

EXPLORATION PROGRAM TO BEGIN AT SWC URANIUM PROJECT

HIGHLIGHTS

- Exploration program to begin at Southwest Corner (SWC) contains high grade Uranium at shallow depth
- SWC has a relatively intense 3.5 x 1.8 km radiometric anomaly and multiple excellent grading Uranium intersections¹ (*Table 1*), some ending in mineralisation (open-ended)
- SWC was previously owned by Mantra Resources Ltd which was subject to a takeover in 2011 by Uranium Resources for over US\$1 Billion
- Of the 18 auger holes drilled previously, the best results included:
 - O MRSA04: 5m @ 700 ppm U₃O₈ from 7m including 2m@ 1,300ppm
 - o MRSA06: 7m @ 440 ppm U₃O₈ from surface including 2m@ 675ppm
 - o MRSA12: 8m @ 1,273 ppm U₃O₈ from surface including 2m@ 3,825ppm
 - O MRSA07: 5m @ 1,200 ppm U₃O₈ from 2m@ 2,705ppm
 - O MRSA13: 7m @ 494 ppm U₃O₈ from 3m@ 803ppm
- SWC is ~50 kms south of Mantra/Uranium One's world class "Nyota" deposit (hosting a Measured and Indicated MRE of 187 Mt at 306 ppm U₃O₈ containing 124.6 Mlbs U₃O₈) in a similar geological setting

Gladiator Resources Ltd (ASX: GLA) (Gladiator or the Company) is pleased to announce that it will commence the exploration program at its flagship SWC Uranium Target in Tanzania within its 724km2 Mkuju Project. The region hosts significant sandstone hosted uranium deposits. The tenement was previously owned by Mantra Resources Limited (Mantra) which was subject to a takeover by Uranium One over 10 years ago for over USD\$1 Billion.

Exploration Program

Gladiator is mobilising a team in the next fortnight to carry out trenching at SWC to better understand the high-grade uranium 2008 auger drilling results which some include mineralisation from surface. Samples will be collected from the trenches for analysis. Concurrently with the trenching, a ground radiometric survey and geological mapping is planned. The data from this work will inform a drilling program to test the depth and lateral extent of the mineralisation. An air-core and diamond core drilling would be best carried after the onset of the 2024 dry season (beginning approximately April 2024).

¹ Drilled in 2008 by Mantra Resources Ltd, "Mantra"

SWC Target

The target is a relatively intense 3.5 x 1.8 km airborne radiometric anomaly in the southwest corner of Prospecting Lease 12354 which was recently secured by Gladiator². The target is at the end of a 12 km long NE-SW oriented trend of radiometric anomalies referred to as the Mtonya-SWC trend (Fig.1). SWC has the most intense radiometric anomaly of all those on the trend but no exploration has been carried out since 2008 except for a single diamond core hole drilled in 2012. Reportedly, Mantra (who originally drilled the auger holes) did not follow-up the highly elevated U_3O_8 results at the time due to prioritising their large "Nyota" Uranium deposit 50 km to the north.

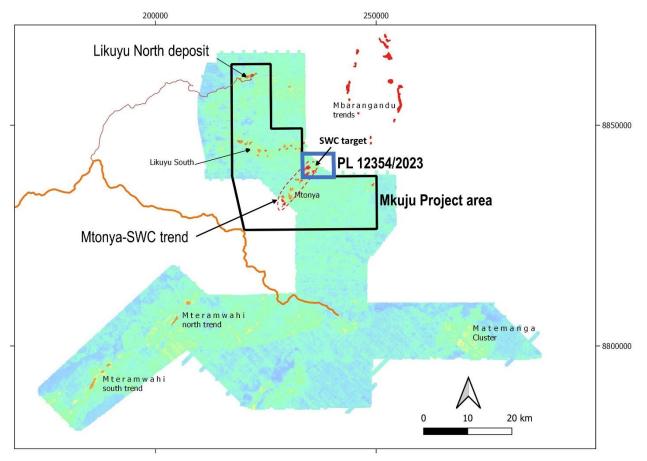


Figure 1. GLA's Mkuju Project area showing the SWC target

Auger Hole Results

The work reported herein is historic: In 2008 Mantra carried out auger drilling to test airborne radiometric anomalies at the SWC target. Available data indicates that they drilled 18 holes to a maximum depth of 13m with a total of 154m drilled. The holes were terminated on reaching the change from weathered to less-weathered harder rock, as an auger bit will not penetrate harder ground. These holes are shown on *Figure 2 Table 1* provides the results in the database obtained by Gladiator. The holes were drilled along ridgelines for ease of access. A single cored hole was drilled in 2012 (MSED004 shown in Table and Figure 1).

² GLA announcement dated 1 June 2023

Hole_ID	Туре	Max Depth (m)	Date completed	UTM East	UTM North	RL (m)	From (m)	To (m)	nterval (m	U3O8 (ppm)	Comments
MRSA01	auger	10	4/26/2008	234550	8840044	794	3.0	9.0	6	182	
MRSA02	auger	13	4/27/2008	234645	8840026	807	11.0	13.0	2	305	ended in min.
MRSA03	auger	13	4/28/2008	234710	8839860	806	0.0	3.0	3	130	
MRSA04	auger	12	4/29/2008	234719	8840034	813	7.0	12.0	5	700	ended in min.
MRSA05	auger	10	4/29/2008	234864	8840155	810	8.0	9.0	1	90	
MRSA06	auger	7	4/30/2008	234427	8839889	821	0.0	7.0	7	440	ended in min.
MRSA07	auger	8	4/30/2008	234500	8838672	975	3.0	8.0	5	1200	ended in min.
MRSA08	auger	5	5/2/2008	234523	8838750	796	4.0	5.0	1	150	ended in min.
MRSA09	auger	6	5/2/2008	234523	8838787	794	1.0	2.0	1	100	
MRSA10	auger	6	5/2/2008	234433	8838650	791	4.0	6.0	2	270	ended in min.
MRSA11	auger	6	5/2/2008	234362	8838639	801	1.0	5.0	4	348	
MRSA12	auger	8	5/2/2008	233976	8838328	822	0.0	8.0	8	1273	ended in min.
MRSA13	auger	7	5/2/2008	234059	8838422	819	0.0	7.0	7	494	ended in min.
MRSA14	auger	9	5/4/2008	233316	8838166	838		No	data		
MRSA15	auger	7	5/4/2008	233443	8838332	830	NSI				
MRSA17	auger	11	5/27/2008	233893	8837970	805	No data				
MRSA18	auger	8	5/31/2008	235810	8839256	784			NSI		
MSED0004	diamond core	701	10/18/2012	233488	8838452	819	58.1	59.3	1.2	824	

Table 1: SWC drill holes with Uranium intersections (all holes vertical). NSI = No significant Intersection

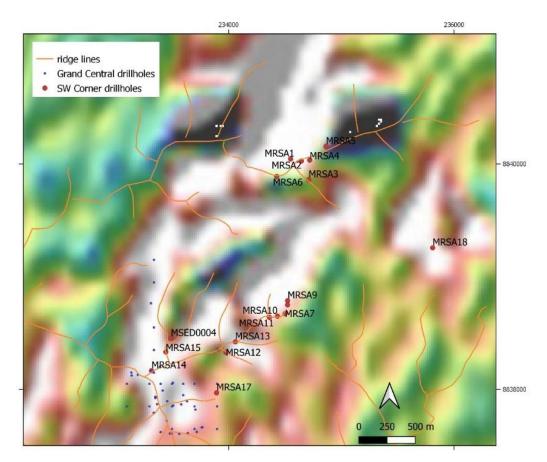


Figure 2: SWC target area and airborne radiometric data with drill holes (white is highest radiometric intensity)

Geology and Target Type

The area is comprised of sediments of the Upper Triassic Mbarangandu Formation, which are coarse sandstones, grit-stones, conglomerates and lesser mudstones. The stratigraphy is gently dipping to the northeast and east, with local variations. The Uranium observed at the nearby Mtonya deposit is hosted by feldspathic sandstone and interpreted as 'stacked roll-front mineralisation' type, hosted in 3 'tiers' from tens to hundreds of meters below surface and separated by mudstones.

Based on the work at Mtonya, the primary target type is a Uranium 'roll-front' system. These are accumulations of Uranium at the interface of oxidised and reduced sandstones or siltstones, which are globally one of the most important types of Uranium deposit. They may be very large, of excellent grade and are generally amenable to mining by In-Situ Recovery (ISR) methods, as is widely used in the USA, Kazakhstan and Australia. ISR can be beneficial in terms of economics and having less impact on the environment.

Released with the authority of the Board

Contact: Greg Johnson , Non-Executive Chairman greg@gladiatorresources.net

Competent Person (CP) Statement

Information in this "ASX Announcement" relating to Exploration Targets, Exploration Results and Mineral Resources has been compiled by Mr. Andrew Pedley who is a member in good standing with the South African Council for Natural Scientific Professions (SACNASP). Mr. Pedley has sufficient experience that is relevant to the types of deposits being explored for and qualifies as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code 2012 Edition). Mr. Pedley consents to the inclusion in this document of the matters based on the information in the form and context in which it appears. The market announcement is based on, and fairly represents, information and supporting documentation prepared by the Competent Person. Mr. Pedley is a non-executive director of Gladiator Resources Limited.

About Gladiator Resources

Gladiator is an ASX listed (ASX: GLA) exploration and mining Company with a focus on Uranium. The Company holds nine exploration licenses covering ~1,810km² in Tanzania, highly prospective for Uranium. Five of the licenses are contiguous (including SWC), forming the 724km² Mkuju Project.

APPENDIX – JORC TABLES

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JO	RC Code explanation		Commentary
1.1 Sampling techniques	• Inca can proceed with same miles.	nature and quality of sampling (eg cut channels, andom chips, or specific specialised industry andard measurement tools appropriate to the inerals under investigation, such as down hole amma sondes, or handheld XRF instruments, c). These examples should not be taken as initing the broad meaning of sampling. Clude reference to measures taken to ensure ample representivity and the appropriate dibration of any measurement tools or systems ed. Prects of the determination of mineralisation at are Material to the Public Report. Cases where 'industry standard' work has been and this would be relatively simple (eg 'reverse acculation drilling was used to obtain 1 m amples from which 3 kg was pulverised to coduce a 30 g charge for fire assay'). In other sees, more explanation may be required, such as there there is coarse gold that has inherent ampling problems. Unusual commodities or ineralisation types (eg submarine nodules) may carrant disclosure of detailed information.	•	No records of sampling methodology were available to Gladiator for review. All that is known is that the holes were drilled using an auger rig and that samples were 1 metre in length. It is uncertain if the full sample or a split of it was collected. Following on from the above, no assurances of sample representivity can be made.
1.2 Drilling techniques	ha eta sta sa	ill type (eg core, reverse circulation, open-hole immer, rotary air blast, auger, Bangka, sonic, c) and details (eg core diametre, triple or andard tube, depth of diamond tails, facempling bit or other type, whether core is iented and if so, by what method, etc).	•	The holes were drilled using an auger rig and were vertical. Holes stopped when they reached 'refusal' auger rigs will only penetrate soft material. The hole might have recovered the upper highly weathere bedrock (saprolite) but not beyond this. The single hole MSED004 was drilled by diamond coring of unknown diameter.

Criteria		JORC Code explanation		Commentary
1.3 Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	No records of recovery are available and so no comment on sample representivity or adequacy of the method can be made.
1.4 Logging	•	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	•	There is no logged geological data for the auger holes. The single diamond hole has a detailed geological log recording weathering, lithology, grainsize, sorting and other characteristics. No photographs are available.
1.5 Sub- sampling techniques and sample preparation	•	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	•	No records or description of subsampling techniques are available and so no comment on appropriateness or representivity can be made.
1.6 Quality of assay data and laboratory tests	•	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (lack of bias) and precision have been established	•	No record of assay and laboratory methods is available. The assay sheet in the database does record that the method was 4 acid digest followed by ICPOES and that the analyses were carried out at ALS in Perth. The mineralised samples were analysed by XRF, presumably as a second analysis requiring a higher detection limit more appropriate to the mineralised samples which have up to 6130 ppm U3O8. These methods are appropriate. No quality control data is available and so no assurances can be made on the quality (accuracy and precision) of the analyses.

Criteria	JORC Code explanation	Commentary
1.7 Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 There has been no independent verification of the auger hole results. Uranium measured as U in the database was converted to U3O8 by multiplying by 1.1792 as is correct according to molecular weights of U and O.
1.8 Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 There is no description of survey method for the auger holes other than that it was by GPS presumably a hand-held unit. All holes are positioned using WGS84 UTM zone 37S There has been no topographic survey.
1.9 Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	single outlying hole
1.10 Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	No information is available on orientation of the mineralised intervals but it can be reasonably assumed that they are either horizontal or gently dipping as the rocks are consistently of this aspect in the area. The regolith also has a flat to gently undulating development, as has been observed by the CP.
1.11 Sample security	The measures taken to ensure sample security.	There is no information on this. GLA does not make any statement regarding the assurance of sample security.
1.12 Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No physical review or audit has been carried out of sampling techniques. The data is in a tidy format and appears to be an export from a database.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	Commentary
2.1 Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The SWC target is within Prospecting Licence (PL)12354/2023 granted on the 19 May 2023 and is valid for 4 years. The target is within the Mbarang'andu National Community Forest Reserve. GLA are not aware of restrictions to operate in this Reserve as per section 95 of the Mining Act 2019. If developed as a mining project detailed Environmental and Social Impact Assessment (ESIA) and an Environmental Management Plan (EMP) would be required to be completed and approved.
2.2 Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 No description of exploration by other parties is available. An airborne magnetic survey was carried out by one of the companies exploring in the wider area, possibly Mantra Resources, probably sometime after 2008. This data may have been helpful in identifying the targets on the Mtonya-SWC trend.
2.3 Geology	Deposit type, geological setting and style of mineralisation.	 The majority of the uranium deposits and occurrences in eastern and southern Africa occur within the Karoo Supergroup, a thick sequence of continental clastic sediments which are from late Carboniferous to Jurassic in age. Sandstones are the dominant lithology, with lesser amounts of conglomerate, siltstone, and mudstone. In southern Tanzania the Karoo sediments are within the NNE trending Selous Basin, a rift basin that extends over a length of about 550km and a width of up to 180km. At SWC the uranium intersected by the auger holes is assumed to be within highly weathered bedrock, as was observed by the CP at the nearby Mtonya deposit. The rocks are feldspathic sandstones of the Upper Triassic aged Mbarangandu Formation. At Mtonya the exploration defined relatively narrow 'fronts' of mineralisation within the fresh bedrock. It is likely that similar 'primary' mineralisation is also present at SWC, as indicated by the intersection in the single diamond core hole MSEDO04 from 58.1 to 59.3m grading 824ppm U3O8. Efforts should be focused on locating potential thick zones of primary roll-front mineralisation. The presence of tabular uranium deposits cannot be ruled out. The Likuyu North deposit 35km to the north appears to be a tabular deposit. At Likuyu North the mineralised layers are stacked stratiform zones interpreted as tabular bodies principally controlled by the sedimentary units with grade increasing where there are changes in grainsize, increased carbonaceous material in the sands and changes in oxidation state. The Likuyu deposit is hosted by the Mkuju River Formation whereas the rocks at SWC are

Criteria	JORC Code explanation	Commentary		
		of the Mbarangandu Formation.		
2.4 Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	The drillhole information is provided in the table in the announcement. All holes were drilled vertically.		
	o easting and northing of the drill hole collar			
	 elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar 			
	o dip and azimuth of the hole			
	o down hole length and interception depth			
	o hole length.			
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.			
2.5 Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighted average methods were used for the auger results as samples were all of 1m length. For the core hole MSED004 sample length weighting was used to work out the average grade of the interval. Hole MRSA012 had a sample with 6130ppm U308 from surface, without this sample the average grade of the interval is 579 ppm U308 (as opposed to 1273ppm). Similarly, the first sample in hole MRSA09 is 4480ppm U308, without it the interval grades 380 ppm U308 (as opposed to 1200 ppm) 		
2.6 Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 The auger holes only tested the regolith, largely comprised of weathered bedrock (saprolite) which is expected to have an aspect similar to that of the bedrock in the area which is gently dipping. It is expected that the intercept lengths are a true reflection of the thickness of the mineralisation. Of relevance is that the oxidised material interested by the auger holes is unlikely to extend off the ridge-lines as it has been eroded away. 		
2.7 Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and tabulations are provided in the announcement. A cross-section is not included as the mineralisation is at such shallow depth. 		

Criteria	JORC Code explanation	Commentary
2.8 Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting is considered balanced.
2.9 Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious of contaminating substances.	t has been reported. I k ; ; ; k
2.10 Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Trenching to understand the nature of the shallow mineralisation and geological mapping to aid geological understanding.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Drill at the site of the best of the auger holes using a drilling method that can continue into the unweathered bedrock, to reach the base of the oxide mineralisation and to test for deeper primary mineralisation.
		 Drilling to test the lateral extent of the oxide mineralisation and potential primary uranium.
		 Work to understand the role of the regolith and supergene processes that may control the mineralisation intersected in the auger holes and understand the evolution of this supergene uranium over time.