

ASX Announcement

15 August 2023

ASX: OD6

Phase 3 Drilling Complete at Splinter Rock Critical Rare Earth Project

OD6 Metals Limited (**OD6** or the **Company**) is pleased to advise that Phase 3 drilling is complete at its Splinter Rock Clay Hosted Rare Earth Project, located northeast of Esperance in Western Australia.

Highlights:

- Phase 3 Aircore (AC) drilling program complete at Splinter Rock
- Total of 145 holes drilled for 7,435m at approximate average depth of 51m and maximum depth of 104m
- Program designed to test the length extension and determine the grade continuity and thickness at key Centre and Prop Prospect areas
- The Phase 3 drilling has identified clays across a 16km length at Centre and 11km length at Prop with widths between 4 to 5 km previously identified in Phase 1 and 2 drilling.
- Observed clay thickness continues to correlate strongly with data obtained from previously completed Airborne Electromagnetic Survey (**AEM**)
- Assay results expected during Q3 2023
- Strong potential for a Mineral Resource Estimate expansion and classification upgrade Q4 2023

Brett Hazelden, Managing Director, commented:

"This third phase of drilling at our flagship Splinter Rock Project program continues the advancement of our key Centre and Prop Prospect areas. Our focus was to further test the significant length of these areas, whilst also determining the continuity of grade and thickness of clay extensions. We are delighted to confirm clay thicknesses initially observed, strongly correlate with, and validate, the Airborne Electromagnetic Survey data, providing our team with further confidence in our exploration methodology.

OD6 is grateful for the continued support from the Department of Mines, Industry Regulation and Safety whose funding, via the Exploration Incentive Scheme helped facilitate the expedition of this drill program."

We eagerly await assay results and look forward to confirming our aim of significantly expanding on the length of the main prospects and growing our clay hosted rare earths discovery even further."

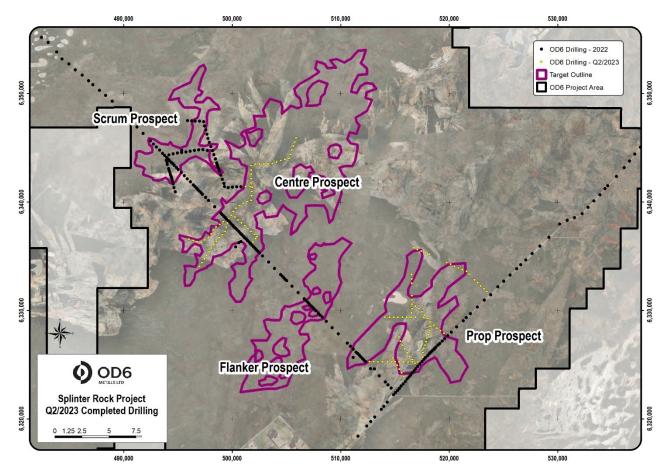
Infill drilling continues to confirm thick clay horizons Phase 3 AC drilling is complete at the Splinter Rock Critical Rare Earth Project. The program was designed to test the localised consistency of clay type, thickness and grades at the Scrum, Centre, Flanker and Prop Prospect areas (refer Figure 1). A total of 145-holes for 7,435m was drilled at an approximate average depth of 51m and maximum depth of 104m at 400m spacing interval.

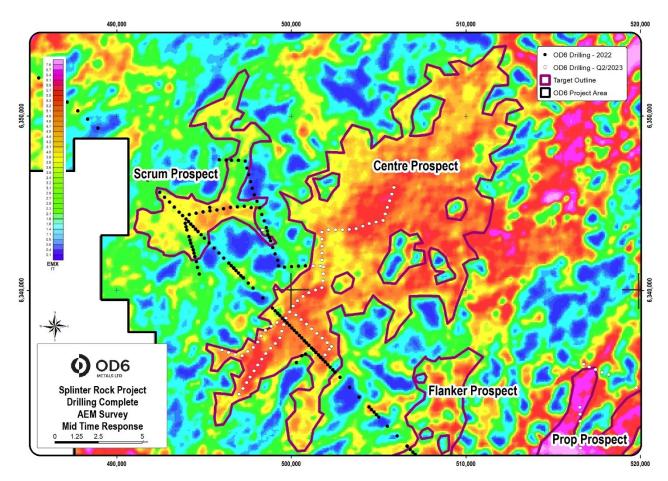
The drill program continues to confirm thick saprolite clay horizons at our two largest prospect areas (Prop and Centre), with samples currently being assayed for rare earth elements (REEs). The Company is compiling and reviewing drill hole logs to enable detailed mapping of clay depth and thickness. The phase 3 drilling has identified clays across a 16km length at Centre and 11km length at prop with widths between 4 to 5 km previously identified in Phase 1 and 2 drilling campaigns.

Several planned holes were not completed as part of this drill program due to wet ground conditions and will be revisited as part of a fourth phase of drilling.

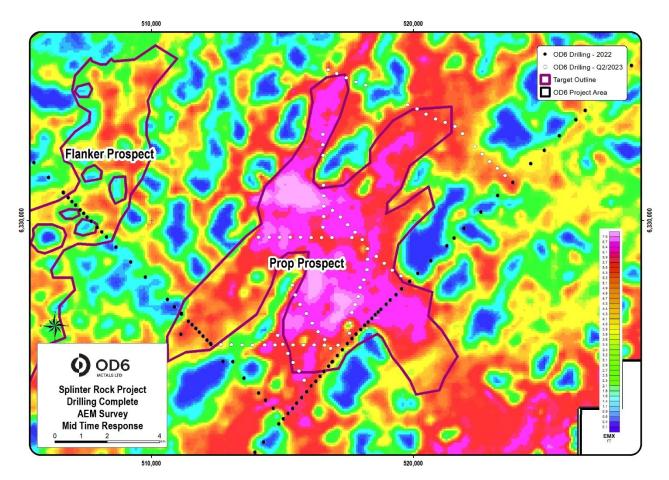
Metallurgical samples will be selected for work at ANSTO once assays have been received.

The Phase 3 drill program received funding through the Western Australian Governments Exploration Incentive Scheme Co-funded drilling program (refer ASX Announcement, <u>24 April</u> <u>2023</u>).




Figure 1: Splinter Rock Project completed drilling locations.

AEM continues Drilling targeted the two largest clay basin areas identified through the Airborne Electromagnetic Survey coloured yellow, red and pink in Figures 2 and 3, below (refer ASX Announcement, <u>15 December 2022</u>).


Drilling depths completed, and clay thicknesses observed strongly correlate with AEM data. This enables OD6 to avoid areas of granites (blue areas in Figures 2 and 3, below) and/or areas with minimal clays (green areas in the below) to focus drilling on the highly prospective clay zones (orange, red and pink areas the below).

This approach minimises drilling and exploration expenditure, with drilling costs of approximately A\$35 per meter and total all in cost per meter including earthworks, heritage surveys, assays, equipment, travel and other miscellaneous items totalling under A\$100 per meter.

Figure 2: AEM Mid time electromagnetic conductivity model of Scrum and Centre Prospects with infill drilling locations shown in red. Yellow, red, pink areas interpreted to indicated thicker clay zones, with blue areas the granites).

Figure 3: AEM Mid time electromagnetic conductivity model of Flanker and Prop Prospects with infill drilling locations shown in red. Yellow, red, pink areas interpreted to indicated thicker clay zones, with blue areas the granites).

Program timeline

- Phase 3 drilling assays are expected to be returned during Q3 2023
- Final AEM data processing and 3D modelling expected to be completed during Q4 2023
- Metallurgical testing and mineralogy assessments at ANSTO scheduled to be progressively returned during Q3 and Q4 2023
- Additional Hylogger analysis of the cross-sections of the Prop and Centre prospect to further enhance understanding of drillcore mineralogy is expected to be returned from CSIRO during Q4 2023

Visual Mineralisation Cautionary Statement

In relation to the disclosure of visual mineralisation, the Company cautions that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging. The Company will update the market when laboratory analytical results become available. The reported intersections are down hole measurements and are not necessarily true width. Descriptions of the mineral amounts seen and logged in the core are qualitative, visual estimates only (they are listed in order of abundance of estimated combined percentages). Quantitative assays will be completed by ALS Global in Perth Western Australia

No new information

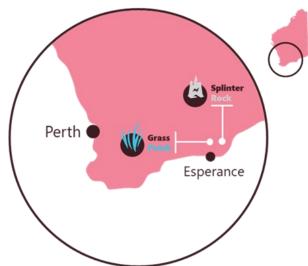
Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

Competent Persons Statement

Information in this report relating to Exploration Results is based on information reviewed by Jeremy Peters, who is a Fellow of the Australasian Institute of Mining and Metallurgy and a Chartered Professional Geologist and Mining Engineer of that organisation. Mr Peters is an independent consultant of Burnt Shirt Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Peters consents to the inclusion of the data in the form and context in which it appears.

Forward Looking Statements

Certain information in this document refers to the intentions of OD6 Metals, however these are not intended to be forecasts, forward looking statements, or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to OD6 Metals projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the OD6 Metals plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause OD6 Metals actual results, performance, or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, OD6 Metals and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).


This announcement has been authorised for release by the Board of OD6 Metals Limited

About OD6 Metals

OD6 Metals is an Australian public company pursuing exploration and development opportunities within the critical mineral sector. The Company has successfully identified clay hosted rare earths at its 100% owned Splinter Rock and Grass Patch Projects, which are located in the Esperance-Goldfields region of Western Australia - about 30 to 150km northeast of the major port and town of Esperance.

Drilling and geological analysis at its flagship Splinter Rock has shown widespread, thick, high-grade clay hosted REE deposits that extend over hundreds of square kilometres. Metallurgical testing using hydrochloric acid to leach the rare earths have resulted in positive REE recoveries with optimisation ongoing.

The Company aims to delineate and define economic resources

and reserves of Rare Earth Elements (REE), in particular Neodymium (Nd) and Praseodymium (Pr), which can be developed into a future revenue generating mine. Clay REE deposits are currently economically extracted in China, which is the dominant world producer of REEs.

REE are becoming increasingly important in the global economy, with uses including advanced electronics and permanent magnets in electric motors. As an example, a neodymium magnet used in a wind turbine or electric vehicle motor is 18 times stronger than a standard ferrite magnet significantly increasing energy use efficiency.

As part of the exploration process the Company has entered into heritage agreements with Esperance Tjaltrjraak Native Title Aboriginal Corporation and the Ngadju Native Title Aboriginal Corporation that serves to both enable exploration a protect important cultural sites on Country.

Corporate Directory

Managing Director	Mr Brett Hazelden
Non-Executive Chairman	Dr Darren Holden
Non-Executive Director	Mr Piers Lewis
Non-Executive Director	Dr Mitch Loan
Financial Controller/ Joint Company Secretary	Mr Troy Cavanagh
Joint Company Secretary	Mr Joel Ives
Exploration Manager	Tim Jones

Contact

OD6 Metals Ltd ACN 654 839 602 www.od6metals.com.au Mail to: info@od6metals.com.au Phone: +61 8 6189 8515 Level 1, 50 Kings Park Road, West Perth, WA 6005 PO Box 277, North Beach, WA 6920 PO Box 2009, Esperance, WA 6450

Drilling Details (Third Phase – June to August 2023)

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0280	AirCore	498360	6343465	227	0	-90	54.00
SRAC0291	AirCore	499186	6338152	206	0	-90	49.00
SRAC0292	AirCore	498859	6337922	207	0	-90	20.00
SRAC0293	AirCore	498532	6337692	209	0	-90	13.00
SRAC0294	AirCore	498269	6337390	204	0	-90	43.00
SRAC0295	AirCore	498077	6337038	202	0	-90	23.00
SRAC0296	AirCore	497824	6336728	202	0	-90	25.00
SRAC0297	AirCore	497503	6336490	204	0	-90	36.00
SRAC0298	AirCore	497181	6336252	202	0	-90	47.00
SRAC0299	AirCore	496786	6336316	205	0	-90	23.00
SRAC0300	AirCore	496404	6336432	208	0	-90	55.00
SRAC0301	AirCore	496028	6336565	211	0	-90	36.00
SRAC0302	AirCore	497440	6334719	205	0	-90	41.00
SRAC0303	AirCore	497223	6334383	205	0	-90	43.00
SRAC0304	AirCore	497006	6334047	207	0	-90	39.00
SRAC0306	AirCore	497873	6335386	201	0	-90	48.00
SRAC0307	AirCore	498089	6335722	202	0	-90	27.00
SRAC0308	AirCore	498313	6336054	203	0	-90	27.00
SRAC0309	AirCore	498548	6336377	203	0	-90	28.00
SRAC0310	AirCore	498814	6336676	208	0	-90	50.00
SRAC0311	AirCore	499097	6336958	205	0	-90	60.00
SRAC0312	AirCore	499346	6337272	205	0	-90	55.00
SRAC0313	AirCore	499456	6337656	207	0	-90	64.00
SRAC0314	AirCore	499566	6338039	205	0	-90	41.00
SRAC0315	AirCore	499701	6338415	203	0	-90	63.00
SRAC0316	AirCore	499906	6338759	204	0	-90	48.00
SRAC0317	AirCore	500111	6339100	204	0	-90	55.00
SRAC0318	AirCore	500359	6339413	204	0	-90	71.00
SRAC0319	AirCore	500676	6339656	203	0	-90	70.00
SRAC0320	AirCore	501015	6339867	202	0	-90	40.00
SRAC0321	AirCore	501389	6340009	204	0	-90	72.00
SRAC0322	AirCore	501762	6340149	202	0	-90	57.00
SRAC0323	AirCore	501811	6340546	204	0	-90	45.00
SRAC0324	AirCore	501832	6340945	205	0	-90	56.00
SRAC0325	AirCore	501855	6341344	203	0	-90	43.00
SRAC0326	AirCore	501260	6341403	203	0	-90	55.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0327	AirCore	501763	6341732	203	0	-90	60.00
SRAC0328	AirCore	501762	6342132	204	0	-90	52.00
SRAC0329	AirCore	501759	6342532	204	0	-90	61.00
SRAC0330	AirCore	501756	6342932	205	0	-90	49.00
SRAC0331	AirCore	501754	6343332	203	0	-90	42.00
SRAC0332	AirCore	502130	6343468	204	0	-90	48.00
SRAC0333	AirCore	502529	6343475	201	0	-90	73.00
SRAC0334	AirCore	502930	6343481	201	0	-90	57.00
SRAC0335	AirCore	503329	6343487	195	0	-90	60.00
SRAC0336	AirCore	503727	6343531	196	0	-90	72.00
SRAC0337	AirCore	504100	6343677	195	0	-90	63.00
SRAC0338	AirCore	504472	6343823	194	0	-90	56.00
SRAC0339	AirCore	504861	6343919	193	0	-90	63.00
SRAC0340	AirCore	505260	6344002	193	0	-90	70.00
SRAC0341	AirCore	505386	6344381	191	0	-90	74.00
SRAC0342	AirCore	505512	6344760	191	0	-90	70.00
SRAC0343	AirCore	505639	6345139	191	0	-90	67.00
SRAC0344	AirCore	505765	6345519	189	0	-90	45.00
SRAC0345	AirCore	505890	6345897	191	0	-90	69.00
SRAC0351	AirCore	500267	6338586	204	0	-90	51.00
SRAC0352	AirCore	500567	6338322	205	0	-90	63.00
SRAC0353	AirCore	500868	6338057	204	0	-90	52.00
SRAC0354	AirCore	501167	6337793	204	0	-90	64.00
SRAC0355	AirCore	501468	6337528	205	0	-90	58.00
SRAC0356	AirCore	501767	6337263	206	0	-90	79.00
SRAC0357	AirCore	502068	6336999	205	0	-90	95.00
SRAC0358	AirCore	502177	6336615	204	0	-90	84.00
SRAC0359	AirCore	501939	6336293	204	0	-90	87.00
SRAC0360	AirCore	515834	6323899	149	0	-90	18.00
SRAC0361	AirCore	515633	6324245	147	0	-90	49.00
SRAC0362	AirCore	515408	6324575	144	0	-90	41.00
SRAC0363	AirCore	515202	6324916	146	0	-90	65.00
SRAC0364	AirCore	515007	6325264	146	0	-90	61.00
SRAC0365	AirCore	514813	6325615	143	0	-90	24.00
SRAC0366	AirCore	516842	6325117	154	0	-90	12.00
SRAC0367	AirCore	516618	6325449	149	0	-90	18.00
SRAC0368	AirCore	516364	6325756	146	0	-90	54.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0369	AirCore	516139	6326079	147	0	-90	71.00
SRAC0370	AirCore	515493	6327157	147	0	-90	24.00
SRAC0371	AirCore	515666	6326792	148	0	-90	56.00
SRAC0372	AirCore	515375	6327536	146	0	-90	53.00
SRAC0373	AirCore	517557	6325690	154	0	-90	59.00
SRAC0374	AirCore	517577	6326089	151	0	-90	17.00
SRAC0375	AirCore	517650	6326483	146	0	-90	60.00
SRAC0376	AirCore	518106	6327739	149	0	-90	38.00
SRAC0377	AirCore	518227	6328120	149	0	-90	61.00
SRAC0378	AirCore	518247	6328521	150	0	-90	67.00
SRAC0379	AirCore	518251	6328922	151	0	-90	53.00
SRAC0380	AirCore	512653	6325254	174	0	-90	37.00
SRAC0381	AirCore	513053	6325253	175	0	-90	40.00
SRAC0382	AirCore	513452	6325250	162	0	-90	26.00
SRAC0383	AirCore	513852	6325247	147	0	-90	10.00
SRAC0384	AirCore	514320	6325246	147	0	-90	40.00
SRAC0385	AirCore	514718	6325247	147	0	-90	40.00
SRAC0386	AirCore	515407	6325241	146	0	-90	27.00
SRAC0387	AirCore	515806	6325241	146	0	-90	27.00
SRAC0388	AirCore	516205	6325241	149	0	-90	30.00
SRAC0389	AirCore	516607	6325239	150	0	-90	32.00
SRAC0390	AirCore	517127	6325237	157	0	-90	36.00
SRAC0391	AirCore	519528	6327883	159	0	-90	58.00
SRAC0392	AirCore	519193	6328102	156	0	-90	57.00
SRAC0393	AirCore	518890	6328362	156	0	-90	53.00
SRAC0394	AirCore	518588	6328624	152	0	-90	80.00
SRAC0395	AirCore	518048	6329267	151	0	-90	33.00
SRAC0396	AirCore	517771	6329554	146	0	-90	46.00
SRAC0397	AirCore	517487	6329839	147	0	-90	68.00
SRAC0398	AirCore	517215	6330131	143	0	-90	54.00
SRAC0399	AirCore	516907	6330385	146	0	-90	37.00
SRAC0400	AirCore	517655	6329347	148	0	-90	66.00
SRAC0401	AirCore	516895	6329352	149	0	-90	81.00
SRAC0402	AirCore	516495	6329353	146	0	-90	21.00
SRAC0403	AirCore	516095	6329354	147	0	-90	68.00
SRAC0404	AirCore	515694	6329357	147	0	-90	69.00
SRAC0405	AirCore	515294	6329359	149	0	-90	57.00

Hole ID	Туре	Easting	Northing	RL (m)	Azimuth (degrees)	Dip (degrees)	End of Hole (m)
SRAC0406	AirCore	514893	6329362	149	0	-90	56.00
SRAC0407	AirCore	514492	6329362	148	0	-90	46.00
SRAC0408	AirCore	514091	6329364	146	0	-90	40.00
SRAC0409	AirCore	516540	6329751	145	0	-90	34.00
SRAC0410	AirCore	516577	6330149	150	0	-90	66.00
SRAC0411	AirCore	516580	6330549	146	0	-90	60.00
SRAC0412	AirCore	516574	6330949	144	0	-90	34.00
SRAC0413	AirCore	516570	6331348	151	0	-90	35.00
SRAC0414	AirCore	516553	6332492	154	0	-90	27.00
SRAC0415	AirCore	516547	6332892	155	0	-90	33.00
SRAC0416	AirCore	516542	6333293	152	0	-90	25.00
SRAC0417	AirCore	523503	6331715	160	0	-90	93.00
SRAC0418	AirCore	523214	6331991	160	0	-90	68.00
SRAC0419	AirCore	522916	6332259	161	0	-90	74.00
SRAC0420	AirCore	522632	6332540	167	0	-90	73.00
SRAC0421	AirCore	522351	6332824	167	0	-90	60.00
SRAC0422	AirCore	521882	6333319	163	0	-90	104.00
SRAC0423	AirCore	521597	6333601	163	0	-90	23.00
SRAC0424	AirCore	521223	6333744	160	0	-90	89.00
SRAC0425	AirCore	520849	6333885	158	0	-90	82.00
SRAC0426	AirCore	520488	6334060	160	0	-90	64.00
SRAC0427	AirCore	520145	6334265	161	0	-90	86.00
SRAC0428	AirCore	519774	6334417	164	0	-90	56.00
SRAC0429	AirCore	518183	6335174	157	0	-90	25.00
SRAC0430	AirCore	517803	6335297	155	0	-90	23.00
SRAC0431	AirCore	517437	6335460	154	0	-90	44.00
SRAC0432	AirCore	517069	6335615	154	0	-90	41.00
SRAC0433	AirCore	516744	6335759	153	0	-90	27.00
SRAC0439	AirCore	497687	6335034	202	0	-90	53.00
SRAC0464	AirCore	515910	6326443	146	0	-90	60.00
SRAC0465	AirCore	517779	6326787	142	0	-90	39.00
SRAC0466	AirCore	517892	6327096	143	0	-90	62.00
SRAC0467	AirCore	517964	6327444	144	0	-90	103.00
SRAC0469	AirCore	501662	6341390	203	0	-90	70.00
SRAC0470	AirCore	502305	6336788	203	0	-90	60.00

JORC 2012 – Table1: Splinter Rock

Section 1 Sampling Techniques and Data

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Geochemical sampling was undertaken by sampling of metre interval samples returned from the cyclone of a conventional aircore drilling rig. Certified reference samples, duplicates and blank samples were inserted into the sample stream such as to represent approximately 5% of the samples submitted to the laboratory for analysis Two composite samples were collected over three metre intervals – the first (the A sample) being submitted for laboratory analysis and the second (the B sample) being retained as a reference. A sample from each metre was collected and stored in a chip tray for logging and x-ray diffraction analysis
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Air core drilling was completed by hammer and blade industry standard drilling techniques Aircore is considered to be an appropriate drilling technique for saprolite clay Drilling used blade bits of 87mmØ with 3m length drill rods to blade refusal.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air core recoveries were not recorded but are not considered to be materially biased, given the nature of the geology and samples. The assay data will be analysed against control samples and historical assays for any indications of bias The Competent Person considers that due to the nature of the drilling and geology, sample bias is unlikely to result from poor recovery.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All chips were logged qualitatively and quantitatively. A sample from each metre was collected and stored in a chip tray for logging Geological logs recorded lithology, colour and weathering.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the 	 A composite sample of ~ 3kg for analysis was taken using a scoop from each metre pile to subsample 1 to 1.5kg sample. This was then dispatched to the laboratory. A second composite sample was similarly taken and stored on site as a reference Air core samples were a mix of wet and dry Certified reference samples, duplicates and blank samples were inserted into the sample stream such as to represent approximately 5% of the samples submitted to the laboratory for analysis

Criteria	JORC Code explanation	Commentary		
	grain size of the material being sampled.			
Quality of assay data and laboratory tests Verification of sampling	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by 	using indust analytical te • Riffle sp one hal • Pulveris • Genera • Bag the storage • Multi-Eleme exploration i 0.25g samp REEs includ	nt Ultra Trace metho n soils or sediments le analysed via ICP- led. erence samples, dup	preparation and 50:50 bagging for storage material via LM-5 master pulp packet pulp master for od ME-MS61r for . 4-Acid digest on MS and ICP-AES. policates and blank
and assaying	 either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 such as to resamples sub No holes we Data stored logging data Multielemen stoichiometri 	re inserted into the sepresent approximate omitted to the laboration of the laborati	ely 5% of the tory for analysis ed). auto-validation of converted to g element-to-
		Element ppm	Conversion Factor	Oxide Form
		Ce	1.1713	CeO ₂
		Dy	1.1477	Dy ₂ O ₃
		Er	1.1435	Er ₂ O ₃
		Eu	1.1579	Eu ₂ O ₃
		Gd	1.1526	Gd ₂ O ₃
		Но	1.1455	Ho ₂ O ₃
		La	1.1728	La ₂ O ₃
		Lu	1.1371	Lu_2O_3
		Nd	1.1664	Nd ₂ O ₃
		Pr	1.1703	Pr ₆ O ₁₁
		Sm	1.1596	Sm ₂ O ₃
		Tb	1.1510	Tb ₄ O ₇
		Tm	1.1421	Tm ₂ O ₃
		Y	1.2699	Y_2O_3
		Yb	1.1387	Yb ₂ O ₃
		reporting ran are used for evaluation g TREO (Tota = $La_2O_3 + C$ $Eu_2O_3 + Gd$ + $Tm_2O_3 + N$ Note that Y_2	I Rare Earth Oxide) eO ₂ + Pr ₆ O ₁₁ + Nd ₂ O ₂ O ₃ + Tb ₄ O ₇ + Dy ₂ O ₃ ′b ₂ O ₃ + Lu ₂ O ₃ + Y ₂ O O ₃ is included in the	ing calculations their reporting and $D_3 + Sm_2O_3 +$ $A + Ho_2O_3 + Er_2O_3$ B_3 TREO calculation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 GPS to +/-5 Grid system Downhole s being vertica No topograp relatively fla 	was MGA 94 Zone urvey was not under al hy control was used t topography	51 taken, the holes I, given the
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 400m centre Downhole s. This drilling particularly v Tempest Air was used to 	vals were closed to a samples were taken of indicated excellent of when supported by t borne Aeromagnetic define basin limits. borne Electromagnet	on 1m intervals continuity, he results of the c Survey, which

Criteria	JORC Code explanation	Commentary
	applied.	 undertaken by Xcalibur Multiphysics Data collected using the TEMPEST EM system (50Hz) using fixed wing aircraft. Nominal flight height of 120 m above ground level. GPS cycle rate of 1 second, accuracy 0.5m Altimeter accuracy of 0.05m Flight line spacing 400 to 800m. Conductivity measurements and sampling interval at approximately 11 to 12 metres along line. This data when combined with further drilling will be utilised to guide future mineral resource estimation
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes were vertical and approximately perpendicular to mineralisation hosted in flat lying clay-beds This orientation is not considered by the Competent Person to have introduced material sampling bias. For AEM data: Flight lines are North West- South East: drainage and regolith patterns show a regional slope down from NW to SE, whereas geological structure is dominantly NE-SW. The thickness of regolith presented in the cross-sections is based on geophysical inversion modelling used Monte Carlo simulation known as RJMCMC regression based on Bodin and Sambridge (2009) https://doi.org/10.1111/j.1365-246X.2001.04226.x & Minsley (2011) https://doi.org/10.1111/j.1365-246X.2011.05165.x with modifying parameters by CSIRO. refer ASX Announcement 5 October 2022 The RJMCMC method uses a comparison method to estimate the conductivity.
Sample security	The measures taken to ensure sample security.	 Samples were taken and dispatched by road freight direct to the analytical laboratory
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• The Independent Competent Person reviewed the sampling techniques and data collection. The Independent Competent Person has previously completed a site visit during drilling to verify sampling techniques and data collection.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Splinter Rock Project is held by Odette Six Pty Ltd which is a 100% owned subsidiary of OD6 Metals Ltd. Granted exploration Licences include E63/2115, E69/3904, E69/3905, E69/3907, E69/3893, E69/3894. The ELs predominantly overly vacant crown land with a small portion of freehold agricultural land used for crop and livestock farming to the south. The Company has Native Title Land Access agreements with Ngadju Native Title Aboriginal Corporate and Esperance Tjaltjraak Native Title Aboriginal Corporation. The tenements are in good standing with no known impediments outside the usual course of exploration licenses.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 An Independent Geological Report was completed by of Sahara Natural Resources and included in the Company's Prospectus dated 10 May 2022. Historic exploration for REE's was conducted by Salazar Gold Pty Ltd The historical data has been assessed and is considered of good quality
Geology	 Deposit type, geological setting and style of mineralisation. 	 The rare earth mineralisation at the Splinter Rock Project occurs in the weathered profile (in-situ regolith clays) adjacent to and above Booanya Granite of the East Nornalup Zone of the Albany- Fraser Orogen. The Booanya granites are enriched in REEs. Factors such as groundwater dispersion and paleo-weathering environments may mobilise REEs away from the granite sources.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drill results are reported to the ASX in line with ASIC requirements A summary of material drill hole information ins included in the Drill Hole Data table included above No material has been excluded. Assay results have yet to be received and are thus not included Some results occur outside the mineralised area of interest and have been excluded as not being of material interest. Internal waste results have been included in the mineralised intercepts. Mineralised intersections have been publicly reported by OD6 in accordance with the JORC Code and ASX Listing Rules and are not repeated here. The Competent Person observes consistent broad intersections of REEs and is satisfied that the drilling information supports this interpretation.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No cutting of grades has been engaged in Data has been aggregated according to downhole intercept length above the cut-off grade and internal sub-grade material has been included. A lower cut-off grade of 300ppm TREO has been applied. OD6 considers this to be an appropriate cut-off grade for exploration data in a clay-hosted REE project A 1,000ppm cut off grade has been applied to the Mineral Resource Multielement results (REE) are converted to stoichiometric conversion factors. These stoichiometric conversion factors are stated in the 'verification of sampling and assaying' table above and can be referenced in appropriate publicly available technical data.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drillholes drilled vertical and orthogonal to generally flat to shallow dipping clay mineralisation. Drilled width is approximately true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Data is currently being compiled and reviewed whilst waiting for laboratory assays thus no cross sections are presented. Drilling is presented in long-section and cross section as appropriate.
Balanced reporting	Where comprehensive reporting of all	All drillhole results have been reported including

Criteria	JORC Code explanation	Commentary
	Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 those drill holes where no significant intersection was recorded. Electromagnetic data processing presented in this release is across all tenure at Splinter Rock. Further work on the remainder of the project is underway
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All material data available is reported. There have been various photogrammetric and geophysical surveys at Splinter Rock at various times that have contributed to understanding of the geology of the deposit. The Competent Person considers these to have been undertaken in an appropriate manner.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mineralisation is open perpendicular to the drill traverses. The Competent Person recommends that OD6 drill traverses in this direction. Further work will include additional air core drilling, core drilling (e.g sonic or push-tube drilling, mineralogy, metallurgical test work and study work. Further work will include additional air core drilling, core drilling (e.g sonic or push-tube drilling, mineralogy, metallurgical test work and study work. Further work will include additional air core drilling, core drilling (e.g sonic or push-tube drilling, mineralogy, metallurgical testwork and study work.