 8**), striking parallel to sub-parallel to the dominant NNW trending schistose (D3) fabric within the greenstones. Pegmatites of the three principal pegmatite groups typically breach D2 faults. The Central pegmatites generally occur within dip-slip (D3) shear zones, and the Eastern pegmatites within strike slip (D3) shear zones.

Drilling techniques

Talison Minerals Pty Ltd ("Talison") conducted a 54 hole RC drilling program in 2008 totaling 3,198m and 29 drill holes for a total of 2,783m in 2010. Talison changed its name to Global Advanced Metals ("GAM") and completed 17 RC holes for 1,776m in 2012. Pilbara Minerals acquired Altura Lithium operations on 20th January 2021. Pilbara Minerals and the former Altura Lithium Operations have completed 267,889 metres of exploration and resource definition RC drilling and 18,520 metres of diamond drill core. In addition, Pilbara Minerals Limited has completed 117,065 metres of RC grade control drilling from 2018 to 2023. Dakota Minerals Ltd (Dakota) drilled 63 RC holes for 5,276 metres and 12 diamond holes for 100m at the Lynas Find prospect in 2016.

Sampling and sub-sampling techniques

Sample information used in resource estimation was derived from both RC and diamond core drilling. The drill samples have been geologically logged and sampled for lab analysis. Diamond drilling programs undertaken in 2015, 2017 and 2019 were primarily undertaken to collect metallurgical sample material twinned existing RC holes and, when compared, strongly confirmed the RC results.

Sample analysis method

The Talison and GAM samples were assayed by GAM's Wodgina Site Laboratory for a 36element suite using XRF on fused beads. Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS). The Pilbara Minerals drill hole samples from 2014 and 2015 were analysed by the Nagrom Laboratory in Perth by both fused bead XRF and ICP. The Pilbara Minerals drill hole samples from 2016 were analysed by the ALS Global Laboratory in Perth using a Sodium Peroxide fusion with ICPMS finish. Dakota diamond holes were analysed by SGS using fused beads ICP and XRF for 22 elements. Dakota RC holes were analysed by Nagrom for Li₂O, Cs and Ta using a Sodium Peroxide fusion with ICP finish. The Pilbara Minerals drill hole samples from 2017 to 2023 were analysed by the Nagrom Laboratory in Perth, and in 2023 RC and diamond drill samples were also sent to SGS Laboratories in Perth for analysis by XRF and ICP techniques. No geophysical tools were used to determine any element concentrations used in the resource estimate. Altura samples were analysed at numerous laboratories. Prior to June 2011, samples were analysed by Ultra Trace Laboratories. From 2011 to 2016 samples were sent to Labwest in Perth. Post 2016 samples were analysed at both Intertek and SGS Laboratories in Perth.

In addition to Li₂O and Ta₂O₅, Pilbara Minerals has also estimated the Fe₂O₃ for the Mineral Resource as a potential deleterious element in the production of spodumene concentrates for the glass and ceramics industry. During the process of drilling, sampling and assaying, Pilbara Minerals identified two key issues causing contamination and, hence, artificial elevation of the Fe_2O_3 assays for the drill samples. Firstly, the highly abrasive nature of the Li₂O/Ta₂O₅ mineralised pegmatite on the RC drilling bits and rods has resulted in iron contamination of the drill samples in the field. Secondly, when the drill samples were pulverised in laboratory in steel containers, the highly abrasive nature resulted in further iron contamination. As such, Pilbara Minerals completed a statistical analysis into both of the above-mentioned issues which then allowed for factoring of the Fe_2O_3 assays to account for the contamination. The two step Fe_2O_3 adjustment process and factors are summarised in the previous resource announcement dated 17 September 2018. It should be noted this process has been used to understand the potential Fe₂O₃ grades in the resource attempting to remove the Fe_2O_3 present from drilling and/or sample preparation contamination. The Fe₂O₃ grades are an estimate only, however consistent with the broad estimation techniques applied for the estimate of the global resource.

Cut-off grades

Pegmatite boundaries typically coincide with anomalous Li_2O and Ta_2O_5 which allows for geological continuity of the mineralised zones. A significant increase in Fe₂O₃ at the contacts between the elevated iron mafic country rock and the iron poor pegmatites further refines the position of this contact in additional to the geological logs. Interpretation work also focussed on the internal mineralogical zonation (spodumene rich vs poor) within the pegmatite veins. All pegmatite vein (and grade) contact models were built in LeapfrogTM Geo software and exported for use as domain boundaries for the block model.

Estimation Methodology

Grade estimation was by Ordinary Kriging for Li₂O, Ta₂O₅ and Fe₂O₃ (factored) using GEOVIA SurpacTM software. The estimate was resolved into 6m (E) x 20m (N) x 5m (RL) parent cells that had been sub-celled at the domain boundaries for accurate domain volume representation. Top-cuts were decided by completing an outlier analysis using a combination of methods including grade histograms, log probability plots and other statistical tools. Based on this statistical analysis of the data population, no top-cuts were applied. Estimation parameters were based on variogram models generated using Geovariances Isatis.neo, data geometry and kriging estimation statistics. The search ellipses utilised follow the trend of each pegmatite and were generated using LeapfrogTM Edge's Variable Orientation tool.

Bulk density regressions have been calculated for ore and waste separately. In the block model, bulk densities in pegmatite ore are calculated by the Li_2O content of the parent block, whilst bulk densities in waste are calculated using the Fe_2O_3 content of the parent block. The bulk density regressions were based on Archimedes measurements on non porous core samples.

Classification criteria

The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information.

Measured Mineral Resources are defined nominally on 12.5m E x 12.5m N grade control spaced drilling with limited areas up to 12.5m E by 25m N or 25m E by 25m N. Indicated Mineral Resources are defined nominally on 50m E x 50m to 100m N spaced drilling and Inferred Mineral Resources nominally up to 100m E x 100m to 125m N with consideration always given for the confidence of the continuity of geology and mineralisation.

Consideration to the Reasonable Prospects of (Eventual) Economic Extraction (RPEEE) as described by the JORC Code (2012) is clearly demonstrated and very well understood through successful continuous mining and processing operations at Pilgan and Ngungaju (former Altura) since commissioning in 2018.

The cut-off grade (COG) adopted is 0.20% Li2O. It has been determined based on known operational costs that have ongoing since 2018.

The Pilgangoora Mineral Resource in part has been classified as Measured and Indicated with the remainder as Inferred according to JORC 2012. It is also depleted to end of June 2023.

Mining and metallurgical methods and parameters

Geological modelling of the pegmatite domains including orientations, thicknesses and depths, plus their estimated grades for Ta₂O5 and Li₂O have been modified where applicable based on detailed geological mapping and observations made from exposure within the current open pit mining areas. Mining at Pilgangoora is via conventional open pit mining techniques and has been ongoing since 2018.

Pilbara Minerals successfully commissioned the Pilgangoora processing facility in April 2018 and continues to undertake routine metallurgical testwork as part of normal

operating procedure. The Pilgangoora processing facility is running at or above design capacity. Pilbara Minerals recommenced processing at the Ngungaju processing facility (former Altura Lithium Operations Limited) in the December quarter 2021. Pilbara Minerals has since ramped up operations at both the Pilgan and Ngungaju processing plants achieving production of 378,000 dmt spodumene concentrate in FY2022 and 620,000 dmt of spodumene concentrate in FY2023. Final Investment Decisions were also made on both the P680 and P1000 expansion projects to ultimately take production capacity to 1,000,000 dmt of spodumene concentrate capacity.

Hole ID	Depth (m)	East (GDA94)	North (GDA94)	RL (m)	Dip	Azimuth
PLS1404DT	583	698225	7670990	204	-70	270
PLS1405DT	484	698351	7670955	200	-70	270
PLS1406DT	781	698376	7670871	216	-60	270
PLS1407DT	651	698371	7670656	202	-65	270
PLS1408DT	640	698394	7670555	208	-70	270
PLS1409DT	633	698412	7670442	232	-66	270
PLS1410DT	661	698495	7670359	214	-65	280
PLS1411DT	601	698498	7670248	214	-65	270
PLS1412DT	580	698455	7670148	233	-70	270
PLS1413DT	517	698407	7670022	229	-73	270
PLS1414DT	550	698488	7669922	202	-71	270
PLS1415DT	448	698461	7669862	202	-65	270
PLS1416DT	232	698226	7669654	184	-70	270
PLS1417DT	332	698327	7669713	185	-70	270
PLS1418DT	721	698463	7670550	206	-70	270
PLS1419DT	769	698469	7670625	211	73	270
PLS1420DT	769	698507	7670754	236	-70	270
PLS1421DT	715	698509	7670447	209	-70	270
PLS1422DT	442	698527	7671151	228	-65	270
PLS1423DT	835	698536	7670847	240	-65	270
PLS1424DT	529	698564	7671552	196	-65	270
PLS1425DT	520	698574	7671334	216	-65	270
PLS1426DT	717	698591	7670263	199	-65	270
PLS1427	82	698599	7670343	201	65	285
PLS1427ADT	735	698599	7670343	201	-65	270
PLS1428DT	682	698632	7670078	236	-65	270
PLS1429	280	698624	7670173	212	-60	270
PLS1430	218	698614	7671450	214	65	270
PLS1430A	500	698613	7671453	214	-65	270
PLS1431	40	697233	7669563	177	-60	270
PLS1432	64	697285	7669548	176	-60	270
PLS1433	100	697321	7669551	177	-60	270
PLS1435	57	697393	7669894	194	-60	270
PLS1436	120	697424	7669552	178	-60	270
PLS1437	52	697535	7669550	179	-60	270
PLS1438	60	697560	7667549	196	-60	270
PLS1439	70	697557	7667757	194	60	270
PLS1440	70	697577	7667649	195	60	270
PLS1441	80	697616	7669555	180	-60	270
PLS1442	130	697630	7669759	187	-60	270

APPENDIX 1 - DRILL HOLE COLLARS FY23 DRILLING PROGRAM

Hole ID	Depth (m)	East (GDA94)	North (GDA94)	RL (m)	Dip	Azimuth
PLS1443	160	697638	7669835	200	-60	270
PLS1444	130	697720	7669553	184	-60	270
PLS1445	310	698039	7669608	187	-65	270
PLS1447	420	698106	7670958	190	-75	270
PLS1448	388	698097	7671099	200	-60	270
PLS1448A	496	698099	7671099	200	-90	0
PLS1449	260	698215	7669765	184	-70	270
PLS1450	50	698383	7672152	188	-65	270
PLS1451DT	691	698417	7671047	216	-65	270
PLS1452	352	698422	7671135	216	-55	270
PLS1453DT	768	698442	7671253	218	-65	270
PLS1454DT	529	698471	7671347	218	-65	270
PLS1455	150	698471	7671347	218	-65	270
PLS1456	495	698524	7671747	193	65	270
PLS1457DT	541	698522	7671448	199	-62	270
PLS1458	490	698518	7671847	189	-65	270
PLS1459	490	698548	7671652	195	-65	270
PLS1460	240	698544	7671951	191	-65	270
PLS1461	220	698537	7672049	191	-65	270
PLS1462	230	698577	7672163	203	-65	270
PLS1463	60	698568	7672836	209	70	270
PLS1464	124	698630	7672822	214	70	270
PLS1465	65	697522	7669649	181	-60	270
PLS1466	130	697620	7669656	181	-60	270
PLS1467	190	697717	7669848	187	-60	270
PLS1468	190	697716	7669653	179	-60	270
PLS1469	196	697806	7669559	186	-60	270
PLS1470	250	697805	7669650	180	-60	270
PLS1471	190	697827	7669494	191	-60	270
PLS1472	310	697940	7669650	184	-60	270
PLS1473	320	698323	7669664	189	-70	270
PLS1474	262	698341	7669597	187	-60	270
PLS1475	80	698470	7673050	188	-60	270
PLS1476	70	698562	7673046	186	-60	270
PLS1477	70	698570	7673247	180	-60	270
PLS1478	304	698577	7672163	203	-80	270
PLS1479	64	698612	7671756	192	-65	270
PLS1479A	330	698612	7671757	192	-65	275
PLS1480	80	698626	7673156	185	-60	270
PLS1481	341	698625	7671850	194	-65	270

APPENDIX 1 - DRILL HOLE COLLARS FY23 DRILLING PROGRAM continued

Hole ID	Depth (m)	East (GDA94)	North (GDA94)	RL (m)	Dip	Azimuth
PLS1482	80	698627	7673252	181	-60	270
PLS1483	280	698624	7672300	196	-65	270
PLS1484	370	698650	7671653	194	-65	270
PLS1485	330	698654	7671940	195	-65	270
PLS1486	310	698657	7672038	195	-65	270
PLS1487	90	698666	7673152	187	-60	270
PLS1488	410	698692	7671564	197	65	270
PLS1489	80	698669	7673256	182	-60	270
PLS1490	100	698713	7673153	191	-60	270
PLS1491	80	698887	7675295	185	-60	270
PLS1492	130	698997	7675273	188	-60	270
PLS1493DT	341	698056	7668247	198	-70	270
PLS1494DT	376	698268	7669401	190	-60	270
PLS1495DT	394	697992	7668049	205	-65	270
PLS1496DT	449	698061	7668348	204	-70	270
PLS1497DT	376	698257	7669198	208	-70	270
PLS1498DT	477	698106	7668543	209	-75	270
PLS1499DT	430	698151	7668653	215	-70	270
PLS1500DT	441	698237	7668897	217	-70	270
PLS1501DT	523	698118	7668447	206	-70	270
PLS1502ADT	475	698280	7668798	208	-70	270
PLS1503DT	447	698242	7669498	191	60	270
PLS1504	25	698307	7667243	219	-75	270
PLS1505	30	698337	7667154	234	-75	270
PLS1506	30	698393	7667143	226	-75	270
PLS1507	30	698201	7667350	249	-70	270
PLS1508	30	698308	7667355	225	-70	270
PLS1509	40	698490	7667142	220	70	270
PLS1510	50	698412	7667242	218	-75	270
PLS1511	50	698262	7667447	227	-70	270
PLS1512	50	698051	7667241	208	60	270
PLS1513	70	697851	7667451	201	60	270
PLS1514	90	698186	7669397	191	60	270
PLS1516	95	697613	7667553	196	60	270
PLS1517	130	697898	7667458	204	60	270
PLS1518	130	697650	7667655	196	60	270
PLS1519	150	698261	7667660	205	-65	270
PLS1520	160	698270	7667572	209	-65	270
PLS1521	167	697629	7667753	196	60	270
PLS1522	170	698322	7667455	212	70	270
PLS1523	185	698340	7667546	208	-70	270

APPENDIX 1 - DRILL HOLE COLLARS FY23 DRILLING PROGRAM continued

Hole ID	Depth (m)	East (GDA94)	North (GDA94)	RL (m)	Dip	Azimuth
PLS1524	129	698325	7667649	208	-70	270
PLS1524A	180	698323	7667649	208	-70	270
PLS1525	220	698261	7667744	205	-60	270
PLS1526	200	698073	7667847	207	-65	270
PLS1527	210	698413	7667351	215	-75	270
PLS1528	220	698431	7667448	220	-70	270
PLS1529	100	698422	7667647	218	-75	270
PLS1529A	220	698420	7667647	218	-77	260
PLS1530	230	698423	7667554	214	-75	270
PLS1531	220	698164	7667852	209	-70	270
PLS1532	270	698021	7667952	205	-70	270
PLS1533	240	697947	7669498	191	60	270
PLS1534	290	697908	7668249	205	-70	270
PLS1535	310	698097	7667953	203	-70	270
PLS1536	310	697912	7668149	206	-65	270
PLS1537	330	697862	7668048	224	-60	270
PLS1539	352	698106	7669489	190	-60	270
PLS1540	350	698012	7668149	202	70	270
PLS1541	412	697946	7668350	196	70	270
PLS1542	360	698142	7669116	232	-65	270
PLS1543	418	698325	7669300	191	60	270
PLS1544	400	698123	7668995	233	-75	270
PLS1545	424	698141	7669114	232	-90	0
PLS1546	445	698058	7668651	222	-65	270
PLS1547	420	698152	7668897	226	-65	270
PLS1548	450	698049	7668543	219	-65	270
PLS1549	440	698171	7668730	210	-70	270
PLS1550	490	698190	7671205	195	-90	0
PLS1551	504	698188	7671205	195	60	270
PLS1552	310	697992	7669683	184	-90	0
PLS1557	350	698055	7669202	198	-90	0
PLS1558	350	698102	7669297	195	-90	0

APPENDIX 1 – DRILL HOLE COLLARS FY23 DRILLING PROGRAM continued

PLSIA04DT 21 52 31 185 177 PLSIA04DT 10 0.68 305 PLSIA04DT 277 236 9 1.41 94 PLSIA04DT 227 236 9 1.41 94 PLSIA04DT 227 236 9 1.41 94 PLSIA04DT 405 4.28 23 1.45 112 PLSIA04DT 405 4.28 23 1.45 112 PLSIA04DT 443 4.88 5 1.13 176 PLSIA04DT 443 4.88 5 1.66 116 PLSIA04DT 568 576 8 1.79 664 PLSIA04DT 102 104 2 0.99 315 PLSIA04DT 160 189 9 0.79 192 PLSIA05DT 102 122 123 92 124 123 92 PLSIA05DT 325 334 9 </th <th>Hole ID</th> <th>Depth From (m)</th> <th>Depth To (m)</th> <th>Thickness (m)</th> <th>Li2O_pct</th> <th>Ta2O5_ppm</th>	Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLSIA0DT 99 100 1 0.58 3.05 PLSIA0ADT 111 114 3 1.4 301 PLSIA0ADT 227 236 9 1.41 94 PLSIA0ADT 239 271 32 1.48 91 PLSIA0ADT 300 315 15 1.74 76 PLSIA0ADT 433 438 5 1.33 178 PLSIA0ADT 443 448 5 1.66 116 PLSIA0ADT 558 576 8 1.77 56 PLSIA0ADT 558 576 8 1.79 64 PLSIA0ADT 166 169 3 1.05 172 PLSIA0ADT 166 169 3 1.05 172 PLSIA0SDT 182 1.33 3.61 8 0.87 66 PLSIA0SDT 325 3.34 9 2.02 86 PLSIA0SDT 325 3.37 <td>PLS1404DT</td> <td>21</td> <td>52</td> <td>31</td> <td>1.85</td> <td>177</td>	PLS1404DT	21	52	31	1.85	177
PLSIA0DT 227 236 9 1.41 94 PLSIA0ADT 239 271 32 1.48 91 PLSIA0ADT 300 316 15 1.74 76 PLSIA0ADT 405 4.28 23 1.45 122 PLSIA0ADT 433 4.38 5 1.68 116 PLSIA0ADT 443 488 5 1.68 116 PLSIA0ADT 564 47 157 566 PLSIA0ADT 508 576 8 1.79 64 PLSIA0SDT 102 104 2 0.99 315 PLSIA0SDT 180 189 9 0.79 192 PLSIA0SDT 201 202 1 123 92 PLSIA0SDT 325 334 9 202 86 PLSIA0SDT 335 361 8 0.87 66 PLSIA0SDT 325 334 9 0.21	PLS1404DT		100	1	0.58	305
PISI404DT 239 271 32 1.48 91 PISI404DT 300 315 15 174 76 PISI404DT 405 428 23 1.45 122 PISI404DT 443 448 5 1.69 116 PISI404DT 483 448 5 1.69 116 PISI404DT 568 576 8 1.79 64 PISI404DT 150 151 1 0.644 37 PISI405DT 160 189 9 0.79 192 PISI405DT 180 189 9 0.079 192 PISI405DT 101 202 1 1.13 92 PISI405DT 325 334 9 2.02 86 PISI405DT 325 334 9 2.02 86 PISI405DT 325 334 9 2.02 86 PISI405DT 325 337 2	PLS1404DT	111	114	3	1.4	301
PLSIA04DT 300 315 15 174 76 PLSIA04DT 405 428 23 1.45 122 PLSIA04DT 405 428 23 1.45 122 PLSIA04DT 433 438 5 1.33 178 PLSIA04DT 517 564 477 1.157 56 PLSIA04DT 102 104 2 0.99 315 PLSIA05DT 102 104 2 0.99 315 PLSIA05DT 180 189 9 0.79 192 PLSIA05DT 180 189 9 0.79 192 PLSIA05DT 201 202 1 1.23 92 PLSIA05DT 353 361 8 0.87 66 PLSIA05DT 353 361 8 0.87 65 PLSIA05DT 353 357 2 0.91 73 PLSIA05DT 353 357 2 <td>PLS1404DT</td> <td>227</td> <td>236</td> <td>9</td> <td>1.41</td> <td>94</td>	PLS1404DT	227	236	9	1.41	94
PLSI404DT 405 428 23 1.45 122 PLSI404DT 483 438 5 1.133 178 PLSI404DT 483 488 5 1.68 116 PLSI404DT 568 576 8 1.79 64 PLSI405DT 150 151 1 0.64 37 PLSI405DT 160 169 3 1.05 172 PLSI405DT 180 189 9 0.079 192 PLSI405DT 102 104 2 0.68 199 PLSI405DT 102 104 2 0.68 199 PLSI405DT 325 334 9 2.02 86 PLSI405DT 325 361 8 0.67 66 PLSI405DT 325 465 10 1.72 65 PLSI405DT 132 126 4 0.36 272 PLSI406DT 133 209 16 <td>PLS1404DT</td> <td>239</td> <td>271</td> <td>32</td> <td>1.48</td> <td>91</td>	PLS1404DT	239	271	32	1.48	91
PLSIA04DT 433 438 5 133 178 PLSIA04DT 643 4488 5 1168 116 PLSIA04DT 517 564 477 157 56 PLSIA04DT 510 511 1 0.64 37 PLSIA05DT 160 189 3 0.05 172 PLSIA05DT 180 189 9 0.79 192 PLSIA05DT 180 189 9 0.79 192 PLSIA05DT 180 189 9 0.79 192 PLSIA05DT 192 194 2 0.068 199 PLSIA05DT 201 202 1 123 92 PLSIA05DT 353 361 8 0.87 66 PLSIA05DT 455 465 10 172 65 PLSIA06DT 132 126 4 143 187 PLSIA06DT 133 209 16	PLS1404DT	300	315	15	1.74	76
PLS1404DT 483 488 5 168 116 PLS1404DT 517 564 47 1157 56 PLS1404DT 568 576 8 179 64 PLS1405DT 102 104 2 0.99 315 PLS1405DT 160 151 1 0.644 37 PLS1405DT 180 189 9 0.79 192 PLS1405DT 180 189 9 0.079 192 PLS1405DT 180 189 9 0.079 192 PLS1405DT 325 334 9 2.02 86 PLS1405DT 325 346 8 0.87 666 PLS1405DT 376 378 2 0.91 73 PLS1406DT 178 180 2 1.51 96 PLS1406DT 178 180 2 1.51 96 PLS1406DT 357 352 1.176 <td>PLS1404DT</td> <td>405</td> <td></td> <td>23</td> <td>1.45</td> <td>122</td>	PLS1404DT	405		23	1.45	122
PLS1404DT 517 564 477 157 56 PLS1404DT 568 576 8 1.79 64 PLS1405DT 102 104 2 0.99 315 PLS1405DT 166 169 3 1.05 172 PLS1405DT 180 189 9 0.79 192 PLS1405DT 180 189 9 0.79 192 PLS1405DT 201 202 1 123 92 PLS1405DT 353 361 8 0.87 66 PLS1405DT 353 361 8 0.87 66 PLS1405DT 355 465 10 1.72 65 PLS1406DT 122 126 4 0.86 272 PLS1406DT 122 126 4 1.43 187 PLS1406DT 123 209 16 1.79 203 PLS1406DT 356 337 2	PLS1404DT	433	438	5	1.33	178
PLS1405DT 568 576 8 179 64 PLS1405DT 102 104 2 0.99 315 PLS1405DT 150 15 1 0.64 37 PLS1405DT 166 169 3 1.05 172 PLS1405DT 180 189 9 0.79 192 PLS1405DT 180 189 9 0.79 192 PLS1405DT 201 202 1 123 92 PLS1405DT 333 361 8 0.87 66 PLS1405DT 376 378 2 0.91 73 PLS1405DT 155 159 4 1.43 187 PLS1406DT 178 180 2 1.51 96 PLS1406DT 336 332 6 1.76 129 PLS1406DT 336 337 2 193 131 PLS1406DT 366 337 2	PLS1404DT	483	488	5	1.68	116
PLSI405DT 102 104 2 0.99 315 PLSI405DT 150 151 1 0.64 37 PLSI405DT 166 169 3 1.05 172 PLSI405DT 180 189 9 0.79 192 PLSI405DT 192 194 2 0.68 199 PLSI405DT 201 202 1 123 92 PLSI405DT 353 361 8 0.87 66 PLSI405DT 355 465 10 172 65 PLSI405DT 155 159 4 1.43 187 PLSI406DT 155 159 4 1.43 187 PLSI406DT 178 180 2 1.51 96 PLSI406DT 353 337 2 1.93 131 PLSI406DT 355 337 2 1.93 131 PLSI406DT 355 377 1	PLS1404DT			47		
PLS1405DT 150 151 1 0.64 37 PLS1405DT 166 169 3 1.05 172 PLS1405DT 180 189 9 0.79 192 PLS1405DT 192 194 2 0.68 199 PLS1405DT 325 334 9 2.02 86 PLS1405DT 353 361 8 0.87 66 PLS1405DT 355 365 10 1.72 65 PLS1405DT 455 465 10 1.72 65 PLS1406DT 122 126 4 0.86 272 PLS1406DT 155 159 4 1.43 187 PLS1406DT 132 209 16 1.79 203 PLS1406DT 335 337 2 133 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 357 352 3	PLS1404DT	568	576	8	1.79	64
PLS1405DT 166 169 3 1.05 172 PLS1405DT 180 189 9 0.79 192 PLS1405DT 192 194 2 0.68 199 PLS1405DT 201 202 1 1.23 92 PLS1405DT 325 334 9 2.02 86 PLS1405DT 376 378 2 0.91 73 PLS1405DT 376 378 2 0.91 73 PLS1406DT 122 126 4 0.086 272 PLS1406DT 122 126 4 0.86 272 PLS1406DT 123 126 332 6 176 129 PLS1406DT 335 337 2 1.93 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 357 362 5 1.17 83 PLS1406DT 602 609	PLS1405DT	102	104	2	0.99	315
PLS1405DT 180 189 9 0.79 192 PLS1405DT 192 194 2 0.68 199 PLS1405DT 201 202 1 1.123 92 PLS1405DT 325 334 9 2.02 86 PLS1405DT 353 361 8 0.87 66 PLS1405DT 355 465 10 1.72 65 PLS1406DT 1455 465 10 1.72 65 PLS1406DT 155 159 4 1.43 187 PLS1406DT 178 180 2 1.51 96 PLS1406DT 326 332 6 1.76 129 PLS1406DT 326 337 2 1.93 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 350 357 3 0.66 61 PLS1406DT 520 523 3	PLS1405DT		151			
PLS1405DT 192 194 2 0.68 199 PLS1405DT 201 202 1 1.23 92 PLS1405DT 325 334 9 2.02 86 PLS1405DT 353 361 8 0.87 66 PLS1405DT 376 378 2 0.91 73 PLS1405DT 455 4465 10 1.72 65 PLS1406DT 122 126 4 0.86 272 PLS1406DT 178 180 2 1.51 96 PLS1406DT 178 180 2 1.51 96 PLS1406DT 326 332 6 1.76 129 PLS1406DT 327 362 5 1.17 83 PLS1406DT 376 377 1 0.66 68 PLS1406DT 520 523 3 0.66 81 PLS1406DT 611 614 3	PLS1405DT	166	169	3	1.05	172
PLS1405DT 201 202 1 123 92 PLS1405DT 325 334 9 2.02 86 PLS1405DT 353 361 8 0.87 66 PLS1405DT 376 378 2 0.91 73 PLS1405DT 455 465 10 1.72 65 PLS1405DT 122 126 4 0.86 272 PLS1406DT 122 126 4 0.86 272 PLS1406DT 122 126 4 0.86 272 PLS1406DT 135 159 4 1.43 187 PLS1406DT 326 332 6 1.76 129 PLS1406DT 335 337 2 193 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 520 523 3 0.66 81 PLS1406DT 610 642 1	PLS1405DT	180	189	9	0.79	192
PLS1405DT 335 334 9 2.02 86 PLS1405DT 353 361 8 0.87 66 PLS1405DT 376 378 2 0.91 73 PLS1405DT 455 465 10 1.72 65 PLS1406DT 122 126 4 0.86 272 PLS1406DT 178 180 2 1.51 96 PLS1406DT 178 180 2 1.51 96 PLS1406DT 335 337 2 193 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 357 362 5 1.17 83 PLS1406DT 490 4 10.8 77 PLS1406DT 602 609 6 1.91 85 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59				2		
PLS1405DT 353 361 8 0.87 66 PLS1405DT 376 378 2 0.91 73 PLS1405DT 455 465 10 1.72 65 PLS1406DT 122 126 4 0.86 272 PLS1406DT 155 159 4 143 187 PLS1406DT 178 180 2 151 96 PLS1406DT 133 209 16 1.79 203 PLS1406DT 335 337 2 1.93 131 PLS1406DT 335 337 2 1.93 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 466 490 4 1.08 77 PLS1406DT 602 609 6 1.91 85 PLS1406DT 610 662 1 1.55 110 PLS1406DT 63 9 0.91						
PLSI405DT 376 378 2 0.91 73 PLSI405DT 455 465 10 1.72 65 PLSI406DT 122 126 4 0.86 272 PLSI406DT 155 159 4 1.43 187 PLSI406DT 178 180 2 151 96 PLSI406DT 326 332 6 1.76 129 PLSI406DT 335 337 2 193 131 PLSI406DT 335 337 2 193 131 PLSI406DT 376 377 1 0.66 66 PLSI406DT 486 490 4 1.08 77 PLSI406DT 602 609 6 191 85 PLSI406DT 602 609 6 191 85 PLSI406DT 611 614 3 0.59 38 PLSI407DT 34 35 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>86</td></td<>						86
PLSI405DT 455 465 10 1.72 65 PLSI406DT 122 126 4 0.86 272 PLSI406DT 125 159 4 1.43 187 PLSI406DT 178 180 2 1.51 96 PLSI406DT 326 332 6 1.76 129 PLSI406DT 335 337 2 193 131 PLSI406DT 335 337 2 193 131 PLSI406DT 376 377 1 0.66 66 PLSI406DT 486 490 4 1.08 77 PLSI406DT 602 609 6 1.91 85 PLSI406DT 611 614 3 0.59 38 PLSI406DT 661 662 1 1.55 110 PLSI407DT 34 35 1 0.63 466 PLSI407DT 54 63 9						
PLSI406DT 122 126 4 0.86 272 PLSI406DT 155 159 4 1.43 187 PLSI406DT 178 180 2 1.51 96 PLSI406DT 133 209 16 1.79 203 PLSI406DT 326 332 6 1.76 129 PLSI406DT 335 337 2 1.93 131 PLSI406DT 357 362 5 1.17 83 PLSI406DT 376 377 1 0.66 66 PLSI406DT 520 523 3 0.66 81 PLSI406DT 602 609 6 1.91 85 PLSI406DT 602 609 1.91 85 100 PLSI406DT 61 662 1 1.55 110 PLSI407DT 34 35 1 0.63 466 PLSI407DT 322 329 7						
PLS1406DT 155 159 4 143 187 PLS1406DT 178 180 2 1.51 96 PLS1406DT 133 209 16 1.79 203 PLS1406DT 336 332 6 1.76 129 PLS1406DT 335 337 2 1.93 1.31 PLS1406DT 335 377 1 0.66 66 PLS1406DT 376 377 1 0.66 81 PLS1406DT 486 490 4 1.08 77 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 620 625 0.96						
PLS1406DT 178 180 2 1.51 96 PLS1406DT 193 209 16 1.79 203 PLS1406DT 335 332 6 1.76 129 PLS1406DT 335 337 2 193 131 PLS1406DT 335 362 5 1.17 83 PLS1406DT 376 377 1 0.66 66 PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 191 85 PLS1406DT 611 614 3 0.59 38 PLS1407DT 34 35 1 0.63 466 PLS1407DT 34 35 1 0.63 466 PLS1407DT 34 35 1 0.63 466 PLS1407DT 160 165 5 1.21 164 PLS1407DT 160 165 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
PLSI406DT 193 209 16 1.79 203 PLSI406DT 326 332 6 1.76 129 PLS1406DT 335 337 2 193 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 376 377 1 0.66 66 PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 191 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 122 131 9 0.74 86 PLS1407DT 122 131 9 0.74 86 PLS1407DT 455 458 3 2.2 106 PLS1407DT 455 458 3						
PLS1406DT 326 332 6 1.76 129 PLS1406DT 335 337 2 1.93 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 376 377 1 0.66 66 PLS1406DT 486 490 4 1.08 77 PLS1406DT 486 490 4 1.08 77 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 616 662 1 1.155 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 460 471 11 1.48 82 PLS1408DT 46 1.52 157						
PLS1406DT 335 337 2 1.93 131 PLS1406DT 357 362 5 1.17 83 PLS1406DT 376 377 1 0.66 66 PLS1406DT 486 490 4 1.08 77 PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 122 131 9 0.74 86 PLS1407DT 122 131 9 0.74 86 PLS1407DT 122 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11						
PLSI406DT 357 362 5 1.17 83 PLSI406DT 376 377 1 0.66 66 PLSI406DT 486 490 4 1.08 77 PLSI406DT 520 523 3 0.66 81 PLSI406DT 602 609 6 1.91 85 PLSI406DT 661 662 1 1.55 110 PLSI406DT 661 662 1 1.55 110 PLSI407DT 34 35 1 0.63 466 PLSI407DT 54 63 9 0.91 170 PLSI407DT 122 131 9 0.74 86 PLSI407DT 160 165 5 1.21 164 PLSI407DT 322 329 7 1.65 73 PLSI407DT 460 471 11 1.48 82 PLSI407DT 620 625 5						
PLS1406DT 376 377 1 0.66 66 PLS1406DT 486 490 4 1.08 77 PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1407DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 460 471 11 1.48 82 PLS1407DT 460 471 11 1.48 82 PLS1408DT 14 4 1.07						
PLS1406DT 486 490 4 1.08 77 PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 14 15 1						
PLS1406DT 520 523 3 0.66 81 PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 455 458 3 2.2 106 PLS1407DT 455 458 3 2.2 106 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 128 34 6 1.52 157 PLS1408DT 130 141 11 <t< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>				1		
PLS1406DT 602 609 6 1.91 85 PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 37 41 4 1.07 328 PLS1408DT 130 141 11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
PLS1406DT 611 614 3 0.59 38 PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 122 131 9 0.74 86 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 455 458 3 2.2 106 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 28 34 6 1.52 157 PLS1408DT 130 141 11 1.8 88 PLS1408DT 342 348 6 1						
PLS1406DT 661 662 1 1.55 110 PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 28 34 6 1.52 157 PLS1408DT 130 141 11 1.8 88 PLS1408DT 169 174 5 1.46 135 PLS1408DT 455 467 12 <						
PLS1407DT 34 35 1 0.63 466 PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 28 34 6 1.52 157 PLS1408DT 30 141 11 1.8 88 PLS1408DT 169 174 5 1.46 135 PLS1408DT 342 348 6 1.49 94 PLS1408DT 455 467 12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
PLS1407DT 54 63 9 0.91 170 PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 28 34 6 1.52 157 PLS1408DT 28 34 6 1.52 157 PLS1408DT 169 174 5 1.46 135 PLS1408DT 169 174 5 1.46 135 PLS1408DT 467 12 1.36 86 PLS1408DT 455 467 12 1.36				1		
PLS1407DT 122 131 9 0.74 86 PLS1407DT 160 165 5 1.21 164 PLS1407DT 322 329 7 1.65 73 PLS1407DT 455 458 3 2.2 106 PLS1407DT 455 458 3 2.2 106 PLS1407DT 460 471 11 1.48 82 PLS1407DT 620 625 5 0.96 44 PLS1408DT 14 15 1 0.58 486 PLS1408DT 28 34 6 1.52 157 PLS1408DT 28 34 6 1.52 157 PLS1408DT 30 141 11 1.8 88 PLS1408DT 169 174 5 1.46 1355 PLS1408DT 342 348 6 1.49 94 PLS1408DT 455 467 12 <				I		
PLSI407DT 160 165 5 1.21 164 PLSI407DT 322 329 7 1.65 73 PLSI407DT 455 458 3 2.2 106 PLSI407DT 460 471 11 1.48 82 PLSI407DT 620 625 5 0.96 44 PLSI407DT 620 625 5 0.96 44 PLSI408DT 14 15 1 0.58 486 PLSI408DT 28 34 6 1.52 157 PLSI408DT 30 141 11 1.8 88 PLSI408DT 130 141 11 1.8 88 PLSI408DT 169 174 5 1.46 135 PLSI408DT 342 348 6 1.49 94 PLSI408DT 455 467 12 1.36 86 PLSI408DT 621 623 2 <						
PLSI407DT 322 329 7 1.65 73 PLSI407DT 455 458 3 2.2 106 PLSI407DT 460 471 11 1.48 82 PLSI407DT 620 625 5 0.96 44 PLSI407DT 620 625 5 0.96 44 PLSI408DT 14 15 1 0.58 486 PLSI408DT 28 34 6 1.52 157 PLSI408DT 37 41 4 1.07 328 PLSI408DT 130 141 11 1.8 88 PLSI408DT 169 174 5 1.46 135 PLSI408DT 342 348 6 1.49 94 PLSI408DT 455 467 12 1.36 86 PLSI408DT 455 467 12 1.36 86 PLSI408DT 621 623 2 <						
PLSI407DT45545832.2106PLSI407DT46047111111.4882PLSI407DT62062550.9644PLSI408DT141510.58486PLSI408DT283461.52157PLSI408DT374141.07328PLSI408DT130141111.888PLSI408DT16917451.46135PLSI408DT34234861.4994PLSI408DT34234861.4994PLSI408DT47047110.763PLSI408DT62162321.37125PLSI408DT6222720.92662PLSI408DT252720.92662PLSI409DT252720.92662PLSI409DT363711.23215PLSI409DT15616152.15106PLSI409DT15616152.15106PLSI409DT17918231.52138PLSI409DT404414100.7782PLSI409DT536549131.0454						
PLS1407DT460471111.4882PLS1407DT62062550.9644PLS1408DT141510.58486PLS1408DT283461.52157PLS1408DT374141.07328PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1407DT62062550.9644PLS1408DT141510.58486PLS1408DT283461.52157PLS1408DT374141.07328PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT15616152.15106PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454	-					
PLS1408DT141510.58486PLS1408DT283461.52157PLS1408DT374141.07328PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT455467121.3686PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454			625			
PLS1408DT283461.52157PLS1408DT374141.07328PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT374141.07328PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT130141111.888PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT16917451.46135PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT34234861.4994PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT455467121.3686PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT47047110.763PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT62162321.37125PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1408DT62763361.9669PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1409DT252720.92662PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454				6		
PLS1409DT363711.23215PLS1409DT415091.63246PLS1409DT15616152.15106PLS1409DT17918231.52138PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1409DT 41 50 9 1.63 246 PLS1409DT 156 161 5 2.15 106 PLS1409DT 179 182 3 1.52 138 PLS1409DT 404 414 10 0.77 82 PLS1409DT 536 549 13 1.04 54						
PLS1409DT 156 161 5 2.15 106 PLS1409DT 179 182 3 1.52 138 PLS1409DT 404 414 10 0.77 82 PLS1409DT 536 549 13 1.04 54				9		
PLS1409DT 179 182 3 1.52 138 PLS1409DT 404 414 10 0.77 82 PLS1409DT 536 549 13 1.04 54						
PLS1409DT404414100.7782PLS1409DT536549131.0454						
PLS1409DT 536 549 13 1.04 54						
	PLS1410DT	187	192	5	2.21	90

PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1416DT <td< th=""><th>195 244 298 500 506 512 171 181 201 447 127 170 408 567 36 320 470 498</th><th>208 247 299 502 508 516 175 197 202 457 128 193 418 572</th><th>13 3 1 2 4 4 16 1 10 1 23</th><th>1.21 0.94 0.53 0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56 1.89</th><th>106 94 79 74 63 51 163 107 88 39 201</th></td<>	195 244 298 500 506 512 171 181 201 447 127 170 408 567 36 320 470 498	208 247 299 502 508 516 175 197 202 457 128 193 418 572	13 3 1 2 4 4 16 1 10 1 23	1.21 0.94 0.53 0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56 1.89	106 94 79 74 63 51 163 107 88 39 201
PLS1410DT PLS1410DT PLS1410DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1415DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT <td< td=""><td>298 500 506 512 171 181 201 447 127 170 408 567 36 320 470</td><td>299 502 508 516 175 197 202 457 128 193 418</td><td>1 2 4 4 16 1 1 10 1 23</td><td>0.53 0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56</td><td>79 74 63 51 163 107 88 39</td></td<>	298 500 506 512 171 181 201 447 127 170 408 567 36 320 470	299 502 508 516 175 197 202 457 128 193 418	1 2 4 4 16 1 1 10 1 23	0.53 0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56	79 74 63 51 163 107 88 39
PLS1410DT PLS1410DT PLS1410DT PLS1410DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT <td< td=""><td>500 506 512 171 181 201 447 127 170 408 567 36 320 470</td><td>502 508 516 175 197 202 457 128 193 418</td><td>2 2 4 16 1 1 10 1 23</td><td>0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56</td><td>74 63 51 163 107 88 39</td></td<>	500 506 512 171 181 201 447 127 170 408 567 36 320 470	502 508 516 175 197 202 457 128 193 418	2 2 4 16 1 1 10 1 23	0.52 2.33 1.25 0.85 1.62 1.76 1.28 0.56	74 63 51 163 107 88 39
PLS1410DT PLS1410DT PLS1410DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT <td< td=""><td>506 512 171 181 201 447 127 170 408 567 36 320 470</td><td>508 516 175 197 202 457 128 193 418</td><td>2 4 16 1 10 1 23</td><td>2.33 1.25 0.85 1.62 1.76 1.28 0.56</td><td>63 51 163 107 88 39</td></td<>	506 512 171 181 201 447 127 170 408 567 36 320 470	508 516 175 197 202 457 128 193 418	2 4 16 1 10 1 23	2.33 1.25 0.85 1.62 1.76 1.28 0.56	63 51 163 107 88 39
PLS1410DT PLS1411DT PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT <td< td=""><td>512 171 181 201 447 127 170 408 567 36 320 470</td><td>516 175 197 202 457 128 193 418</td><td>2 4 16 1 10 1 23</td><td>1.25 0.85 1.62 1.76 1.28 0.56</td><td>51 163 107 88 39</td></td<>	512 171 181 201 447 127 170 408 567 36 320 470	516 175 197 202 457 128 193 418	2 4 16 1 10 1 23	1.25 0.85 1.62 1.76 1.28 0.56	51 163 107 88 39
PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT <td< td=""><td>512 171 181 201 447 127 170 408 567 36 320 470</td><td>516 175 197 202 457 128 193 418</td><td>4 4 16 1 10 1 23</td><td>1.25 0.85 1.62 1.76 1.28 0.56</td><td>163 107 88 39</td></td<>	512 171 181 201 447 127 170 408 567 36 320 470	516 175 197 202 457 128 193 418	4 4 16 1 10 1 23	1.25 0.85 1.62 1.76 1.28 0.56	163 107 88 39
PLS1411DT PLS1411DT PLS1411DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT <td< td=""><td>171 181 201 447 127 170 408 567 36 320 470</td><td>175 197 202 457 128 193 418</td><td>4 16 1 10 1 23</td><td>0.85 1.62 1.76 1.28 0.56</td><td>163 107 88 39</td></td<>	171 181 201 447 127 170 408 567 36 320 470	175 197 202 457 128 193 418	4 16 1 10 1 23	0.85 1.62 1.76 1.28 0.56	163 107 88 39
PLS1411DT PLS1411DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT <td< td=""><td>181 201 447 127 170 408 567 36 320 470</td><td>202 457 128 193 418</td><td>1 10 1 23</td><td>1.62 1.76 1.28 0.56</td><td>107 88 39</td></td<>	181 201 447 127 170 408 567 36 320 470	202 457 128 193 418	1 10 1 23	1.62 1.76 1.28 0.56	107 88 39
PLS1411DT PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT <td< td=""><td>201 447 127 170 408 567 36 320 470</td><td>202 457 128 193 418</td><td>1 10 1 23</td><td>1.76 1.28 0.56</td><td>88 39</td></td<>	201 447 127 170 408 567 36 320 470	202 457 128 193 418	1 10 1 23	1.76 1.28 0.56	88 39
PLS1411DT PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT <td< td=""><td>447 127 170 408 567 36 320 470</td><td>457 128 193 418</td><td>1 23</td><td>1.28 0.56</td><td>39</td></td<>	447 127 170 408 567 36 320 470	457 128 193 418	1 23	1.28 0.56	39
PLS1412DT PLS1412DT PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT <td< td=""><td>127 170 408 567 36 320 470</td><td>128 193 418</td><td>1 23</td><td>0.56</td><td></td></td<>	127 170 408 567 36 320 470	128 193 418	1 23	0.56	
PLS1412DTPLS1412DTPLS1412DTPLS1413DTPLS1413DTPLS1413DTPLS1413DTPLS1414DTPLS1414DTPLS1414DTPLS1414DTPLS1414DTPLS1414DTPLS1414DTPLS1414DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1416DTPLS1418DTPLS1418DTPLS1418DTPLS1418DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DTPLS1419DT	170 408 567 36 320 470	193 418	23		
PLS1412DT PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT <td< td=""><td>408 567 36 320 470</td><td>418</td><td></td><td>169</td><td>85</td></td<>	408 567 36 320 470	418		169	85
PLS1412DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	567 36 320 470		10	0.81	68
PLS14i3DT PLS14i3DT PLS14i3DT PLS14i3DT PLS14i3DT PLS14i3DT PLS14i4DT PLS14i5DT PLS14i5DT PLS14i6DT PLS14i8DT PLS14i8DT PLS14i8DT PLS14i8DT PLS14i8DT PLS14i9DT PLS14i9DT PLS14i9DT PLS14i9DT PLS14i9DT	36 320 470	7//	5	0.75	68
PLS1413DT PLS1413DT PLS1413DT PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	320 470	40	4	0.65	150
PLS1413DT PLS1413DT PLS1414DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	470	339	19	1.69	67
PLS1413DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT		477	7	1.21	60
PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1414DT PLS1415DT PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT		510	12	1.21	53
PLS1414DT PLS1414DT PLS1414DT PLS1415DT PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	53		24	1.29	98
PLS1414DT PLS1414DT PLS1415DT PLS1415DT PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	53 327	343	16	0.98	98 64
PLS1414DT PLS1415DT PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT					
PLS1415DT PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	487	492	5	1.95	67
PLS1415DT PLS1415DT PLS1416DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	523	528	5	1.43	69
PLS1415DT PLS1416DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	62	78	16	1.57	106
PLS1416DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	289	306	17	1.74	92
PLS1416DT PLS1417DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	435	437	2	0.82	126
PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	89	92	3	0.88	66
PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	119	127	8	1.19	78
PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	133	137	4	0.74	2
PLS1416DT PLS1416DT PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	172	177	5	1.62	70
PLS1416DT PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	201	206	5	1.12	29
PLS1416DT PLS1417DT PLS1417DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	211	213	2	1.17	1
PLS1417DT PLS1417DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	216	225	9	1.36	68
PLS1417DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT	228	230	2	0.69	1
PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	239	246	7	1.02	65
PLS1418DT PLS1418DT PLS1418DT PLS1418DT PLS1419DT	296	304	8	1.17	80
PLS1418DT PLS1418DT PLS1418DT PLS1419DT	56	57	1	1.06	83
PLS1418DT PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	66	68	2	0.7	175
PLS1418DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	173	186	13	1.52	99
PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	232	246	14	0.9	88
PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	579	581	2	1.07	95
PLS1419DT PLS1419DT PLS1419DT PLS1419DT PLS1419DT	218	230	12	1.35	115
PLS1419DT PLS1419DT PLS1419DT	243	250	7	1.64	122
PLS1419DT PLS1419DT	284	292	8	1.02	78
PLS1419DT	295	296	1	0.6	62
PLS1419DT	376	382	6	1.09	112
	606	607	2	0.6	18
	610	611	1	0.62	6
PLS1420DT	388	390	2	0.85	110
PLS1420DT	420	431	11	1.33	144
PLS1420DT	467	471	4	1.48	60
PLS1420DT	686	694	8	0.9	58
PLS1421DT	177	211	34	1.36	117
PLS1421DT	255	257	2	1.72	152
PLS1421DT		291	16	0.7	123
PLS1421DT	275	613	2	1.06	75
PLS1422DT	275 611	276	7	1.86	268
PLS1422DT	611	307	12	1.64	199
PLS1422DT	611 269	384	10	1.72	150
PLS1422DT	611 269 295	418	2	0.83	196
PLS1422DT PLS1422DT	611 269		14	2.42	148

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1423DT	305	314	9	1.37	285
PLS1423DT	414	416	2	1.11	133
PLS1423DT	450	472	22	1.45	94
PLS1423DT	525	533	8	1.72	89
PLS1423DT	762	763	1	0.59	6
PLS1423DT	769	780	11	1.05	87
PLS1424DT	209	231	22	1.19	173
PLS1424DT	242	246	4	1.29	243
PLS1424DT	302	318	16	0.84	96
PLS1424DT	334	356	22	1.37	237
PLS1424DT	486	515	29	1.83	121
PLS1425DT	223	224	1	0.5	565
PLS1425DT	269	282	13	2.06	175
PLS1425DT	307	312	5	1.6	195
PLS1425DT	400	412	12	1.28	123
PLS1425DT	433	457	24	1.67	120
PLS1426DT	18	20	2	1.26	325
PLS1426DT	304	322	18	1.57	99
PLS1426DT	553	557	4	1.37	37
PLS1420DT PLS1427ADT	318	323	5	1.14	91
PLS1427ADT PLS1427ADT	588	601	13	1.5	67
PLS1427ADT PLS1428DT	335	345	10	1.85	89
PLS1428DT PLS1428DT	498	503	5	1.85	68
			6		
PLS1428DT	660	666	11	<u>1.34</u> 1.9	60
PLS1430A	291	302			209
PLS1430A	306	317	11	1.45	185
PLS1430A	339	342	3	1.19	384
PLS1430A	381	382	1	1.75	242
PLS1430A	399	410	11	1.61	159
PLS1430A	420	448	28	1.55	154
PLS1431	12	13	1	0.51	1
PLS1432	3	5	2	0.7	1
PLS1432	8	10	2	0.86	1
PLS1433	32	37	5	0.94	15
PLS1435	1	6	5	0.54	64
PLS1435	9	10	1	0.95	15
PLS1436	19	23	4	1.46	86
PLS1436	79	87	8	0.63	30
PLS1437	3	4	1	0.74	53
PLS1438	40	41	1	0.72	82
PLS1439	3	5	2	0.96	76
PLS1439	32	33	1	0.78	45
PLS1440	40	42	2	2.52	51
PLS1441	0	6	6	1.16	93
PLS1442	107	108	1	0.51	4
PLS1442	111	114	3	0.94	85
PLS1443	134	136	2]	83
PLS1444	54	59	5	1.2	142
PLS1445	1	3	2	1.14	64
PLS1445	64	65	1	0.55	51
PLS1445	77	79	2	0.93	63
PLS1445	203	207	4	0.68	1
PLS1445	210	226	16	1.32	50
PLS1445	229	231	2	1.81	67
PLS1447	92	97	5	0.83	303
PLS1447	112	119	7	1.61	166
PLS1447	122	125	3	0.61	232
PLS1447	143	147	4	0.79	73
PLS1447	163	169	6	0.77	56
PLS1447	205	223	18	1.29	276
	200	220	10	1.20	270

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1447	238	246	8	1.12	62
PLS1447	284	286	2	3.81	95
PLS1447	303	306	3	1.78	256
PLS1447	331	374	43	1.73	94
PLS1447	382	397	15	1.25	127
PLS1447	400	408	8	0.6	80
PLS1448	159	160	1	0.71	104
PLS1448	168	172	4	0.95	267
PLS1448	179	180	1	0.53	24
PLS1448	237	238	1	0.79	56
PLS1448	263	230	8	1.58	82
PL31448 PLS1448	203	293	17	1.50	65
PL31448 PLS1448	297	310	17	1.24	82
PL31448 PLS1448	322	323	1	0.59	219
PLS1448	339	341	2	1.4	84
PLS1448	369	382	13	1.38	46
PLS1448A	164	165	1	0.56	15
PLS1448A	184	201	17	1.56	173
PLS1448A	213	226	13	1.37	88
PLS1448A	241	244	3	1.45	101
PLS1448A	274	287	13	1.81	66
PLS1448A	400	413	13	1.67	92
PLS1448A	418	465	47	1.45	126
PLS1448A	468	470	2	0.93	151
PLS1449	54	59	5	0.89	71
PLS1449	62	63	1	0.69	56
PLS1449	91	100	9	1.41	57
PLS1449	147	155	8	1.69	78
PLS1449	201	202	1	0.51	5
PLS1449	206	210	4	1.45	113
PLS1449	213	218	5	1.33	23
PLS1450	21	22	1	0.87	204
PLS1451DT	186	195	9	1.16	222
PLS1451DT	227	232	5	1.63	196
PLS1451DT	250	254	4	0.74	223
PLS1451DT	262	267	5	0.63	65
PLS1451DT	272	273	1	1.7	223
PLS1451DT	276	278	2	1.5	236
PLS1451DT	288	292	4	1.85	179
PLS1451DT	390	397	7	1.33	101
PLS1451DT	420	421	,	1.79	101
PLS1451DT	426	436	10	1.33	92
PL31451DT	485	495	10	1.55	82
PL31451DT	671	673	2	0.85	81
PLS1452	145	147	2	1.21	205
PLS1452 PLS1452	145	147	8	1.21	203
PLS1452 PLS1452	241	244	3	1.43	155
PLS1452 PLS1452	252	257	5	1.65	135
PLS1452 PLS1452	252	262	2	1.65	153
PLS1452 PLS1452	260	262	2	0.91	29
PLS1452 PLS1452	265	267	3	0.91	83
PLS1452 PLS1452	282		3 11	1.91	115
		300			
PLS1452	306	308	2	1.66	112
PLS1453DT	163	165	2	1.49	205
PLS1453DT	202	209	7	1.35	167
PLS1453DT	236	237	1	0.67	335
PLS1453DT	275	280	5	2.01	146
PLS1453DT	293	306	13	2.02	186
PLS1453DT	319	320	1	0.55	275
PLS1453DT	364	380	16	1.93	226

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1453DT	454	464	10	1.37	92
PLS1453DT	468	472	4	1.18	87
PLS1453DT	510	513	2	1.89	107
PLS1453DT	517	519	2	1.52	118
PLS1453DT	534	545	11	1.68	89
PLS1454DT	170	176	6	1.47	265
PLS1454DT	212	220	8	1.32	167
PLS1454DT	285	289	4	1.6	193
PLS1454DT	299	318	19	1.31	180
PLS1454DT	394	402	8	1.45	221
PLS1454DT	407	411	4	1.79	164
PLS1454DT	474	483	9	1.54	121
PLS1454DT	486	488	2	2.04	86
PLS1454DT	514	522	7	1.7	76
PLS1455	12	21	9	0.53	15
PLS1455	66	67	1	0.55	6
PLS1455	76	88	12	1.11	202
PLS1455	142	144	2	1.86	459
PLS1456	143	158	15	1.42	181
PLS1456	164	165	1	0.72	76
PLS1456	188	191	3	2.18	383
PLS1456	228	233	5	0.88	83
PLS1456	263	267	4	0.89	134
PLS1456	296	303	7	1.03	346
PLS1456	366	378	12	1.46	163
PLS1456	397	410	13	1.49	219
PLS1456	418	420	2	0.99	111
PLS1456	425	426	1	0.63	99
PLS1456	436	437	1	0.59	88
PLS1456	449	453	4	1.61	77
PLS1456	456	460	4	0.99	64
PLS1456	471	478	7	1.5	147
PLS1456	483	484	1	0.89	40
PLS1457DT	186	196	10	1.58	259
PLS1457DT	219	223	4	1.01	214
PLS1457DT	276	277	1	0.76	270
PLS1457DT	289	303	14	0.87	83
PLS1457DT	316	335	19	1.41	196
PLS1457DT	431	446	15	1.57	150
PLS1457DT	482	488	6	1.47	85
PLS1457DT	521	523	2	1	109
PLS1457DT	530	534	4	1.2	70
PLS1458	113	115	2	1.88	289
PLS1458	126	136	10	1.99	289
PLS1458	145	148	3	1.3	303
PLS1458	153	165	12	1.51	308
PLS1458	189	194	5	0.91	97
PLS1458	232	234	2	0.89	178
PLS1458	241	247	6	1.11	205
PLS1458	302	304	2	1.31	482
PLS1458	334	352	18	1.89	319
PLS1458	357	359	2	2.54	270
PLS1458	368	382	14	1.63	177
PLS1458	391	401	10	1.99	131
PLS1458	405	420	15	2.06	166
PLS1458	425	440	15	2.15	119
PLS1458	454	455	1	0.82	172
PLS1458	463	466	3	2.77	275
PLS1458	478	482	4	1.91	189
PLS1458	485	486	1	2.97	126

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1459	182	194	12	1.69	158
PLS1459	204	210	6	2.18	177
PLS1459	273	274	1	0.78	123
PLS1459	294	297	3	0.63	222
PLS1459	322	329	7	0.81	152
PLS1459	337	346	9	1.13	223
PLS1459	457	478	21	1.7	140
PLS1460	72	76	4	1.37	372
PLS1460	128	131	3	0.68	87
PLS1460	135	136	1	0.56	56
PLS1460	139	161	22	1.61	197
PLS1460	166	173	7	2.51	273
PLS1460	188	193	5	1.38	248
PLS1460	203	206	3	1.54	192
PLS1460	236	237	1	0.9	62
PLS1461	63	65	2	1.59	349
PLS1461	69	71	2	1.55	281
PLS1461	90	91	1	0.61	299
PL31461 PLS1461	111	113	2	1.22	256
PLS1461 PLS1461	124	132	8	1.22	193
PLS1461 PLS1461	124	169	17	2.05	201
PLS1461 PLS1461	152	206	8	2.05	189
PLS1461	213	215	2	1.9	154
PLS1462	107	110	3	0.97	314
PLS1462	124	126	2	0.9	624
PLS1462	162	169	7	1.47	293
PLS1462	195	208	13	1.41	200
PLS1463	8	9		1.45	201
PLS1463	25	29	4	1.52	479
PLS1464	49	55	6	0.85	478
PLS1464	61	64	3	1	418
PLS1464	90	92	2	1	464
PLS1464	97	98	1	1.09	681
PLS1464	114	115	1	0.63	294
PLS1465	28	33	5	1.04	127
PLS1466	79	82	3	1.91	36
PLS1466	95	100	5	1.18	74
PLS1466	104	105	1	1.08	128
PLS1467	152	156	4	0.49	88
PLS1469	108	110	2	0.74	60
PLS1469	176	177	1	0.7	62
PLS1470	141	142	1	0.79	98
PLS1470	145	153	8	1.03	97
PLS1470	189	192	3	0.79	21
PLS1471	84	86	2	1.09	57
PLS1471	95	97	2	1.13	58
PLS1471	172	175	3	1.34	90
PLS1472	3	5	2	0.81	68
PLS1472	32	33	1	1.06	98
PLS1472	191	205	14	1.23	84
PLS1473	142	147	5	1.35	95
PLS1473	175	179	4	0.95	66
PLS1473	234	236	2	0.85	55
PLS1473	294	302	8	0.9	33
PLS1474	101	102	1	0.72	98
PLS1474	158	159	1	1	72
PLS1474	180	181	1	1.23	44
PLS1474	215	222	7	1.23	78
PLS1476	17	20	3	1.31	376
	17	20	5	1.01	570

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1478	221	240	19	1.54	311
PLS1478	253	255	2	1.15	502
PLS1479A	201	208	7	1.71	148
PLS1479A	225	237	12	1.51	142
PLS1479A	255	256	1	0.83	328
PLS1479A	293	297	4	0.66	203
PLS1480	34	38	4	1.34	208
PLS1481	184	190	6	1.26	115
PLS1481	201	204	3	1.44	427
PLS1481	213	221	8	1.74	315
PLS1481	244	251	7	1.89	306
PLS1481	320	324	4	1.77	100
PLS1481	330	332	2	1.13	205
PLS1481	340	341	1	0.5	160
PLS1483	133	135	2	0.86	379
PLS1483	144	145	1	1.33	360
PLS1483	156	158	2	1.77	185
PLS1483	181	182	1	0.6	95
PLS1483	188	192	4	0.99	218
PLS1483	216	223	7	1.02	392
PLS1483	228	230	2	0.6]	289
PLS1483	234	235	1	0.89	198
PLS1483	269	270	1 1	0.96	598
PLS1484	252	270	18	1.73	190
PLS1484	276	278	2	0.76	435
PLS1484	294	298	4	0.99	205
PLS1485	294	238	8	1.5	203
PL31485 PLS1485	203	232	4	1.3	214
PLS1485	242	243		0.89	283
PLS1485	242	243	1	0.53	173
PLS1485 PLS1485	248	249	1	2.22	302
PLS1485 PLS1485	303	304	1	0.66	225
PLS1485 PLS1485	310	311	1	1.61	225
PLS1485 PLS1486	203	205	2	2.18	208
PLS1486 PLS1486	203	205	6	1.45	318
		225	4		
PLS1486 PLS1486	231 239	233	4	0.99 1.5	223 346
PLS1486	259	243	4	0.67	265
			·		
PLS1486	263	265	2	0.78	261
PLS1486	291	296	5	0.46	59
PLS1487	72	75	3	1.47	149
PLS1488	269	270		0.95	239
PLS1488	293	297	4	1.61	245
PLS1488	306	309	3	0.85	448
PLS1488	313	328	15	1.37	185
PLS1488	352	357	5	1.18	196
PLS1490	2	6	4	0.9	433
PLS1493DT	79	81	2	0.93	64
PLS1493DT	104	107	3	1.09	34
PLS1493DT	230	238	7	1.47	60
PLS1493DT	268	273	5	1.96	48
PLS1494DT	26	28	2	0.86	69
PLS1494DT	72	73	1	0.6	34
PLS1494DT	106	108	2	0.93	59
PLS1494DT	185	187	2	1.78	39
PLS1494DT	217	224	7	1.48	59
PLS1494DT	343	350	7	0.52	31
PLS1494DT	361	364	3	0.62	2
PLS1495DT	130	131	1	0.51	23
PLS1495DT	155	157	2	0.92	12

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1495DT	164	169	5	1.11	61
PLS1495DT	324	327	3	1.17	12
PLS1495DT	361	368	6	2.37	93
PLS1495DT	384	387	3	0.46	121
PLS1496DT	82	87	5	1.26	50
PLS1496DT	196	199	3	1.38	58
PLS1496DT	247	249	2	1.01	57
PLS1496DT	258	259	1	1.29	77
PLS1497DT	68	70	2	0.87	47
PLS1497DT	91	92	1	0.77	60
PLS1497DT	146	153	7	1.49	52
PLS1497DT	338	341	3	0.68	6
PLS1497DT	344	345	1	0.57	38
PLS1498DT	48	49]	0.7	73
PLS1498DT	191	192	1	0.62	49
PLS1498DT	206	208	2	0.82	42
PLS1498DT	221	222	1	0.52	79
PLS1498DT	225	227	2	1.62	120
PLS1498DT	290	292	2	1.17	54
PLS1499DT	21	24	3	0.92	76
PLS1499DT	146	147	1	1.3	78
PLS1499DT	206	217	11	1.08	40
PLS1499DT	294	296	2	0.78	126
PLS1500DT	134	139	5	0.71	56
PLS1500DT	191	196	5	0.92	55
PLS1500DT	224	228	4	1.09	65
PLS1501DT	79	82	3	1.5	61
PLS1501DT	207	214	7	1.07	68
PLS1501DT	294	300	6	0.59	58
PLS1502ADT	38	39	1	1.05	101
PLS1502ADT	63	67	4	1.59	75
PLS1502ADT	96	99	3	1.25	61
PLS1502ADT	171	174	3	1.45	40
PLS1502ADT	248	250	2	1.85	196
PLS1502ADT	268	272	4	2.11	59
PLS1503DT	55	58	3	1.11	70
PLS1503DT	82	85	3	1.01	47
PLS1503DT	92	93	1	0.58	53
PLS1503DT	158	165	7	1.42	43
PLS1503DT	169	172	3	1.58	64
PLS1503DT	207	208	1	0.71	99
PLS1503DT	233	238	5	1.04	65
PLS1512	4	20	16	2.03	88
PLS1514	43	58	15	1.53	42
PLS1517	74	76	2	1.08	139
PLS1517	110	116	6	0.56	13
PLS1518	91	92	1	0.7	82
PLS1518	109	110	1	0.68	26
PLS1519	111	121	10	0.98	62
PLS1519	127	129	2	0.73	59
PLS1520	118	126	8	0.96	67
PLS1520	132	133	1	0.62	44
PLS1521	88	96	8	0.94	88
PLS1521	99	100	1	0.97	62
PLS1522	145	146	1	0.73	66
PLS1523	137	138	1	2.1	95
PLS1523	142	146	4	0.81	116
PLS1524A	130	140	10	1.45	85
PLS1525	206	207	1	0.53	34
PLS1526	146	155	9	1.8	57

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1527	175	176	1	0.88	99
PLS1528	175	180	5	0.95	66
PLS1529A	164	174	10	0.68	50
PLS1530	157	158	1	0.52	72
PLS1531	181	185	4	0.69	52
PLS1532	144	145	1	1.09	55
PLS1532	150	160	10	1.58	80
PLS1532	205	209	4	0.93	67
PLS1533	0	5	5	0.82	39
PLS1533	166	183	17	1.53	4]
PLS1533	186	187	1	1.01	21
PLS1534	128	133	5	1.8	55
PLS1534	216	243	27	1.43	57
PLS1535	162	163	1	0.64	239
PLS1535	166	170	4	0.53	113
PLS1535	225	226	1	0.58	93
PLS1535	232	235	3	0.62	48
PLS1536	87	100	13	1.24	86
PLS1536	151	161	10	1.24	37
PLS1536	255	256	1	1.21	42
PLS1536 PLS1537	77	88	1	1.43	61
PLS1537	131	160	29	1.43	37
PLS1537 PLS1537	203	204	1	0.58	114
PLS1537	203	204	1	0.55	154
PLS1537	52	58	6	1.49	58
PLS1539	93	99	6	1.49	57
PLS1539 PLS1539	248	251	3	0.55	56
PLS1539 PLS1539	248	251	2	1.04	32
PLS1539	264	266	2	1.61	64
PLS1540	120	122	2	0.79	66
PLS1540	253	255	2	0.55	6
PLS1540	261	264	3	0.9	70
PLS1540	270	271	1	0.53	6
PLS1540	296	297		0.82	29
PLS1541	205	214	9	1.53	55
PLS1541	219	242	23	1.2	54
PLS1541	366	368	2	0.88	53
PLS1541	386	387	1	0.56	43
PLS1542	56	60	4	1.33	65
PLS1542	104	110	6	1.57	36
PLS1542	151	154	3	1.08	60
PLS1542	217	218	1	1.17	66
PLS1542	283	285	2	1.02	43
PLS1542	294	297	3	2.27	37
PLS1542	324	332	8	0.58	97
PLS1543	359	360	1	0.6	32
PLS1544	34	35	1	1.26	77
PLS1544	71	77	6	1.52	50
PLS1544	117	125	8	1.55	79
PLS1544	160	164	4	0.9	52
PLS1544	227	231	4	1.73	61
PLS1545	60	67	7	1.55	53
PLS1545	75	76	1	0.8	101
PLS1545	112	122	10	1.48	58
PLS1545	149	165	16	1.54	43
PLS1545	227	229	2	0.88	75
PLS1545	316	331	15	1.45	52
PLS1545	335	336	1	0.82	49
PLS1546	18	20	2	1.05	46
PLS1546	114	115	1	0.68	136

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1546	163	171	8	1.55	76
PLS1546	246	250	4	0.84	66
PLS1546	271	272	1	0.83	114
PLS1546	345	346	1	0.61	32
PLS1546	356	357	1	0.5	18
PLS1547	39	40	1	0.92	35
PLS1547	98	102	4	1.3	47
PLS1547	137	145	8	1.28	73
PLS1547	150	151	1	0.51	101
PLS1547	181	183	2	0.97	68
PLS1547	297	300	3	1.39	63
PLS1547	356	359	3	0.65	48
PLS1548	44	45	1	1.36	62
PLS1548	154	155	1	0.69	72
PLS1548	178	183	5	0.85	109
PL31548	247	248	1	1.64	32
		248	10	1.64	83
PLS1548	254				
PLS1548	280	281	1	0.63	76
PLS1548	423	425	2	0.95	21
PLS1549	40	42	2	1.55	48
PLS1549	132	135	3	1.17	67
PLS1549	192	193		1.48	87
PLS1549	208	209	1	0.59	59
PLS1549	212	214	2	0.65	101
PLS1549	290	292	2	0.89	95
PLS1549	378	382	4	1.57	56
PLS1550	15	16	1	0.69	1
PLS1550	19	26	7	1.29	119
PLS1550	59	77	18	1.72	165
PLS1550	86	94	8	1.5	156
PLS1550	137	139	2	1.32	205
PLS1550	236	238	2	1.97	117
PLS1550	246	248	2	0.58	13
PLS1550	287	291	4	0.53	65
PLS1550	294	302	8	1.02	91
PLS1550	332	351	19	1.76	127
PLS1550	367	368	1	0.79	118
PLS1550	380	381	1	0.9	66
PLS1551	8	13	5	1.37	137
PLS1551	30	39	9	2.04	126
PLS1551	43	45	2	0.64	22
PLS1551	61	66	5	1.02	145
PLS1551	69	70	1	1.15	20
PLS1551	100	104	4	1.39	206
PLS1551	188	195	7	0.9	100
PLS1551	214	226	12	0.88	100
PLS1551	235	255	20	1.06	57
PLS1551	280	289	9	1.26	63
PLS1551	316	317	1	0.6	26
PLS1551	359	373	14	1.05	147
PLS1551	392	393	14	1.05	127
PLS1551	414	415	י קריין אין אין אין אין אין אין אין אין אין	0.76	127
PLS1551 PLS1551	414	413	5	0.78	20
PLS1551	468	500	32 16	1.61 1.5	68 48
PLS1552	222	238			
PLS1557	6	8	2	0.69	65
PLS1557	66	69	3	1.5	90
PLS1557	128	134	6	1.42	123
PLS1557	191	193	2	1.59	85
PLS1557	222	224	2	1.15	83

Hole ID	Depth From (m)	Depth To (m)	Thickness (m)	Li2O_pct	Ta2O5_ppm
PLS1557	242	266	24	1.5	64
PLS1558	0	12	12	1.27	85
PLS1558	84	88	4	1.26	123
PLS1558	115	116	1	1.15	140
PLS1558	138	151	13	1.57	67
PLS1558	195	198	3	1.27	64
PLS1558	251	273	22	1.7	62
PLS1558	306	309	3	1.38	35
PLS1558	313	314	1	0.63	6

Appendix 3 - JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 The deposit has been sampled using a series of reverse circulation ("RC") holes and diamond holes. Diamond holes drilled for metallurgical sampling and checking of existing RC holes by drilling "twins". More recent diamond core tails drilled for resource extension evaluation. Talison Minerals Pty Ltd ("Talison") conducted a 54 drill hole RC program in 2008 totalling 3,198m and 29 drill holes for a total of 2,783m in 2010. Between 2010 and 2012, Talison changed its name to Global Advanced Metals ("GAM"). GAM completed 17 RC holes for 1,776m in 2012. PLS have completed a total of 1,407 exploration holes for 200,420 m since acquiring the Pilgangoora Project. This includes 184,200 m of exploration RC drilling, and 16,223 m of diamond drill core. This also includes 46,902 m of drilling in the 12 months leading up to this resource update. A total of 117,411 m of infill RC grade control drilling has been completed over the deposit. A total of 83,785 m of RC drilling and 2,298 m of diamond drilling were completed at the former Altura Lithium Operations Dakota Minerals Ltd (Dakota) drilled 63 RC holes for 5,276m and 12 diamond holes for 100m in 2016.

Criteria	JORC Code explanation	Commentary
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Talison/GAM RC holes were all sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste (to be captured in 600mm x 900mm green plastic mining bags) and 15% to the sample port in pre-numbered, drawstring calico sample bags (12-inch by 18-inch). In subsequent RC drilling completed by PLS during 2015 & 2016 samples were collected every metre in pegmatite zones and a combination of 2 to 6 metres into footwall & hanging wall country rock for waste rock characterisation studies. PLS diamond core (PQ and HQ) drilled between 2015 and 2018 was sampled by taking a 15-20mm fillet at 1m intervals within the pegmatite zones. HQ Core drilled in 2023 was cut and sampled as half core. NQ was cut and sampled as half-core. Dakota RC samples were sampled every metre and collected using a rig-mounted cyclone splitter including a dust suppression system. Approximately 85% of the RC chips were split to 600mm x 900mm green plastic mining bags for storage and logging and 15% was captured at the sample port in draw-string calico sample bags. Diamond holes were PQ core and were twins of RC holes drilled for metallurgical purposes. Half core was used for assaying.

Criteria	JORC Code explanation	Commentary
		 PLS RC holes drilled between 2014 and 2023 were sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste. The 15% sample taken for analysis was collected from the sample port in draw-string calico sample bags (10-inch by 14-inch). Waste sample collected from 2014 to 2022 was to be captured in 600mm x 900mm green plastic mining bags. In 2023, two x 15% samples were collected from the sample port, with the first taken for analysis and the second for sieving. The remaining 60% waste Sample collected in 2023 was discarded. Altura Drilling sampled RC holes on 1m intervals from the beginning to end of each hole. Each 1m sample was split directly using a rig-mounted riffle splitter and then collected into a uniquely numbered calico bag. The remaining material for each 1m interval was collected directly off the cyclone into a numbered plastic bag and kept near the drill site for geological logging.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more	 Talison/GAM holes are all RC, with samples split at the rig sent to the Wodgina site laboratory and analysed by XRF for a suite of 36 elements. Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic

Criteria	JORC Code explanation	Commentary
	explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Absorption Spectroscopy (AAS). PLS RC samples were split at the rig and sent to the Nagrom laboratory in Perth and analysed by XRF and ICP. PLS Diamond core was cut at Nagrom (2015) and IMO (2016), and then crushed and pulverised in preparation for analysis by XRF and ICP. All Dakota RC Im split samples were sent to Nagrom laboratory in Perth and analysed using ICP for 5 elements (Li2O, Cs, Be, Fe and Ta) Quarter core samples were sent to SGS in Perth for analysis using XRF and ICP techniques for a suite of elements. Exploration drill holes in 2021 were all RC, with samples split at the rig, samples are then sent to Nagrom laboratory in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP techniques. For exploration RC drill holes from 2022 to 2023 samples were split at the rig, samples are then sent to Nagrom laboratory and SGS Laboratories in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP techniques. For diamond core drill holes from 2022 to 2023 HQ core was cut with half core samples sent to Nagrom laboratory and SGS Laboratories in Perth and analysed for a suite of multi-elements. Analysis was completed by XRF and ICP techniques. For diamond core drill holes from 2022 to 2023 HQ core was cut with half core samples sent to Nagrom laboratory and SGS Laboratories in Perth and analysed for a suite of multi- elements. Analysis was completed by XRF and ICP techniques. Exploration RC samples on Im intervals from Altura were split at the rig and then sent to either LabWest or SGS

Criteria	JORC Code explanation	Commentary
Drilling toobniguos		 laboratories for analysis by XRF and ICP techniques. Diamond core from Altura was cut, sample lengths were determined by mineralisation logged in the core. Half core samples through mineralised zones were sent to the laboratory for analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling rig used in 2008 is not noted in any reports. The 2010 drilling was completed by Australian Drilling Solutions using an Atlas Copco Explorac 220 RC truck mounted drill rig with a compressor rated to 350psi / 1200cfm and a booster rated to 800psi, with an expected 600psi down-hole. An auxiliary booster/compressor was not required at any point during the drilling. The 2012 drilling was completed by McKay Drilling using an 8x8 Mercedes Truck-mounted Schramm T685WS rig with a Foremost automated rod-handler system and on-board compressor rated to 1,350cfm/500psi with an auxiliary booster mounted on a further 8x8 Mercedes truck and rated at 900cfm/350psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system. The PLS 2014 drilling was completed by Quality Drilling Services (QDS Kalgoorlie) using a track mounted Schramm T450 RC rig with a 6x6 truck mounted auxiliary booster & compressor. Drilling used a reverse circulation face sampling hammer with nominal 51/4" bit. The system delivered approximately 1800cfm @ 650- 700psi down hole whilst drilling.

Criteria	JORC Code explanation	Commentary
		 The 2015 RC drilling was undertaken by Orbit Drilling (200 holes), Mt Magnet Drilling (44 holes) and Strike Drilling (11 holes). Orbit used two track mounted rigs; a Schramm T450 RC Rig, and a bigger Hydco 350 RC Rig. Mt Magnet also used a track mounted Schramm T450 RC Rig; Strike drilling used an Atlas Copco X350 RC Rig mounted on a VD3000 Morooka rubber track base with additional track mounted booster & auxiliary compressor. Diamond drilling during 2015 was completed by Orbit Drilling, using a truck mounted Hydco 1200H rig, drilling HQ sized core. The 2016 resource RC drilling was completed by 4 track mounted RC rigs & 2 diamond rigs. 2 Atlas Copco X350 RC rigs mounted on a rubber track mounted Morooka base were used by Strike drilling together with track mounted booster & auxiliary compressor. 2 track mounted RC rigs were also used by Mt Magnet Drilling, a Schramm T450 rig and a UDR250 rig. Diamond drilling during 2016 was completed by 2 Mt Magnet Drilling rigs drilling a combination of PQ, HQ & NQ size core. A truck mounted Hydco 650 rig and support truck and a TR1000 track mounted rig & track mounted support vehicle was used. Dakota RC Drilling was predominantly reverse circulation drilling with 2 diamond drillholes. Holes range in dip from approximately 60° to vertical. Average depth of drilling is 85 m and ranging from 16 to 206 m. RC drilling was undertaken by two drilling companies;

Criteria	JORC Code explanation	Commentary
		 Mount Magnet Drilling using a track-mounted rig (Schramm T450) and compressor (rated 1,350 cfm/800 psi) and 6WD support truck. The drill rig utilised a reverse circulation face sampling hammer, with 138mm bit. The sampling was conducted using a rig-mounted cyclone with cone splitter and dust suppression system. Strike Drilling, using a truck-mounted KWL700 RC rig, which used a rig-mounted cyclone and cone splitter, and dust suppression system. RC Drilling in 2018 was completed by Strike Drilling Pty Ltd using a KWL1000 truck mounted rig and Mt Magnet Drilling Pty Ltd using an RC300 track mounted Schramm drill rig. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. Exploration RC Drilling in 2021 was completed by Mt Magnet Drilling utilising an RCD300-2 track mounted drilling rig with a truck mounted booster & auxiliary compressor (900cfm/350psi) coupled to a V8 booster up to 1000psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. Altura drilling between 2010 and 2013 included both RC and diamond holes. Drilling was completed using a PRD2000 multipurpose rig rated at 1120 cfm @350 psi. In 2016 9 diamond holes were drilled to twin RC holes. This was undertaken by DDH1 using a Sandvik UDR 1200 (PQ3 size core), truck mounted rig. RC drilling in 2016 was undertaken

Criteria	JORC Code explanation	Commentary
		 by Strike Drilling using a truck mounted rig SD02/KWL700, and Mount Magnet Drilling with a RC450 Hydco track mounted rig as well as a MP1300 multipurpose truck mounted rig. Exploration RC Drilling in 2022 to 2023 was completed by three drilling companies; Mt Magnet Drilling, Strike Drilling and Orlando Drilling. Mt Magnet Drilling used a RCD300-2 track mounted drilling rig with a truck mounted booster & auxiliary compressor (900cfm/350psi) coupled to a V8 booster up to 1000psi. Strike Drilling Pty Ltd using a KWL1000 truck mounted Schramm 685 drill rig. Orlando Drilling utilized two Atlas Copco E220 RC track mounted drill rigs. Drilling utilized a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Recoveries for the majority of the historical holes are not known, while recoveries for 2012 GAM holes were overwhelmingly logged as "good." Recoveries for PLS RC and diamond holes were virtually all dry and overwhelmingly logged as "good." Recoveries for Dakota RC and diamond holes were recorded as "good" by the geologist. Altura RC Holes were mostly recorded as "Dry" by the geologist.

Criteria	JORC Code explanation	Commentary
		 Sample recovery in 2021 was recorded as good for all RC holes. Sample recovery in 2022 – 2023 drilling program was recorded as good for RC holes.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Whilst drilling through the pegmatite, rods were flushed with air after each metre drilled for GAM and PLS holes; and after every 6m for Dakota holes. In addition, moist or wet ground conditions resulted in the cyclone being washed out between each sample run. Loss of fines as dust was reduced by injecting water into the sample pipe before it reached the cyclone. This minimises the possibility of a positive bias whereby fines are lost, and heavier, tantalum bearing material, is retained.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No material bias has been identified. The assay results of duplicate RC and paired DD hole samples do not show sample bias caused by a significant loss of/gain in lithium values caused by loss of fines.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Im samples were laid out in lines of 20 or 30 samples with cuttings collected and geologically logged for each interval and stored in 20 compartment plastic rock-chip trays with hole numbers and depth intervals marked (one compartment per Im). Geological logging information was recorded directly onto digital logging system and information validated and transferred electronically to Database administrators in Perth. The rock-chip trays are stored on site at Pilgangoora in a secured containerised racking library.

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 PLS Diamond core was transported to Nagrom laboratories for cutting, sampling and detailed logging in 2015. During the 2016 drilling program diamond core was logged in detail on site & dispatched to ALS laboratories in Perth for cutting, sampling & assaying. During the 2017 PQ drilling program diamond core was logged in detail and cut on site & the filleted samples were sent to Nagrom in Perth for analysis. Some of remnant core is also stored at Nagrom, the remainder on site at Pilgangoora. All remnant drill core (excluding 2019 PQ core) is currently stored on pallets at Pilgangoora. All core collected during the 2022-2023 drilling program was logged in detail and half cut onsite using an automatic enclosed Corewise coresaw. Cut core was sent to Nagrom and SGS Laboratories in Perth for analysis. All remnant half core from the 2022-2023 drilling program has been palletised and stored at Pilgangoora for future testwork. All drill core has been photographed dry and wet using a specialized photography frame and camera. All images are labeled and stored on the Pilbara Minerals Server.
	The total length and percentage of the relevant intersections logged.	• The database contains lithological data for all holes in the database.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 RC samples collected by Talison/GAM were generally dry and split at the rig using a cyclone splitter. RC samples collected by PLS, Dakota and Altura were virtually all dry and split at the rig using a cone splitter mounted directly beneath the cyclone. A 15 to 20mm fillet of core was taken every metre of PQ or HQ core. NQ core was halved. Dakota drilled PQ sized diamond holes, and cut and sampled half core for metallurgical tests, and quarter core for assaying. All 2017-2019 drill core was cut and sampled at the core logging facility at Pilgangoora. RC samples in 2021 were generally dry and split at the rig using a cyclone splitter, which is appropriate and industry standard. Altura HQ sized diamond holes, and cut and sampled half core for assaying. HQ core collected during the 2022-2023 drilling program was logged in detail and half cut and sampled onsite using an automatic enclosed Corewise coresaw. Cut core was sent to Nagrom and SGS Laboratories in Perth for analysis.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	 Talison/GAM/PLS samples have field duplicates as well as laboratory splits and repeats. Similarly, 238 sample pulps were collected to check ALS Laboratory results by Nagrom in 2016. 55 Dakota GAM Wodgina laboratory splits of the samples were taken at twenty metre intervals with a

Criteria	JORC Code explanation	Commentary
		 repeat/duplicate analysis also occurring every 20m and offset to the lab splits by 10 samples. In total one field duplicate series, one splits series and one lab duplicate/repeat series were used for quality control purposes assessing different stages in the sampling process. This methodology was used for the samples from the 2010 and 2012 drilling programs. Comparison of these splits and duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the analysis process. The GAM and PLS RC drilling contains QC samples (field duplicates and laboratory pulp splits, GAM internal standard, selected CRM's for PLS), and have produced results deemed acceptable. 110 sample pulps (10% of the June 2015 resource composite samples) were selected from across the pegmatite zones for umpire checks with ALS Laboratory Perth. 238 sample pulps from the 2016 drilling were selected from across the pegmatite zones for umpire checks with Nagrom. All closely correlated with the original assays. Dakota field RC duplicates, pulp duplicates and coarse diamond field duplicates generally indicate good repeatability of samples. Samples were selected from pegmatite pulps for reassaying by ALS (original lab was Nagrom), and were also resampled and sent to ALS for analysis. QAQC has been maintained regularly on the Nagrom results from the 2017-2021 drilling, with duplicates and

Criteria	JORC Code explanation	Commentary
		 standards showing consistent precision and accuracy. The majority of the Altura exploration drilling was undertaken at LabWest. 153 samples from 7 holes were submitted to Ultratrace for umpire checks. Results were comparable, with a slight bias towards the Ultratrace results. Altura P17 and P18 series holes were sent to SGS for analysis. QC of standards and field duplicates returned results within acceptable ranges. 774 samples were sent to Intertek for umpire checks, with good correlation noted for Li₂O and Fe₂O₃. QA/QC has been maintained for all sample submissions for the 2022-2023 drilling campaigns with duplicates and standards showing consistent precision and accuracy. 75 duplicate core samples were prepped using tungsten- carbide bowls and LM5s to ascertain iron contamination from the SGS Laboratories sample preparation procedure. A contamination factor was calculated and applied to SGS samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 For the Talison/GAM/PLS RC drilling, field duplicates were collected every 20m, and splits were undertaken at the sample prep stage on every other 20m. Talison/GAM/PLS RC samples have field duplicates as well as laboratory splits and repeats. PLS diamond holes have laboratory splits and repeats. Duplicates submitted by Dakota included field RC duplicates, pulp duplicates from diamond core, and coarse

Criteria	JORC Code explanation	Commentary
		 crushed diamond core duplicates. For all PLS holes from 2016 to 2023 field duplicates were taken approximately every 20m, and standards and blanks every 50 samples. Altura submitted duplicates approximately every 15m, and standards every 50m.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	• Drilling sample sizes are considered to be appropriate to correctly represent the tantalum and lithium mineralization at Pilgangoora based on the style of mineralization (pegmatite) and the thickness and consistency of mineralization.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The Talison/GAM samples were assayed by the Wodgina Laboratory, for a 36 element suite using XRF on fused beads. During late 2014 &2015 the PLS samples were assayed at the Nagrom Perth laboratory, using XRF on fused beads plus ICP to determine Li2O, ThO2 and U3O8. All the 2016 the PLS samples were assayed by ALS laboratories in Perth using a Sodium Peroxide fusion with ICPMS finish. Dakota RC samples were assayed at Nagrom's laboratory in Perth, for a 5 element suite using XRF with a sodium peroxide fusion, and total acid digestion with an ICP-MS finish. Diamond drill samples were assayed at SGS's laboratory in Perth, for a 19 element suite using XRF with a sodium peroxide fusion, and total acid digestion with an ICP-MS finish.

Criteria	JORC Code explanation	Commentary
		 From 2017 to 2019, PLS samples were assayed by Nagrom Perth laboratory and analysed for a suite of 9 elements via ME-MS91 Sodium Peroxide for ICPMS finish and Peroxide fusion with an ME-ICP89 ICPAES finish. From 2021 to 2023 samples were submitted to Nagrom Laboratories in Perth and analysed for a suite of 25 elements. Samples were subject to a sodium peroxide fusion and analysed using ICPOES and ICPMS techniques. A proportion of samples collected between 2022 and 2023 were also sent SGS Laboratories in Perth and analysed for a suite of 25 elements via two methods of analysis. XRF analysis with a lithium borate flux and nitrate additive was used for a suite of 20 analytes and ICP analysis using sodium peroxide fusion / HCL digest was used for another 5 analytes including beryllium, rubidium and lithium, tantalum and niobium oxides. Altura PRC prefix holes were submitted to LabWest, and analysed by total acid digestion with an ICP-MS finish. Altura 17P and 18P series holes were submitted to SGS and analysed for a suite of 9 elements by Borate Fusion with XRF, and Sodium Peroxide Fusion with ICP-AES finish.
XF de m	r geophysical tools, spectrometers, handheld RF instruments, etc, the parameters used in etermining the analysis including instrument ake and model, reading times, calibrations ctors applied and their derivation, etc.	• No geophysical tools were used to determine any element concentrations used in this resource estimate.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Duplicates of the samples were taken at twenty metre intervals with blanks and standards inserted every 50m. Comparison of duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the sampling and analysis process. Drilling contains QC samples (field duplicates, blanks and standards plus laboratory pulp splits, and laboratory internal standards), and have produced results deemed acceptable.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	 Infill drilling completed by GAM in 2012 and PLS in 2014 to 2016 confirmed the approximate width and grade of previous drilling. Eight of the diamond holes were drilled as twins to RC holes, and compared to verify assays and lithology during 2015. An additional 8 diamond holes were drilled as twins to RC holes to verify assays & lithology during 2016. The remainder were drilled for metallurgical or geotechnical testwork. Dakota drilled two twin RC/DDH holes which show good constancy of mineralisation. A number of the 2017 PQ diamond core holes were also drilled as twin holes to verify results from RC drilling. Results compare favorably. Additional PQ drilling was undertaken in 2019, with some holes drilled as twins. Results compare favorably. RC grade control drilling has been undertaken on nominal 12.5m centres since the commencement of operations in 2018. Geological wireframes have been adjusted where required for grade control models.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 An electronic relational database containing collars, surveys, assays and geology is maintained by Trepanier Pty Ltd, an Independent Geological consultancy. Tantalum was reported as Ta2O5 % and converted to ppm for the estimation process. A two-step adjustment has been applied to the Fe2O3 assays to account for (i) contamination of pulps by the steel bowl at the grinding stage, and (ii) contamination of RC chips with the drill bit and tube wear with increasing hole depth. Step one is to subtract 0.33% from all Nagrom Fe2O3 assays and 0.47% from all ALS Fe2O3 assays, step 2 is to subtract a regressed factor by depth from all PLS Minerals, Altura and historic RC samples. No second factor has been applied to the PLS or Altura diamond core Fe2O3 assays. Additional Fe2O3 analysis on 75 diamond drill core samples has been undertaken in 2023 by SGS and a factor of 0.85% has been determined and applied to Fe2O3 assays. For Dakota assays Li2O was used for the purposes of reporting, as reported by NAGROM and SGS. Ta was
		adjusted to Ta2O5 by multiplying by 1.2211. Fe was adjusted to Fe2O3 by multiplying by 1.4297. Fe2O3 values were adjusted by subtracting 0.52% Fe2O3 from all RC samples, which is the total correction factor for contamination caused by steel RC drill bits and pulverising the samples in steel bowls.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches,	• Talison/GAM holes were surveyed using a DGPS with sub one metre accuracy by the GAM survey department.

Criteria	JORC Code explanation	Commentary
	mine workings and other locations used in Mineral Resource estimation.	 PLS drill hole collar locations were surveyed at the end of the program using a dual channel DGPS with +/- 10cm accuracy on northing, easting & RL by PLS personnel. No down hole surveys were completed for PLC001-039 (Talison). Gyro surveys were completed every 5m down hole for PLC040-068 (Talison). Eastman Single Shot surveys were completed in a stainless steel starter rod approximately every 30m for PLC069-076 & PLRC001-009 (GAM). Reflex EZ-shot, electronic single shot camera surveys were completed in a stainless steel starter rod approximately every 30m for PLC069-076 & PLRC001-009 (GAM). Reflex EZ-shot, electronic single shot camera surveys were completed in a stainless steel starter rod for each hole for the PLS November-December 2014 RC drilling completed by QDS Drilling. Reflex instruments were also used by Mt Magnet Drilling for the PLS RC and diamond drilling completed in 2015 and 2016. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole. Camteq Proshot, electronic single shot cameras were completed in a stainless steel starter rod for each hole from the PLS 2015 RC and diamond drilling campaigns completed by Orbit drilling. Camteq down hole survey equipment was also used for each hole for the PLS RC drilling by Strike. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole. Downhole survey information was also collected using a KEEPER High-Speed Gyro Survey/Steering System Gyro instrument for selected RC and diamond holes completed

Criteria	JORC Code explanation	Commentary
		 in 2016. This included surveying a number of holes as an audit on the single shot surveys which compared well. For the Dakota drilling, the drill-hole locations were located using a Navcom 3040 Real time GPS, with an accuracy of +/-10 cm vertical and +/-5 cm horizontal. Down hole surveying of drill holes was conducted roughly every 30m using a Reflex multi-shot camera to determine the true dip and azimuth of each hole. Subsequently, more detailed down hole surveying was conducted to verify this data, using a High Speed True North Seeking Keeper Gyroscope. All drill holes from 2021 to 2023 were surveyed using a DGPS in GDA94, Zone 50. Down hole surveying of drill holes was conducted by all drilling contractors. Measurements were recorded at the bottom of each hole and every 10m up hole for vertical holes and continuous readings for angle holes. Drill hole collar locations were surveyed at the end of each program by the mine survey team using a differential GPS (DGPS).
	Specification of the grid system used.	• The grid used was MGA (GDA94, Zone 50)
	Quality and adequacy of topographic control.	• The topographic surface used was supplied by Pilbara Minerals. Drone surveys are undertaken on a monthly basis in the active mining area and this information is merged into a master topographic surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Drilling spacings within the resource area vary between 12.5m to 200m apart. Drilling spacings for the 2021 exploration RC holes varied

Criteria	JORC Code explanation	Commentary
		 between 50m to 75m apart. Drilling spacings for the 2022-2023 exploration RC and diamond holes varied between 75 -100m apart.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 The interpretation of the mineralised domains are supported by a moderate drill spacing, plus both geological zones and assay grades can be interpreted with confidence. RC grade control data has been used to further define geological domains.
	Whether sample compositing has been applied.	 No compositing was necessary, as all samples were taken at 1m intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The mineralisation dips between 20 and 60 degrees at a dip direction between 050 and 115 degrees for the majority of the domains. The Monster zone strikes 040 to 045 degrees and dips moderately to the south-east. In the Lynas area the pegmatite varies between horizontal and 50-degree dip towards the south and south-east. The drilling orientation and the intersection angles are deemed appropriate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• No orientation-based sampling bias has been identified.
Sample security	The measures taken to ensure sample security.	Chain of custody for PLS holes were managed by PLS personnel.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 The collar and assay data have been reviewed by compiling a SQL relational database. This allowed some minor sample numbering discrepancies to be identified and amended. Drilling locations and survey orientations have been checked visually in 3 dimensions and found to be consistent. All GAM assays were sourced directly from the laboratory (Wodgina laboratory). It has not been possible to check these original digital assay files. Sampling techniques for historical assays including Altura Lithium Operations Limited have not been audited. The collar and assay data have been reviewed by checking all of the data in the digital database against hard copy logs. All PLS assays were sourced directly from Nagrom laboratory.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites	 PLS owns 100% of mining tenements M45/1256, M45/333, M45/511, M45/1266, M45/1230 and M45/1231. The Pilgangoora resource (including former Altura Lithium Operations) is located within M45/1256, M45/333, M45/1230 and M45/1231 which are 100% owned by PLS Minerals Limited. The Lynas Find resource is located within M45/1266.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments.
Exploration done	Acknowledgment and appraisal of exploration by	Talison completed RC holes in 2008
by other parties	other parties.	 GAM completed RC holes between 2010 and 2012. Dakota Minerals Ltd completed diamond and RC holes in 2016. Altura completed Diamond and RC holes between 2010 and 2018. Altura completed two phases of diamond drilling (phase 1 2011-2013 & phase 2 2016) with a total of 18 holes drilled
Geology	Deposit type, geological setting and style of mineralisation.	• The Pilgangoora pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that have intruded a sheared metagabbro.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 RC drilling undertaken in 2021 has been previously reported in ASX announcements on 10 May 2021, 23 June 2021 and 28 July 2021. All PLS drill hole information pre 2021 has been previously reported. A summary of all exploration holes drilled in the 2022-2023 drilling campaign is included as APPENDIX 1.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Length weighted averages used for exploration results. Cutting of high grades was not applied in the reporting of intercepts in APPENDIX 2.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	• Down hole intercepts from the 2022-2023 drilling campaign have been reported and are tabled in APPENDIX 2. All other intercepts have been previously reported. Reported intercepts are not true width. Cross sections illustrate the modelled pegmatite domains and intersections.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• See Figures 5 to 10. Cross sections showing selected holes from the program are presented as Figures 6 to 8
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of 2021 drill hole details have been previously reported in ASX announcements on 10 May 2021, 23 June 2021 and 28 July 2021. All other PLS results have been previously reported. A summary of drill hole details and results undertaken in 2022-2023 has been included in this announcement in APPENDICES 1 & 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful & material exploration data has been reported.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further planned drilling aims to test extensions to the currently modelled pegmatites zones and to infill where required to convert Mineral Resources to high confidence classification (i.e. Inferred to Indicated and Indicated to Measured). Drilling will be prioritised on the East Extension and Central extension areas. Additional drilling required in the Monster Corridor and several contiguous target areas within the mine corridor.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	 The original database was compiled by GAM and supplied as a Microsoft Access database. Since 2013, the data have then been imported into a relational SQL Server database using DataShed™ (industry standard drill hole database management software). Initially drilling data was supplied in Excel templates, using drop down lists to verify codes. PLS then implemented the OCRIS data logging software system which validates the data before it is imported to the SQL database. Altura data has been supplied both as an Access and SQL database, and was cross checked against the Company SQL Database. The data are constantly audited and any discrepancies checked by PLS personnel before being updated in the database.
	Data validation procedures used.	 Normal data validation checks were completed on import to the SQL database. Historical data have not been checked back to hard copy results, but have been checked against previous databases supplied by GAM. All logs are supplied as Excel spreadsheets/OCRIS files and any discrepancies checked and corrected by field personnel.

Criteria	JORC Code explanation	Commentary
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 John Holmes (Exploration and Geology Manager PLS Minerals and a Competent Person) has been actively involved in the exploration programs with regular site visits undertaken. Lauritz Barnes (Competent Person) has also completed multiple site visits, with the most recent in April 2023.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. 	• The confidence in the geological interpretation is considered very robust. Lithium (occurring as spodumene) and tantalum (occurring as tantalite) is hosted within pegmatite dykes
	• Nature of the data used and of any assumptions made.	intruded into basalts & sediments of the East Strelley greenstone belt. The area of the
	• The effect, if any, of alternative interpretations on Mineral Resource estimation.	Pilgangoora pegmatite field within M45/1256, M45/333, M45/1230 and M45/1231 comprises a series of extremely fractionated dykes, sills and veins up to 65m thick within the immediate
	• The use of geology in guiding and controlling Mineral Resource estimation.	drilling area. These dykes and veins dip to the east at 20-60° and are parallel to sub-parallel to the main schistose fabric within the greenstones.
	 The factors affecting continuity both of grade and geology. 	• The geological interpretation is supported by open pit mapping (current active operation), drill hole logging, assays, mineralogical studies and surface mapping completed by GAM (previously Talison), Altura Mining Limited and PLS Minerals.
		 No alternative interpretations have been considered at this stage. Grade wireframes were created in Leapfrog[™] Geo software and correlate extremely well with

Criteria	JORC Code explanation	Commentary
		the mined, mapped and logged pegmatite veins.The key factor affecting continuity is the presence of pegmatite.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The main modelled mineralized domains are hosted in an area stretching 8,500m (north- south from Lynas Find and Monster down to South End), ranging between 50-1,500m (east- west) in multiple veins and ranging between (minus) -550m and 220m RL (AMSL).
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Grade estimation using Ordinary Kriging (OK) was completed using Geovia Surpac[™] software for Li₂O, Ta₂O₅ and adjusted Fe₂O₃. Drill spacing typically ranges from 25m to 50m with some zones to 100-125m. Drill spacing at Central, South and Monster has been reduced to grade control spacing of 12.5 x 12.5m in areas designated for current and near future mining operations.
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products. 	 Drill hole samples were flagged with modelled domain codes. Sample data was composited for Li₂O, Ta₂O₅ and Fe₂O₃ to 1m using a best fit method. Since all holes were typically sampled on 1m intervals, there were only a very small number of residuals in the diamond core holes that were sampled to geological contacts. Influences of extreme sample distribution outliers were reduced by top-cutting on a domain basis. Top-cuts were decided by using a combination of methods including grade histograms, log probability plots and statistical

Criteria	JORC Code explanation	Commentary
	• Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).	 tools. Based on this statistical analysis of the data population, no top-cuts were applied. Directional variograms were modelled by domain using traditional variograms. Nugget
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	values are moderate to low (between 15% and 30%) and structure ranges up to 500m. Domains with more limited samples used variography of geologically similar, adjacent domains.
	 Any assumptions behind modelling of selective mining units. 	 Block model was constructed with parent blocks of 6m (E) by 20m (N) by 5m (RL) and sub-blocked to 3.0m (E) by 5.0m (N) by 2.5m (RL). For Lynas Find, it was constructed with
	Any assumptions about correlation between variables.	parent blocks of 10m (E) by 10m (N) by 5m (RL) and sub-blocked to 5m (E) by5m (N) by 2.5m (RL). All estimation was completed to the
	 Description of how the geological interpretation was used to control the resource estimates. 	 parent cell size. Discretisation was set to 5 by 5 by 2 for all domains. Three estimation passes were used. The first pass had a limit of 75m, the second pass 150m
	 Discussion of basis for using or not using grade cutting or capping. 	and the third pass searching a large distance to fill the blocks within the wire framed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 of 4 samples. The exceptions to this were domains with less than 20 samples, which used a maximum of 10 samples, a minimum of 4 samples and maximum per hole of 3 samples for the second pass. As a potential deleterious element, Fe₂O₃ has been estimated for this resource, specifically as

Commentary
 factored Fe₂O₃. Identification of contamination during both the sample collection (steel from drill bit and rod wear) and assay phases (wear in the steel pulverisation containers) has resulted in a detailed statistical analysis and colocated data comparison between diamond core and RC twin hole assays. Factors have been applied to the raw Fe₂O₃ assays in two steps. Step one is to subtract 0.33% from all Nagrom Fe₂O₃ assays, 0.47% from all ALS Fe₂O₃ assays, 0.2% from all historic GAM Fe₂O₃ assays, 0.4% from all Altura Fe₂O₃ assays. Step two is to subtract a regressed factor by depth from all PLS Minerals, Altura and historic RC samples. No second factor has been applied to the PLS or Altura diamond core Fe₂O₃ assays. The search ellipses utilised follow the trend of each dyke and were generated using Leapfrog™ Edge's Variable Orientation tool. Search ellipse sizes were based primarily on a combination of the variography and the trends of the wire framed mineralized zones. Hard boundaries were applied between all estimation domains. Validation of the block model included a volumetric comparison of the resource wireframes to the block model volumes. Validation of the grade estimate included

Criteria	JORC Code explanation	Commentary
Moisture		comparison of block model grades to the declustered input composite grades plus swath plot comparison by easting, northing and elevation. Visual comparisons of input composite grades vs. block model grades were also completed.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnes have been estimated on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 Pegmatite boundaries typically coincide with anomalous Li₂O and Ta₂O₅ which allows for geological continuity of the mineralised zones. A significant increase in Fe₂O₃ at the contacts between the elevated iron mafic country rock and the iron poor pegmatites further refines the position of this contact in additional to the geological logs. At Lynas Find and a number of the main domains at Pilgangoora, internal zonation domains and/or grade shells were used to model mineralogical zonation. The pegmatite vein (and grade) contact models were built in Leapfrog[™] Geo software and exported for use as domain boundaries for the block model. The reported cut-off grade (COG) adopted is 0.20% Li₂O. It has been determined based on known operational costs that have ongoing since 2018.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if	• As expected, based on the orientations, thicknesses and depths to which the

Criteria	JORC Code explanation	Commentary
	applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	pegmatite veins have been modelled, plus their estimated grades for Li2O and Ta2O5, the current mining method is open pit mining.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Mining and processing operations at Pilgan and Ngungaju (former Altura) have successfully been commissioned and in operation since 2018 Multiple phases of advanced metallurgical test work have been undertaken as part of the definitive feasibility study and continues to be undertaken on a regular basis as part of a continuous improvement process to maximise the recovery of lithia ore.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this 	• Appropriate environmental studies and sterilisation drilling have been completed for the locations of any waste rock dump (WRD) facilities.

Criteria	JORC Code explanation	Commentary		
	should be reported with an explanation of the environmental assumptions made.			
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 PLS initially completed specific gravity test work on nine samples across the deposit using both Hydrostatic Weighing (uncoated) on surface grab samples and Gas Pycnometry on RC chips which produces consistent results. Geological mapping and rock chip/grab sampling has not observed any potential porosity in the pegmatite. PLS conducted hydrostatic weighing tests on uncoated HQ core samples to determine bulk density factors. A total of 600 core samples were tested. Measurements included both pegmatite ore and waste rock. Regressions have been used to determine bulk density. In ore, density assignment is based on the Li₂O content, in waste, bulk density is assigned based on Fe₂O₃ content. Formulae as follows: Bulk density regression in ore (based on 651 pegmatite ore measurements): BD = 0.0621 x Li₂O (%) + 2.6233 Bulk density in the waste (predominantly mafic to ultramafic rock types) and based on 569 measurements): BD = (0.0186 x Fe₂O₃) + 2.781 Additional samples have been collected on a regular basis through the mining operations to increase the amount of available data. 		

Criteria	riteria JORC Code explanation Commentary					
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. Measured Mineral Resources are defined nominally on 12.5m E x 12.5m N grade control spaced drilling with limited areas up to 12.5m E by 25m N or 25m E by 25m N. Indicated Mineral Resources are defined nominally on 50m E x 50m to 100m N spaced drilling and Inferred Mineral Resources nominally up to 100m E x 100m to 125m N with consideration always given for the confidence of the continuity of geology and mineralisation. Consideration to the Reasonable Prospects of (Eventual) Economic Extraction (RPEEE) as described by the JORC Code (2012) is clearly demonstrated and very well understood through successful continuous mining and processing operations at Pilgan and Ngungaju (former Altura) since commissioning in 2018. The reported cut-off grade (COG) adopted is 0.20% Li2O and has been determined based on known operational costs that are ongoing. All factors considered, the resource estimate has in part been assigned to Measured and Indicated resources with the remainder to the Inferred category. 				

Criteria	JORC Code explanation	Commentary			
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	• As part of the DFS study completed in 2016, and subsequent to multiple phases of technical due diligence as part of financing, along with audits/reviews have been completed on the Pilgangoora Mineral Resource with no material flaws identified			
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code. The statement relates to global estimates of tonnes and grade. 			

APPENDIX 4 – SOURCES FOR FIGURE 1 (RESOURCES BUBBLE CHART – TONNAGE, GRADE, LCE – SORTED BY RESOURCE TONNES)

Company	Project name	Stage	Location	Announcement title	Date	Total (Mt)	Resource grade (% Li₂O)	Contained Li ₂ O (Mt)	Contained LCE (Mt) ³
Pilbara Minerals	Pilgangoora	Production	Australia	Substantial 109Mt Mineral Resource increase to 414Mt	7-Aug-23	414	1.15%	4.8	11.8
AVZ Minerals	Manono	Exploration	DRC	Updated Mineral Resource Estimate	24-May-21	401	1.65%	6.6	16.4
IGO / Tianqi / Albemarle	Greenbushes	Production	Australia	IGO 2022 Annual Report to Shareholders	30-Aug-22	360	1.50%	5.4	13.4
Mineral Resources	Wodgina	Production	Australia	Lithium Mineral Resources & Reserve Update	7-Oct-22	259	1.17%	3.0	7.5
Leo Lithium	Goulamina	Development	Africa	Significant Goulamina Mineral Resource upgrade 48% increase to 211Mt	20-Jun-23	211	1.37%	2.9	7.1
SQM	Mt Holland	Development	Australia	Mt Holland Technical Report	25-Apr-22	186	1.53%	2.9	7.0
Liontown	Kathleen Valley	Development	Australia	Kathleen Valley Lithium Project - DFS Update 2	8-Apr-21	156	1.35%	2.1	5.2
Rio Tinto	Jadar	Exploration	Europe	Update to Ore Reserves and Mineral Resources at Jadar	23-Feb-22	144	1.80%	2.6	6.4
Infinity Lithium	San Jose	Exploration	Europe	South-West Connect Conference	20-Oct-22	111	0.61%	0.7	1.7
Patriot Battery Metals	Corvette	Exploration	North America	Patriot announces the largest lithium pegmatite Resource in the Americas at CV5	30 July 23	109	1.40%	1.5	3.8
Albemarle	Kings Mountain	Production	North America	2022 Annual Report	14-Feb-23	90	1.24%	1.1	2.8
Sigma	Grota do Cirilo	Production	South America	Sigma Lithium Corporate Presentation March 2023	15-Mar-23	86	1.43%	1.2	3.0
Andrada	Uis	Exploration	Africa	Drilling Delivers Significant Lithium Resource Upgrade at the Uis Mine	6-Feb-23	81	0.73%	0.6	1.5
Prospect	Arcadia	Development	Africa	Staged OFS Investor Presentation	11-Oct-21	73	1.06%	0.8	1.9
Sayona	North American Lithium	Production	North America	Definitive Feasibility Study confirms NAL value with A\$2.2B NPV	13-Apr-23	58	1.23%	0.7	1.8
Livent	Nemaska	Development	North America	NI 43-101 Report on the Estimate to Complete for the Whabouchi Lithium Mine	31-May-19	56	1.40%	0.8	1.9
Frontier	Pakeagama Lake	e Exploration	North America	Frontier Lithium PFS Demonstrates Pre-Tax NPV US\$2.6bn	1-Jun-23	55	1.47%	0.8	2.0
Mineral Resources	Mt Marion	Production	Australia	Lithium Mineral Resources and Reserve Update	7-Oct-22	51	1.45%	0.8	1.8
Sayona	Moblan	Exploration	North America	Moblan Boosted by Significant Increase in Lithium Resource	17-Apr-23	51	1.31%	0.7	1.7
Latin Resources	Salinas	Exploration	South America	241% increase for the Colina Mineral Resource	20-Jun-23	45	1.32%	0.6	1.5
Piedmont	Carolina Lithium	Exploration	North America	Piedmont Increases Mineral Resources	22-Oct-21	44	1.08%	0.5	1.2
Allkem	James Bay	Exploration	North America	Annual Report to shareholders and Appendix 4E	25-Aug-22	40	1.40%	0.6	1.4
Zinnwald Lithium	Zinnwald	Exploration	Europe	PEA for the revised Zinnwald Lithium Project (NL to FN, Li converted to Li2O using 2.153, it is reported in li PPM)	6-Sep-22	40	0.76%	0.3	0.8
Global Lithium	Manna	Exploration	Australia	Manna Lithium Project Resource Grows	26-Jul-23	36	1.13%	0.4	1.0
Atlantic Lithium	Ewoyaa	Exploration	Africa	Definitive Feasibility Study Project Update	22-Sep-22	35	1.25%	0.4	1.1
Critical Elements	Rose	Exploration	North America	Rose Lithium-Tantalum project feasibility study	13-Jun-22	34	0.90%	0.3	0.8
Core Lithium	Finniss	Production	Australia	Significant Increase to Finniss Mineral Resources	18-Apr-23	31	1.31%	0.4	1.0
Bikita Minerals	Bikita	Production	Africa	SMM news	18-May-22	29	1.17%	0.3	0.9

Company	Project name	Stage	Location	Announcement title	Date	Total (Mt)	Resource grade (% Li ₂ O)	Contained Li₂O (Mt)	Contained LCE (Mt) ³
Savannah	Mina Do Barroso	Exploration	Europe	Annual Report and Financial Statements	31-Dec-21	27	1.06%	0.3	0.7
Alita	Bald Hill	Production	Australia	121 Mining Conference Presentation	20-Mar-19	27	0.96%	0.3	0.6
CAT Strategic Metals	Kamativi	Exploration	Africa	Chimata Releases NI 43-101 Technical Report on the Kamativi Tailings Lithium Project	7-Nov-18	27	0.58%	0.2	0.4
AMG Mineracao	Mibra	Production	South America	AMC Advanced Metallurgical Group Announces Increased Lithium and Tantalum Mineral Resource at Mibra Mine	3-Mar-17	25	1.05%	0.3	0.6
Kodal Minerals	Bougouni	Exploration	Africa	FS demonstrates robust economics for development of the Bougouni Lithium Project	27-Jan-20	21	1.11%	0.2	0.6
Premier African Minerals	Zulu	Development	Africa	Africa's Next Lithium Developer	20-Jun-21	20	1.06%	0.2	0.5
Keliber Oy	Keliber	Development	Europe	Resources from Keliber's Tuoreetsaaret Lithium Deposit	23-Jun-22	17	1.02%	0.2	0.4
Sayona	Authier	Production	North America	Definitive Feasibility Study confirms NAL value with A\$2.2B NPV	13-Apr-23	17	1.01%	0.2	0.4
Rock Tech Lithium	Georgia Lake	Exploration	North America	Georgia Lake Pre-Feasibility Study	1-Oct-22	15	0.91%	0.1	0.3
Liontown	Buldania	Exploration	Australia	Annual Report to Shareholders	30-Sep-22	15	1.00%	0.2	0.4
Allkem	Mt Cattlin	Production	Australia	Mt Cattlin Resource Upgrade with Higher Grade	17-Apr-23	13	1.30%	0.2	0.4
Delta Lithium	Mt Ida	Exploration	Australia	Maiden Lithium Mineral Resource Estimate at Mt Ida	19-Oct-22	13	1.20%	0.2	0.4
European Lithium	Wolfsberg	Exploration	Europe	EUR Merger with NASDAQ Corp	26-Oct-22	13	1.00%	0.1	0.3
Lepidico	Karibib	Development	Africa	Helikon 4 & Rubicon Stockpiles Upgrade to Mineral Resources	30-Jan-23	12	0.46%	0.1	0.1
Essential Metals	Dome North	Exploration	Australia	Dome North Resource Upgrade	20-Dec-22	11	1.16%	0.1	0.3
Snow Lake Resources	Thompson Brothers	Exploration	North America	Annual Report to Shareholders	1-Nov-22	11	1.00%	0.1	0.3
Avalon	Separation Rapids	Exploration	North America	NI 43-101 Separation Rapids Lithium Deposit	26-Sep-18	10	1.40%	0.1	0.4
Green Technology	Seymour	Exploration	North America	Investor Presentation South - West Connect Conference	20-Oct-22	10	1.04%	0.1	0.3
Green Technology	Root	Exploration	North America	Maiden Mineral Resource Estimate for the Root Project	19-Apr-23	5	1.01%	0.1	0.1

Source: Company filings as at 31 July 2023. Note: Figures are rounded. Reported on a 100% asset basis. Sorted by Resource Tonnes. Company reporting the Mineral Resource is disclosed; Li2O converted to LCE using a factor of 2.473. Manono Project excluded from the bubble chart in Figure 1.