

ASX Announcement

12 September 2023

FURTHER STRONG DRILLING RESULTS FROM THE NEB & BC AREA

Predictive Discovery Limited (ASX:PDI) ("PDI" or the "Company") is pleased to report drilling results from the Bankan Gold Project in Guinea, from various resource definition and exploration programs at NEB, BC and targets in close proximity to the existing 5.38Moz Mineral Resources.¹

HIGHLIGHTS

- Resource definition drilling results:
 - Outstanding NEB infill results of 40m @ 5.64g/t from 244m, 53m @ 3.25g/t from 89m and 54m @ 2.94g/t from 353m.
 - Encouraging results at NEB outside the Mineral Resource envelope at the bottom of the resource pit shell of 23m @ 2.05g/t from 486m and 5.7m @ 2.14g/t from 493m.
 - Deep holes at NEB intersect 10m @ 5.65g/t from 750m and 9m @ 2.65g/t from 727m in the Inferred Underground Mineral Resource and 6m @ 4.89g/t from 895m into the footwall.
 - BC showing further growth potential, with many intercepts outside the Mineral Resource within or just below the resource pit shell: 2m @ 22.18g/t from 1.5m, 8m @ 4.55g/t from 95m, 5.5m @ 3.80g/t from 59m, 3m @ 4.52g/t from 33.5m and 3.4m @ 3.67g/t from 181.6m.
 - Positive infill results also recorded at BC, including 28m @ 2.23g/t from 20m, 15m @ 1.60g/t from 64m and 2.75m @ 6.36g/t from 10m.
 - Gbenbeden drilling down-plunge of defined mineralisation returned 23m @ 1.16g/t from 224m, 14m @ 0.72g/t from 109m and 11.98m @ 1.03g/t from 154.9m.
- Near-resource exploration drilling results:
 - Successful initial near-resource exploration drilling, with multiple shallow intercepts at 800W, including 16m @ 1.74g/t from 41m, 11m @ 2.42g/t from 42m, 9.5m @ 2.73g/t from 21m, 9m @ 2.72g/t from 64m and 11m @ 1.91g/t from 9m.
 - Additional drilling at 800W planned to test for potential strike extensions to the north and south. Other near-resource targets to be tested to the south of NEB and around BC.

¹ Refer to Compliance Statement at the end of this announcement.

Commenting on the results, Managing Director Andrew Pardey, said:

"The Tier-1 Bankan Gold Project continues to deliver excellent drilling results at the NEB and BC deposits, which are demonstrating potential to continue to increase the Mineral Resource."

"We remain on track to deliver a Scoping Study by the end of 2023, which is an important step in our aim to secure a mining permit for the Bankan Project in the first half of 2024."

"Pleasingly, the 800W target is beginning to take shape, with many positive shallow intercepts defining a mineralised zone that has opportunity to expand and extend along strike. We are excited to continue drilling our many near-resource targets, where we are aiming to discover new deposits that can support a future operation centred around the critical mass at NEB and BC."

"Regional exploration drilling is ongoing at Argo, and we look forward to reporting additional results from this program in the near future."

SUMMARY OF DRILLING RESULTS

Results in this announcement are from 71 holes for 14,097m as shown in Table 1.

This includes resource definition diamond ("DD") and reverse circulation ("RC") drilling at the NEB, Gbenbeden and BC deposits, and exploration drilling at 800W and other near-resource targets (refer to Figure 1).

Location	Drill type	Holes	Metres		
NEB	DD	15	8,034		
Gbenbeden	DD/RC	4	851		
BC	DD	5	935		
800W	DD/RC	18	1,580		
Other Targets	RC	29	2,697		
Total		71	14,097		

T-1-1- 1. D.:!!	11-1	Developed		41.2.	A
Table T: Drill	Holes	Reported	เท	this	Announcement

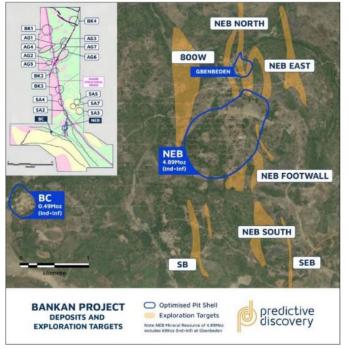


Figure 1: Bankan Project deposits and targets

NEB DRILLING RESULTS

NEB drill holes reported in this announcement include 15 DD holes for 8,034m of resource definition drilling, with best results including:

•	BNEDD0228:	40m @ 5.64g/t from 244m, incl 4m @ 9.70g/t from 247m incl 10m @ 13.25g/t from 262m
•	BNEDD0229:	23.5m @ 0.90g/t from 54.5m 53m @ 3.25g/t from 89m, incl 2m @ 12.36g/t from 105m incl 6m @ 11.96g/t from 115m
•	BNEDD0227:	54m @ 2.94g/t from 353m, incl 3m @ 12.34g/t from 359m incl 3m @ 7.81g/t from 367m incl 2m @ 7.07g/t from 378m
•	BNEDD0239:	10m @ 5.65g/t from 750m, incl 4m @ 12.68g/t from 752m 6m @ 4.89g/t from 895m, incl 2m @ 12.85g/t from 896m
•	BNEDD0215:	23m @ 2.05g/t from 486m, incl 4m @ 5.62g/t from 493m

The long section and drill plan for NEB are shown in Figure 2 and Figure 3 respectively, with cross sections and additional commentary included in subsequent pages.

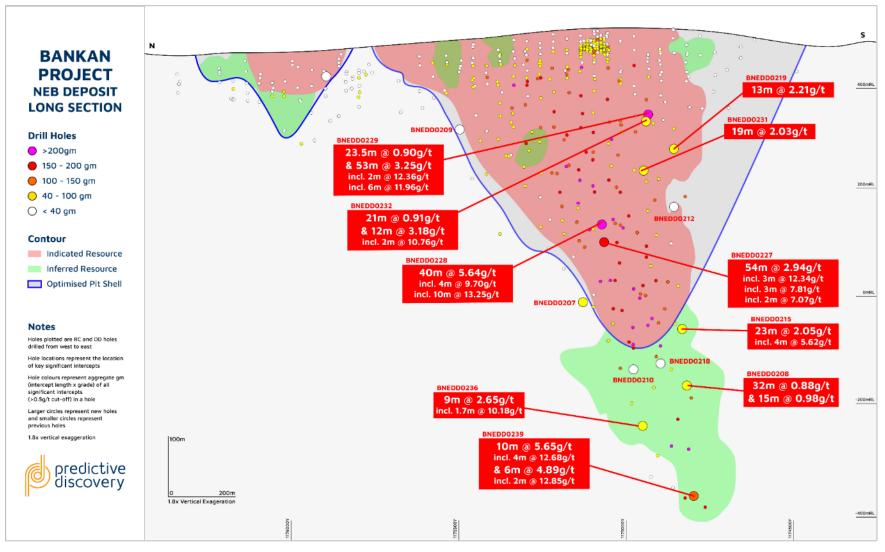


Figure 2: NEB long section, showing new DD results

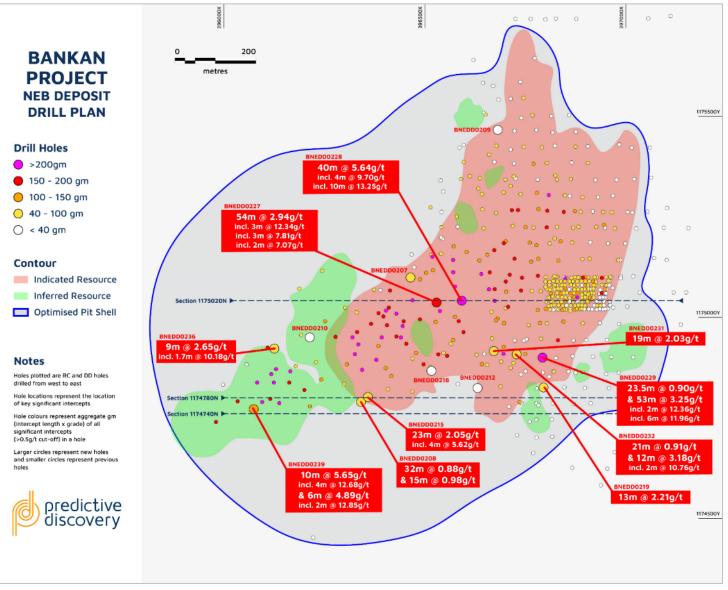


Figure 3: NEB drill plan, showing new DD results

Section 1175020N

In the central part of the resource pit shell, BNEDD0227 and BNEDD0228 recorded outstanding results within the Indicated Mineral Resource. These holes infill gaps between BNEDD0085, BNEDD0086 and BNERD0115 and intersected broad zones of mineralisation.

BNEDD0227 recorded 54m @ 2.94g/t from 353m including high-grade zones of 3m @ 12.34g/t from 359m, 3m @ 7.81g/t from 367m and 2m @ 7.07g/t from 378m, mainly in the tonalite unit between the main shear zone ("STMZ") and a secondary shear zone.

BNEDD0228 intercepted 40m @ 5.64g/t from 244m including high-grade zones of 4m @ 9.70g/t from 247m and 10m @ 13.25g/t from 262m, on either side of the mafic-tonalite contact ("MTC"), with an intense deformation present in the mafic volcanics unit.

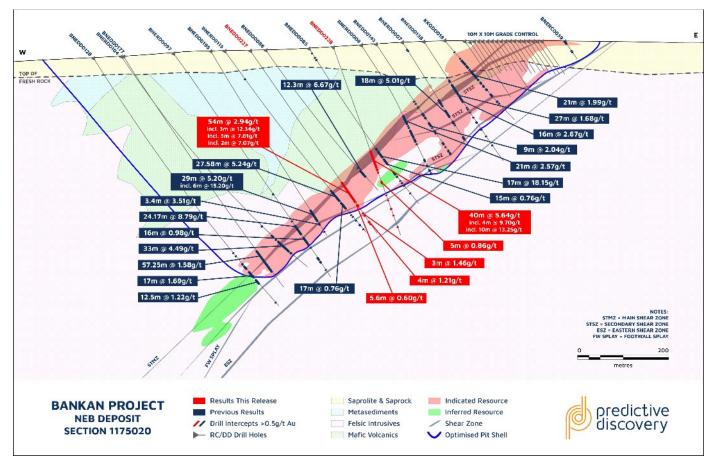


Figure 4: NEB section 1175020N (+20mN/- 20mS)

Section 1174780N

This section hosts BNEDD0208 and BNEDD0215, which recorded multiple significant intercepts at the MTC just below the STMZ, at the bottom of and below the resource pit shell.

BNEDD0215 intercepted 4m @ 2.58g/t from 471m, 5.7m @ 2.14g/t from 478.1m and 23m @ 2.05g/t from 486m including 4m @ 5.62g/t from 493 at the bottom of the resource pit shell between the Indicated and Inferred Mineral Resource envelopes. Further down the hole and below the resource pit shell, intercepts of 14m @ 0.59g/t from 557m and 5.15m @ 1.24g/t from 579.7m were received from in the footwall.

Down-dip and just below the resource pit shell, BNEDD0208 recorded significant intercepts of 4m @ 1.29g/t from 482m, 2m @ 1.86g/t from 490m, 9m @ 1.74g/t from 502m, 10.2m @ 0.95g/t from 513.8m and 32m @ 0.88g/t from 527m. These intercepts continue to define the upper southern part of the Inferred Underground Mineral Resource envelope. Further down the hole, 15m @ 0.98g/t from 697m and 6m @ 0.95g/t from 729m were intersected in the footwall tonalite.

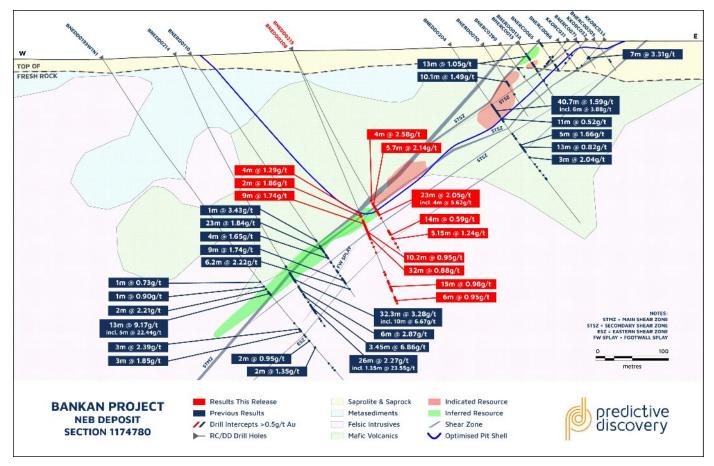


Figure 5: NEB section 1174780N (+20mN/- 20mS)

Section 1174740N

In the southern part of the deposit, section 1174740N hosts new deep hole BNEDD0239, which intercepted 10m @ 5.65g/t from 750m including 4m @ 12.68g/t from 752m, and 4m @ 1.63g/t from 765m within the current Inferred Underground Mineral Resource envelope, confirming the presence of high-grade mineralisation. An additional high-grade intercept of 6m @ 4.89g/t from 895m including 2m @ 12.85g/t from 896m was recorded further down the hole into the footwall tonalite.

Figure 6: NEB section 1174740N (+20mN/- 20mS)

Other NEB Results

Numerous other holes reported in this announcement recorded positive intercepts within the Indicated Mineral Resource in resource pit shell:

- BNEDD0229 intercepted 53m @ 3.25g/t from 89m at the MTC, and included high-grade zones of 2m @ 12.36g/t from 105m and 6m @ 11.96g/t from 115m. Further up the hole, 23.5m @ 0.90g/t from 54.5m was intercepted at the boundary between the oxidised zone and the bed rock.
- BNEDD0232 reported a series of intercepts including 6m @ 2.14g/t from 128m, 21m @ 0.91g/t from 157m and 12m @ 3.18g/t from 187m at the MTC and into the footwall tonalite, crossing multiple deformation zones.
- BNEDD0231 recorded 9m @ 1.53g/t from 180m at the MTC, and further down the hole into the footwall tonalite, intercepted 19m @ 2.03g/t from 255m and 5m @ 3.07g/t from 288m.

Another deep hole, BNEDD0236, was drilled at the northern boundary of the Inferred Underground Mineral Resource on section 1174900N. Intercepts recorded in this hole include 10m @ 1.28g/t from 714m and 9m @ 2.65g/t from 727m including 1.7m @ 10.18g/t from 731.3m.

Refer to the NEB long section and drill plan in Figures 2 and 3 for visual representation of these results.

BC DRILLING RESULTS

Five DD holes for 935m drilled at BC are reported in this announcement, with best results including:

- BCKDD0037A: 2.75m @ 6.36g/t from 10m
 28m @ 2.23g/t from 20m, incl 3m @ 8.25g/t from 45m
 5.5m @ 3.80g/t from 59m, incl 1.5m @ 10.20g/t from 60m
- BCKDD0036: 15m @ 1.60g/t from 64m
 8m @ 4.55g/t from 95m, incl 1.7m @ 13.77g/t from 97.3m
 - BCKDD0032: 2m @ 22.18g/t from 1.5m 3m @ 4.52g/t from 33.5m 3.4m @ 3.67g/t from 181.6m 6.4m @ 2.15g/t from 236m

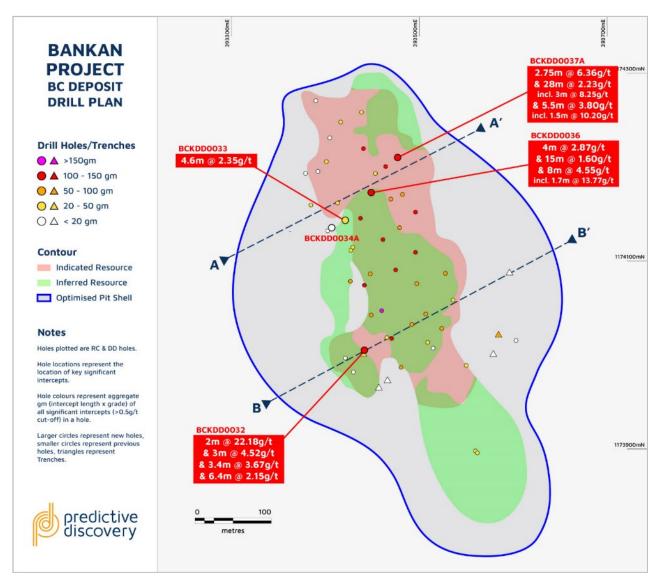


Figure 7: BC drill plan, showing new DD results

Section A-A'

This section hosts BCKDD0036 and BCKDD0037A, infilling gaps in the current drilling pattern.

BCKDD0037A recorded positive intercepts in the skarn formation, close to a tonalite-skarn contact, associated with a quartz veining network and adjacent to the hanging wall shear zone. 2.75m @ 6.36g/t from 10m and 28m @ 2.23g/t from 20m including 3m @ 8.25g/t from 45m were recorded within the Indicated Mineral Resource, whilst 5.5m @ 3.80g/t from 59m was intercepted just below the resource pit shell.

BCKDD0036 returned a number of significant intercepts between the main footwall and hanging wall shears, in the tonalite and along strongly deformed secondary quartz vein stockwork silicified corridors. Intercepts within the current Indicated Mineral Resource include 1m @ 3.68g/t from 25.5m, 4m @ 2.87g/t from 30m, 1.25m @ 2.35g/t from 50.1m, 1m @ 8.03g/t from 57m and 15m @ 1.60g/t from 64m. Intercepts of 5.4m @ 1.55g/t from 86m and 8m @ 4.55g/t from 95m including 1.7m@ 13.77g/t from 97.3m were recorded outside the current Mineral Resource envelope at the bottom of and on the edge of the resource pit shell.

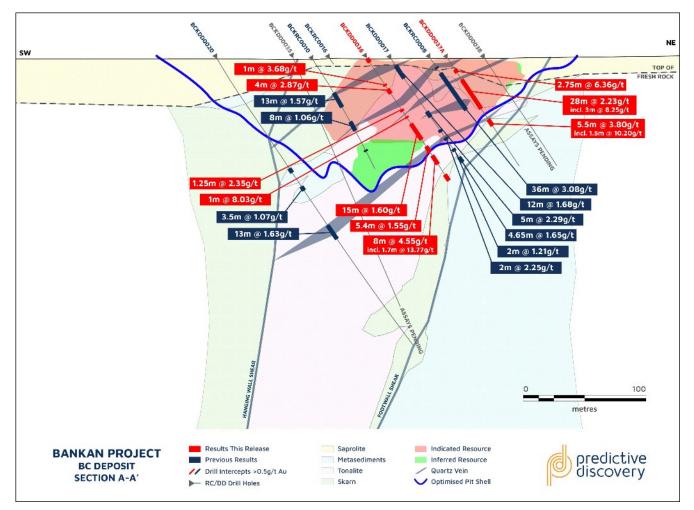


Figure 8: BC section A-A' (+20mNW/- 20mSE)

Section B-B'

BCKDD0032 recorded multiple positive intercepts within the resource pit shell but outside the Mineral Resource envelope, including 2m @ 22.18g/t from 1.5m, 3m @ 4.52g/t from 33.5m and 2m @ 2.29g/t from 122m. 3.4m @ 1.40g/t from 84.9m was intercepted with the current Inferred Mineral Resource.

Several intercepts were also recorded beneath the resource pit shell, within the tonalite and associated with quartz veining, including 3.4m @ 3.67g/t from 181.6m, 6.4m @ 2.15g/t from 236m, 2m @ 2.73g/t from 245m and 5.5m @ 1.62g/t from 255m, demonstrating that mineralisation associated with quartz vein fields continues at depth within the tonalite between the hanging wall and footwall shear zones.

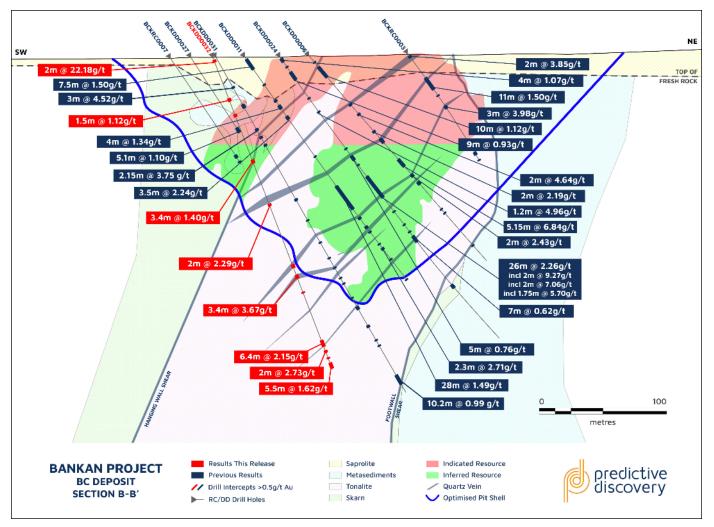


Figure 9: BC section B-B' (+20mNW/- 20mSE)

GBENBEDEN DRILLING RESULTS

Results have been received from four holes for 851m at Gbenbeden, which is located immediately north of NEB. These holes were drilled in the western part of the deposit and targeted down-plunge extensions of the defined mineralisation. Best intercepts include:

- BNEDD0235A: 14m @ 0.72g
 - 14m @ 0.72g/t from 109m 23m @ 1.16g/t from 224m
- BNEDD0233: 11.98m @ 1.03g/t from 154.9m

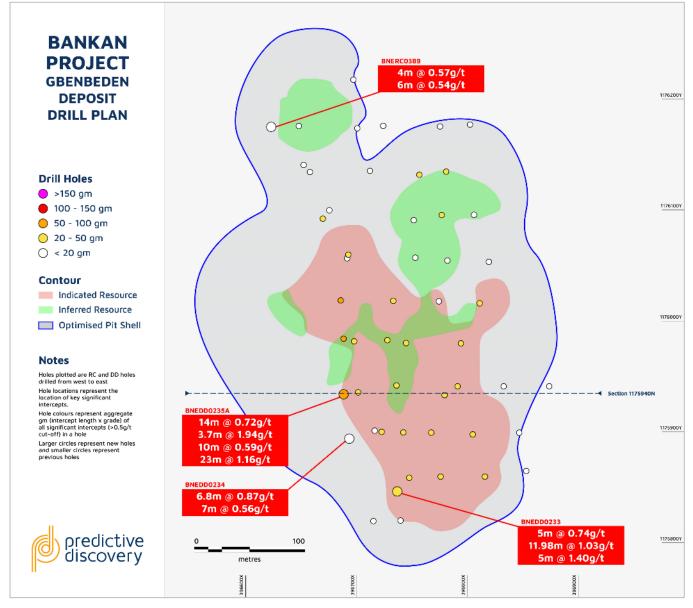


Figure 10: Gbenbeden drill plan

The multiple intercepts recorded in BNEDD0235A are associated with shear zones, and are down-plunge of the current Mineral Resource and outside the resource pit shell, demonstrating that mineralisation remains open.

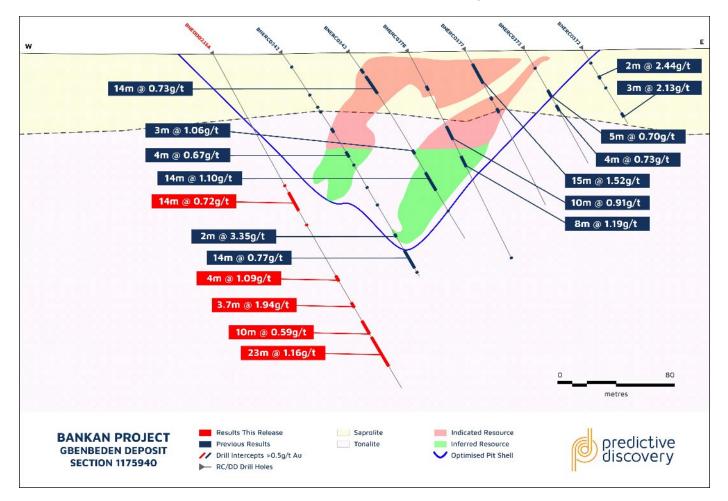


Figure 11: Gbenbeden section 1175940N (+20mN/- 20mS)

In the southern part of the deposit, BNEDD0233 and BNEDD0234 recorded several significant intercepts well beneath the resource pit shell, suggesting the existence of deeper mineralised structures. BNEDD0233 intercepted 5m @ 0.74g/t from 90m, 11.98m @ 1.03g/t from 154.9m and 5m @ 1.40g/t from 185m. BNEDD0234 returned 6.8m @ 0.87g/t from 114.85m and 7m @ 0.56g/t from 204m.

In the northern part of Gbenbeden, BNERC0389 recorded intercepts of 4m @ 0.57g/t from 69m and 6m @ 0.54g/t from 77m just below the resource pit shell.

NEAR-RESOURCE DRILLING RESULTS

Previous exploration in the NEB and BC area, including geophysics, auger and aircore drilling, has defined a number of attractive exploration targets. An RC drilling program is underway which is designed to follow-up the most promising near-resource targets, with the aim of discovering additional gold deposits which have potential to support a future operation centred around NEB and BC. Results included in this announcement are from 800W and a number of other targets.

800W

Located 400m NNW from the edge of NEB's resource pit shell, the 800W target coincides with an arrangement of several NNE-SSW-trending geophysical resistive axes. Previous auger drilling identified a gold anomaly in saprolite, which was followed up with highly encouraging aircore drilling results.

Results included in this announcement are from 18 holes for 1,580m drilled, with best intercepts of:

•	BNEDD0237:	9.5m @ 2.73g/t from 21m 9m @ 2.72g/t from 64m
•	BNERC0400:	8m @ 2.30g/t from 22m 16m @ 1.74g/t from 41m
•	BNERC0396:	11m @ 2.42g/t from 42m
•	BNERC0405A:	11m @ 1.91g/t from 9m
•	BNERC0395:	6m @ 2.74g/t from 7m

• BNERC0394: 5m @ 2.55g/t from 8m

Results appear to define a NNE-SSW-trending corridor with a pair of shallow mineralised structures which are parallel and plunge towards the NW. The mineralised structures appear to develop preferentially along and at the edge of shear zones hosted by intrusive formations.

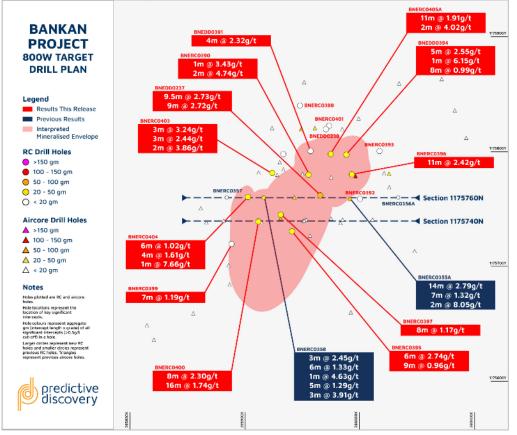


Figure 12: 800W drill plan

PDI plans to explore for potential extensions of 800W along the NNE-SSW trending resistive corridors, both to the north and south of current drilling.

Section 1175740N

This section includes three RC holes which were drilled between previous aircore holes which returned many positive intercepts. BNERC0395, the eastern most RC hole, reported shallow intercepts of 6m @ 2.74g/t from 7m and 9m @ 0.96g/t from 16m.

BNERC0397 also intersected a series of mineralised structures, including 2m @ 1.48g/t from 11m, 2m @ 1.12g/t from 33m and 8m @ 1.17g/t from 38m.

BNERC0400, the western most RC hole, reported significant intercepts of 8m @ 2.30g/t from 22m and 16m @ 1.74g/t from 41m.

Mineralisation on this section remains open down-plunge to the NW.

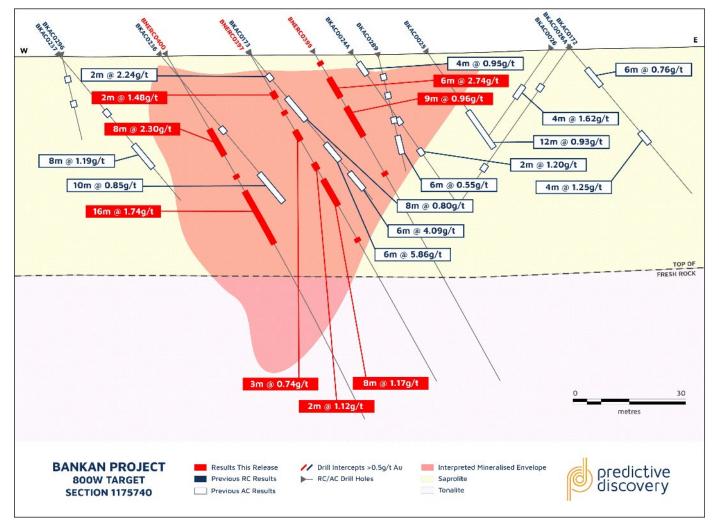


Figure 13: 800W section 1175740N (+10mN/- 10mS)

Section 1175760N

20m to the north, results have been received for three RC holes drilled on the same section as the initial promising 800W RC results announced in June 2023, which included a best intercept of 14m @ 2.79g/t from 5m in BNERC0355A.²

The best new results on this section were recorded in BNEDD0237 which intercepted 9.5m @ 2.73g/t from 21m including 2m @ 8.08g/t from 24m and 9m @ 2.72g/t from 64m. BNERC0404 returned a series of intercepts down-plunge of the currently defined mineralised envelope, including 6m @ 1.02g/t from 37m, 4m @ 1.61g/t from 59m and 1m @ 7.66g/t from 75m.

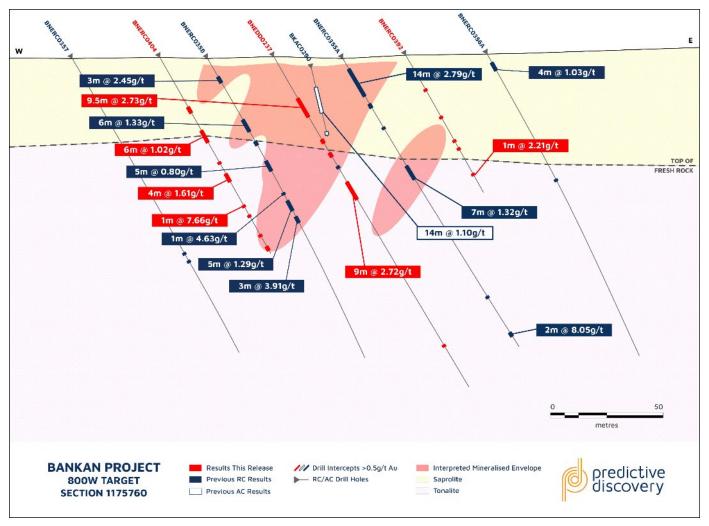


Figure 14: 800W section 1175760N (+10mN/- 10mS)

² ASX Announcement – Encouraging Drill Results at NEB, BC and Nearby Targets (19 June 2023).

Other Near-Resource Targets

This announcement includes results from 29 RC holes for 2,697m drilled at various other near-resource targets. These targets are mainly associated with auger anomalies for gold and pathfinder elements (As, Bi, Mo and/or Cu) and induced polarisation geophysical anomalies.

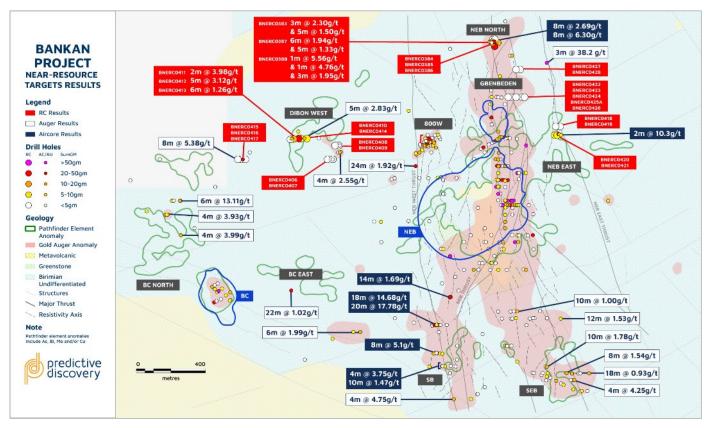


Figure 15: Drill plan for near-resource targets (excluding 800W)

NEB North

NEB North is located approximately 600m to the north of the Gbenbeden deposit. Recent RC drilling at NEB North was carried out to test the extension of previously known mineralisation along a N-S resistive axis, following up on auger and aircore drilling that returned positive results. A number of significant intercepts were recorded, including:

•	BNERC0383:	3m @ 2.30g/t from 83m 5m @ 1.50g/t from 111m
•	BNERC0387:	6m @ 1.94g/t from 21m 5m @ 1.33g/t from 43m
•	BNERC0388:	1m @ 5.56g/t from 23m 1m @ 4.76g/t from 113m 3m @ 1.95g/t from 129m

Dibon West

Located 1.5km west of NEB, drilling at Dibon West targeted gold and pathfinder element anomalies, returning several significant intercepts located in the saprolite (intrusive formation) close to quartz veins:

- BNERC0411: 2m @ 3.98g/t from 4m
- BNERC0412: 5m @ 3.12g/t from 23m
- BNERC0413: 6m @ 1.26g/t from 21m

Other Areas

Various other holes have not intersected significant thick mineralised structures but returned multiple thin mineralised intercepts (1m to 3m). This includes areas which are being considered as potential locations for project infrastructure.

The phase 1 near-resource RC drilling program is currently continuing at targets to the south of NEB.

NEXT STEPS

Assays results continue to be progressively received from the current resource definition drilling program at NEB, BC and Gbenbeden, which has now been completed.

An additional three holes have been drilled at NEB and three are planned at BC for further geotechnical testwork to support the Scoping Study and future studies.

Drilling in the NEB area is increasingly focused on near-resource exploration targets, where PDI is aiming to discover new deposits that can support a future operation centred around NEB and BC. Following the recent exploration success at 800W, additional drilling is planned to test for potential strike extensions. Drilling is also underway and planned at other near-resource targets to the south of NEB and around BC.

Near-resource drilling will also provide valuable information for the Scoping Study and future studies regarding potential locations for project infrastructure.

At Argo, which is located 15-20km north of NEB, the initial RC drilling program is continuing with results expected in the near future. Additional aircore and RC drilling is being planned to follow up on the highly encouraging initial RC results.

- END -

This announcement is authorised for release by PDI Managing Director, Andrew Pardey.

For further information visit our website at www.predictivediscovery.com or contact:

Investor Enquiries Brad Milne Corporate Development Manager E: brad.milne@predictivediscovery.com P: +61 8 9216 1000 Media Enquiries

Bobby Morse/George Pope Buchanan E: predictive@buchanan.uk.com P: +44 (0) 20 7466 5000

ABOUT PREDICTIVE DISCOVERY

PDI's strategy is to identify and develop gold deposits within the Siguiri Basin, Guinea. The Company's key asset is the Tier-1 Bankan Gold Project. A Mineral Resource of 5.38Moz has been defined to date at the NEB (4.89Moz) and BC (487Koz) deposits,³ making Bankan the largest gold discovery in West Africa in a decade.

PDI is focused on sustainably developing Bankan into a Tier-1 gold mine. The Company is aiming to complete a Scoping Study and ESG workstreams by late 2023 as crucial steps towards securing a mining permit for the Project in the first half of 2024.

The Bankan Project is highly prospective for additional discoveries. PDI is also exploring targets near the NEB and BC deposits, and regionally to the north along the 35km gold super structure which runs through the permits.

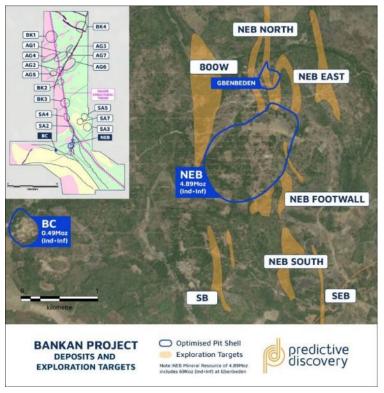


Figure 16: Bankan Project deposits and targets

COMPETENT PERSONS STATEMENT

The Exploration Results reported herein are based on information compiled by Mr Franck Bizouerne, who is a member of the European Federation of Geologists. Mr Bizouerne is a full-time employee of the Company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bizouerne consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

COMPLIANCE STATEMENT

The information in this announcement that relates to the previous mineral resource estimate is from the announcement titled "Bankan Mineral Resource increases to 5.38Moz" dated 7 August 2023. The estimate is summarised in the table below.

Deposit	Classification	Cut-off (g/t Au)	Tonnes (Mt)	Grade (g/t Au)	Contained (Koz Au)
	Indicated	0.5	78.4	1.55	3,900
NEB Open Pit	Inferred	0.5	3.1	0.91	92
	Total		81.4	1.53	3,993
NEB Underground	Inferred	2.0	6.8	4.07	896
NEB Total			88.3	1.72	4,888
	Indicated	0.4	5.3	1.42	244
BC Open Pit	Inferred	0.4	6.9	1.09	243
BC Total			12.2	1.24	487
Total Bankan Project			100.5	1.66	5,376

The information in this announcement that relates to the previous exploration results have been cross referenced to the original announcement or are from announcements listed in the table below.

Date	Announcement	Date	Announcement				
29 August 2023	Encouraging Initial Argo RC Results	17 June 2021	Broad Gold Intercepts from Bankan Creek and NE Bankan				
7 August 2023	Bankan Mineral Resource Increases to 5.38Moz	03 June 2021	NE Bankan Extends to Depth with Strong Gold Grades				
7 August 2023	Resource Definition Drilling Results	31 May 2021	6m at 32g/t Gold from First Drilling at Koundian, Guinea				
19 June 2023	Encouraging Drill Results at NEB, BC and Nearby Targets	13 May 2021	Widespread & High-Grade Gold from Bankan Regional Auger				
19 June 2023	Argo Target Upgraded by Recent Auger Results	06 May 2021	NE Bankan Central Gold Zone Extending to South at Depth				
5 June 2023	Positive Resource Drilling Results from NEB and BC	28 April 2021	Bankan Aeromag Many New Drill Targets Along 35km Structure				
22 May 2023	Multiple High Priority Drill Targets Identified at Argo	15 April 2021	NE Bankan Gold Mineralisation Substantially Extends at Depth				
6 April 2023	RC Drilling Underway at Near-Resource Targets	31 March 2021	NE Bankan Grows To 300m Wide. High Grade Gold from Surface				
4 April 2023	Infill Drilling Results	15 March 2021	Exceptionally High Grades, Thick Intercepts from NE Bankan				
21 February 2023	High-Grade Intercepts Extends Underground Mineralisation	05 March 2021	Substantial Oxide Gold Zone Emerging at NE Bankan Project				
06 February 2023	50% Of NEB'S 3.5Moz Open Pit Resource Upgraded to Indicated	25 February 2021	More Depth Extensions from Drilling Bankan Gold Discoveries				
30 January 2023	Outstanding Infill Drilling Results Continue	11 February 2021	High Grade Drill Results Extend Bankan Ck Discovery to North				
30 November 2022	Promising Near-Resource Drilling and Geophysics Results	28 January 2021	Outstanding, Wide Gold Intercept Grows Bankan at Depth				
10 November 2022	Positive Infill Drill Results & Grade Control Program Complete	22 January 2021	Bankan Gold Project Drilling Accelerated				
29 September 2022	High Grade Gold 200m Below NE Bankan's 3.9Moz Resource	27 November 2020	Exploration Update - Bankan Gold Project, Guinea				
25 August 2022	Impressive Gold Hits Continue At 4.2Moz Bankan Gold Resource	20 October 2020	Exploration Update - Bankan-2 Gold Drilling Underway				
01 August 2022	4.2Moz Bankan Gold Resource	13 October 2020	92m at 1.9g/t Gold - Diamond Drilling Expands Bankan Project				
15 June 2022	Deepest Hole to Date Intercepts Gold 630m Down Dip	25 September 2020	NE Bankan Gold Deposit Grows with More Strong Drill Results				
19 May 2022	60,000m Drill Program Underway at Bankan & Key Appointments	10 September 2020	55m at 2.94g/t Gold-Broad True Widths Confirmed At Bankan				
27 April 2022	41.5m @ 5.2g/t Au Intersected at NE Bankan	03 September 2020	NE Bankan Now 1.6km Long with Possible Parallel Gold Zone				
02 February 2022	Multi-Deposit Potential Grows with Strong Results	27 August 2020	Bankan Creek Gold Zone Further Expanded				
13 January 2022	33m @ 4.5 g/t Au at NE Bankan, Guinea	19 August 2020	Strong Wide Gold Intercepts from Bankan Creek and NE Bankan				
16 December 2021	Bankan Project Grows with New Gold Discoveries	07 August 2020	Outstanding High-Grade Gold Results from NE Bankan, Guinea				
09 December 2021	Predictive Intersects 34m @ 5.5 g/t Au at NE Bankan	31 July 2020	Diamond Drilling Confirms Gold at Depth at NE Bankan, Guinea				
22 November 2021	Further Depth Extension to Bankan High-Grade Gold	17 July 2020	Impressive 1st RC Drill Results Grow NE Bankan Discovery				
03 November 2021	High-Grade Gold Zone Extended Below Resource Pit Shell	30 June 2020	NE Bankan Discovery Guinea Extended 30% To 1.3km In Length				
28 October 2021	AC Drilling Identifies New Gold Prospects at Bankan	27 May 2020	Kaninko Auger Results Double Gold-Mineralised Strike Length				
19 October 2021	NE Bankan High-Grade Gold Zone Reinforced and Extended	07 May 2020	Drilling Update - Kaninko Project, Guinea				
30 September 2021	3.65 Million-Ounce Bankan Maiden Mineral Resource Estimate	30 April 2020	Final Drill Results, Bankan Creek, Kaninko Project, Guinea				
23 September 2021	28m @ 12.1g/t Gold 1.5 Km from NE Bankan	27 April 2020	44m at 2.06g/t Gold from Bankan Creek, Kaninko, Guinea				
16 September 2021	High-Grade Gold Zone Confirmed Up To 400m Vertical Depth	15 April 2020	Outstanding Drill Results from New Gold Discovery in Guinea				
24 August 2021	Strong Widths and Grades from Bankan Creek Resource Drilling	07 April 2020	Guinea Ground Acquired Near Plus-2 Million Oz Gold Deposits				
02 August 2021	More Broad Widths and High-Grades from Bankan Drilling	19 March 2020	High-Grades-Broad Widths from Guinea Auger-Trenching Program				
19 July 2021	Bonanza Gold Grades as High-Grade Zone Is Revealed at Bankan	26 February 2020	Up To 8g/t Gold from Power Auger Drilling in Guinea				
01 July 2021	44m @ 8g/t Gold, Highest Impact Gold Intercept at Bankan						

PDI advises that it is not aware of any new information or data that materially affects the previous exploration results or mineral resource estimate contained in this announcement and all material assumptions and technical parameters underpinning the mineral resource estimate continue to apply and have not materially changed.

APPENDIX 1: NEB DRILLING RESULTS

Hole No.	Dreamant	UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	0.5g/t gold cut-off			
Hole No.	Prospect	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM		
BNEDD0207	NEB	396,233	1,175,100	406	89.0	-61.5	580	423	10.4	0.66	7		
								436	8	1.33	11		
								448	6	1.08	7		
								462	9	0.49	4		
								490	1	0.52	1		
								501	1	1.08	1		
								521	2	1.96	4		
								533.2	1.2	1.33	2		
						-70.6		543	3	2.44	7		
								567	1	0.54	1		
BNEDD0208	NEB	396,116	1,174,780	403	87.8		751	482	4	1.29	5		
								490	2	1.86	4		
								502	9	1.74	16		
								513.8	10.2	0.95	10		
								527	32	0.88	28		
								568	1	1.77	2		
								580	1	0.58	1		
								597	1	1.38	1		
								655	1	0.58	1		
								689	2	0.54	1		
								697	15	0.98	15		
								729	6	0.95	6		
								729	1	0.93	1		
								738	1	0.86	1		
								742			1		
	NIED.	206 500	1 175 160	411	01.0	56.6	276		1	0.51			
BNEDD0209	NEB	396,580	1,175,460	411	91.8	-56.6	376	114	1	1.26	1		
								153	1	0.55	1		
								162	4	0.91	4		
								177	1	0.51	1		
								190	1	0.60	1		
								197	5.4	0.92	5		
								223	4	0.52	2		
								238	2	1.07	2		
	NED	205 061	1 174 041	200	06.7	50.4		245	1	0.89	1		
BNEDD0210	NEB	395,861	1,174,941	388	86.7	-59.1	735	599.9	5.1	1.63	8		
								627	1	1.40	1		
								674	15	0.97	15		
BNEDD0212	NEB	396,595	1,174,820	415	91.3	-81.8	421	197	1	5.79	6		
								210	3	1.58	5		
								243	7	0.43	3		
								271	1	0.92	1		
								286	3	0.66	2		
								293	1	1.94	2		
								297	15	0.52	8		
								317	2.3	0.56	1		
								371	1	1.11	1		
BNEDD0215	NEB	396,119	1,174,784	403	82.9	-65.3	616	462	2	0.82	2		
								471	4	2.58	10		
								478.1	5.7	2.14	12		
								486	23	2.05	47		
								518	1	0.74	1		
								557	14	0.59	8		
								579.7	5.15	1.24	6		
								597	2	0.72	1		
								609.5	1.3	0.92	1		
BNEDD0218	NEB	396,236	1,174,859	406	89.7	-63.8	633	599	14	0.80	11		

11-1- N-	D	UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold cut-off				
Hole No.	Prospect	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM		
BNEDD0219	Bankan NE	396,673	1,174,823	419	91.0	-56.2	357	95	8	1.03	8		
								108	1	0.60	1		
								127	3	0.67	2		
								142	3	0.68	2		
								192	2	1.05	2		
								233	1	0.70	1		
								239	13	2.21	29		
								288	2	1.72	3		
								307	1	0.79	1		
								344	1	0.81	1		
								348	3	3.71	11		
BNEDD0227	NEB	396,305	1,175,020	410	87.7	-55.2	490	353	54	2.94	159		
								413	5.6	0.60	3		
								435	2	1.27	3		
								441	3	1.46	4		
								458	4	1.21	5		
								465	1	0.54	1		
BNEDD0228	NEB	396,488	1,175,030	418	87.9	-70.3	441	244	40	5.64	226		
								287	3	0.52	2		
								293.6	1.4	0.59	1		
								315	5	0.86	4		
								347	1	1.00	1		
								359	1	0.78	1		
								378	2.3	1.01	2		
								394	1	0.94	1		
BNEDD0229	NED	206 725	1 174 000	425	00 5	65.7	250	421	1	0.56	1		
DNEDDU223 NED	NEB	396,735	1,174,900	425	90.5	-65.7	256	54.5	23.5	0.90	21		
								89	53	3.25	172		
								161	1	0.60	1		
								185	1	2.76	3		
								227	1	0.94	1		
								234	3	1.19	4		
		205 505	1 171 001	440	01.1	73.0	201	245	1	0.56	1		
BNEDD0231	NEB	396,606	1,174,901	419	81.1	-73.0	301	180	9	1.53	14 4		
								191.8 198	3	1.07 2.02	6		
								206	4.2	0.75	3		
								206	9	0.75	6		
								255	19	2.03	39		
								288	5	3.07	15		
BNEDD0232	NEB	396,640	396,640 1,174,900	420	87.8	-56.9	250	122.6	1	0.58	1		
5112550252		550,040	1,114,500	-120	07.0	-50.5	230	128	6	2.14	13		
								137	2	1.05	2		
								143	9	0.97	9		
								157	21	0.91	19		
								181	1	1.98	2		
								187	12	3.18	38		
								214	4	0.81	3		
								222	1	0.53	1		
BNEDD0236	NEB	395,731	1,174,899	385	86.6	-60.1	860	681.25	1.75	1.43	3		
•								709	1	1.59	2		
								714	10	1.28	13		
								727	9	2.65	24		
								798	9	0.78	7		
BNEDD0239	NEB	395,681	1,174,691	386	77.5	-65.0	968	729	1	0.85	. 1		
			,					745	1	1.20	1		
								750	10	5.65	57		
								765	4	1.63	7		
								781	2	3.10	6		
								786	2	2.35	5		
								810	2	1.63	3		
									-		5		
											1		
								824	2	0.54	1		
								824 887	2 4	0.54 1.87	8		
								824 887 895	2 4 6	0.54 1.87 4.89	8 29		
								824 887	2 4	0.54 1.87	8		

APPENDIX 2: GBENBEDEN DRILLING RESULTS

	_	UTM 29N	UTM 29N	RL	Hole azimuth	Hole dip	Hole depth		0.5g/t gold	cut-off	
Hole No.	Prospect	East	North	(GPS)				From	Interval	Au g/t	GM
BNEDD0233	Gbenbeden	396,669	1,175,858	393	96.5	-60.5	220	90	5	0.74	4
								103	1	0.50	1
								122	1	0.67	1
								127	1	1.17	1
								148	1	0.58	1
								151.1	1.2	0.55	1
								154.9	11.98	1.03	12
								179	1	0.55	1
								185	5	1.40	7
BNEDD0234	Gbenbeden	396,614	1,175,908	392	99.8	-61.2	265	116	1	0.78	1
								124	1	0.74	1
								140	2	0.79	2
								144.85	6.8	0.87	6
								154	1	0.55	1
								169	1	0.61	1
								186	1	0.87	1
								204	7	0.56	4
								218	2	0.62	1
BNEDD0235A	Gbenbeden	396,604	1,175,947	390	97.2	-61.8	265	103	1	0.77	1
								109	14	0.72	10
								134	1	0.53	1
								175	4	1.09	4
								196.3	3.7	1.94	7
								211	10	0.59	6
								224	23	1.16	27
BNERC0389	Gbenbeden	396,594	1,176,175	383	90.3	-59.5	100	32	1	1.09	1
								36	1	0.80	1
								63	1	1.02	1
								69	4	0.57	2
								77	6	0.54	3
								86	1	1.63	2

APPENDIX 3: BC DRILLING RESULTS

	_	UTM 29N	UTM 29N North	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East		(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
BCKDD0032	BC	393,437	1,173,908	368	56.7	-70.2	262	1.5	2	22.18	44
								33.5	3	4.52	14
								47	2.3	0.62	1
								84.9	3.4	1.40	5
								122	2	2.29	5
								172.85	3.25	0.82	3
								181.6	3.4	3.67	13
								196	1	0.91	1
								236	6.4	2.15	14
								245	2	2.73	6
							251	1	0.73	1	
								255	5.5	1.62	9
BCKDD0033	BC	393,396	1,174,073	368	59.2	-61.3	201	90	8	1.08	9
								110	4.6	2.35	11
								128.7	2.45	0.85	2
								135	4	1.63	7
								150	2	0.97	2
								159	4	1.20	5
								168	1	1.03	1
BCKDD0034A	BC	393,393	1,174,073	368	57.4	-74.3	241	97.9	2.4	3.05	7
								158	3	0.58	2
								164.7	1.5	1.83	3
								173	2.7	1.18	3
								193	1	1.24	1
								207	1	1.05	1
BCKDD0036	BC	393,455	1,174,127	368	59.6	-56.2	127	0	3.5	0.86	3
								25.5	1	3.68	4
								30	4	2.87	12
								50.1	1.25	2.35	3
								57	1	8.03	8
								64	15	1.60	24
								86	5.4	1.55	8
								95	8	4.55	36
								113.6	5.4	0.82	4
BCKDD0037A	BC	393,500	1,174,179	368	59.5	-56.5	105	10	2.75	6.36	18
								20	28	2.23	62
								59	5.5	3.80	21

APPENDIX 4: 800W DRILLING RESULTS

Hole No.	Dresses	UTM 29N East	UTM 29N North	RL (GPS)	Hole azimuth	Hole dip		0.5g/t gold cut-off				
Hole No.	Prospect							From	Interval	Au g/t	GM	
BNEDD0237	800W	395,922	1,175,761	389	88.1	-60.4	170	21	9.5	2.73	26	
								42.1	1.9	0.59	1	
								49	2.1	0.91	2	
								55.85	1.15	0.94	1	
								64	9	2.72	25	
								148	1	1.11	1	
BNEDD0238	800W	395,917	1,175,820	388	87.6	-61.3	120	117	1	0.67	1	
BNERC0390	800W	395,930	1,175,780	389	88.9	-59.2	85	16	1	0.70	1	
								20	1	0.91	1	
								25	1	0.94	1	
								47	1	3.43	3	
								53	2	1.40	3	
								59	1	0.82	1	
								68	1	0.58	1	
								82	2	4.74	10	
BNERC0391	800W	395,931	1,175,801	388	90.2	-59.2	75	34	4	2.32	9	
								72	1	1.05	1	
BNERC0392	800W	395,981	1,175,760	390	91.4	-59.8	70	17	1	1.04	1	
								31	1	0.97	1	
								43	1	1.36	1	
								47	1	0.88	1	
								60	1	2.21	2	
BNERC0393	800W	395,991	1,175,800	389	89.1	-59.9	60	49	1	0.77	1	
								53	3	1.05	3	
BNERC0394	800W	395,971	1,175,799	389	93.3	-59.9	70	8	5	2.55	13	
								23	1	0.81	1	
								29	1	0.52	1	
								33	1	0.55	1	
								51	1	6.15	6	
						55	8	0.99	8			
BNERC0395	800W	395,931	1,175,731	389	90.7	.7 -59.1	100	2	1	1.00	1	
								7	6	2.74	16	
								16	9	0.96	9	
								36	1	0.64	1	
BNERC0396	800W	395,970	1,175,781	389	90.2	-59.1	75	32	1	2.39	2	
								37	1	0.55	1	
								42	11	2.42	27	
								58	3	0.74	2	
BNERC0397	800W	395,914	1,175,745	389	90.6	-59.4	-59.4 100	11	2	1.48	3	
								17	1	1.29	1	
								23	3	0.75	2	
								33	2	1.12	2	
								38	8	1.17	9	
								56	1	1.62	2	
BNERC0398	800W	395,931	1,175,841	388	89.3	-59.6	65		No significant	intercepts		
BNERC0399	800W	395,870	1,175,720	389	89.0	-59.4	60	20	1	1.21	1	
								31	7	1.19	8	
								50	1	1.66	2	
BNERC0400	800W	395,892	1,175,739	389	88.6	-59.9	110	22	8	2.30	18	
								36	1	1.36	1	
								41	16	1.74	28	
BNERC0401	800W	395,963	1,175,820	388	89.4	-59.8	60	6	1	0.59	1	
								10	3	1.56	5	
								23	2	0.82	2	
BNERC0402	800W	395,900	1,175,800	388	92.4	-60.4	90	56	1	1.43	1	
								62	1	0.61	1	
								81	3	1.21	4	
BNERC0403	800W	395,890	1,175,780	388	88.5	-60.3	100	33	2	1.77	4	
								46	3	3.24	10	
								69	1	0.89	1	
								73	3	2.44	7	
								98	2	3.86	8	
		80014	200W 205 972	1 175 761	200	00.2	60.0					
BNERC0404	800W	395,872	1,175,761	389	89.2	-60.2	100	25	3	0.78	2	

Hole No.	Prospect	UTM 29N East	UTM 29N North	RL (GPS)	Hole azimuth	Hole dip	Hole depth	0.5g/t gold cut-off			
								From	Interval	Au g/t	GM
								53	1	0.93	1
								59	4	1.61	6
								75	1	7.66	8
								80	1	0.81	1
								90	1	0.71	1
								96	2	0.64	1
BNERC0405A	800W	395,958	1,175,799	389	91.1	-64.2	70	9	11	1.91	21
								42	1	0.95	1
								67	2	4.02	8

APPENDIX 5: OTHER NEAR-RESOURCE TARGETS DRILLING RESULTS

Hole No.	Dreament	UTM 29N	UTM 29N	RL	Hole	Hole	Hole		0.5g/t gold	cut-off	
Hole No.	Prospect	East	North	(GPS)	azimuth	dip	depth	From	Interval	Au g/t	GM
BNERC0383	NEB North	396,725	1,176,930	389	90.2	-60.2	150	8	2	0.73	2
								83	3	2.30	7
								111	5	1.50	8
								136	1	0.72	1
BNERC0384	NEB North	396,685	1,176,930	390	89.2	-60.3	150	47	1	1.61	2
								105	2	1.55	3
BNERC0385	NEB North	396,645	1,176,970	391	90.5	-60.1	150	119	2	0.80	2
								134	1	1.31	1
BNERC0386	NEB North	396,686	1,176,970	390	91.2	-59.9	150	34	1	0.64	1
								71	1	0.73	1
								136	2	0.67	1
BNERC0387	NEB North	396,691	1,176,889	389	89.1	-59.6	123	21	6	1.94	12
								43	5	1.33	7
								83	2	0.68	1
								119	1	0.60	1
BNERC0388	NEB North	396,660	1,176,934	390	90.2	-59.2	150	23	1	5.56	6
DIVERCEDEDE		550,000	1,170,554	550	50.2	55.2		113	1	4.76	5
								129	3	1.95	6
								143	1	1.35	1
BNERC0406	Dibon West	394,778	1,175,580	405	89.8	-54.9	80	25	3	1.10	3
BNERC0400	Dibon West	394,827	1,175,580	405	89.1	-54.9	60	44	2	0.67	1
BNERC0407	Dibon West	394,827	1,175,739	400	89.9	-54.9	80	44			1
BNERC0408	Dibon West	394,857		410	89.8	-55.0	60	No significant intercepts No significant intercepts			
BNERC0409	Dibon West	394,533	1,175,740 1,175,820	410	90.8	-54.6	80	14		2.03	2
BNERC0410								24	1		
									3	0.60	2
	Dile and March	204.402	1 175 010	405	01.2	56.4	00	50	2	0.97	2
BNERC0411	Dibon West	394,482	1,175,819	405	91.2	-56.1	80	4	2	3.98	8
BNERC0412	Dibon West	394,433	1,175,819	403	93.9	-54.7	80	23	5	3.12	16
								49	2	1.46	3
	D'1 147 1	204.200						61	1	1.31	1
BNERC0413	Dibon West	394,389	1,175,814	401	90.3	-55.1	80	3	3	1.80	5
								21	6	1.26	8
BNERC0414	Dibon West	394,339	1,175,813	399	91.5	-55.2	80		No significant		
BNERC0415	Dibon West	393,721	1,175,580	388	92.6	-54.5	110		No significant		
BNERC0416	Dibon West	393,776	1,175,578	386	91.7	-54.8	80		No significant		
BNERC0417	Dibon West	393,825	1,175,575	384	91.9	-55.6	60		No significant	· · · · · · · · · · · · · · · · · · ·	
BNERC0418	NEB East	397,474	1,175,959	391	91.4	-54.2	80	24	1	0.51	1
BNERC0419	NEB East	397,424	1,175,959	392	89.2	-55.1	80	19	1	1.20	1
BNERC0420	NEB East	397,373	1,175,860	393	92.1	-54.6	6 100	81	5	0.88	4
								92	5	0.89	5
BNERC0421	NEB East	397,429	1,175,865	393	89.8	-55.9	80	34	2	1.35	3
								51	1	1.39	1
								61	1	1.12	1
								65	1	1.09	1
BNERC0422	Gbenbeden Ext	397,050	1,176,300	385	91.4	-53.4	73		No significant	intercepts	
BNERC0423	Gbenbeden Ext	397,002	1,176,297	385	86.2	-54.2	84	74	1	2.25	2
BNERC0424	Gbenbeden Ext	396,952	1,176,301	384	92.0	-54.4	80	No significant intercepts			
BNERC0425A	Gbenbeden Ext	396,899	1,176,304	383	92.2	-53.7	84	19	3	0.73	2
BNERC0426	Gbenbeden Ext	396,851	1,176,300	383	92.9	-54.4	80	55	1	0.92	1
BNERC0427	Gbenbeden Ext	397,002	1,176,622	376	89.9	-54.2	73		No significant		
BNERC0428	Gbenbeden Ext	396,952	1,176,622	377	90.6	-54.4	80		No significant		

APPENDIX 6: JORC CODE TABLE 1

	Section 1: Sampling Techniques and Data						
Criteria	JORC Code Explanation	Commentary					
Sampling Technique	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples assayed were cut diamond drill ("DD") core and reverse circulation ("RC") drill chips. Core was cut in half with a core saw where competent and with a knife in soft saprolite in the upper sections of the DD holes. One metre RC chip samples were riffle split producing samples which weighed 2-3kg for submission to the assay laboratory. Duplicate samples were also retained for re-assay. Sampling was supervised by qualified geologists. The majority of samples are 1m downhole, with diamond core sampling intervals breaking at lithological contacts where appropriate. All samples were dried, crushed and pulverised at the SGS and Bureau Veritas laboratories in Bamako and Kankan to produce a 50g fire assay charge with Au analysed by FAA505 at SGS and FA450 at Bureau Veritas. 					
Drilling	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	DD holes included in this announcement were from the following rigs Sandvik DE710 DD, Sandvik DE710 DD, EDM2000 MP, Comacchio CXT15 MP and UDR200LS DD. Diamond drilling was a combination of PQ, HQ and NQ core. Core was oriented using WELLFORCE orientation tools. RC holes included in this announcement were from EDM 2000 multipurpose truck mount rigs.					
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were recorded by dividing the total length of core returned from each run by the length of the run. Overall core recoveries averaged 92%, with the poorest recoveries (averaging 82% in the first 40m of the drillholes. Overall RC recovery is very good at 96%, however samples in the first metre have lower than average recovery from the collaring process. Drill holes with poor recoveries were re-drilled within a radius of around 3m from the initial collar. A regularity of the recovery pattern downhole suggests considerable lag between the sample being generated at the hammer and reporting to the cyclone. Drillers do not always adhere to the metre marks on the mast, leading to randomly occurring overlength and underlength samples. It is unlikely that the grade of the RC drill samples has been biased, however the combination of regularly and randomly occurring sample weight variations will lead to a degradation of the local grade estimate and a higher than necessary nugget, as well as increased inaccuracy in the spatial delimitation of ore waste boundaries. The splitters are regularly checked to ensure sample build up is minimised. No relationship between sample recovery and grade has been analysed.					

Logging	 Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All drill samples were logged systematically for lithology, weathering, alteration, veining, structure and minor minerals. Minor minerals were estimated quantitively. The Competent Person considers that the availability of qualitative and quantitative logging has appropriately informed the geological modelling, including weathering and oxidation, water table level and rock type. Photographs have been taken of each core tray and chip tray. A WELLFORCE core orientation device was employed on all drilled core enabling orientated structural measurements to be taken. The Competent Person considers that the level of detail is sufficient for the reporting of Mineral Resources.
Sub-Sampling Technique and Sample Preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The DD samples were collected by longitudinally splitting core using a core saw or a knife where core was very soft and clayey. Routine samples were half-core, with predetermined diamond core duplicates being quarter-core. The sampling method is considered adequate for a DD program of this type. The RC samples were collected by riffle splitting 2-3kg from 1m 30kg bulk samples collected directly from the cyclone attached to the drill rig. Sample quality and condition are logged critically and any loss of sample integrity will trigger the hole being immediately stopped. One blind field is inserted into the sample stream and assayed routinely. The sampling procedures are industry standard. RC sample weights are recorded immediately after collection from the cyclone. Field duplicate results demonstrated no bias in the sample results. There is considerable scatter in the diamond duplicate pairs suggesting that the mineralisation is likely to be highly variable at a short scale, and this variability needs to be taken into account when planning future sampling programs.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 material being sampled. All samples were assayed by SGS and Bureau Veritas. Analysis of gold is by fire assay technique with a lower detection limit of 5ppb Au. All samples with gold values exceeding 10g/t Au were re-assayed using SGS method FAA515 with a detection limit of 0.01g/t Au. Field duplicates, standards and blank samples were each submitted in sequence every 15 samples. Diamond core duplicates were obtained by cutting the half core sample into two quarter core samples. As samples are not homogenised, some variation is expected. Duplicate and standards analysed were all within acceptable limits of expected values. Analysis of this QAQC data demonstrated that the DD/RC data is of acceptable quality to be used for Mineral Resource estimation.

Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data.	At this stage, the intersections have not been verified independently. A number of DD holes have been completed sufficiently close to previously drilled holes to provide confirmation of the location of mineralisation. Drillhole logging is completed on paper sheets and manually entered into a database on site. The data is managed by a company employee, who checks for data validation. Assay results are returned electronically from the assay laboratory and are merged into the assay table of the database. No adjustments or corrections have been made to any assay interval data. All intercepts are reported as drilled
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All surface drill hole survey information is collected in-house using a Leica 18T RTK DGPS system. The project survey grid is tied to the West African GEOID Datum and WGS84 Zone 29N projection. All DD and RC holes have been surveyed by using north-seeking WELLFORCE CHAMP gyro.
Data Spacing and Distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 NEB: The deposit has been drilled on an 80m x 80m drill spacing which supports an Inferred Mineral Resource estimate, and is being progressively infilled to an 80m x 40m which supports an Indicated Mineral Resource estimate. A detailed 10m x 10m angled RC grade control program has been completed through a 100m section of the surface core mineralised shoot. BC: The deposit was initially drilled on 80m x 80m drill spacing which supports an Inferred Mineral Resource. Current drilling is progressively infilling the drill pattern to a 40m x 40m spacing. Analysis of the drill spacing will be undertaken once all results from the current drilling are received.
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 NEB: Most of the drilling at NEB is orientated at as close as possible orthogonal to the dip and strike of the mineralisation. Early drilling programs were oriented to the west. When it was recognised that the mineralisation dips west, the drilling orientation was switched to east and most areas were re-drilled. An analysis of the data from east and west dipping holes showed: The mean and median of the west dipping holes are higher than east dipping in the saprolite; In the saprolite, the composites in the west dipping holes are more variable; The west dipping holes in the saprolite have a larger population > 2g/t; The mean and median of the west dipping holes are lower than east dipping in the fresh; In the saprolite, the composites in the west dipping holes are less variable. The west dipping data was filtered from the composite dataset before further processing, except for the laterite domain. BC: The recent reinterpretation suggests that east dipping holes are more likely to be intersecting the mineralisation orthogonally. Analysis of the effect of drill orientation will be made once all results from the current drilling are received.
Sample Security	The measures taken to ensure sample security.	Samples are stored in a guarded location close to the nearby Bankan Village. Samples are picked up and transported to Bamako or Kankan by the SGS or Bureau Veritas truck. Pulps from Kankan were further transported by the Bureau Veritas truck to Bamako for assaying. Coarse rejects and pulps will be eventually recovered from SGS and Bureau Veritas and stored at PDI's office in Kouroussa or at the core shed.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	CSA have reviewed the sampling techniques and chain of custody procedures at the project.

Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	The Bankan Gold Project consists of four <i>Permis de Recherche Industrielle (Or)</i> as follows:				
	native title interests, historical sites, wilderness or national park and environmental settings.	Permit Name	Area (km²)	Holder		
		Kaninko	98.2158	Mamou Resources SARLU		
	The security of the tenure held at the time of reporting	Saman	99.74845	Mamou Resources SARLU		
	along with any known impediments to obtaining a licence	Bokoro	99.9785	Kindia Resources SARLU		
	to operate in the area.	Argo	57.5422	Argo Mining SARLU		
		between 10°32	2'26"N and 10°52'	n 9°51′00″W and 10°03′24″W and 00″N, situated to the northwest, wes puroussa in Guinea.		
		The Kaninko, Saman and Bokoro permits are held by 100% owned subsidiaries of PDI. The Argo permit is subject to a joint venture with the Australian registered holding company of Argo Mining SARLU, whereby PDI can progressively earn 90% of the holding company by payment of US\$100,000 and will acquire the remaining 10% at a decision to mine in exchange for a 2% net smelter royalty on production. The Argo permit expiry date has passed, however PDI has submitted renewal documents that have been registered by the Ministry and are in process.				
		Parts of the Kaninko and Saman permits, including the NEB and BC deposits, are situated in Buffer Zone 2 of the Upper Niger National Park.				
		Zone 2, but ab deposits is not Mining Permit within and adj currently unde Environmental	sence any change permitted. Howe s to be granted in acent to the Mt N rtaking detailed s	se activities are permitted in Buffer e of decree, the mining of mineral ver, there are precedents in Guinea f environmentally sensitive areas (e.g. imba World Heritage Site). PDI is ustainability studies (including an t Assessment) and a Scoping Study t for the Project.		
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	NEB/BC area.		nt previous gold exploration over the		
		shallow hand o identify minera		s, with panning and loaming used to		
Geology	Deposit type, geological setting and style of mineralisation.	Birimian Super		in Paleoproterozoic rocks of the iri Basin, which is host to several ing operations.		
		granite and to	nalite, with mafic asediments includ	nsist of felsic intrusives including to intermediate volcanics and ding marble, chert and schists have		
		nodular laterit	c cover which hos	saprolite profile, with a pisolitic and sts remobilised gold, generally above d a few tens of metres laterally.		
		chlorite, silica veining, empla shears on the intruded a ma mineralisation west dipping s	and sericite altera ced during deforr nanging-wall of a fic and sedimenta is found largely ir hears (the Main a	vide zones of structurally controlled tion with associated pyrite and quart nation of anastomosing north-south tonalitic felsic intrusive, which has ry greenstone sequence. The n a corridor between two moderately nd Eastern Shears) with shallower nineralisation is preferentially		

		the footwall tonalite and the overlying mafic/metasediment package. Higher grades are found in a steeply SW plunging shoot; a second high grade shoot down plunge of the main shoot has been identified by five drillholes and is the target of current extensional drilling. BC: BC is a tonalite intrusion into sedimentary carbonate, generating a skarn at the contact between the intrusion and the host rock by metasomatic reaction. This intrusion is bordered by a deformation corridor to the east (footwall), generally following the contact between the metasediment and the intrusion, and to the west by a hangingwall shear zone at the granodiorite-metasediment contact. Skarn facies alteration developed along these two deformed contacts from magmatic hydrothermal fluid. The associated silicic alteration carries gold mineralisation. The expression of these events is varied in the core (massive quartz veins, brecciated quartz veins, sheared quartz veins, stockwork quartz veins, silica overprint, etc). The main minerals in the skarn are garnet, epidote, and chlorite, with rare pyroxene and amphibole. The footwall sedimentary carbonate displays strong deformation, including folding. 800W: 800W consists of a series of mineralised zones developing along parallel deformation zones and plunging to the NW into an intrusive host rock.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Appendix 1 to Appendix 5.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Sampling was generally in 1m intervals. Up to 2m (down-hole) of internal waste is included for results reported at the 0.5g/t Au cut-off grade. Mineralised intervals are reported on a weighted average basis.
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 NEB: The drilling targets the west dipping mineralised NEB shoot orthogonally, typically at a dip of -55° and drill pattern of 40m sections and 80m spaced holes. Intercepts are as close to true width as physically possible. BC: The drilling targets south-west dipping mineralised lodes orthogonally, at a dip of -55 and drill pattern of 40m x 40m spaced holes. Intercepts are very close to true with exception certain holes including KKODD006A which was drilled at -50 dip and azimuth 210 towards the south-west, giving an exaggerated mineralised width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps and sections are included in this release.

Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of the drill results is provided in Appendix 1 to Appendix 5.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All other exploration data on this area has been reported previously by PDI.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Assays results continue to be progressively received from the current resource definition drilling program at NEB, BC and Gbenbeden, which has now been completed. An additional three holes have been drilled at NEB and three are planned at BC for further geotechnical testwork to support the Scoping Study and future studies. Drilling in the NEB area is increasingly focused on near-resource exploration targets, where PDI is aiming to discover new deposits that can support a future operation centred around NEB and BC. Following the recent exploration success at 800W, additional drilling is planned to test for potential strike extensions. Drilling is also underway and planned at other near-resource targets to the south of NEB and around BC. Near-resource drilling will also provide valuable information for the Scoping Study and future studies regarding potential locations for project infrastructure. At Argo, which is located 15-20km north of NEB, the initial RC drilling program is continuing with results expected in the near future. Additional aircore and RC drilling is being planned to follow up on the highly encouraging initial RC results.