

ASX Announcement | 22 August 2023

Six Additional Spodumene Zones Identified at the Hidden Lake Lithium Project, NWT, Canada

Highlights:

- Field mapping has identified six additional spodumene bearing pegmatite zones with samples taken for urgent assay analysis to aid in defining high priority targets and inclusion within the upcoming Canadian winter drill program.
- Field work, LiDAR and orthophoto airborne surveys have been completed at the Hidden Lake Lithium Project with 270 outcrop samples and 33 channel samples collected with assay results expected in September 2023.
- LiDAR and orthophoto surveys will assist with the further identification of new pegmatite zones and provide insights into concealed extensions of the known spodumene bearing dykes. Images and interpretation expected in October 2023.
- The field program targeted the newly identified pegmatites¹ that are in addition to the existing four spodumene bearing pegmatite dykes that were drilled in 2018 to a limited depth of 30-50 metres, with drill hole intercepts of up to 1.81% Li₂O ².
- Loyal Lithium is fortunate to have completed the planned field work prior to the forest fires impact of the Level 3 evacuation order of Yellowknife.
- All staff and contractors were safely evacuated. Our thoughts are with the Yellowknife and First Nation Communities as authorities fight this significant threat of fire in the region.
- A high-resolution Aeromagnetic/Radiometric survey will be completed once the risk of fire and smoke has subsided, currently planned for September 2023.
- The four existing spodumene bearing pegmatite dykes have a cumulative strike length of 2,250 metres and remain open at length and depth².
- Note: Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Loyal Lithium Limited (ASX:LLI) (**Loyal Lithium**, or the **Company**) provides an important update regarding its Hidden Lake exploration activities, located 45 km east of Yellowknife, NWT, Canada, considering the forest fire situation in the area. Loyal Lithium is fortunate to have completed the planned field work, LiDAR and orthophoto airborne surveys prior to the impacts of the forest fires and the Level 3 evacuation order of Yellowknife. All staff and contractors were safely evacuated, and our thoughts are with the Yellowknife and First Nation Communities as authorities fight this significant threat of fire in the region.

ASX:LLI

The field program targeted the 315 untested individual outcrops identified via high-resolution satellite imagery. These untested pegmatite targets are in addition to the four main spodumene rich dykes, which have a drill and channel tested cumulative strike length of 2,250m, and remain open at length and depth. A total of 303 samples were collected during the field program (270 outcrop and 33 channel) with samples progressively sent to SGS Vancouver for urgent assay analysis, with results expected in September 2023.

Loyal Lithium's Managing Director, Mr Adam Ritchie, commented:

"We are delighted to have discovered an additional six spodumene zones on our project including one on our 100% owned claim. These discoveries, coupled with our recently announced discovery at Trieste further enhances the strength of our portfolio as we now have two potentially world class spodumene assets in North America."

"We anticipate that the discovery of additional spodumene bearing zones at Hidden Lake will significantly increase the interpreted 2.25KM strike length of the previously known spodumene zones on our project, generating additional drilling targets and increasing the potential scale of this exciting project."

"Forrest fires have been notable across Canada this summer and the fires near the Yellowknife region have now reached a critical level with an evacuation order issued. Our thoughts are with the Yellowknife and First Nation Communities as authorities, dedicated volunteers and essential personnel continue to fight this threat of fire on many fronts."

"Thankfully, our field program has been largely unaffected, and we look forward to receiving our outcrop and channel assay results will aid in refining our high priority drill targets for our winter drilling program at Hidden Lake."

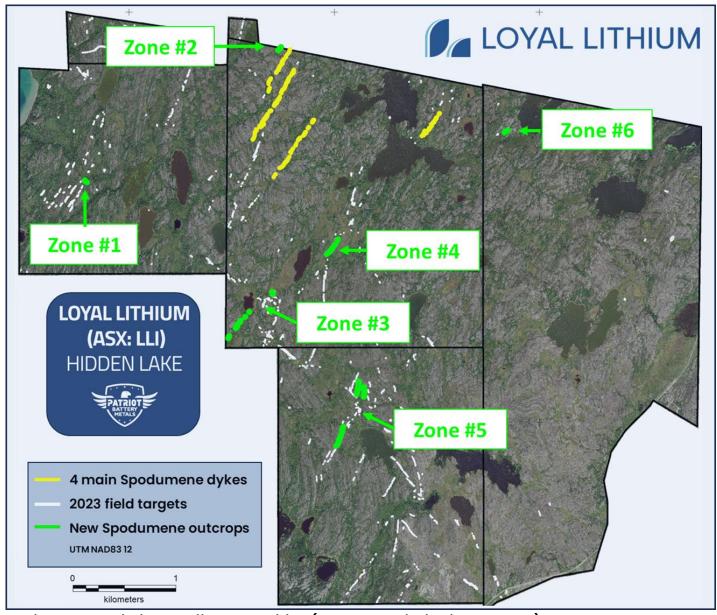


Figure 1 – Satellite image Pléiades 2022 visible (© CNES 2015, Distribution AIRBUS DS). Known spodumene pegmatites, highlighted in yellow, field targets in white and new Spodumene outcrops in green.

Photo 1: Zone #6 , Outcrop Sample D00434335. An in-situ dyke mapped as a spodumene-quartz-feldspar-muscovite pegmatite. DGC geological field crew inspecting the discovery.

A: 5/10 Johnston St, Peppermint Grove WA, 6011

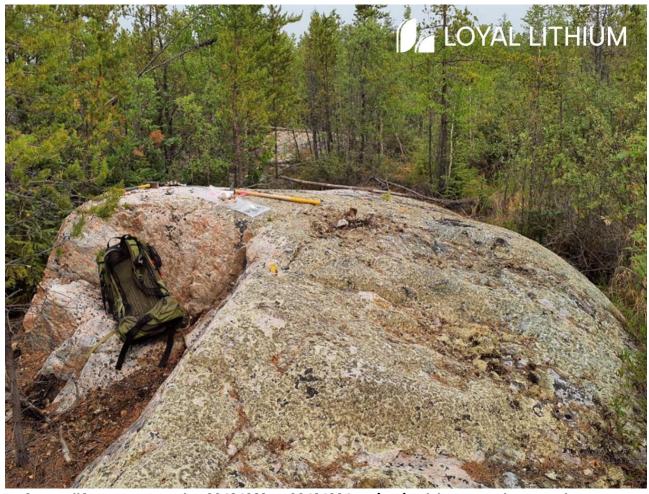
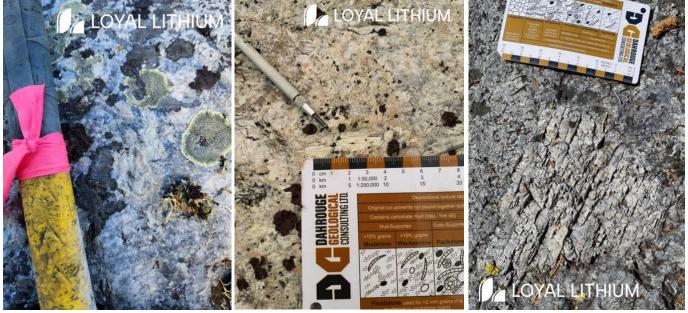



Photo 2: Zone #3, Outcrop Sample D00434032 – D00434034. An in-situ dyke mapped as a spodumene-quartz-feldspar-muscovite pegmatite.___

Photos 3,4 & 5: Zone #6, Outcrop Sample D00434335 (left) - Zone #03, Outcrop Sample D00434033 (middle) - Zone #1, Outcrop Sample D00434192 (right). Spodumene crystals in outcrop.

A: 5/10 Johnston St, Peppermint Grove WA, 6011

Photos 6: Zone #2, Outcrop Sample D00434093. DGC Geologists conducting a channel sample on an in-situ dyke mapped as a spodumene-quartz-feldspar-muscovite pegmatite.

A: 5/10 Johnston St, Peppermint Grove WA, 6011

Overview of Completed Work

A field mapping and sampling program was conducted on 315 previously untested and inadequately tested individual outcrops identified via the newly acquired high resolution satellite imagery and reprocessed lithium channel combination imagery. A total of 303 samples were collected during the fieldwork (270 outcrop and 29 channel samples, with a total of 355 samples submitted for assay including Certified Reference Material) with samples progressively sent to SGS Vancouver for urgent assay analysis with results and interpretation expected in September 2023.

A flown LIDAR and orthophoto survey was conducted to support the creation of a Digital Terrain Model (DTM) across the project. The DTM will assist in:

- Identifying unrecorded oxidation resistive pegmatite outcrops and also more subtle pegmatite outcrops that may be concealed by vegetation and topography.
- Positioning drill hole locations that mitigate environmental risk.

NEXT STEPS - Drilling & High-Resolution Aeromagnetic/Radiometric Survey

Planning is well advanced for Loyal's drilling program that will now also target the new spodumene zones and extensions of the known spodumene rich pegmatites. Planned drill holes will focus on intersecting the pegmatites near surface (<150m) and will also test deep extensions of the pegmatite clusters to enable interpretation of the potential size of the pegmatites. Drilling by previous owners of the Project, conducted in 2018, was limited to a depth of 30–50 metres with all drill holes intercepting high-grade spodumene of up to 1.81% Li2O. Loyal Lithium believes there is considerable potential to expand the known lithium mineralisation at depth and along strike.

Loyal Lithium will complete a high-resolution Aeromagnetic/Radiometric survey once the risk of fire and smoke has subsided, currently planned for September 2023. This survey is not critical to planning of the upcoming drilling program.

This announcement has been authorised for release by Loyal Lithium's Board of Directors

For more information:

Adam Ritchie

Managing Director aritchie@loyallithium.com +61 (0) 403 462 383

Jane Morgan

Investor & Media Relations jm@janemorganmanagement.com.au + 61 (0) 405 555 618

About Loyal Lithium

Loyal Lithium Limited (ASX: LLI) is a well-structured listed resource exploration company with projects in Tier 1 North American mining jurisdictions in the Northwest Territories, Canada, James Bay Lithium District in Quebec, Canada and Nevada, USA. Through the systematic exploration of its projects, the Company aims to delineate JORC compliant resources, creating value for its shareholders.

A: 5/10 Johnston St, Peppermint Grove WA, 6011

ASX Code: LLI

ACN: 644 564 241

Future Performance

This announcement may contain certain forward-looking statements and opinion forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties, assumptions, contingencies and other important factors, many of which are outside the control of the Company and which are subject to change without notice and could cause the actual results, performance or achievements of the Company to be materially different from the future results, performance or achievements expressed or implied by such statements. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Nothing contained in this announcement, nor any information made available to you is, or shall be relied upon as, a promise, representation, warranty or guarantee as to the past, present or the future performance of Loyal Lithium Ltd.

Competent Person Statement

The information in this announcement that relates to Exploration Results and Targets, is based, and fairly reflects, information compiled by Mr Darren Allingham, who is the Company's geologist. Mr Allingham is a Fellow of the Australian Institute of Geoscientists. Mr Allingham has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results and Mineral Resources (JORC Code). Mr Allingham consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears.

References

ACN: 644 564 241

- 1. ASX Announcement LLI: 3 August 2023 Exploration Program Underway at the Advanced Hidden Lake Lithium Project, NWT Canada
- 2. ASX Announcement LLI: 12 April 2023 Transformational Acquisition of Advanced, High-Grade Hidden Lake Lithium Project in Yellowknife, Northwest Territories, Canada

ASX Code: LLI

A: 5/10 Johnston St, Peppermint Grove WA, 6011

ASX:LLI

APPENDIX 1: Outcrop and Sample Details

Sample_ld	Outcrop	East	North	Rock Type	Spodumene % estimate
D00434001	HL23GK002	374,075	6,932,250	Pegmatite - Granite	0
D00434002	HL23GK004	374,132	6,932,334	Pegmatite - Granite	0
D00434003	HL23GK005	374,161	6,932,379	Pegmatite - Granite	0
D00434004	HL23SD002	373,759	6,933,810	Pegmatite - Granite	0
D00434005	HL23SD003	374,064	6,933,870	Pegmatite - Granite	0
D00434006	HL23SD003	374,061	6,933,861	Pegmatite - Granite	3
D00434007	HL23SD006	374,130	6,933,979	Pegmatite - Granite	0
D00434008	HL23SD007	374,182	6,934,031	Pegmatite - Granite	0
D00434009	HL23SD009	374,256	6,934,120	Pegmatite - Granite	0
D00434010	HL23SD009	374,257	6,934,123	Pegmatite - Granite	0
D00434011	HL23SD008	374,243	6,934,127	Pegmatite - Granite	0
D00434012	HL23SD011	374,288	6,934,332	Pegmatite - Granite	5
D00434013	HL23SD012	374,235	6,934,333	Pegmatite - Granite	3
D00434014	HL23SD012	374,234	6,934,354	Pegmatite - Granite	3
D00434015	HL23SD012	374,237	6,934,369	Pegmatite - Granite	3
D00434016	HL23SD012	374,240	6,934,386	Pegmatite - Granite	3
D00434017	HL23SD013	374,559	6,933,663	Pegmatite - Granite	0
D00434018	HL23SD013	374,592	6,933,634	Pegmatite - Granite	0
D00434019	HL23SD014	374,627	6,933,593	Pegmatite - Granite	0
D00434020	HL23SD014	374,657	6,933,549	Pegmatite - Granite	0
D00434021	HL23SD015	374,690	6,933,506	Pegmatite - Granite	0
D00434026	HL23SD015	374,716	6,933,476	Pegmatite - Granite	0
D00434027	HL23SD016	374,742	6,933,421	Pegmatite - Granite	0
D00434028	HL23SD017	374,777	6,933,383	Pegmatite - Feldspar	0
D00434029	HL23SD018	374,807	6,933,321	Pegmatite - Feldspar	0
D00434030	HL23SD026	374,631	6,933,079	Pegmatite - Granite	0
D00434031	HL23SD020	372,970	6,934,826	Pegmatite - Spodumene	10
D00434032	HL23SD021	373,044	6,934,924	Pegmatite - Spodumene	10
D00434033	HL23SD021	373,057	6,934,943	Pegmatite - Spodumene	15
D00434034	HL23SD021	373,062	6,934,954	Pegmatite - Spodumene	15
D00434035	HL23SD022	373,083	6,934,980	Pegmatite - Spodumene	15
D00434036	HL23SD023	373,127	6,935,029	Pegmatite - Spodumene	35
D00434037	HL23SD024	373,170	6,935,078	Pegmatite - Spodumene	0.1
D00434038	HL23SD025	374,611	6,932,877	Granite	0
D00434039	HL23SD026	374,667	6,933,040	Pegmatite - Granite	0
D00434040	HL23SD026	374,732	6,932,959	Pegmatite - Granite	0
D00434041	HL23SD026	374,705	6,933,006	Pegmatite - Granite	0
D00434042	HL23SD026	374,761	6,932,921	Pegmatite - Granite	0
D00434043	HL23SD028	373,028	6,934,928	Pegmatite - Granite	0

ASX Code: LLI ACN: 644 564 241

D00434044	HL23SD030	373,268	6,935,210	Pegmatite - Granite	0
D00434045	HL23SD033	373,346	6,935,184	Pegmatite - Granite	0
D00434046	HL23SD033	373,360	6,935,198	Pegmatite - Granite	0
D00434051	HL23SD001	373,779	6,932,915	Granite	0
D00434052	HL23GK006	374,491	6,933,287	Granite	0
D00434053	HL23GK010	374,532	6,933,353	Granite	0
D00434054	HL23GK011	374,579	6,933,434	Granite	0
D00434055	HL23GK013	374,233	6,934,471	Granite	0
D00434056	HL23GK013	374,218	6,934,428	Granite	0
D00434057	HL23GK014	374,198	6,934,407	Pegmatite - Feldspar	0
D00434058	HL23GK014	374,179	6,934,354	Granite	0
D00434059	HL23GK014	374,165	6,934,321	Granite	0
D00434060	HL23GK015	374,156	6,934,332	Granite	0
D00434061	HL23GK015	374,164	6,934,291	Granite	0
D00434062	HL23GK015	374,212	6,934,254	Granite	0
D00434063	HL23GK017	373,272	6,934,928	Granite	0
D00434064	HL23GK018	373,326	6,934,778	Granite	0
D00434065	HL23GK019	373,312	6,934,738	Granite	0
D00434066	HL23GK020	373,285	6,935,069	Granite	0
D00434067	HL23GK021	373,312	6,935,143	Granite-spodumene	0.1
D00434068	HL23GK022	375,349	6,932,416	Granite	0
D00434069	HL23GK023	375,049	6,932,562	Granite	0
D00434070	HL23GK024	375,021	6,932,699	Granite	0
D00434071	HL23GK024	375,018	6,932,699	Granite	0
D00434076	HL23GK024	375,018	6,932,698	Granite	0
D00434077	HL23GK024	375,020	6,932,700	Granite	0
D00434078	HL23GK025	373,864	6,934,542	Pegmatite - Granite	0
D00434079	HL23GK026	373,789	6,934,554	Pegmatite - Granite	0
D00434080	HL23GK027	373,736	6,934,548	Pegmatite - Granite	0
D00434081	HL23GK028	373,811	6,934,714	Pegmatite - Granite	0
D00434082	HL23GK028	373,791	6,934,669	Pegmatite - Granite	0
D00434083	HL23GK029	373,491	6,934,727	Granite	0
D00434084	HL23GK030	373,453	6,934,746	Pegmatite - Granite	0
D00434085	HL23GK031	373,495	6,934,843	Pegmatite - Granite	0
D00434086	HL23GK033	373,381	6,934,840	Pegmatite - Granite	0
D00434087	HL23GK034	373,485	6,934,411	Pegmatite - Granite	0
D00434088	HL23GK045	375,212	6,936,964	Granite	0
D00434089	HL23GK047	373,115	6,937,917	Granite	0
D00434090	HL23GK046	373,127	6,937,935	Pegmatite - Granite	0
D00434091	HL23GK048	373,090	6,937,802	Granite	0
D00434092	HL23GK049	373,397	6,937,555	Granite	0
D00434093	HL23GK050	373,469	6,937,643	Pegmatite - Spodumene	10
D00434094	HL23GK051	373,519	6,937,741	Pegmatite - Spodumene	5
D00434095	HL23GK052	373,272	6,936,726	Granite	0

D00434096	HL23GK052	373,255	6,936,679	Granite	0
D00434101	HL23GK036	375,035	6,937,097	Granite	0
D00434102	HL23GK036	375,052	6,937,123	Granite	0
D00434103	HL23GK038	375,146	6,937,231	Granite	0
D00434104	HL23GK041	375,159	6,936,956	Granite	0
D00434105	HL23GK041	375,158	6,936,948	Granite	0
D00434106	HL23GK042	375,152	6,936,900	Granite	0
D00434107	HL23GK043	375,208	6,936,930	Granite	0
D00434108	HL23SD044	373,531	6,936,609	Granite	0
D00434109	HL23GK052	373,216	6,936,595	Granite	0
D00434110	HL23SD048	373,240	6,936,600	Granite	0
D00434111	HL23SD049	373,228	6,936,584	Granite	0
D00434112	HL23SD050	373,218	6,936,562	Granite	0
D00434113	HL23SD051	373,178	6,936,473	Granite	0
D00434114	HL23SD052	373,152	6,936,416	Granite	0
D00434115	HL23SD053	373,133	6,936,381	Granite	0
D00434116	HL23SD054	373,102	6,936,331	Granite	0
D00434117	HL23SD057	372,987	6,936,398	Granite	0
D00434118	HL23SD059	374,193	6,936,254	Granite	0
D00434119	HL23SD061	374,187	6,936,222	Pegmatite - Granite	0
D00434120	HL23SD062	374,177	6,936,199	Pegmatite - Granite	0
D00434121	HL23SD063	374,172	6,936,174	Granite	0
D00434122	HL23GK058	374,176	6,936,142	Granite	0
D00434123	HL23GK058	374,184	6,936,125	Granite	0
D00434124	HL23SD064	374,157	6,935,944	Granite	0
D00434125	HL23SD065	374,166	6,935,871	Granite	0
D00434130	HL23SD066	374,705	6,935,122	Pegmatite - Granite	0
D00434131	HL23SD067	374,702	6,935,149	Pegmatite - Granite	0
D00434132	HL23SD068	374,682	6,935,203	Pegmatite - Granite	0
D00434133	HL23SD068	374,677	6,935,227	Pegmatite - Granite	0
D00434134	HL23SD069	374,659	6,935,238	Pegmatite - Granite	0
D00434135	HL23SD070	374,529	6,935,416	Pegmatite - Granite	0
D00434136	HL23SD073	374,419	6,935,420	Granite	0
D00434137	HL23SD074	374,340	6,935,522	Pegmatite - Granite	0
D00434138	HL23SD075	374,340	6,935,536	Granite	0
D00434139	HL23SD076	374,248	6,935,667	Pegmatite - Granite	0
D00434140	HL23SD077	374,109	6,935,134	Pegmatite - Granite	0
D00434141	HL23SD078	374,071	6,935,081	Granite	0
D00434142	HL23SD078	374,012	6,935,010	Granite	0
D00434143	HL23SD079	373,932	6,934,924	Granite	0
D00434144	HL23SD080	371,493	6,937,460	Pegmatite - Granite	0
D00434145	HL23SD080	371,520	6,937,424	Pegmatite - Granite	0
D00434146	HL23SD080	371,558	6,937,386	Pegmatite - Granite	0
D00434151	HL23GK052	373,235	6,936,632	Granite	0
D00434152	HL23GK053	374,262	6,936,461	Felsic dyke	0

D00434153	HL23GK054	374,166	6,936,425	Pegmatite - Granite	0
D00434154	HL23GK054	374,167	6,936,414	Pegmatite - Granite	0
D00434155	HL23GK056	374,331	6,936,251	Granite	0
D00434156	HL23SD060	374,183	6,936,222	Pegmatite - Granite	0
D00434157	HL23GK055	374,207	6,936,270	Pegmatite - Granite	0
D00434158	HL23GK055	374,184	6,936,174	Pegmatite - Granite	0
D00434159	HL23GK058	374,174	6,936,168	Pegmatite - Granite	0
D00434160	HL23GK058	374,183	6,936,134	Pegmatite - Granite	0
D00434161	HL23GK059	374,199	6,936,124	Pegmatite - Granite	0
D00434162	HL23GK060	374,259	6,936,123	Pegmatite - Granite	0
D00434163	HL23GK062	374,186	6,935,979	Pegmatite - Granite	0
D00434164	HL23GK062	374,177	6,935,961	Pegmatite - Granite	0
D00434165	HL23GK066	373,985	6,935,697	Granite	0
D00434166	HL23GK070	374,031	6,935,791	Granite	0
D00434167	HL23GK069	374,033	6,935,780	Pegmatite - Granite	0
D00434168	HL23GK071	374,049	6,935,809	Pegmatite - Granite	0
D00434169	HL23GK072	374,063	6,935,832	Pegmatite - Granite	0
D00434170	HL23GK073	374,096	6,935,847	Granite	0
D00434171	HL23GK074	374,111	6,935,892	Granite	0
D00434176	HL23GK075	373,839	6,935,468	Granite	0
D00434177	HL23GK076	371,586	6,936,343	Pegmatite - Spodumene	5
D00434178	HL23KH001	371,542	6,936,303	Pegmatite - Granite	0
D00434179	HL23KH002	371,524	6,936,260	Pegmatite - Granite	0
D00434180	HL23KH002	371,512	6,936,237	Pegmatite - Granite	0
D00434181	HL23KH002	371,495	6,936,206	Pegmatite - Granite	0
D00434182	HL23KH002	371,459	6,936,165	Pegmatite - Granite	0
D00434183	HL23KH002	371,444	6,936,104	Pegmatite - Granite	0
D00434184	HL23KH002	371,423	6,936,129	Pegmatite - Granite	0
D00434185	HL23KH003	371,327	6,935,961	Pegmatite - Granite	0
D00434186	HL23KH004	371,269	6,935,725	Granite	0
D00434187	HL23KH005	371,258	6,935,597	Pegmatite - Granite	0
D00434188	HL23KH005	371,233	6,935,553	Pegmatite - Granite	0
D00434189	HL23KH006	371,134	6,935,572	Pegmatite - Granite	0
D00434190	HL23KH007	375,878	6,934,675	vein	0
D00434191	HL23GK076	371,585	6,936,343	Pegmatite – Tourmaline-spod	50
D00434192	HL23GK079	371,569	6,936,359	Pegmatite - Spodumene	20
D00434193	HL23GK077	371,632	6,936,302	Pegmatite - Granite	0
D00434194	HL23GK079	371,551	6,936,354	Granite	0
D00434195	HL23GK080	371,478	6,936,305	Pegmatite - Granite	0
D00434196	HL23GK080	371,441	6,936,256	Pegmatite - Granite	0
D00434201	HL23SD081	371,656	6,937,347	Pegmatite - Granite	0
D00434202	HL23SD082	371,602	6,937,380	Pegmatite - Granite	0
D00434203	D00434083	371,572	6,937,391	Granite	0
D00434204	HL23SD084	371,476	6,937,413	Pegmatite - Granite	0

D00434205	HL23SD084	371,429	6,937,441	Pegmatite - Granite	0
D00434206	HL23SD085	376,266	6,932,936	vein	0
D00434207	HL23SD087	371,465	6,936,529	Pegmatite - Granite	0
D00434208	HL23SD087	371,445	6,936,472	Pegmatite - Granite	0
D00434209	HL23SD088	371,461	6,936,452	Pegmatite - Spodumene	0.1
D00434210	HL23SD089	371,416	6,936,433	Pegmatite - Granite	0
D00434211	HL23SD090	371,393	6,936,493	Pegmatite - Granite	0
D00434212	HL23SD091	371,557	6,936,563	Pegmatite - Granite	0
D00434213	HL23SD092	371,575	6,936,544	Pegmatite - Granite	0
D00434214	HL23SD093	371,647	6,936,506	Granite	0
D00434215	HL23SD093	371,631	6,936,480	Granite	0
D00434216	HL23SD094	372,438	6,937,797	Granite	0
D00434217	HL23SD094	372,419	6,937,752	Granite	0
D00434218	HL23SD095	372,528	6,937,458	Granite	0
D00434219	HL23SD095	372,497	6,937,413	Pegmatite - Granite	0
D00434220	HL23SD096	372,568	6,937,452	Granite	0
D00434221	HL23SD097	372,592	6,937,435	Pegmatite - Granite	0
D00434226	HL23SD098	372,557	6,937,329	Granite	0
D00434227	HL23SD099	372,523	6,937,233	Granite	0
D00434228	HL23SD100	372,447	6,937,092	Pegmatite - Granite	0
D00434229	HL23SD101	374,967	6,933,798	Granite	0
D00434230	HL23SD103	374,980	6,933,806	Granite	0
D00434231	HL23SD105	374,747	6,933,932	Pegmatite - Granite	0
D00434232	HL23SD109	374,503	6,933,935	Pegmatite - Granite	0
D00434233	HL23SD112	374,545	6,934,019	Pegmatite - Granite	0
D00434234	HL23SD113	374,600	6,933,999	Pegmatite - Granite	0
D00434235	HL23SD115	373,110	6,935,997	Pegmatite - Granite	0
D00434236	HL23SD115	373,105	6,936,003	Granite	0
D00434237	HL23SD115	373,104	6,935,984	Granite	0
D00434238	HL23SD116	372,988	6,935,956	Granite	0
D00434239	HL23SD118	372,964	6,935,907	Granite	0
D00434240	HL23SD119	373,008	6,936,004	Granite	0
D00434241	HL23SD121	373,035	6,936,130	Granite	0
D00434242	HL23SD122	373,173	6,936,100	Granite	0
D00434243	HL23SD124	373,258	6,936,207	Granite	0
D00434244	HL23SD140	374,087	6,934,882	Granite	0
D00434245	HL23SD125	373,916	6,934,976	Granite	0
D00434246	HL23SD126	373,911	6,935,026	Granite	0
D00434251	HL23GP001	371,597	6,936,441	Granite	0
D00434252	HL23GP002	371,741	6,936,450	Granite	0
D00434253	HL23GP003	371,757	6,936,453	Pegmatite - Granite	0
D00434254	HL23GP004	371,763	6,936,452	Granite	0
D00434255	HL23GP005	371,812	6,936,694	Pegmatite - Feldspar	0
D00434256	HL23GP006	371,767	6,936,828	Granite	0
D00434257	HL23GP007	371,727	6,936,888	Pegmatite - Feldspar	0

D00434258	HL23GP258	371,747	6,936,946	Granite	0
D00434259	HL23GP009	371,761	6,937,004	Granite	0
D00434260	HL23BE002	377,231	6,936,256	aplite	0
D00434261	HL23BE001	376,834	6,935,196	quartz-feldspar porphyry	0
D00434301	HL23JP003	371,587	6,937,795	Pegmatite - Granite	0
D00434302	HL23JP004	371,637	6,937,934	Granite	0
D00434303	HL23JP005	371,982	6,937,849	Pegmatite - Granite	0
D00434304	HL23JP005	372,034	6,937,826	Pegmatite - Granite	0
D00434305	HL23JP006	371,855	6,937,736	Granite	0
D00434306	HL23JP006	371,845	6,937,655	Granite	0
D00434307	HL23GK080	371,427	6,936,231	Pegmatite – Granite-spod	0.1
D00434308	HL23GK080	371,381	6,936,166	Pegmatite - Granite	0
D00434309	HL23GK081	371,247	6,936,126	Pegmatite - Granite	0
D00434310	HL23GK082	371,159	6,936,242	Pegmatite - Granite	0
D00434311	HL23GK083	372,361	6,936,905	Granite	0
D00434312	HL23GK084	372,384	6,936,950	Pegmatite - Granite	0
D00434313	HL23GK085	372,409	6,936,992	Pegmatite - Granite	0
D00434314	HL23GK087	372,426	6,937,033	Pegmatite - Granite	0
D00434315	HL23GK088	372,424	6,937,053	Granite	0
D00434316	HL23GK089	374,865	6,934,839	Granite	0
D00434317	HL23GK090	374,914	6,934,822	Pegmatite - Granite	0
D00434318	HL23GK090	374,937	6,934,791	Pegmatite - Granite	0
D00434319	HL23GK090	374,965	6,934,741	Pegmatite - Granite	0
D00434320	HL23GK091	374,777	6,934,649	Granite	0
D00434321	HL23GK092	374,722	6,934,603	Granite	0
D00434326	HL23GK093	374,471	6,934,302	Pegmatite - Granite	0
D00434327	HL23GK094	374,351	6,934,366	Pegmatite - Granite	0
D00434328	HL23GK095	374,403	6,934,220	Pegmatite - Granite	0
D00434329	HL23GK096	374,364	6,934,143	Pegmatite - Granite	0
D00434330	HL23GK097	374,335	6,934,236	Pegmatite - Granite	0
D00434331	HL23GK097	374,340	6,934,293	Pegmatite - Granite	0
D00434332	HL23SD130	373,942	6,935,149	Granite	0
D00434335	HL23GK098	375,690	6,936,845	Pegmatite - Spodumene	5
D00434336	HL23GK098	375,659	6,936,829	Pegmatite - Spodumene	0
D00434430	HL23BE007	373,389	6,935,189	Pegmatite - Granite	0
D00434431	HL23BE011	373,400	6,935,255	Pegmatite - Spodumene	20
D00434431	HL23KH008	373,395	6,935,270	Pegmatite - Spodumene	7
D00434433	HL23BE012	373,418	6,935,270	Pegmatite - Spodumene	5
D00434434 D00434434	HL23KH012	373,416	6,935,154	Pegmatite - Granite	0
D00434434 D00434435	HL23BE010			Pegmatite - Granite Pegmatite - Granite	0
		373,407	6,935,223		
D00434436	HL23BE020	373,466	6,935,190	Pegmatite - Granite	0
D00434437	HL23KH012	373,454	6,935,119	Pegmatite - Granite	0
D00434438	HL23KH013	373,433	6,935,021	Pegmatite - Granite	0
D00434451	HL23BME001	373,030	6,935,367	Granite	0

D00434452	HL23BME003	372,965	6,935,433	Granite	0
D00434453	HL23BME002	374,290	6,934,272	granodiorite	0
D00434454	HL23BME006	374,036	6,933,807	Pegmatite - Granite	0
D00434455	HL23BME007	374,033	6,933,792	granodiorite	0
D00434456	HL23BME008	374,021	6,933,764	Pegmatite - Granite	0
D00434457	HL23BME008	374,004	6,933,728	Pegmatite - Granite	0
D00434458	HL23BME010	373,979	6,933,680	granodiorite	0
D00434459	HL23BME011	373,947	6,933,695	Pegmatite - Granite	0
D00434460	HL23BME014	374,202	6,933,459	granodiorite	0

Note 1: Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

JORC CODE, 2012 EDITION - TABLE 1

<u>Section 1 - Sampling Techniques and Data</u>

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or 	 In 2023 geological mapping and sampling traverses were pre-planned from targets identified in satellite imagery. Geological field crews completed planned traverses with limited deviation from the planned traverses. A total of 138.45 - km's were walked by field crews. Outcrops were examined, logged and sampled by sites selected by geologists. Sampling of mostly outcrops that were rounded by glaciers was done using large geological picks to remove selected samples. A total of 270 outcrop grab samples were collected with 52 blind certified reference material (CRM) samples submitted to the laboratory and 29 channel samples were taken with 4 CRMs Note: The spot grab samples are not representative of the grade of the entire outcrop. LiDAR and orthophoto surveys have been flown for the entirety of the Hidden Lake Project at a 50m line spacing. SHA contracted Pioneer Exploration Consultant's Ltd. to undertake the LiDAR and orthophoto survey. The survey covered 25 km2 of airborne LiDAR and orthophoto data collected at a point density of approximately 40 points per m2. Orthophotos collected at a GSD of approximately 8 – 10 cm. The survey was conducted using a Phoenix Ranger LiDAR scanner with model accuracy of 15 cm. Equipment used: STC and vibration isolation mount for LiDAR sensor for manned aircraft. GNSS base station and rover on site for QA/QC, ground control survey and LiDAR survey ground station PPK. Phoenix Ranger XL LiDAR sensor. Necessary software, computers, and ancillary electronics to operate the sensors and flight systems in the field. For historical work: In 2016, 60 channel cuts were completed resulting in 308 samples, averaging approximately 1 m per sample. In 2017, 10 channel cuts were completed resulting in 33 sample, averaging approximately 1 m per sample. Channel samples from 2016 to 2017 were sent to Activation Laboratories ("Actlabs") Ltd. in Kamloops, BC, Canada, for analysis. In 2018, a total of 1,079.37 m of NQ core was recovered and

	mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	duplicates, certified reference materials (CRMs) and quartz blanks were sent to SGS Canada Inc. Laboratories in Lakefield, Ontario for analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- 	 No Drilling completed in 2023. A Government of Northwest Territories Land Use Permit application for drilling has been compiled and is planned for submission shortly once final community Engagement requirements are completed. For historical work: A portable gas-powered diamond-bladed saw was utilized for channel cuts.
	sampling bit or other type, whether core is oriented and if so, by what method, etc).	 A Boyles 27A diamond drill was used for drilling. All diamond drill holes were drilled by standard tube wireline methods. All holes are collared using NW casing and drilled with NQ rods. Core was not oriented.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recovery was 100% for both outcrop grab and channel samples. For historical work: Channel cuts only sampled visually mineralized rock. Overburden resulted in gaps in channel cuts. Drill core recoveries were measured after each drill run, comparing length of core recovered vs. drill depth. Core recoveries were good due to the competent nature of the rock, averaging 97% over all 10 drillholes. Mineralized rock in drillholes was sampled sample lengths of~1 m and unmineralized rock at lengths of~1.5 m. There is no observed relationship between core recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and 	 In 2023 outcrop grab samples and channel cut samples were geologically logged with sample details in the field, with digital data entered onto tablets using MXDeposit software as they were collected. Photos were taken of all sample sites. There were three databases; Outcrop, Surface Structure and Surface Sample.
	 metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 For historical work: Channel cuts were geologically logged in the field qualitatively with pen and paper as they were collected. The records are available only in physical form. Photos were taken of the channel cuts after the channel sample was removed.

•	The total length and percentage of the
	relevant intersections logged.

- Drill core was all geologically and geotechnically logged using an industrystandard logging scheme.
- Logged intervals were based on geological boundaries. The geological log incorporates geotechnical parameters, lithology, weathering, alteration, and veining.
- Geological logging was based on both qualitative identifications of geological characteristics and semi-quantitative estimates of mineral abundance. Geotechnical logging uses standard semi-quantitative definitions for estimating rock strength and fracture density.
- A digital photographic record was maintained for all drill core.
- Electronic geological logs were created using a Microsoft Excel logging template on laptop computers.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

 The 2023 channel cuts were approximately 5 cm thick and deep were made with a handheld gas-powered diamond-bladed saw.. Blind standards and blanks were submitted. No channel sample details are reported in this announcement except the number taken.

For historical work:

- Channel cuts roughly 5 cm thick were made with a handheld gas-powered diamond-bladed saw.
- The channel samples were removed with a hammer and chisel, and the entire channel cut was sampled at ~1 m intervals.
- All channel samples were sent to Actlabs in Kamloops, BC, for standard sample preparation (Code RX1), which includes crushing up to 80% passing 2 mm, riffle splitting (250 g) and pulverizing to 95% passing 105 μm.
- Drill core was cut in half with an electric diamond-bladed saw. Quarter-cut duplicates were made periodically for QAQC.
- No other direct knowledge of other sampling method details undertaken during the drill campaign but have no reason to believe the operators did not follow industry standard practices.
- Sizes were appropriate for the grain size of the material sampled in both the channel cuts and drill core samples.
- Channels were cut perpendicular to vein strike & spaced regularly (generally < 50 m).
- All core samples collected were shipped to SGS Canada's laboratory in Lakefield, ON, for standard sample preparation (code PRP89) which includes drying at 105°C, crushing to 75% passing 2 mm, riffle splitting 250 g, and pulverizing to 85% passing 75 microns

Quality of
assay data
and
laboratory
tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

 For 2023 field work; Samples were couriered in secure containers labelled with sample numbers and company, submitted to SGS Canada, Burnaby, BC for analysis. G_WSH-G_WSH_PUL: Barren wash after pulverizing stage (all samples). G_WSH-G_WSH_CRU: Barren wash after crushing stage (all samples). Prep: PRP89: Analysis: GE_ICM91A50 and GE_ICP91A50-AE (B) (add Boron). Lithium total digestion sodium peroxide fusion technique.

For historical work:

- All channel samples were analysed by Actlabs in Kamloops, B.C., for analysis
 using packages UT7 (55 elements ICP-MS after sodium peroxide fusion) and
 2017 samples were also analysed with code 1A2-ICP (Au by Fire Assay).
 Overlimit Li values were analysed with code 8 Li
- No certified reference materials were submitted with the channel samples for analysis due to the preliminary nature of the fieldwork, with the operator relying on the laboratory's internal QA/QC.
- Analytical procedures are considered adequate for the early-stage nature of the programs.
- All drill core samples were submitted to SGS Canada in Lakefield, Ontario, for analysis with packages GE ICM90A (55 elements ICP-AES after sodium peroxide fusion) and GE FAA313 (Au by Fire Assay).
- In addition to the ½ NQ core samples, ¼ NQ core duplicates, pulp duplicates, certified reference materials (CRMs) and quartz blanks were inserted into the sample stream at systematic intervals for QA/QC.
- QA/QC samples comprised 14% of total drill core samples submitted for analysis.
- Both Actlabs and SGS Canada are ISO 17025 certified laboratories and implement routine Quality Assurance and Quality Control (QA/QC) protocols during the analytical process. The procedures include using pulp duplicates and internally certified reference materials.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

 No verification of sampling and assaying has been performed. The geological contractor is independent of Loyal Lithium. MXDeposit software was used for data entry. Contractor Senior Geologist JORC CP verified field geologist's data.

For historical work:

- A 43-101 report was published in 2016 that verified the 2016 channel sampling procedure and confirmed lithium-bearing pegmatites on the Property.
- No additional verification or testing was completed during this evaluation.
- No holes have been twinned.
- All original assay data is stored in a databasein an as-received basis with no adjustment to the returned data.

	Discuss any adjustment to assay data.	 2016 and 2017 channel samples are recorded in physical books that have been photographed. All other data is stored electronically in databases.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Sample locations were determined in the field by a handheld GPS and is stored in UTM NAD 83 Zone 12N projection format. Data collection software for the program was set up with Satellite Imagery as a basemap (ESRI Field Maps). Planned traverses visiting field targets were identified from satellite imagery were based on SHP files given to Dahrouge Geological Consulting field crew contractors by Loyal Lithium's Exploration Manager.
	 Specification of the grid system used. 	For historical work:
	 Quality and adequacy of topographic control. 	 Data is stored in UTM NAD 83 Zone 12N projection format. Historical surface mapping points were georeferenced and validated against topography.
		 2016 and 2017 channel sample location data was obtained using handheld GPS, with azimuth measurements collected using a compass.
		 Data points were generally well-constrained for X-Y coordinates but less reliable for Z coordinates for channel samples. Channel locations were verified against topography.
		 Drill hole collars were surveyed using a Topcon RTK differential GPS system, and are well-constrained in the X, Y and Z directions.
		 Drillholes were surveyed using a Reflex EZ-Gyro. Single shots were taken every 10 m down the entire length of the hole with multi-shots taken at the top, middle and bottom of the hole to optimize the collected orientation data.
		 Topographic control is from open-sourced High-Resolution Digital Elevation Model (HRDEM) from Natural Resources Canada (NRCAN).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the 	 Field survey 2023 grab samples were unique single sites, with each sample selected based on outcrop form, wherever extraction of a sample was possible using geological picks, chisels and hammers. Channel samples were selected on outcrops that contained considerable visible spodumene, and were sampled on one metre lengths perpendicular to the interpreted strike.
	degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	 For historical work: A geological model was constructed by Loyal Lithium using a database of 10 drillholes and 70 channels totalling 1,411.82 m. Geological mapping shows continuity along strike of pegmatite outcrops.
	applied.Whether sample compositing has been applied.	 Channels are spaced between 25 to 50 m over six different pegmatite outcrops. Drillholes are spaced between approximately 70 m to 150 m apart on four different pegmatite outcrops with two drillholes completed on the HL4 and D12 pegmatites and three drillholes completed on the HL1 and HL3 pegmatites. Pegmatite intersections from all drillholes are less than 50 m vertical depth from

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 surface, resulting in high concentrations of data at shallower depths. No compositing of samples was applied prior to assaying. Field survey 2023 grab samples were spot samples with up to 1-2 samples taken per outcrop; channel samples taken perpendicular to interpreted strike of pegmatite dyke outcrop. For historical work: Drill holes were designed to intersect known mineralized features in a nominally perpendicular orientation as much as is practicable given the availability of drill pads. Channel cuts were perpendicular to strike of the mineralized feature.
Sample security	The measures taken to ensure sample security.	 For the 2023 field work samples were flown from the field in larger sealed plastic bags then placed in plastic buckets with lids in a secure room of a locked house of the contractor.
		 Site employees and contractors were the only personnel with access to samples. Logging, sampling and core cutting for the 2018 drilling program were performed in a secure yard in Yellowknife, NWT. Samples were given a unique sample number Each sample tag listed the project name, drillhole ID, top and bottom of sample interval, and sample number. Laboratory services were in secure compounds.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the 2023 field work were undertaken For historical work For historical work:
		The channel sampling and mapping were verified in the 2016 NI 43-101 report.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Hidden Lake Property is located 45 km east of Yellowknife, NWT, Canada. The Property consists of 6 contiguous claims (grouping number GC2129), located on NTS sheets 085I11 and 085I12, totalling 2.500.29 ha. Claims HID 1 to 3 were issued on March 1, 2016, and HID 4 and 5 were issued on June 30, 2016. Claim MON-1 was issued on December 14, 2022. Claims HID 1-3 have March 1, 2026 anniversary dates and claims HID 4-5 have June 30, 2026 anniversary dates. Claim MON-1 has an anniversary date of December 14, 2024. A 21-year mining lease is required after these anniversary dates. In January 2018, the HID1-5 claims that made up the Hidden Lake Property at the time were acquired by Patriot Battery Metals (previously 92 Resources Corp.). In January 2018, Patriot Battery Metals signed an earn-in agreement with Foremost Lithium Resources and Technology (previously FAR Resources) for a 60% stake in the Hidden Lake Property. On November 24, 2022, Foremost Lithium entered into an option agreement with Youssa Pty Ltd. to sell 60% interest in the five (5) HID 1-5 contiguous mineral exploration claims that make up the Hidden Lake Property. The HID 1-5 claims are currently held in the name of Patriot Battery Metals and are in good standing. Claims HID 1-3 have an anniversary date of March 1, 2026, and claims HID 4-5 have an anniversary date of June 30, 2026. The MON-1 claim was staked on December 14, 2022, is owned by DGRM, and currently in the name of Jordan Pearson. The MON-1 claim is currently in good standing and has an anniversary date of December 14, 2024. Loyal Lithium is in the process of acquiring the 60% ownership stake in HID 1-5 previously held by Foremost Lithium and currently resides in the name of Youssa Pty Ltd as well as 100% interest in the MON-1 claim that is currently owned by DGRM. Loyal is also in the process of entering a Joint Venture arrangement with Patriot Battery Metals who currently owns the other 40% ownership of the HID 1-5 c

		 The Yellowknives Dene First Nation The Lutsel K'e Dene First Nation The Deninu Kue First Nation The North Slave Métis Alliance The Fort Resolution Métis Council The Northwest Territories Métis Nation The Tlicho Government A previous archaeological study of the area in 2018 found no archaeological findings in the Property area and that a winter drill program would not require an archaeological impact assessment due to low anticipated disturbance. An archaeological assessment may be warranted in the future should further exploration or camp development occur in high-potential areas or occur under summer conditions. A Land Permit from the Mackenzie Valley Land and Water Board may be required under certain conditions, including drill programs and the use of any heavy equipment. No impediments to obtaining this Permit are anticipated.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The most significant historical exploration work on the Property has been completed on the D12 pegmatite, first discovered by the Geological Survey of Canada in 1947. Lithium-bearing pegmatite dykes in the Hidden Lake area were first staked by General Lithium Corp Ltd. in 1955. In July 1975, pegmatites in the area were staked by Canadian Superior Exploration Ltd., as the LU claims; they later completed a large exploration program in 1978. In the late 1980s, the northern parts of the Property were staked by the Continental Pacific Resources as part of the Shorty 1 Project, however much of the historical work completed was on pegmatites outside of the current Property boundary with the exception of pegmatite D12. In 2016, 92 Resources Corp. conducted a prospecting and sampling program; 10 rock samples were collected initially. A follow-up program the same year resulted in a total of 308 channel samples collected from 60 channels across the D12, HL1, HL3, and HL4 dykes and 10 grab samples from other pegmatites on the Property. In 2017 92 Resources collected 33 samples from 10 channels on dykes HL6 and HL8, with an additional 24 grab samples from the south end of the Property. In 2018 a 10-hole, 1,079.37 m diamond drilling campaign yielded a combined 159 half-core samples from dykes D12, HL1, HL3, and HL4.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Hidden Lake Property lies within the southern Archean Slave Craton of the Canadian Shield, which comprises Mesoarchean gneissic basement covered by a Neoarchean supracrustal assemblage known as the Yellowknife Supergroup. The Yellowknife Supergroup consists of a thick sequence of metavolcanics and metasedimentary rocks, and within the Property area, this assemblage is dominated by the Burwash Formation. The large Neoarchean granitic plutons which intrude the Burwash Formation include the two-mica granites of the Prosperous Suite and the biotite ± hornblende tonalite to granodiorite of the Defeat Suite.

•	The Prosperous Suite consists of several S-type biotite-muscovite leucogranite plutons that are
	spatially associated with granitic pegmatites. These pegmatites, some of which are rare element-
	bearing, intrude the surrounding Burwash Formation and the granitic plutons, forming the
	Yellowknife pegmatite field.

- These lithium-bearing pegmatites are the target for exploration on the Property and fall under the "LCT", lithium-caesium-tantalum, pegmatite deposit type.
- The lithium-bearing pegmatites on the Property are recorded as long, discontinuous, NNE-SSW trending bodies with sharp contacts with the metasediments. They are measured at up to 800 m long and 11.5 m wide, with spodumene and lesser montebrasite being the primary lithium-bearing minerals.

Drill hole Information

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL
 (Reduced Level –
 elevation above
 sea level in
 metres) of the drill
 hole collar
 - dip and azimuth of the hole
 - down hole length and interception depth
 - hole length.
- If the exclusion of this information is justified on

No 2023 drilling is reported in this announcement

For historical work:

 Detailed drillhole information and lithium pegmatite intersections were compiled from the Hidden Lake Property to develop the geological model. The drillhole attributes and pegmatite intersection summary are presented in the following tables.

2018 Drillhole Summary

Hole ID	Easting (m)	Northing (m)	Elevation (m)	Azimuth (°)	Dip (°)	DDH Depth (m)	Hole Diameter
HL18-001	374934.7	6936971	250.34	145	45	109	NQ
HL18-002	375022.6	6937090	248.55	145	45	101.34	NQ
HL18-003	374892.8	6936899	247.35	145	45	108.94	NQ
HL18-004	373748.2	6936978	249.42	145	45	106.19	NQ
HL18-005	373702.2	6936886	251.34	145	45	108.82	NQ
HL18-006	373440	6937524	259.75	145	45	108.94	NQ
HL18-007	373407.1	6937465	258.9	145	45	109	NQ
HL18-008	373361.2	6937389	256.82	145	45	108.94	NQ
HL18-009	373363.9	6937097	253.43	145	45	109.2	NQ
HL18-010	373305.9	6937011	254.77	145	45	109	NQ

Drillhole and Channel Intersection Summary

Pegmatit	Number of Channels	Number of Drillholes	Surface Exposure			Downhole Intersection	
e Dyke			Length (m)	Minimum Width (m)	Maximum Width (m)	Minimum Length (m)	Maximum Length (m)

the basis that the
information is not Material
and this exclusion does
not detract from the
understanding of the
report, the Competent
Person should clearly
explain why this is the
case.

D12	15	3	350	2.25	11.58	7.37	11.12
HL1	16	2	700	1	8.72	3.42	7.59
HL3	15	2	800	1.63	9.64	7.68	8.68
HL4	15	3	400	2.48	8.02	5.62	7.72
HL6	8	-	180	2.13	5.2	-	-
HL8	2	-	30	1.8	5.1	1	-
HL13	-	-	200	1	4	-	-

Data aggregation methods

- In reporting Exploration
 Results, weighting
 averaging techniques,
 maximum and/or
 minimum grade
 truncations (eg cutting of
 high grades) and cut-off
 grades are usually
 Material and should be
 stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

The assumptions used for

announcement, besides the number of samples taken in the field.

For the 2023 field work no outcrop or channel sample assay results are reported in this

For historical work:

- Exploration results are reported within distinct geological boundaries, typically the contact between pegmatite and metasediment.
- Lithium-bearing pegmatite intersections were generally sampled at ~1 m lengths.
- The grades are compiled using length weighting with no top cutting.
- No metal equivalent values were used.

Relationship between mineralisatio n widths and intercept lengths	 any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No 2023 field work mineralisation widths or intercepts reported in this announcement For historical work: Drill holes were designed to intersect known mineralized features in a nominally perpendicular orientation as much as is practicable given the availability of drill pads. Channel cuts were perpendicular to strike of the mineralized feature. Drill intercepts are reported as apparent thickness. Unless otherwise specified, all thicknesses within this document are apparent thicknesses. The geological modelling software combines drillhole orientation and intercepts from downhole logs with known and extrapolated surface mapping to project the geometry of pegmatite dykes.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures and photos provided in the announcement
Balanced	Where comprehensive	 For the 2023 field work all details of the outcrop samples are reported. The channel sample details are not reported except the number of samples taken.

reporting	reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 For historical work: There is no preferential reporting of results. The current Hidden Lake Property geological model is a tool for targeting future exploration. Data has been validated against raw records, no material has been excluded, and the outputs from the model honour data inputs.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of	• In 2022/2023 high resolution Pleiades Neo Satellite Imagery 4-band archive; 30cm {© Airbus DS 2022} was acquired by Loyal Lithium. Bundle processing included scaling, orthorectification, enhancement, mosaic and cloud patch as required. Natural colour and false colour infrared products have been prepared. Images in both natural colour and infrared were examined on computer screen, manually comparing known high albedo pegmatite outcrops, from historical mapping data, and new outcrop targets implied to be pegmatites. Historical mapping on the Property has been used to constrain the surficial expression of the mineralised pegmatites. The outcrop targets were digitised by hand and exported in a variety of formats and will be used to locate outcrops in the field when mapping and sampling. Sentinel 2 and Aster data were reprocessed by Terra Resources to produce a series of images including the Lithium band and geology combinations plus a wide array of additional images.
	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 For historical data: Density information was collected at roughly 5m intervals within mineralized pegmatite and approximately 30 m intervals outside of pegmatite using the dry volumetric method. A metallurgical program was initiated for the Hidden Lake Property following the completion of the 2016 channel sampling program with the primary objective of determining the amenability of pegmatite material to be processed for a potentially marketable concentrate.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or	Recommended work includes:

- large-scale step-out drilling).
- Diagrams clearly
 highlighting the areas of
 possible extensions,
 including the main
 geological interpretations
 and future drilling areas,
 provided this information
 is
- not commercially sensitive.

- Geophysics Aeromagnetic/Radiometric survey at a 50m spacing, lines oriented east-west
- A drill exploration program totalling 3,300m, with a focus on further delineating the four main pegmatite dykes on the Property. A systematic approach to drilling will be conducted to fully understand the orientation of the mineralised bodies:
 - The northeast and southwest extents of the pegmatites beyond the surficial expressions may be drill tested to determine the extent along strike especially at D12 dyke
 - Drilling will step out from 2018 drill holes to intersect the pegmatite bodies at greater depths below surface and develop an understanding of orientation subsurface