

Copper rock chips up to 26.7% Cu highlight prospectivity at Eastern Goldfields Project

Highlights:

- Recent field work reviewing historic copper discoveries at Breakaway Dam has confirmed significant copper prospectivity, in addition to that for lithium, gold and REEs across the broader Eastern Goldfields Project.
- Significant historic and recent Cu rock chips returned from Breakaway Dam include:
 - FR000766 26.7% Cu, 15.4ppm Ag and 0.5ppm Au
 - K229729 23.0% Cu, 0.7ppm Au
 - K229730 1.1% Cu
- Historic drill results from Breakaway Dam include several high-grade Cu intercepts:
 - BDRC10 6m @ 1.2% Cu & 11.1g/t Ag (incl. 1m @ 3.86% Cu) (from 185m)
 - BDRC01 2m @ 1.1% Cu (from 20m)
 - BDRC07 1m @ 1% Cu (from 51m)
 - BDRC02 4m @ 0.5% Cu (from 44m)
 - BDRC06 12m @ 0.1% Cu (from 16m)
 - BD003 8m @ 0.2% Cu (including 2m @ 7.4g/t Ag) (from 145m)
- Previous diamond and <u>RC drilling also includes logged intervals of up to 80%</u> <u>sulphides</u> (with chalcopyrite, pyrite and pyrrhotite mineralisation).
- Historic downhole electro-magnetic (DHEM) survey results indicate several potentially sulphide-bearing conductive plates, which remain completely untested by drilling.
- Anomalous, historic and recent geochemical results for Au, Ag, As, Bi, Cu, Mo, Pb, Se and Te.
- Rio Tinto Exploration recently applied for a large tenement package (E29/1234) located directly north of the Breakaway Dam project area.

Forrestania Resources' Managing Director Michael Anderson commented:

"Since announcing the option agreement to acquire the Breakaway Dam tenement back in May, our team has been proactively reviewing the historical data, in parallel with a comprehensive mapping and sampling programme. Our follow-up work has confirmed obvious prospectivity for copper with high grade rock chips proximal to earlier results. Importantly, previous geophysics identified a number of drill targets, which were never followed up, and we intend to make these an additional focus of our upcoming drill programmes alongside the targets that have been generated for lithium, gold and REEs across the broader Eastern Goldfields Project. We, and no doubt our neighbours, are confident that the potential exists to make new discoveries in this highly prospective belt, and we look forward to drill testing our priority targets, once heritage approvals are in place."

Forrestania Resources (ASX:FRS, Forrestania or the Company), is pleased to provide an update on the copper exploration potential at the Breakaway Dam tenement (E29/1037), which is a highly strategic part of the Company's Eastern Goldfields Project, located north of Coolgardie and Kalgoorlie, around the gold mining districts of Leonora and Menzies (see Figure 1). Overall, the Eastern Goldfields Project comprises eighteen tenements that are located over areas that the Company believes are highly prospective for large scale, multi commodity discoveries, including lithium, copper, REEs and gold.

Figure 1: The Eastern Goldfields project area

Discussion:

Breakaway Dam Cu potential

The Breakaway Dam project area (Figure 1) is located approximately 17km east of Menzies, within the Gindalbie Terrane of Eastern Goldfields Super Terrane, part of Western Australia's Yilgarn Craton. The under-explored Alexandra Bore greenstone belt, interpreted by GSWA to be made up of predominantly mafic volcanics, strikes (roughly north to south) through the tenement and into the Company's E29/1158 project area. This greenstone belt is bounded on either side by Archean granitoids.

Witt et al¹ hypothesized that the Gindalbie Terrane emerged as a prospective regional target for VMS style mineralisation (The Gindalbie terrane as a target for VMS-style mineralization in the Eastern Goldfields Province of the Yilgarn Craton, Witt et al, 1996).

However, despite the Teutonic Bore VMS system (Teutonic Bore, Jaguar & Bentley mines – Figure 2) being located within the Gindalbie Terrane, and Breakaway Dam displaying strong geochemical anomalism with sulphide-rich, Cu drilling results (**BDRC10 – 6m @ 1.2% Cu** (including 1m @ 3.86% Cu) & 11.07g/t Ag (from 185m) – with logged pyrite and pyrrhotite), the Breakaway Dam copper target has not been drill tested since 2009, and only 5 holes have ever been drilled deeper than 70m.

Figure 2: Geological terranes of the Eastern Goldfields Super Terrane, showing the location of the Bentley Zn-Cu-Ag-Au VMS deposit (part of the Teutonic Bore Cu-Zn-Ag-Au VMS system) within the Gindalbie Terrane (Australian Map Grid Zone 51) (Image from Connelly, R, 2020, modified from Krapež and Barley, 2008).

As previously announced, FRS geologists have geologically mapped significant Li-rich pegmatites across Breakaway Dam (E29/1037)^{2,3,4}.

However, in addition to the pegmatites, malachite has also been mapped by the Company from known historic workings, and large areas of sediments have also been mapped. As anticipated, highly anomalous Cu values were returned from the malachite sample – **FR000766 returned 26.7% Cu, 0.5ppm Au, 15.4ppm Ag and 245ppm Co,** backing up the historical geochemical data.

Strong geochemical results have also been returned across the tenement, with highly anomalous Cu (Figure 3) and pathfinder values from historic soil and rock chips, with a trend of approximately 2.5km of anomalous Cu soil and rock chip samples. Anomalous geochemical results for Au, Ag, As, Bi, Mo, Pb, Se and Te (Figures 9-16) are coincident with this Cu trend and correspond with the (un-named) major faulted structure that strikes through the Alexandra Bore greenstone belt.

Figure 3: The Breakaway Dam project area showing anomalous Cu geochemical results over a significant strike extent. Geological map courtesy of GSWA.

After the discovery of malachite stained, gossanous iron stone (**K229729 - 23% Cu and 0.7ppm Au**), Delta Gold NL (between 1997 and 1998) completed wide spaced auger and soil geochemical programmes, which reported anomalous Au and Cu results at several locations across the Alexandra Bore/Breakaway Dam project area (WAMEX report A55119), This was followed by very shallow RAB drilling (AXR001-AXR018).

In 2007, Amex Resources completed 7 shallow RC holes (BDRC01-BDRC07, the **deepest** hole was 58m) to further test a number of old prospecting pits, the anomalous geochemistry and moving loop electro-magnetic (MLEM) anomalies. The first hole in the programme, **BDRC01 returned 2m @ 1.05% Cu from 20m** (WAMEX report A78230). It is noteworthy that all of the holes (except BDRC05) returned zones of Cu mineralisation in excess of 0.1% Cu (see Table 1).

An additional 3 holes (BDRC08-BDRC10) were completed, in order to test other MLEM targets and to further test the geochemical anomalies (WAMEX report A91577). Results included:

- BDRC10 6m @ 1.19% Cu (including 1m @ 3.86% Cu), 11.07g/t Ag (including 1m @ 35.7g/t Ag) from 185m, with up to 40% pyrite and pyrrhotite
- BDRC08 4m @ 0.29% Cu and 1m @ 0.67% Cu, including 1m @ 3.2g/t Ag, from 36m (end of hole 70m)
- BDRC09 8m @ 0.18% Cu, from 28m (end of hole 76m)

Subsequently, 3 diamond holes (BD001-BD003) were drilled in 2009, these were designed to test other MLEM targets, up to 650m north-west of BDRC10, results included:

- BD001 7m @ 0.15% Cu (including 1m @ 0.51% Cu), 1.63g/t Ag (from 124m), with up to 20% pyrite, pyrrhotite and chalcopyrite
- BD001 2m @ 0.23% Cu (including 1m @ 0.42% Cu) (from 193m), with up to 10% pyrite, pyrrhotite and chalcopyrite
- BD002 2m @ 0.45% Cu (including 1m @ 0.71% Cu) (from 106m), with up to 10% pyrite, pyrrhotite and chalcopyrite
- BD003 8m @ 0.15% Cu (including 1m @ 0.45% Cu, 2m @ 7.35g/t Ag and 1m @ 0.38% Pb) (from 145m), with up to 70% pyrite, pyrrhotite and chalcopyrite

(To be noted: none of the historic diamond drill core nor the historic RC chip trays are available, photos are also unavailable.)

Figure 4: Location of historic drilling at Breakaway Dam with some of the significant drilling intersections for Cu. Geology map courtesy of GSWA.

Down hole geophysical surveying of the diamond holes (BD001-003) was completed by Amex Resources. As a result of these surveys, seven west-dipping, downhole electro-magnetic (DHEM) bedrock conductors were identified and interpreted by Southern Geoscience Consultants (SGC), in close proximity to the drill holes, at depths from 45-110m below surface. The three strongest and largest of these conductive bodies have been **interpreted (by SGC) as having sulphides as the conductive source and have yet to be drilled**. These downhole conductors are coincident with the major un-named, faulted structure and the magnetic anomalies seen in the ground EM (Figures 5 and 6).

Figure 5: Ground EM over Breakaway Dam with sulphide percentages noted on intercepts. Geology map courtesy of GSWA.

Figure 6: Section looking north showing interpreted conductive plates. The plate seen adjacent to BD001 and those adjacent to BD003 have been interpreted by Southern Geoscience Consultants as potentially sulphide-bearing. These electro-magnetic plates have never been drill tested.

VMS deposits

Volcanogenic massive sulphide ore deposits, also sometimes called volcanic-hosted massive sulphide (VHMS) deposits form on or below the seafloor, as a result of volcanic and hydrothermal activity. Sulphide-rich fluids are released from the mantle. When these fluids react with seawater, base metal rich sulphide minerals are precipitated. Different metal sulphides tend to drop out of a metal solution at different temperatures – typically copper and gold first, followed by zinc and lead, giving a roughly zoned depositional model (Figure 7).

VMS deposits usually occur in clusters, often in close proximity to each other and within a particularly small area (~10 km²) as they are all related to the same event, with the metal-rich fluids escaping to the surface through a number of (black smoker) vents. Examples include the Bathurst Mining Camp in New Brunswick, Canada and importantly the Teutonic Bore VMS complex (located approximately 140km north of Breakaway Dam) which occurs in a sequence of Archean mafic and felsic volcanic rocks⁵ consisting of the Teutonic Bore, Jaguar and Bentley VMS deposits.

Figure 7. Schematic cross-section of a VMS deposit showing the vertical and horizontal zonation of base metals at the top of the deposit. Image taken from Hannington (2014).

The Yilgarn Craton is characterized by a paucity of outcrop, deep weathering and oxidation which makes exploration more challenging, however the successful discovery of the Teutonic Bore VMS complex in the region (within the Gindalbie Terrane) suggest that there is strong exploration potential for similar style deposits in the area. Rio Tinto Exploration Limited have a large tenement directly north of Breakaway Dam (Figure 8).

Significantly, the Breakaway Dam project shows a similar geochemical trend to other VMS deposits⁶ with elevated **Cu**, **Zn**, **Pb**, **Au** and **Ag** as well as highly anomalous values for **As**, **Bi**, **Mo**, **Se** and **Te** (see figures 9-16).

Breakaway Dam v VMS model

✓ Geochemistry

- Malachite is present at surface with anomalous shallow zones of Cu mineralisation from drilling (Malachite is a common carbonate and by far the most abundant alteration product of primary Cu minerals such as chalcocite and chalcopyrite).
- Significant Cu rock chips, containing up to 26.7% Cu.
- Anomalous values for pathfinder geochemistry including **As**, **Bi**, **Mo**, **Se** and **Te** as well as elevated values for **Cu**, **Au** and **Ag**.

✓ Geophysics

- $\circ\,$ Drill testing of the historic ground EM has confirmed the presence of Cu mineralisation.
- Strong DHEM results with interpreted sulphide bodies, in close proximity to drilled sulphides. These **DHEM conductive bodies have never been tested**.

✓ Geology and geological setting

- Located within mafic rocks in the Gindalbie terrane, which also hosts the Teutonic Bore VMS complex.
- Much of the Breakaway Dam downhole geology has been historically logged as foliated amphibolite and schist, but the project area also has areas of untested outcropping sedimentary units.

✓ Copper and sulphide mineralisation

- The 2nd hole into the Jaguar deposit⁷ (part of the Teutonic Bore VMS complex) which was targeting a deep EM anomaly intersected (depth not reported):
 - 7.7 m of massive sulphide at 4.3% Cu, 16.1% Zn, 0.8% Pb, 173 g/t Ag and 0.24 g/t Au
- Breakaway Dam best intercept so far:
 - BDRC10 6m @ 1.19% Cu (including 1m @ 3.86% Cu and 1m @ 0.14% Zn), 11.07g/t Ag (including 1m @ 35.7g/t Ag) from 185m.
 - BDRC10 184-192m logged by geologists at the time as having up to 40% sulphide mineralisation with magnetic pyrite and pyrrhotite.
- Multiple intervals throughout the historic holes at Breakaway Dam have logged pyrite, pyrrhotite and chalcopyrite.

✓ Lead and zinc mineralisation

- Highly anomalous lead and zinc mineralisation from drilling:
 - **BD002 2m @ 0.45% Zn (from 99m)**
 - BD003 1m @ 0.38% Pb (from 151m)

✓ AND...

- VMS deposits typically have lower grade feeder zones that occur adjacent to major accumulations of higher-grade massive sulphides.
- \circ The Breakaway Dam project hasn't been drilled since 2009.

¹ The Gindalbie terrane as a target for VMS-style mineralization in the Eastern Goldfields Province of the Yilgarn Craton, Witt el al, 1996

² ASX:FRS, Anomalous lithium returned from rock chips - Eastern Goldfields tenements, 9th August 2023
 ³ ASX:FRS, Option to acquire strategic, highly prospective Eastern Goldfields tenements, 19th May 2023
 ⁴ ASX:FRS, New pegmatites identified at Eastern Goldfields, 9th June 2023

⁵ Geologic setting of the Teutonic Bore massive sulphide deposit, Archean Yilgarn Block, Western Australia, Economic Geology (1985) 80 (7), Halberg et al, 1985.

⁶Landscape evolution and geochemical dispersion of the DeGrussa Cu-Au deposit, Western Australia, I. Gonzalez-Alvarez et al, 2019, from Ore Geology Reviews, pages 487-513

⁷ VMS mineralization in the Yilgarn Craton, Western Australia: a review of known deposits and prospectivity analysis of felsic volcanic rocks, GSWA, Hollis et al, 2017

Next steps:

The Company intends to complete further reconnaissance trips to geologically map and undertake additional geochemical sampling at the Breakaway Dam project area.

A drilling programme has been designed to test the copper anomalism once full heritage approval has been granted.

Additionally, the Company has applied for EIS funding to test the sulphide conductive bodies and the Cu potential at Breakaway Dam.

References:

The Company is not reporting any data that has been drilled by Forrestania Resources or any companies associated with FRS.

References used for this announcement include:

- The Gindalbie terrane as a target for VMS-style mineralization in the Eastern Goldfields Province of the Yilgarn Craton, Witt el al, 1996
- VMS mineralization in the Yilgarn Craton, Western Australia: a review of known deposits and prospectivity analysis of felsic volcanic rocks, GSWA, Hollis et al, 2017
- Volcanogenic Massive Sulfide Deposits, Hannington, 2014
- Volcanogenic massive sulphide deposits, in mineral deposits of Canada: A synthesis of major deposit types, Hannington et al, 2007
- A comparison of the TAG Mound and stockwork complex with Cyprus-type massive sulfide deposits: Proceedings Ocean Drilling Program, Scientific Results Volume Leg 158, p. 389-415, Hannington et al, 1998
- Image from Volcanogenic Massive Sulphide Deposits, Galley et al, Geological Survey of Canada
- Sandfire Resources The Doolgunna Copper-Gold Discovery, August 2009
- Understanding the Palaeovolcanological and Palaeoenvironmental setting of Archaean VMS Deposit: Stratigraphic Architecture and Volcanology of the Archaean VMS host rock succession of the Teutonic Bore, Jaguar and Bentley Mine corridor, Eastern Goldfields Province, Western Australia, Das, R, 2018
- Short Wave Infrared Alteration Maps of a Volcanogenic Massive Sulphide Deposit: A case study of the Bentley Deposit, Western Australia, Connelly, R, 2020
- A review of the Jaguar Cu-Zn-Ag VMS discovery and subsequent geophysical trials, Cantwell et al, 2009.
- Landscape evolution and geochemical dispersion of the DeGrussa Cu-Au deposit, Western Australia, I. Gonzalez-Alvarez et al, 2019, from Ore Geology Reviews, pages 487-513
- Geologic setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia, Economic Geology (1985) 80 (7), Halberg et al, 1985.

This announcement is authorised for release by the Board.

For further information, please contact:

Michael Anderson Managing Director T: +61 (0) 412 496 797 E: <u>michael@forrestaniaresources.com.au</u> Cecilia Tyndall Company Secretary T: +61 (0) 400 596 734 E: Cecilia@forrestaniaresources.com.au

About Forrestania Resources Limited

Forrestania Resources Limited is an exploration Company searching for lithium, gold, and nickel in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia. The company is also exploring for lithium in the James Bay region of Quebec, Canada.

The Forrestania Project is prospective for lithium, gold and nickel. The Southern Cross Project is prospective for gold and lithium and the Eastern Goldfields project is prospective for gold, lithium, rare earth elements and copper.

The flagship Forrestania Project is situated in the well-endowed southern Forrestania Greenstone Belt, with a tenement footprint spanning approximately 100km, north to south of variously metamorphosed mafic, ultramafic / volcano-sedimentary rocks, host to the Mt Holland lithium mine (189mT @ 1.5% Li₂O), the historic 1Moz Bounty gold deposit and the operating Flying Fox, and Spotted Quoll nickel mines.

The Southern Cross Project tenements are scattered, within proximity to the town of Southern Cross and located in and around the Southern Cross Greenstone Belt. It is the Company's opinion that the potential for economic gold mineralisation at the Southern Cross Project has not been fully evaluated. In addition to greenstone shear-hosted gold deposits and lithium bearing pegmatites, Forrestania is targeting granite-hosted gold deposits. New geological models for late Archean granite-controlled shear zone/fault hosted mineralisation theorise that gold forming fluids, formed at deep crustal levels do not discriminate between lithologies when emplaced in the upper crust. Applying this theory, Forrestania has defined multiple new targets.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. The Project includes ten Exploration Licences and eight Exploration Licence Applications, covering a total of ~1,800km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts. The southernmost tenement is located approximately 15km north of Coolgardie, and the northernmost tenement is located approximately 15km north of Coolgardie, and the northernmost tenement is located approximately 70km northeast of Leonora. Prior exploration over the project area has focused on gold, copper, diamonds, and uranium. Tenements in the Project area have been variably subjected to soil sampling, stream sampling, drilling, mapping, rock chip sampling and geophysical surveys.

Forrestania Resources also holds a 50% interest in the Hydra Lithium Project (HLP) located in northern Quebec, Canada. ALX Resources (TSXV: AL; FSE: 6LLN; OTC: ALXEF) holds the other 50%. The HLP comprises eight sub-projects totalling ~293km² within the world-class lithium exploration district of James Bay. These sub-projects strategically overlie or are positioned on the margins of highly prospective greenstone belts and are proximal to existing, significant lithium projects and deposits.

The Company has an experienced Board and management team which is focused on exploring, collaborating, and acquiring to increase value for Shareholders.

Competent Person's Statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr Ashley Bennett. Mr Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary Statement Regarding Values & Forward-Looking Information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forwardlooking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. The geochemical sampling data reported in this announcement is not intended to support a mineral resources estimation.

Figure 8. Map showing FRS tenement and tenement applications with respect to Rio Tinto Exploration Limited's tenement. Rio Tinto are located directly north of FRS' Breakaway Dam (E29/1037) and also E29/1158.

Hole ID	Туре	Easting	Northing	Depth (m)	From (m)	To (m)	Interval	Sulphide %	Style/comment	Cu %	Ag g/t
BDRC01	RC	330687	6712779	40	20	22	2	not logged	granular clear qtz and malachite	1.05	n/a
BDRC02	RC	330673	6712764	52	44	48	4	not logged		0.45	n/a
BDRC02		inclu	ıdes		47	48	1	not logged	granular clear dtz and malachite	0.35	2.38
BDRC03	RC	330726	6712741	56	28	36	8	not logged	sheared qtz-mica schist minor mafic epidote	0.13	n/a
BDRC03		ar	nd		49	50	1	49-56m - 1%	No logged comments	0.25	0.95
BDRC04	RC	330785	6712708	46	16	24	8	not logged	No logged comments	0.17	n/a
BDRC06	RC	330580	6712829	34	0	4	4	not logged	No logged comments	0.18	n/a
BDRC06		ar	nd		16	28	12	not logged	No logged comments	0.14	n/a
BDRC06		inclu	ıdes		20	24	4	not logged	No logged comments	n/a	1.17
BDRC06		ar	nd		32	34	2	not logged	No logged comments	0.19	n/a
BDRC07	RC	330563	6712815	58	42	43	1	not logged	No logged comments	0.33	2.52
BDRC07		ar	nd		47	48	1	not logged	No logged comments	0.19	1.28
BDRC07		ar	nd		47	51	4	not logged	No logged comments	n/a	0.68
BDRC07		ar	nd		51	52	1	not logged	granular clear qtz and malachite	0.95	0.35
BDRC08	RC	330900	6712600	70	0	4	4	not logged	qtz fe	0.13	n/a
BDRC08		ar	nd		36	40	4	not logged	1% qtz veining	0.29	n/a
BDRC08		ar	nd		61	62	1	10%	No logged comments	0.67	3.2
BDRC08		ar	nd		66	68	2	62-70m 1%	No logged comments	0.11	n/a
BDRC09	RC	330880	6712580	76	28	36	8	not logged	36-37m qtz	0.18	n/a
BDRC10	RC	330075	6713050	250.5	93	97	4	not logged	Fine grained diss sulphides weakly magnetic	n/a	2.23
BDRC10		ar	nd		95	96	1	not logged	Fine grained diss sulphides weakly magnetic	0.11	5.4
BDRC10		ar	nd		102	106	4	102 104m 20%	py-po magnetic (103-104m)	n/a	4.03
BDRC10		ar	nd		103	105	2	103-104111 50%	2% qtz veining	0.2	n/a
BDRC10		ar	nd		113	116	3	105-141m 1%	Fine grained, non-mag, with diss sulphides, 114-117 - bi altn	n/a	1.37
BDRC10		ar	nd		181	182	1	not logged	weakly mag	0.15	1.2
BDRC10		ar	nd		185	191	6	186 100 /0%	weakly mag diss sulphides & py-po magnetic large bladed	1.19	11.07
BDRC10		inclu	ıdes		186	187	1	100-150 40%	amphiboles	3.86	35.7
BDRC10		ar	nd		208	212	4	3%	non mag	0.16	2.7

Hole ID	Туре	Easting	Northing	Depth (m)	From (m)	To (m)	Interval	Sulphide %
BDRC10	and	220	221	1	not logged	No logged comments	0.13	1.4
BDRC10	and	233	234	1	not logged	No logged comments	0.59	2.8

Table 1: Assay details for the BDRC holes, completed by AMEX Resources in 2008 (data from WAMEX report A91577). Table shows Cu intervals >0.1% Cu with corresponding Ag values (minimum intercept 0.1% Cu over 1m, with maximum internal waste of 2m) and Ag values >1g/t (minimum intercept 1g/t Ag over 1m, with maximum internal waste of 2m). (RL - ~440m, Grid MGA94_51). These values represent down hole width and not true width. All assays from the historic BDRC holes that are not included here are <0.1% Cu. Sulphide percentage and mineralisation style included where available from historic logs (py-pyrite, po – pyrrhotite). Assay results from BDRC10 from a depth of 213.9m are from a diamond tail (BD004).

Hole ID	Туре	Easting	Northing	Depth (m)	From (m)	To (m)	Interval	Cu %	Ag g/t
BD001	DD	330015	6713150	246	124	131	7	0.15	1.7
BD001		inclu	udes		124	125	1	0.13	1.5
BD001		inclu	udes		126	127	1	0.51	5.1
BD001		inclu	udes		127	128	1	0.12	1.3
BD001		inclu	udes		130	131	1	0.11	1.2
BD001		aı	nd		143	144	1	0.14	2.6
BD001		aı	nd		193	195	2	0.23	1.9
BD001		inclu	udes		193	194	1	0.12	n/a
BD001		inclu	udes		194	195	1	0.35	1.9
BD002	DD	329890	6713285	117	79	80	1	0.35	3.6
BD002		aı	nd		106	108	2	0.45	n/a
BD002		inclu	udes		106	107	1	0.66	2.3
BD002		inclu	udes		107	108	1	0.24	n/a
BD003	DD	329550	6713485	165	100	104	4	0.14	2.1
BD003		aı	nd		104	108	4	n/a	1.9
BD003		aı	nd		120	121	1	0.10	1.2
BD003		aı	nd		145	153	8	0.15	n/a
BD003		inclu	udes		145	146	1	0.12	1.1
BD003		inclu	udes		146	147	1	0.11	n/a
BD003		inclu	udes		149	150	1	0.17	n/a
BD003		inclu	udes		151	152	1	0.35	13.5
BD003		inclu	udes		152	153	1	0.31	1.2

Table 2: Assay details for the BD holes, completed by AMEX Resources in 2008 (data from WAMEX report A91577). Table shows Cu intervals >0.1% Cu with corresponding Ag values (minimum intercept 0.1% Cu over 1m, with maximum internal waste of 2m) and Ag values >1g/t (minimum intercept 1g/t Ag over 1m, with maximum internal waste of 2m). (RL - ~440m, Grid MGA94_51). These values represent down hole width and not true width. All assays from the historic BD holes that are not included here are <0.1% Cu. Due to the irregular nature of the diamond core, geological logging i.e. the holes were not logged in 1m intervals, please refer to

Hole ID	Туре	Easting	Northing	Depth (m)	From (m)	To (m)	Interval	Sulphide %	Style/comment	Pb %	Zn %
BD003	DD	329550	6713485	165	151	152	1		see table 5	0.38	n/a
BDRC01	RC	330687	6712779	40	20	21	1	not logged	granular clear qtz and malachite	0.04	n/a
BD001	DD	330015	6713150	246	40	44	4	see table 5		0.03	n/a
BD002	DD	329890	6713285	117	99	101	2	see table 5		n/a	0.45
BDRC10	RC	330075	6713050	250.5	186	187	1	186-190 40%	py-po magnetic large bladed amphiboles	n/a	0.14
BDRC10	RC		and		104	105	1	5%	2% qtz veining	n/a	0.09
BDRC10	RC		and		220	221	1	not logged	No logged comments	n/a	0.07
BDRC07	RC	330563	6712815	58	41	42	1	not logged	No logged comments	n/a	0.12
BDRC07	RC		and		42	43	1	not logged	No logged comments	n/a	0.07

Table 3: Assay details for the BD holes, completed by AMEX Resources in 2008 (data from WAMEX report A91577). Table shows Pb intervals >0.02% Pb and Zn values >0.06% Zn. (RL - ~440m, Grid MGA94_51). Any intervals >1m is a composite sample. These values represent down hole width and not true width. Sulphide percentage and mineralisation style included where available from historic logs (py-pyrite, po – pyrrhotite).

Hole ID	Туре	Easting	Northing	Depth (m)	From (m)	To (m)	Interval	Co ppm
BDRC06	RC	330580	6712829	34	0	4	1	429
BDRC10	RC	330075	6713050	250.5	233	234	1	268
BDRC07	RC	330563	6712815	58	41	42	1	240
BD001	DD	330015	6713150	246	194	195	1	189
BD002	DD	329890	6713285	117	79	80	1	174

Table 4: Assay details for the BD holes, completed by AMEX Resources in 2008 (data from WAMEX report A91577). Table shows Co intervals >170ppm Co. (RL - ~440m, Grid MGA94_51). These values represent down hole width and not true width. No mineralisation was logged for the above intervals for the BDRC holes, for the mineralisation in the BD holes, please refer to table 5 in the supplementary data section.

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 FRS did not conduct any drilling activities and no drilling data by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports, the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). Holes with prefix BDRC were completed with reverse circulation drilling. Holes with prefix BD were part of a diamond drilling programme. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. BDRC10 has a diamond tail (BD004) from 214m but the holes is referred to as BDRC10 throughout this announcement as that is how it has been historically reported; as such, the samples taken from 214m were taken using quarter core over, 1m sample intervals. Samples were not taken for the entirety of the diamond tail of BDRC10 – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. BD holes were sampled using quarter core over 1m sample intervals. Samples were not taken for these holes – areas to sample were chosen by the logging geologists, based on their identification of the entirety of these holes – areas to sample were chosen by the logging geologists, based on their identification. AXR were completed by RAB drilling. FRS rock chips were sent to ALS and assayed using ME-MS61L and Au-TL43 – assayed for gold and multi elements. Historic auger and soil samples were taken by multiple parties and were sent to ALS Perth, ALS Kalgoorlie and Genalysis for multi element and Au analysis using aqua regia and four acid with a variety of methodologies including: AU-GF42, ME-ICP43, ME-MS61L, Au-AROR43, Au-TL43, Cu-OG62 (with finishes including ICPAES, ICP-MS) AND 4AH/OE, ARO05/MS, AR25/MS (with ICPOES and ICP-MS) – aqua regi

Criteria	JORC Code Explanation	Commentary
		 Cu by 4 acid with ICPAES finish) and Au-TL43 (aqua regia with ICPMS finish). BD holes and all diamond core was assayed for multi elements and gold by Genalysis with 3 different methodologies: AX/MS, AX/OES and FA25/SAAS – 4 acid with ICPMS finish, 4 acid with ICPOES finish and fire ass ay (respectively). AXR holes were sampled using 5m composites throughout the hole. They were assayed at ALS Kalgoorlie using aqua regia for Au and Cu only
Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports, the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The sampling data from the historic reports is believed to have been undertaken using "industry standard" techniques. Reported historic drilling is reverse circulation (RC) (prefix BDRC) and diamond drilling (prefix BD). BD001 – RC precollar to 120m BD003 – RC precollar to 72m BD003 – RC precollar to 111m BDRC10 is the precollar of BD004 but has historically been referred to as BDRC10))- the RC precollar is from a depth to 213.9m. Diamond drilling – no details of core orientation are known and the historic diamond core is no longer available, no photos are available. Core diameter – unknown and not reported in WAMEX. AXR holes were shallow RAB drilling.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports, the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The sampling data from the historic reports is believed to have been undertaken using "industry standard" techniques. Drill sample recovery is not known for the historic drilling. No known relationship exists between sample recovery and grade and no sample bias is known to have occurred.

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports (detailed below), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The logging data from the historic reports is believed to have been undertaken using "industry standard" techniques. The geological logs for holes with prefix BDRC are open source and available within the relevant WAMEX reports and those details transferred to the company database. Samples were logged geologically including but not limited to: recording colour, weathering, regolith, lithology, veining, structure, texture, alteration and mineralisation. Geological logs for holes with prefix BD were geologically logged with all standard geological information. The individual logs are available in WAMEX A88374. The logs are not reported here as some of the logs are illegible; instead the mineralisation which is mentioned in the body of the announcement is included in the supplementary data. At this stage, the historic data in this announcement is NOT intended for use in a mineral resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. WAMEX reports suggest samples were collected via a combination of riffle splitter and metals scoops/ spears. BD holes – according to the WAMEX reports and subsequent data downloads, all diamond core samples were quarter cored, no details of QAQC is given but industry standard is assumed.
Quality of assay data and	• The nature, quality and appropriateness of the assaying and	• FRS did not conduct any drilling activities and no drilling by FRS is reported
laboratory tests	laboratory procedures used and whether the technique is considered partial or total.For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the	 in this announcement. Historic assay techniques are considered appropriate for the elements that were being assayed for. Hole collar locations were recorded at the time using a hand held GPS.

Criteria	JORC Code Explanation	Commentary
	 Analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The QAQC procedures for the historic RC and DD drilling is not always recorded adequately. It is assumed "industry standard" QAQC protocols were applied. Information that is present in WAMEX reports: BDRC10 has 3 standards with no IDs and 2 blanks, these were taken every 5 samples. No details of the other BDRC holes' QAQC data is known from the WAMEX reports BD holes – according to the WAMEX reports and subsequent data downloads, blanks were taken approximately every 20 samples and unknown standards (details unavailable) were taken approximately every 10 samples. AXR holes were sampled using 5m composites throughout the hole. They were assayed at ALS Kalgoorlie using aqua regia for Au and Cu only. 6 duplicate samples were taken as part of the QAQC procedure. Historic auger and soil samples – no details of QAQC are available but as they were taken to ALS and Genalysis, they would have been subject to standard laboratory QAQC procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. There are a number of historic, significant intersections that are reported in this announcement. Future drilling and exploration work by the company will seek to confirm the intersections and the validity of the mineralisation. It is unknown whether the historic drilling results were the subject of verification by independent of alternative company personnel but it is assumed that standard industry practice was adhered to. All data has (where possible) has been transferred to the FRS database – adjustments have been made to the nature of the aggregation of significant intersections, using the following parameters: Au - lower cut off 0.5 ppm, minimum interval 1m, maximum internal waste 2m. Cu - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Ag - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m.

Criteria	JORC Code Explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drill hole coordinates and samples were recorded in MGA zone 51 and have been taken from data attached to historic WAMEX reports. Geochemical sample locations with prefix FR were taken using a hand held GPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. The drilling data outlined in this announcement is historic and at this stage is not intended to be used for a mineral resource estimate. Sample compositing has been used in the drilling – details are given earlier in the JORC.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement and no new drilling by FRS is being reported in this announcement. All of the drilling is historic. The majority of the drilling at Breakaway Dam was exploration in nature and as such, an understanding of the mineralisation was not well understood. No sampling bias is known to have occurred at the Breakaway Dam project and the drilling is too limited to ascertain whether a sampling bias has occurred All holes with prefix BDRC were drilled with a dip of -60 degrees and azimuth of 45 degrees (WAMEX A78230). All of the diamond holes were drilled at the same angle at -60 degrees and azimuth of 45 degrees. AXR holes drilled at -60 degress and azimuth of 270 (all details in the supplementary data).
Sample security	• The measures taken to ensure sample security.	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement, however, it is assumed that the previous operators ensured that industry standards were adhered to for sample security. All of the FRS geochemical samples (prefix FR) were collected by FRS geologists and taken to ALS with no third party access.
Audits or reviews	 The sampling methods being used are industry standard practice. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement and the full details of the sampling methodology are not known. The methodology utilised by previous explorers is assumed to be industry standard. Where the sampling methodology is known, the details are noted in the FRS database.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code ExplAnntion	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or nationalpark and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E29/1037 is currently in the name of Outback Minerals Pty Ltd. Forrestania Resources Limited has reached an agreement with Outback Minerals to operate the tenements and keep the tenements in good standing. Currently, all requirements have been met.
Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 Although now recognised as one complete greenstone belt, the project area was originally mapped as being two separate outcropping greenstone areas, Breakaway Dam and Alexandria Bore (in the south – E29/1036), and the historical exploration will be described accordingly. At Breakaway Dam, the first indications of exploration were a number of small pits dug by prospectors, possibly in the late 1960s or early 1970s, which exposed malachite-coated quartz veining in chloritic schists. Systematic exploration commenced in the 1970s when copper, nickel, lead and zinc exploration was undertaken by Australian Selection Pty Ltd. Their work included geological mapping and surface geochemical sampling, the results of which clearly defined a greenstone belt and copper-zinc anomalism. It was subsequently concluded that the mineralisation was shear zone hosted with limited potential. Between 1997 and 1998, Delta Gold N.L. (Delta) negotiated an option to purchase the project area from prospectors. Delta then completed a shallow auger soil sampling program with a total of 157 holes on a 800m x 400m spacing. Samples were analysed for gold (ppb) andarsenic and copper (ppm). Follow-up by Delta consisted of a further 270 shallow auger soil samples followed by drilling of 18 short RAB holes (prefix AXR) totalling 461m. Results indicated the presence of a number of sinusoidal anomalies, two of which exhibited gold values of greater than 85ppb Au. These were reported to be "situated within favourable dilatant jogs" related to sinustral movement along the sheared western

Criteria	JORC Code ExplAnntion	Commentary
Criteria	JORC Code ExplAnntion	 Commentary greenstone-granite contact. Delta did not consider the results warranted further exploration. From May 2003 to May 2004, the exploration area was renamed the Oliver Twist Project and explored by Sunrise Exploration Pty Ltd (Sunrise) on behalf of Pelican Resources Limited. A total of 232 soil samples were collected from about 15cm depth at 25m spacings along four east-west lines with samples being analysed for gold and arsenic; no base metal analyses were undertaken. No anomalous results were returned. In the zone immediately adjacent to the old prospecting pits a programme of 15 easterly inclined shallow RAB holes totalling 500m was completed and 131 samples were collected and analysed for gold (ppm). In 2007, the outcropping secondary copper mineralisation was sampled by a prospecting group and submitted for limited multielement analyses with the results revealing statistically anomalous levels of gold, lead, tin and tungsten possibly indicative of a significant mineralised sulphide system in the area. Later in 2007, Amex commenced a wide-spaced reconnaissance reverse circulation (RC) drilling program of 7 shallow holes over 250m strike length near Breakaway Dam focused initially on a number of the old prospecting pits and a shallow geophysical anomaly (MLEM, moving loop ground electromagnetics). A further three RC holes were drilled later in 2009, up to 650m further north of BDRC10, to test other MLEM targets. A number of mineralised sulphide lodes were intersected in each hole, comprising predominantly pyrite, pyrrhotite and minor chalcopyrite, with anomalous copper and silver levels. Amex's initial interpretation was that some of the semi-massive to massive sulphides intersected had the potential to be "feeder zone" mineralisation and considered strongly indicative of a larger VMS copper sulphide system. Down hole geophysical surveying of these holes BDD001-003 identified eight DHTEM bedrock conductors of interest in close pr
		 Interpreted as naving copper sulphides as the conductor source and have yet to be drilled. Ground magnetics and moving loop electromagnetic (MLEM) surveying had also defined additional targets over several kilometres of strike extent which have yet to be toted.

Criteria	JORC Code ExplAnntion	Commentary
		 These exploration histories are taken from the Aurelia IPO prospectus 2012 and WAMEX report A109745.
Geology	Deposit type, geological setting and style of mineralisation.	 The Breakaway Dam project area is located approximately 17km east of Menzies, Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The Alexandra Bore greenstone belt, made up of predominantly mafic volcanics, strikes through both of the tenements. This greenstone belt is bounded on either side by Archean granitoids. Ultramafic and pegmatite outcrops have been mapped across both tenements. The Perseverance Fault runs through both tenements, roughly north south, intersecting the greenstone belt in the northern half of E29/1037; whilst an un- named fault strikes roughly north-west/south-east intersecting the Perseverance Fault. The style of mineralisation at Breakaway Dam is unknown but previous explorers and this announcement hypothesize that there may be similarities with VMS style deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole, down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material andthis exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. Historical drilling information on the project areas can be found in open source data within WAMEX reports: A2523, A55119, A78230, A91577, A25113, A28449, A109745,. Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Drill hole information for historic holes reported in this announcement are found in the tables in the supplementary data. All holes with prefix BDRC were drilled with a dip of -60 degrees and azimuth of 45 degrees (WAMEX A78230). All of the diamond holes were drilled at the same angle at -60 degrees and azimuth of 45 degrees. AXR holes drilled at -60 degrees and azimuth of 270 (all details in the supplementary data).

Criteria	JORC Code ExplAnntion	Commentary
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. Historic data has been loaded into the FRS database where possible. Some of this historic data has previously been aggregated, the details of the aggregation is not always known. Data that had not previously been aggregated has been loaded to the FRS database and calculated using: Au - lower cut off 0.5 ppm, minimum interval 1m, maximum internal waste 2m. Cu - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Ag - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Pb – lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known andonly the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. The geometry of the historic mineralisation for the prospects reported in this announcement is not yet known. All intercept lengths reported are derived from downhole depths. No true widths have been reported and is unknown.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view ofdrill hole collar locations and appropriate sectional views. 	 Appropriate maps with scale are included within the body of the accompanying document. All geological base maps are courtesy of GSWA.
Balanced reporting	 Where comprehensive reporting of allExploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The accompanying document is considered to represent the exploration potential of the tenements. All of the significant drilling intercepts (>0.1% Cu, >1g/t Au, >0.02% Pb, > 0.06% Zn and >170ppm Co) are included in the tables provided. All drilling intercepts not included have values less than those listed above.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 WAMEX reports: A55119, A78230, A81833, A88374, A91577, A109745, were used to confirm geochemical and drilling data for this report. WAMEX reports A88374 and A91577 reference a down hole EM survey that was completed in 2010, Three DHTEM surveys were completed at the Breakaway Dam project during mid September 2009 by GEM Geophysical Surveys and interpreted by Southern Geoscience Consultants. The objective of these surveys was to

Criteria	JORC Code ExplAnntion	Commentary
		detect bedrock conductors of interest (possible copper sulphide concentrations) in close proximity to these drill holes). Loop location and data: Conventional dB/dt DHTEM Surveys • Contractor : GEM Geophysical Surveys • Contractor : Jan 15 ⁿ -Jan 17 ⁿ 2010 • Survey Configuration : Downhole • Receiver : Smattern • Transmitter : : Zonge 2T-30 • Transmitter : : 20 of 500 (100 (100 (100 (100 (100 (100 (100

Criteria	JORC Code ExplAnntion				Co	ommentary	tary				
			Drill hole	Survey Date	Loop	From (m)	To (m)	No. of stations	Distance		
			BD01	17/9/2009	BD1	10	115	26	105		
			BD02	16/9/2009	BD2	10	100	22	90		
			BD03	15/9/2009	BD3	10	120	22	110		
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depthextensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	•	Where po- visits. Further ge Ultimately have beer been gran	ssible, further va eochemical work , the company w n designed and v ted.	alidation c will be t vishes to will be co	of the historic undertaken. drill test the ompleted whe	c drilling w anomalies an the requ	ill be confiri – drilling pr visite approv	ned by site ogrammes ⁄als have		

Table 5: Supplementary data: Original mineralisation logs from diamond holes BD001-BD003 (from WAMEX A88374), includes BD004 (diamond tail of BDRC10). Sulphide mineralogy codes that are relevant for this announcement: py – pyrite, po – pyrrhotite, cp – chalcopyrite. Note the significant % zones of sulphides. Downhole width given, not true widths.

-	`						-	T	цõ	16	No		-			1.000	
	· · · · · · · · · · · · · · · · · · ·					r	nΝ		20	<u>L</u>	144	<u>-</u> 4	iz 1				
	me 150 0033/1																
-	MINERALISATION										STE	RAT,					
-	M-M GS Code % Mineralogy CA									β							
1	11954-120	F	\$	w	1	0	×	p	0								
1	120-123	F	\$	6	2	P	6	c.	P	P	¥	ы	e.				
ĩ	123-12325	F	\$	0	10	4	ø	P.	0		'						
1	12325-12	F	\$	5	5	p	a	њ.	P								-
1	124.1-125	F	\$	10	20	ø	0	¢	P			1				i	
1	125-1253	F	\$	μ	3	p	6	p	y.	<u> </u>	P						
]	125.3-126.4		\$	12	5	Ś	p	e	0		<u>́</u>						
]	124-+ -+23	F	\$	6	15	p	6	<	p							1	+
i	127.3 -127.5	F	8	Ь	2.	p	0	e	P								
j	1275-128	F	\$	6	٦	<	P	P	0							-	
)	122-130	F	\$	4	4	s.	Lp.	je.	σ	P	Y						_ <u>i</u>
5	130-005	F	5	p	10	P	0	È	9								
	1325-1315	F	3	16	5	p	0	5	P	1	\neq						
5	131.5-73	TC	\$	<u>i</u> w	2	m	i e	P	7			-				-+-	
-	13915 -137	F	Þ	Ь	2	ş	9	P	6			-	1		<u> </u>	<u> </u>	
	137 - 08!	F	3	ίω	1	c	p.	19	10	P	įγ		Ļ				÷
_	139.22 -1239	F	\$	P	0	P	0	e	P		<u> </u>			25	330		
1	131.9-14.2	F	8	-	11	18	ł×-	p	10	¢.	K		-				
1	141.2-141.5	<	1\$	4	2	rs.	15-	P	17							1	-
1	141.5-142.	FF	13	1+	1	P	İΥ	-	ĺ		-) 				
)	1425-144	Ľ	8	6	3	F	Ŕ	P	0	r	Y		<u> </u>		<u>.</u>		
2	NAT-145.	F	3	16	2	7	2	- c	11	~	<u>`</u>	-	2	pars	-		
Ļ	175.5-140	F	12	1	<	P	اx		1		1 	-	1			-	+
-	146.2-147	F	13	14	4	19	0	P	¦γ	<	ŀP	-	<u> </u>		1		1
1	147-148) E	\$	įЬ	12	6	ip	19	0	P	7		Ļ		1		
_	148.5-1495	F	\$	P	10	P	<u>_</u>	-	if	fp	7		į				
1	149.55-151	F	10	6	1	P	0	-	9	1P	Y	м	- C				
1	151 - 153	(F	1	16	KI.	P	7	3	Ļs	P	9	-	-			-	
2	155.1-75	1	10	#	0	4	+P	18		P	17	-	1	-	1	-	1
2	1525-15]	1F	1	0	12	P	10	łŧ	17	-			I		 	+	-
2	158.5-159	1		b	13	F	20	-	P	\vdash	[-			1	\vdash	- <u>+</u>
2.	159-160	뿌	¥	Ь	13	P	-	1	77	-	ŀf	1:-	+			H	
2	160-161	<u>Įľ</u>	f.	1	11	P	17	+	1		+	+	+		†	T.	-
2	161-162.		1		1	¦₽	1	e	Ħ	+	┼	-	<u> </u>	-		\vdash	1
7	164,7-161,	#2	1	- w		f	47	4-	+	+		+-	1		1	\uparrow	-
<u>)</u>	161.7-10	ar ar		÷f	2	P	ie i	- C	įΡ	+	10	-	1		5	++	
1	162 -162	<u>a</u> r	0	1	5	1	2 0	78	¦¥	1	Y	1	÷			ti	
1	100.1 100.	#2		<u>.</u> 	12	+P		1	- P	++	17		+		1	Ħ	.
1	105 1/2	#	- 1	14	1	۲P	10	1	47	+-	ŀ	+	1		1		
-	106-3-16/	.t) I	10	1	11	-F	4	1		1.2	<u>ب</u>	 ; _		les	-14		
	[43.2-32 cp/ch att.																

	HOLE NO.							
	30 001							
T								
- MINERALIS	BATION	STRAT.						
	CODE							
M-M GS Code %	Mineralogy a B							
K71-K33 F 5 14 1 0 V								
122-023 6 1 0 3 0 0	a V							
THY -TRY C . L 1								
100 C SIL 2 10		1						
1151-11F 005227								
TT-IDLF SW (PY	20							
175.2-170 F 51+ CI PY		1 1						
177.7-173.2 F & w L P.Y	pic internet							
178.2-11.3 F 3 + K PY								
181.3-12181 F \$ 16 2 po	< 8 P 7							
18135-127F \$ + KI PY								
1827-1846 FS + 1 0 Y								
1846-146 F & w 1 pm	Po							
1/16-18625F J16 7 pla	PY							
1902-1913 F \$16 5 pla	cp py							
11913-192 F \$ m 5 cp	p14 00							
1192-1925F5610 PIN	5000							
1925-193 F & w 2 0.Y								
1933-7976 F \$ 1 2 0 4	1041							
194.6-195.1 F \$ 6 10 410	010							
1451-196X F \$ 14 4 012	00							
	1 1 1							
2126-285 ES 2 2 2	0 0	1 1						
225-202 F SIT SI DI		1 1						
1242 212 6 8 1 2 2								
-2103-211 - V W Z PY								
22-5-22 5-11 2								
LOS LON DUX PY	PO-com.							
1200-200 F 3 6 2 c p	p Y S -							
121.5-20 4 3 6 < 0	PY							
213 -223 F PIT PY								
>22.2.5-								
+								
<u>></u>								
2								
1								
180.15-180.4 F \$ 6 3 c p	0007							
222.5-132.1 Spotty' no	of , supplies replace as/	an 181?						
Frags in s	, etay							
	,							

_	mN HOLE No.																
	mE 30 002																
	MINERALISATION											STRAT					
	M-M GS Code % N								nera	logy	A B	 .	4				
	108-1085	۴	3	Ь	3	c	P	P	¥		i					-++-	-
	108.5 111	۴	\$	t	<u><1</u>	p	Ý		q.		i	_			į	_ <u>i</u> _į	-
	(115-18.7	F	\$	ω	2	ć	p	_p	8	P	Y						4
	112.7-115.5	F	3	i+	<1	p	¥.			_					1		
	115.5-116	F	\$	Ь	1	¢.	8	P	4	L	į –						
	116-47	F	₿	e,	1	P	ly.	د	p.		i –				<u>i – </u>	_i_i-	_
1						Ľ									L		_
1				1					-						1		
1				1			1		1		1				-		
1				i.							1				<u>i</u>	<u> </u>	
1				1							1						_
1				1			l		1		1						
-		-	1	1	-		i		i		1				i	11	
1		1			-	\square	1			1	1		Į		i	1	
1		-		Ţ	t	T	1		1	1	1				1		
-				+	1	1-	1		1		†		1		1		
-		<u>+</u>	1-	1		+		t-	-		1	1			1	11	٦
-		⊢	┝	+	⊢	+	+	╞	<u>+</u>	-	ŧ—	+			1		-
-		┢─	┢─	÷	-		<u> </u>	+-	İ-	\vdash	÷				1		-
-			⊢	+	┢─	-	1	\vdash	1	-	†	-	1		† –	11	1
-		-		<u> </u>	┝		<u> </u>	-		-	1						-
_		-	╞	÷	-	┝	<u>.</u>	-	į	┝	<u>+</u>	\vdash	1		+		
_			_		-	-	-		-	+	÷		-			$ \rightarrow $	-
_		+	-	⊢		+	╞	-	1	+	+	-			+		
			╞	<u>i</u>	-	-	Ļ		<u> </u>	-	+		⊢		1		_
_		+	+	Ļ			į.	Ļ	į	-	į	╞	į		1		
		_	1	+	_	-	1	-	+	-	-		-				_
_				1			-	-			+	-		·	+		
		_		i			į		į		1	_	1		+	<u> </u>	
				1			i.		1			1	i.			1	
				1					1								
				I			!		1		1		1			╘┼┼	_
Ĩ							1		i		į.		i		1		
-				1			1		i		ì		ĺ		i	1	_
			T	T			1								1		
			Τ	1	1	1	1		-	Γ	1	T			1	11	
-		T	T	i	1	T	I	Τ	1	T	1		1		1		
-		t	T	-4	T	+	1	1	1	Τ	1		1				
-		$^{+}$		1	+	+	T	T	1	+	1	T	1	1	1		
			t	1	+	+	1	1	j-	1	1	T	İ	1	1		
-		-	+	+	+	+	1	$^{+}$	1	+		t	İ		1		
-	L																

	HOLE No.		
	BD 003		
1		1	
MINERALIS	STRAT.		
	Mineralogy CA		
M-M GS Code A		35"	
110.4-111.2 F 3 6 2 PY			
111.2-11.6 F & W I PLY	0 1 20 20	20	
112.1-112.5F b g 2 p.y		ii	
12.3-113 F 0 6 PY			
ING THE PLATE			
Instruct p Storp 7			
10 Pay & \$ 10 1t a -			
In 1. (-lost F spin - pit	Pla e P		
126 5127 6 5 10 1 212		0.492	
12.6 127 - 510 - 014		and the second	
1234-1218 310 01 17			
121-132 F & 1 5 1 5 1 5 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
130-131 F 30 41 E P			
120 235 6 1 + 4 21	-r-		
1335-141 6 5 1 1 0 2	1000		
HUL- W2 E SIT CU 2			
141-140 F S	0 2 1 1 1	· · · ·	
1142.3-1631 11 5 0 10 0 12	010 0171		
14321-144 F Sing L 410			
1504 -1444 E & d 2 012	0.0 6.2.		
1 KK+4 - NAME F \$ 070 000	c.0 0.1	VICIQ	
1 Maran Rise F K M 2 O'Y	c10 02 1	1 1	
J x 5 4 - 1958 F 5 im 3 c 12	012011		
1459 - MESTES 105 EID	010 014 519. 50	V CO MULT	L
1645-1993 F \$ + CI 0.4	c. 0.		
14826- NRL F \$ 10 3 E D	000,460		
1496-192 F S W L C 0			
192-1827 F \$ 1030 c12	014		
1902-151 F SILL 1 CIP	818		
151-1516 F S b 2 GO	0400.		
157.6-1522 F 8 9 5 CO	a.000		
1522-1537 F 310 3 clo	20		
1527-153.18 8 6 2 =10	PIY I		
153.1 - F \$ + <1 0 Y			
1			
		1 12 24	
			100
			1.1
SAMPLING (119-125.	(H 137-142.5.		
(2) 142.5-14	1	and the second	
(J) 148-154			

Table 6: Sulphide logging from BDRC10, interval 184-192m. su – sulphides, py – pyrite, po – pyrrhotite. Downhole widths given, not true widths.

Hole_ID	Depth_From	Depth_To	Sulph1_Code	Sulph1_pct	Comments
BDRC10	184	186	su	5	weakly magnetic disseminated sulphides
BDRC10	186	190	su	40	py-po magnetic
BDRC10	190	192	su	20	*NO COMMENTS FROM ORIGINAL LOG

Table 7: Historic rock chip results reported by Delta Gold NL, reported in WAMEX report A55119. No information is given on the form of mineralisation, except to say that K229729 contained malachite (sample descriptions in Table 10).

486.0/982103(19/05/98)	GENALYSIS	Page 2 of 2
ELEMENTS UNITS Detection Method	Au Au PPD PP 1 1 B/ETA B/	-Rp1 Au-Rp2 Cu B ppm ppm 0.01 1 ETA B/AAS B/AAS
SAMPLE NUMBERS 1 Control Blank 2 K229728 3 K229729 4 K229730 5 K229731	1 155 820 70 86 8	5 280 r 0.68 23.00%r 1.06%r 2600 r
6 K229732 7 K229733 8 Ch.0002(K229728 9 NGL-13 9 NGL-13	3 205) 205 11	700 r 0.21 130 r 420 16
	<	·····

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	East	North	Orig_RL	RC precollar	Lease_ID	Prospect	Started	Completed	Company	WAMEX	DD
BDRC01	RC	40	45	-60	330687	6712779	440	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC02	RC	52	45	-60	330673	6712764	440	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC03	RC	56	45	-60	330726	6712741	443	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC04	RC	46	45	-60	330785	6712708	443	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC05	RC	56	45	-60	330771	6712693	443	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC06	RC	34	45	-60	330580	6712829	445	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC07	RC	58	45	-60	330563	6712815	445	n/a	E29/1037	Breakaway Dam	10/2/08	10/2/08	AMEX	A78230	n/a
BDRC08	RC	70	45	-60	330900	6712600	445	n/a	E29/1037	Breakaway Dam	10/3/09	10/3/09	AMEX	A81833	n/a
BDRC09	RC	76	45	-60	330880	6712580	445	n/a	E29/1037	Breakaway Dam	10/3/09	10/3/09	AMEX	A81833	n/a
BDRC10	RC_DDT	250.5	45	-60	330075	6713050	445	214	E29/1037	Breakaway Dam	10/3/09	10/9/09	AMEX	A81833	BD004
BD001	RC_DDT	246	45	-60	330015	6713150	445	120	E29/1037	Breakaway Dam	10/3/09	10/3/09	AURELIA	A91577	BD001
BD002	RC_DDT	117	45	-60	329890	6713285	445	72	E29/1037	Breakaway Dam	10/9/09	13/9/09	AURELIA	A91577	BD002
BD003	RC_DDT	165	45	-60	329550	6713485	445	111	E29/1037	Breakaway Dam	8/9/09	12/9/09	AURELIA	A91577	BD003
AXR001	RAB	29	270	-60	330750	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR002	RAB	21	270	-60	330800	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR003	RAB	38	270	-60	330850	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR004	RAB	40	270	-60	330900	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR005	RAB	9	270	-60	330950	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR006	RAB	39	270	-60	331000	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR007	RAB	58	270	-60	330350	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR008	RAB	45	270	-60	330400	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR009	RAB	40	270	-60	330450	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR010	RAB	24	270	-60	330500	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR011	RAB	26	270	-60	330550	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR012	RAB	9	270	-60	330650	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a

Table 8: Historic drill collars for the holes referred to in this announcement. All collars - Zone MGA94_51. (The RC pre collar, hole ID information for BD001-BD003 is unavailable). BDRC10 has a diamond tail from 213.9m.

AXR013	RAB	3	270	-60	330700	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR014	RAB	24	270	-60	330750	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR015	RAB	26	270	-60	330800	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR016	RAB	5	270	-60	330300	6713400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR017	RAB	4	270	-60	330350	6713400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR018	RAB	22	270	-60	330300	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a

Table 9: Assay results from AXR holes – taken from WAMEX A55119.

HOLE	DTYPE	FROM	то	AU	CO1	NI1	AS1	CU1	CUT	SAMPLE1	LAB1	AR1	AR2	AR3	AR4	FA1
AXR1	RAB	0		5					52	K223822	KA28335	< 0.01				
AXR1	RAB	5		10					97	K223823	KA28335	< 0.01				
AXR1	RAB	10		15					73	K223824	KA28335	< 0.01				
AXR1	RAB	15		20				3	88	K223825	KA28335	<0.01				
AXR1	RAB	20		25					83	K223826	KA28335	<0.01				
AXR1	RAB	25		28					61	K223827	KA28335	<0.01				
AXR1	RAB	28		29					67	K223828	KA28335	<0.01				
AXR2	RAB	0		5					53	K223829	KA28335	<0.01				
AXR2	RAB	5		10				1	10	K223830	KA28335	<0.01	<0.01			
AXR2	RAB	10		15					58	K223831	KA28335	<0.01				
AXR2	RAB	15		20				3	26	K223832	KA28335	<0.01				
AXR2	RAB	20		21					39	K223833	KA28335	<0.01				
AXR3	RAB	0		5					45	K223834	KA28335	<0.01				
AXR3	RAB	5		10					94	K223835	KA28335	<0.01				
AXR3	RAB	10		15				1	03	K223836	KA28335	<0.01				
AXR3	RAB	15		20					46	K223837	KA28335	<0.01				
AXR3	RAB	20		25					98	K223838	KA28335	<0.01				
AXR3	RAB	25		30					78	K223839	KA28335	<0.01				
AXR3	RAB	30		35					4/	K223840	KA28335	< 0.01	<0.01			
AXR3	RAB	35		38					15	K223841	KA28335	<0.01				
AXR4	RAB	0		10				3	10	K223843	KA20335	<0.01				
	DAD	10		16				15	e0	K223044	KA28335	<0.01				
	DAD	10		20				15	00	K223045	KA20333	<0.01				
	DAD	20		20					94 25	K223040	KA20333	<0.01				
	RAB	20		30					20	K223848	KA28335	<0.01				
AYPA	RAB	30		35					69	K223840	KA28335	<0.01				
AXRA	RAB	35		40					51	K223850	KA28335	<0.01	<0.01			
AXR5	RAB	0		5					71	K223851	KA28335	<0.01	-0.01			
AXR5	RAB	5		10					73	K223852	KA28335	<0.01				
AXR6	RAB	õ		5				4	11	K223854	KA28335	< 0.01				
AXR6	RAB	5		10					99	K223855	KA28335	<0.01				
AXR6	RAB	10		15					82	K223856	KA28335	< 0.01				
AXR6	RAB	15		20					90	K223857	KA28335	< 0.01				
AXR6	RAB	20		25					66	K223858	KA28335	< 0.01				
AXR6	RAB	25		30				4	58	K223859	KA28335	< 0.01				
AXR6	RAB	30		35				3	75	K223860	KA28335	< 0.01				
AXR6	RAB	35		39					98	K223861	KA28335	< 0.01				
AXR7	RAB	0		5				6	58	K223864	KA28335	<0.01				
AXR7	RAB	5		10				6	14	K223865	KA28335	< 0.01				

Figure 9: The Breakaway Dam project area showing anomalous Pb geochemical results. Geological map courtesy of GSWA.

Figure 10: The Breakaway Dam project area showing anomalous Bi geochemical results. Geological map courtesy of GSWA.

Figure 11: The Breakaway Dam project area showing anomalous Mo geochemical results. Geological map courtesy of GSWA.

Figure 12: The Breakaway Dam project area showing anomalous Te geochemical results. Geological map courtesy of GSWA.

Figure 13: The Breakaway Dam project area showing anomalous Se geochemical results. Geological map courtesy of GSWA.

Figure 14: The Breakaway Dam project area showing anomalous Au geochemical results. Geological map courtesy of GSWA.

Figure 15: The Breakaway Dam project area showing anomalous As geochemical results. Geological map courtesy of GSWA.

Figure 16: The Breakaway Dam project area showing anomalous Ag geochemical results. Geological map courtesy of GSWA.

Table 10: Rock chip and soil results for the elements referred to in this announcement. All samples - Zone MGA94_51. RL ~440m. (note: n/a – sample result below detection limit; if there is no sample description, no description was available from historic data; if no value is given for a specific element, it was not assayed for). All samples with prefix FR were taken by FRS, all other samples are historic data. Malachite mineralisation style for sample FR000766 is available in ASX:FRS 9th June 2023 – New pegmatites identified at Eastern Goldfields.

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
AB1	Soil	6719500	328000		1.3	0.02	4.24	0.67	20.84	1.46	8.99	0.96	0.07
AB10	Soil	6719500	327550		0.9	0.03	3.06	0.71	70.71	0.75	10.42	0.62	0.06
AB100	Soil	6714500	328600		0.4	0.02	1.81	0.51	24.78	1.65	5.39	0.21	0.03
AB101	Soil	6718500	328500		0.4	0.02	1.73	0.51	22.22	1.38	5.09	0.28	0.03
AB102	Soil	6718500	328450		0.6	0.04	2.01	0.69	33.01	3.01	6.61	0.38	0.04
AB103	Soil	6718500	328400		0.4	0.03	1.84	0.70	30.27	1.79	5.63	0.19	0.04
AB104	Soil	6718500	328350		0.4	0.02	1.85	0.55	24.67	2.40	5.52	0.20	0.04
AB105	Soil	6718500	328300		0.4	0.02	1.82	0.77	25.16	1.86	5.29	0.14	0.05
AB106	Soil	6718500	328250		1.3	0.03	2.11	0.96	28.59	2.53	6.05	0.35	0.04
AB107	Soil	6718500	328200		1.6	0.04	2.01	1.35	27.81	2.51	4.97	0.29	0.04
AB108	Soil	6718500	328150		1.4	0.05	2.22	1.06	32.24	4.27	6.11	0.32	0.03
AB109	Soil	6718500	328100		0.7	0.05	1.76	1.44	29.32	2.60	5.09	0.26	0.04
AB11	Soil	6719500	327500		1.8	0.04	3.01	0.57	74.68	0.96	10.28	0.51	0.07
AB110	Soil	6718500	328050		0.9	0.03	1.58	1.50	32.23	2.10	5.36	0.12	0.04
AB111	Soil	6718500	328000		0.7	0.04	1.74	1.08	41.46	1.50	5.11	0.16	0.03
AB112	Soil	6718500	327950		0.8	0.04	1.76	0.84	37.70	1.28	5.03	0.22	0.03
AB113	Soil	6718500	327900		0.8	0.04	1.63	1.11	39.01	1.36	4.64	0.22	0.03
AB114	Soil	6718500	327850		2.1	0.03	1.55	1.62	51.96	1.74	4.21	0.19	0.04
AB115	Soil	6718500	327800		1.6	0.03	1.89	1.23	54.01	1.80	5.04	0.25	0.04
AB116	Soil	6718500	327750		1.4	0.05	2.04	2.10	52.48	1.54	5.97	0.14	0.06
AB117	Soil	6718500	327700		1.3	0.04	2.12	1.03	51.16	1.08	5.53	0.19	0.04
AB118	Soil	6718500	327650		2.6	0.06	1.91	0.86	65.21	0.97	4.33	0.15	0.04
AB119	Soil	6718500	327600		2.7	0.08	2.45	1.56	80.90	1.05	5.62	0.21	0.07
AB12	Soil	6719500	327450		1.5	0.03	2.69	0.46	54.93	0.65	9.30	0.27	0.05

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
AB121	Soil	6718500	327500		1.1	0.04	2.53	0.72	60.00	0.95	5.74	0.17	0.06
AB13	Soil	6719500	327400		3.3	0.05	2.93	0.43	64.14	0.64	9.32	0.29	0.06
AB14	Soil	6719500	327350		1.7	0.02	3.01	0.48	65.76	0.70	9.14	0.35	0.06
AB15	Soil	6719500	327300		1.0	0.02	2.48	0.46	67.35	0.73	7.25	0.76	0.06
AB16	Soil	6719500	327250		5.4	0.03	2.36	0.47	94.30	0.56	7.20	0.60	0.04
AB17	Soil	6719500	327200		1.1	0.02	2.08	0.63	71.18	0.80	7.86	0.47	0.05
AB18	Soil	6719500	327150		1.1	0.02	2.22	0.67	58.38	0.73	7.59	0.39	0.05
AB19	Soil	6719500	327100		1.9	0.03	1.96	0.62	52.60	0.63	7.60	0.34	0.04
AB2	Soil	6719500	327950		1.5	0.02	5.05	0.87	24.76	1.43	10.33	0.91	0.09
AB20	Soil	6719500	327050		1.1	0.02	2.47	0.90	46.60	0.75	8.76	0.50	0.05
AB21	Soil	6719500	327000		1.1	0.02	2.73	1.03	44.26	0.92	8.67	0.68	0.04
AB22	Soil	6719500	326950		1.2	0.02	2.65	1.00	45.91	0.77	8.33	0.47	0.05
AB23	Soil	6719500	326900		1.1	0.01	2.01	2.20	76.30	0.92	8.19	0.65	0.05
AB24	Soil	6719500	326850		1.3	n/a	2.30	1.88	65.18	0.85	8.69	0.44	0.05
AB25	Soil	6719500	326850		1.2	0.01	2.38	1.89	63.04	1.05	7.30	0.36	0.04
AB26	Soil	6719500	326800		1.1	0.01	2.25	1.74	60.04	1.30	7.62	0.51	0.05
AB27	Soil	6719500	326750		1.2	0.02	2.89	2.19	29.09	1.39	8.03	0.42	0.05
AB28	Soil	6719500	326700		2.5	0.02	3.01	1.57	41.65	1.13	9.01	0.44	0.05
AB29	Soil	6719500	326650		1.5	0.02	2.23	1.08	30.20	0.72	8.27	0.35	0.05
AB3	Soil	6719500	327900		1.0	0.02	4.62	0.68	19.40	1.37	9.63	0.83	0.09
AB30	Soil	6719500	326600		1.9	0.02	1.77	0.71	28.11	0.81	7.88	0.14	0.03
AB31	Soil	6719500	326550		2.5	0.03	1.68	0.37	50.76	0.57	7.61	0.18	0.03
AB32	Soil	6719500	326500		1.2	0.02	1.75	0.40	36.38	0.51	6.93	0.26	0.03
AB33	Soil	6717500	327000		3.4	0.03	1.56	0.29	34.87	0.40	6.17	0.16	0.03
AB34	Soil	6717500	327050		1.9	0.02	1.64	0.30	25.40	0.75	7.17	0.09	0.03
AB35	Soil	6717500	327100		1.4	0.02	2.44	0.31	24.02	0.70	8.56	0.19	0.03
AB36	Soil	6717500	327150		0.7	0.01	2.10	0.53	15.37	0.84	7.63	0.17	0.03
AB37	Soil	6717500	327200		0.9	0.03	2.14	0.69	19.79	0.75	8.23	0.13	0.03
AB38	Soil	6717500	327250		0.7	0.01	2.13	0.92	17.58	1.42	8.10	0.40	0.04

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
AB4	Soil	6719500	327850		1.2	0.01	3.29	0.59	17.25	1.08	7.93	0.76	0.07
AB40	Soil	6717500	327350		0.8	0.02	1.57	1.01	22.13	1.04	6.62	0.19	0.02
AB41	Soil	6717500	327400		1.0	0.03	1.78	1.82	55.73	1.07	7.54	0.13	0.03
AB42	Soil	6717500	327450		1.2	0.04	1.72	2.50	52.75	1.97	6.83	0.24	0.04
AB43	Soil	6717500	327500		0.9	0.04	1.62	20.43	68.01	2.23	6.87	0.30	0.04
AB44	Soil	6717500	327550		0.7	0.04	1.53	5.78	45.15	1.93	5.27	0.19	0.04
AB45	Soil	6717500	327600		1.1	0.07	1.60	2.01	49.07	1.25	5.00	0.16	0.04
AB46	Soil	6717500	327650		1.5	0.05	2.00	6.11	45.17	1.83	4.75	0.22	0.04
AB47	Soil	6717500	327700		1.1	0.10	1.85	1.48	63.18	1.06	4.86	0.13	0.03
AB48	Soil	6717500	327750		1.3	0.08	1.78	1.28	116.90	1.09	5.29	0.22	0.04
AB49	Soil	6717500	327800		2.5	0.08	3.07	1.34	90.80	1.39	8.70	0.29	0.06
AB5	Soil	6719500	327800		2.2	0.01	2.89	0.66	20.72	1.11	7.82	0.56	0.06
AB50	Soil	6717500	327850		1.9	0.07	3.04	1.49	91.23	1.50	8.51	0.34	0.06
AB51	Soil	6717500	327850		1.7	0.04	7.70	0.89	86.12	3.52	5.80	0.64	0.12
AB52	Soil	6717500	327900		1.4	0.06	2.67	0.91	67.31	3.69	7.47	1.48	0.14
AB53	Soil	6717500	327950		0.7	0.08	2.73	0.75	72.50	2.02	6.25	0.84	0.14
AB54	Soil	6717500	328000		1.4	0.42	2.29	2.14	119.15	1.84	6.70	1.89	0.08
AB55	Soil	6717500	328050		3.4	0.03	1.83	0.49	48.18	0.87	4.62	0.17	0.05
AB56	Soil	6717500	328100		0.9	0.05	1.92	0.52	61.41	1.14	5.16	0.46	0.06
AB57	Soil	6717500	328150		0.3	0.03	1.88	0.45	36.38	1.27	4.55	0.24	0.05
AB58	Soil	6717500	328200		1.2	0.07	2.53	0.64	54.82	1.67	6.16	0.40	0.05
AB59	Soil	6717500	328250		0.6	0.04	3.40	0.48	49.83	1.14	5.19	0.24	0.04
AB6	Soil	6719500	327750		3.1	0.02	2.32	0.59	23.23	0.96	6.33	0.66	0.05
AB60	Soil	6717500	328300		0.8	0.03	1.88	0.47	63.68	1.01	4.66	0.19	0.03
AB61	Soil	6717500	328350		1.4	0.03	2.24	1.35	56.00	1.47	5.97	0.25	0.06
AB62	Soil	6717500	328400		1.9	0.05	1.90	0.55	63.90	1.64	5.17	0.15	0.04
AB63	Soil	6717500	328450		0.7	0.04	2.35	0.59	86.62	3.35	4.56	0.34	0.06
AB64	Soil	6717500	328500		0.8	0.03	1.98	0.37	33.83	0.97	3.64	0.26	0.05
AB65	Soil	6715800	328500		3.6	0.05	2.27	0.70	72.25	1.90	4.73	0.60	0.08

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
AB67	Soil	6715800	328400		0.7	0.01	2.24	0.28	18.52	0.67	6.75	0.20	0.03
AB68	Soil	6715800	328350		0.6	0.01	2.24	0.30	16.06	0.60	6.89	0.26	0.03
AB69	Soil	6715800	328300		0.9	0.02	2.52	0.30	15.28	0.67	7.88	0.30	0.04
AB7	Soil	6719500	327700		4.5	0.01	2.24	0.48	26.45	0.91	7.50	0.61	0.05
AB70	Soil	6715800	328250		0.7	0.02	2.52	0.30	16.32	0.97	7.66	0.30	0.03
AB71	Soil	6715800	328200		0.7	0.02	2.55	0.31	14.50	0.82	8.00	0.46	0.03
AB72	Soil	6715800	328150		0.4	0.01	2.52	0.30	14.75	0.68	7.82	0.32	0.03
AB73	Soil	6715800	328100		0.8	0.01	2.47	0.30	15.47	0.59	7.90	0.27	0.03
AB74	Soil	6715800	328050		1.2	0.02	2.50	0.30	18.18	0.97	8.42	0.24	0.04
AB75	Soil	6715800	328050		0.9	0.01	2.41	0.31	14.57	0.79	8.50	0.36	0.03
AB76	Soil	6715800	328000		0.7	0.01	2.55	0.31	14.69	0.76	8.63	0.49	0.03
AB77	Soil	6715800	327950		0.8	0.01	2.42	0.30	15.81	0.68	8.37	0.28	0.03
AB78	Soil	6715800	327900		0.6	0.01	2.39	0.31	14.17	0.90	8.55	0.37	0.03
AB79	Soil	6715800	327850		1.1	0.02	2.61	0.31	16.43	0.65	8.86	0.36	0.03
AB8	Soil	6719500	327650		2.4	0.01	2.08	0.50	40.21	0.68	6.22	0.82	0.03
AB80	Soil	6715800	327800		0.8	0.01	2.37	0.30	12.21	0.73	7.72	0.40	0.03
AB81	Soil	6715800	327750		0.8	n/a	2.20	0.28	13.29	0.61	7.76	0.26	0.03
AB82	Soil	6715800	327700		0.6	0.01	2.23	0.30	12.81	0.90	8.03	0.26	0.03
AB83	Soil	6715800	327650		1.0	0.02	1.86	0.27	16.36	0.54	8.46	0.18	0.03
AB84	Soil	6715800	327600		4.0	0.03	1.92	0.23	21.24	0.40	7.08	0.15	0.03
AB85	Soil	6715800	327550		0.9	n/a	3.15	0.21	12.48	0.65	6.30	0.60	0.03
AB86	Soil	6715800	327500		1.0	n/a	2.04	0.22	12.71	0.85	7.00	0.25	0.02
AB87	Soil	6714500	328000		0.7	0.02	1.88	0.23	11.86	0.50	6.87	0.15	0.03
AB88	Soil	6714500	328050		0.6	0.01	2.33	0.29	12.33	0.64	8.36	0.32	0.02
AB89	Soil	6714500	328100		0.5	0.01	2.29	0.29	11.76	0.62	7.84	0.36	0.03
AB9	Soil	6719500	327600		2.6	0.02	2.37	0.59	68.93	0.63	9.54	0.63	0.04
AB90	Soil	6714500	328150		1.0	0.02	2.17	0.28	13.50	0.96	7.01	0.20	0.02
AB91	Soil	6714500	328200		0.5	0.01	2.06	0.49	12.15	0.75	6.73	0.15	0.03
AB92	Soil	6714500	328250		0.6	0.02	2.26	0.67	9.17	1.09	6.58	0.23	0.03

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
AB94	Soil	6714500	328350		0.8	0.01	1.85	0.54	11.34	1.26	6.60	0.23	0.02
AB95	Soil	6714500	328400		0.3	0.01	1.43	0.46	13.78	1.15	3.75	0.15	0.03
AB96	Soil	6714500	328450		0.5	0.03	1.77	0.58	26.77	1.41	5.36	0.13	0.03
AB97	Soil	6714500	328500		0.6	0.02	1.66	0.52	20.04	1.53	5.32	0.29	0.03
AB98	Soil	6714500	328550		0.7	0.02	1.86	0.53	24.44	2.06	5.84	0.19	0.03
AB99	Soil	6714500	328600		0.6	0.02	1.70	0.51	20.05	1.64	5.20	0.24	0.03
BD122	Soil	6718500	327450		n/a	n/a	2.00	0.42	18.00	0.90	7.90		n/a
BD123	Soil	6718500	327400		1.0	n/a	2.00	0.44	20.00	0.90	8.80		n/a
BD124	Soil	6718500	327350		n/a	n/a	2.00	0.43	21.00	1.00	9.30		n/a
BD125	Soil	6718500	327300		1.0	n/a	2.00	0.42	19.00	0.90	9.10		n/a
BD126	Soil	6718500	327300		1.0	n/a	2.00	0.43	20.00	1.00	9.80		n/a
BD127	Soil	6718500	327250		2.0	n/a	2.00	0.43	20.00	1.00	9.30		n/a
BD128	Soil	6718500	327200		1.0	n/a	2.00	0.40	18.00	0.90	8.40		n/a
BD129	Soil	6718500	327150		2.0	n/a	2.00	0.39	18.00	0.90	8.40		n/a
BD130	Soil	6718500	327100		1.0	n/a	2.00	0.37	15.00	0.80	6.80		n/a
BD131	Soil	6718500	327050		2.0	n/a	2.00	0.37	17.00	0.80	7.90		n/a
BD132	Soil	6718500	327000		2.0	n/a	2.00	0.40	18.00	0.90	8.40		n/a
BD133	Soil	6716500	327000		n/a	n/a	2.00	0.48	18.00	0.50	9.60		n/a
BD134	Soil	6716500	327050		n/a	n/a	2.00	0.53	27.00	0.70	13.50		n/a
BD135	Soil	6716500	327100		n/a	n/a	3.00	0.52	24.00	0.80	12.80		n/a
BD136	Soil	6716500	327150		n/a	n/a	2.00	0.51	22.00	0.80	12.00		n/a
BD137	Soil	6716500	327200		n/a	n/a	2.00	0.53	20.00	0.60	10.70		n/a
BD138	Soil	6716500	327250		n/a	n/a	2.00	0.58	23.00	0.80	12.50		n/a
BD139	Soil	6716500	327300		n/a	n/a	2.00	0.60	25.00	0.70	12.90		n/a
BD140	Soil	6716500	327350		n/a	n/a	1.00	0.58	22.00	0.60	7.60		n/a
BD141	Soil	6716500	327400		n/a	n/a	2.00	0.74	31.00	0.60	8.60		n/a
BD142	Soil	6716500	327500		n/a	n/a	1.00	0.64	32.00	0.50	11.40		n/a
BD143	Soil	6716500	327550		n/a	n/a	3.00	0.69	49.00	0.90	23.50		n/a
BD144	Soil	6716500	327600		n/a	n/a	2.00	0.64	37.00	0.80	16.50		n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
BD146	Soil	6716500	327700		n/a	n/a	3.00	0.81	51.00	1.00	18.90		n/a
BD147	Soil	6716500	327750		n/a	n/a	2.00	1.15	36.00	0.70	18.30		n/a
BD148	Soil	6716500	327800		n/a	n/a	2.00	0.63	64.00	0.80	26.80		n/a
BD149	Soil	6716500	327850		1.0	n/a	2.00	0.88	67.00	1.10	24.00		n/a
BD150	Soil	6716500	327900		1.0	n/a	2.00	0.79	89.00	1.30	29.60		n/a
BD151	Soil	6716500	327900		1.0	n/a	3.00	0.81	89.00	1.30	29.60		n/a
BD152	Soil	6716500	327950		1.0	n/a	3.00	0.77	107.00	1.90	13.60		n/a
BD153	Soil	6716500	328000		n/a	0.05	3.00	1.02	63.00	2.30	21.20		0.10
BD154	Soil	6716500	328050		1.0	0.06	2.00	0.68	35.00	1.10	15.10		n/a
BD155	Soil	6716500	328100		n/a	n/a	2.00	0.80	47.00	1.30	13.70		n/a
BD156	Soil	6716500	328150		2.0	0.06	2.00	2.42	159.00	2.40	15.00		n/a
BD157	Soil	6716500	328200		n/a	n/a	2.00	1.44	57.00	2.10	22.30		n/a
BD158	Soil	6716500	328250		2.0	n/a	3.00	0.99	67.00	2.30	22.70		n/a
BD159	Soil	6716500	328300		5.0	n/a	2.00	2.08	44.00	3.10	21.50		n/a
BD160	Soil	6716500	328350		3.0	n/a	2.00	0.64	19.00	0.80	7.80		n/a
BD161	Soil	6716500	328400		n/a	n/a	1.00	0.45	11.00	0.70	5.40		n/a
BD162	Soil	6716500	328450		1.0	n/a	2.00	0.34	13.00	0.70	7.50		n/a
BD163	Soil	6716500	328500		4.0	n/a	2.00	0.28	16.00	0.80	6.80		n/a
BD164	Soil	6715500	329000		1.0	n/a	2.00	0.48	14.00	0.70	7.60		n/a
BD165	Soil	6715500	328950		1.0	n/a	3.00	0.63	16.00	1.00	10.50		n/a
BD166	Soil	6715500	328900		1.0	n/a	2.00	0.42	8.00	0.80	5.80		n/a
BD167	Soil	6715500	328850		n/a	n/a	1.00	0.40	10.00	0.90	7.60		n/a
BD168	Soil	6715500	328800		n/a	n/a	2.00	0.58	14.00	0.70	8.50		n/a
BD169	Soil	6715500	328750		n/a	n/a	3.00	1.74	26.00	1.80	11.40		n/a
BD170	Soil	6715500	328700		n/a	n/a	3.00	4.64	34.00	1.40	14.20		n/a
BD171	Soil	6715500	328650		n/a	n/a	3.00	0.80	63.00	1.20	14.00		n/a
BD172	Soil	6715500	328600		1.0	n/a	2.00	0.73	71.00	0.70	17.00		n/a
BD173	Soil	6715500	328550		n/a	n/a	2.00	0.59	59.00	0.80	11.20		n/a
BD174	Soil	6715500	328500		6.0	n/a	2.00	0.55	242.00	0.50	9.60		n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
BD176	Soil	6715500	328450		n/a	n/a	2.00	1.12	374.00	1.20	13.00		n/a
BD177	Soil	6715500	328400		n/a	n/a	n/a	1.13	184.00	0.70	35.50		n/a
BD178	Soil	6715500	328350		n/a	0.12	1.00	3.55	122.00	3.40	71.40		n/a
BD179	Soil	6715500	328300		n/a	0.34	n/a	1.81	155.00	0.90	31.70		n/a
BD180	Soil	6715500	328250		n/a	0.05	2.00	0.81	89.00	0.70	25.00		n/a
BD181	Soil	6715500	328150		n/a	n/a	n/a	1.08	41.00	0.30	7.90		n/a
BD182	Soil	6715500	328100		n/a	n/a	n/a	1.20	45.00	0.30	7.50		n/a
BD183	Soil	6715500	328050		n/a	n/a	1.00	0.96	25.00	0.40	9.70		n/a
BD184	Soil	6715500	328000		n/a	n/a	1.00	0.47	12.00	0.40	9.40		n/a
BD185	Soil	6715500	327950		n/a	n/a	1.00	0.37	11.00	0.40	9.10		n/a
BD186	Soil	6715500	327900		n/a	n/a	2.00	0.49	14.00	0.50	10.50		n/a
BD187	Soil	6715500	327800		n/a	n/a	1.00	0.25	10.00	0.40	12.00		n/a
BD188	Soil	6715500	327750		n/a	n/a	1.00	0.23	6.00	0.30	6.10		n/a
BD189	Soil	6715500	327700		2.0	n/a	1.00	0.18	6.00	0.30	6.00		n/a
BD190	Soil	6715500	327650		1.0	n/a	2.00	0.26	9.00	0.40	7.00		n/a
BD191	Soil	6715500	327600		n/a	n/a	2.00	0.27	12.00	0.60	8.80		n/a
BD192	Soil	6715500	327550		n/a	n/a	2.00	0.30	8.00	0.40	6.20		n/a
BD193	Soil	6715500	327500		n/a	n/a	n/a	0.24	6.00	0.30	4.00		n/a
BD194	Soil	6714500	329500		n/a	n/a	2.00	1.15	18.00	1.90	7.80		n/a
BD195	Soil	6714500	329450		1.0	n/a	2.00	1.77	57.00	1.60	11.70		n/a
BD196	Soil	6714500	329400		1.0	n/a	2.00	1.83	59.00	1.30	11.80		n/a
BD197	Soil	6714500	329300		n/a	n/a	2.00	8.31	14.00	2.50	5.30		n/a
BD198	Soil	6714500	329200		n/a	n/a	6.00	4.65	29.00	12.40	26.80		0.30
BD199	Soil	6714500	329150		n/a	n/a	1.00	11.90	99.00	8.90	21.60		0.10
BD200	Soil	6712500	329750		n/a	n/a	2.00	0.69	15.00	0.60	9.70		n/a
BD201	Soil	6712500	329750		n/a	n/a	2.00	0.68	16.00	0.60	9.80		n/a
BD202	Soil	6712550	329750		1.0	0.09	2.00	0.56	18.00	0.30	10.60		n/a
BD203	Soil	6712600	329750		n/a	n/a	2.00	0.54	13.00	0.50	9.40		n/a
BD204	Soil	6712650	329750		n/a	n/a	2.00	0.50	11.00	0.40	7.80		n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
BD206	Soil	6712750	329750		n/a	n/a	2.00	0.67	11.00	0.40	7.90		n/a
BD207	Soil	6712800	329750		n/a	n/a	2.00	0.66	11.00	0.40	8.00		n/a
BD208	Soil	6712850	329750		n/a	n/a	2.00	0.66	11.00	0.40	7.60		n/a
BD209	Soil	6712900	329750		n/a	n/a	1.00	2.58	11.00	0.30	7.50		n/a
BD210	Soil	6712950	329750		n/a	n/a	1.00	0.56	9.00	0.30	6.50		n/a
BD211	Soil	6714500	328650		n/a	n/a	3.00	0.39	7.00	0.70	4.40		n/a
BD212	Soil	6714500	328700		n/a	n/a	2.00	0.38	7.00	0.70	4.80		n/a
BD213	Soil	6714500	328750		n/a	n/a	2.00	0.45	10.00	0.80	4.30		n/a
BD214	Soil	6714500	328800		n/a	n/a	2.00	0.46	17.00	0.90	5.30		n/a
BD215	Soil	6714500	328850		1.0	n/a	3.00	0.60	26.00	0.70	6.10		n/a
BD216	Soil	6714500	328900		4.0	n/a	2.00	0.77	25.00	0.60	6.50		n/a
BD217	Soil	6714500	328950		1.0	n/a	2.00	0.89	46.00	0.80	9.90		0.10
BD218	Soil	6714500	329000		n/a	n/a	4.00	0.53	32.00	1.20	4.90		n/a
BD219	Soil	6714500	329050		n/a	n/a	1.00	1.86	69.00	1.10	8.00		n/a
BD220	Soil	6712500	329250		n/a	n/a	1.00	1.82	16.00	1.30	7.70		n/a
BD221	Soil	6712550	329250		n/a	n/a	2.00	1.97	19.00	0.90	7.50		n/a
BD222	Soil	6712600	329250		n/a	n/a	2.00	1.73	20.00	0.60	9.60		n/a
BD223	Soil	6712650	329250		2.0	n/a	2.00	0.81	19.00	0.40	8.50		n/a
BD224	Soil	6712700	329250		1.0	n/a	2.00	1.20	20.00	0.50	11.20		n/a
BD225	Soil	6712750	329250		1.0	n/a	3.00	1.35	14.00	0.50	8.70		n/a
BD226	Soil	6712800	329250		n/a	n/a	2.00	1.45	18.00	0.50	10.20		n/a
BD227	Soil	6712850	329250		1.0	0.05	2.00	1.75	16.00	0.50	10.60		n/a
BD228	Soil	6712850	329250		n/a	n/a	2.00	1.60	17.00	0.40	10.70		n/a
BD229	Soil	6712900	329250		n/a	n/a	2.00	2.33	15.00	0.40	9.60		n/a
BD230	Soil	6712950	329250		n/a	0.05	2.00	4.90	16.00	0.40	11.80		n/a
BD231	Soil	6713000	329250		n/a	n/a	2.00	3.25	14.00	0.40	10.10		n/a
BD232	Soil	6713050	329250		n/a	n/a	2.00	1.35	12.00	0.50	11.30		n/a
BD233	Soil	6713100	329250		n/a	n/a	1.00	1.16	40.00	0.70	6.40		n/a
BD234	Soil	6713150	329250		n/a	n/a	2.00	0.83	122.00	0.90	8.30		n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
BD236	Soil	6713250	329250		n/a	0.06	2.00	0.68	69.00	0.70	14.00		n/a
BD237	Soil	6713300	329250		n/a	n/a	1.00	1.73	135.00	2.10	14.00		n/a
BD238	Soil	6713350	329250		n/a	n/a	2.00	0.84	95.00	1.10	24.30		n/a
BD239	Soil	6713400	329250		n/a	n/a	3.00	1.25	70.00	1.30	26.60		n/a
BD240	Soil	6713450	329250		1.0	0.08	1.00	4.30	49.00	4.10	34.50		n/a
BD241	Soil	6713500	329250		n/a	n/a	2.00	0.96	42.00	1.00	15.80		n/a
BD242	Soil	6713550	329250		3.0	0.21	1.00	0.85	70.00	0.90	36.50		n/a
BD243	Soil	6713600	329250		1.0	0.14	1.00	1.35	106.00	0.70	109.40		n/a
BD244	Soil	6713650	329250		n/a	n/a	2.00	0.69	56.00	0.50	22.00		n/a
BD245	Soil	6713700	329250		1.0	n/a	2.00	0.59	55.00	0.60	18.90		n/a
BD246	Soil	6713750	329250		1.0	n/a	2.00	0.57	39.00	0.70	12.30		n/a
BD247	Soil	6713800	329250		n/a	n/a	2.00	0.83	23.00	0.60	10.30		n/a
BD248	Soil	6713850	329250		n/a	n/a	2.00	0.50	15.00	0.50	6.50		n/a
BD249	Soil	6713900	329250		n/a	n/a	2.00	0.42	15.00	0.50	6.50		n/a
BD250	Soil	6713900	329250		1.0	n/a	2.00	0.39	13.00	0.50	6.00		n/a
BD251	Soil	6713950	329250		2.0	n/a	2.00	0.60	26.00	0.90	10.70		n/a
BD252	Soil	6714000	329250		n/a	n/a	2.00	0.42	16.00	0.60	6.30		n/a
BD253	Soil	6714050	329250		n/a	n/a	2.00	0.49	17.00	0.70	6.60		n/a
BD254	Soil	6714100	329250		1.0	n/a	2.00	0.48	30.00	1.10	7.50		n/a
BD255	Soil	6714150	329250		n/a	n/a	2.00	0.70	87.00	2.00	14.80		n/a
BD256	Soil	6714200	329250		n/a	n/a	2.00	0.83	50.00	1.50	10.10		n/a
BD257	Soil	6714250	329250		1.0	n/a	2.00	0.86	51.00	2.50	12.80		n/a
BD258	Soil	6714300	329250		4.0	n/a	2.00	0.80	42.00	2.20	15.20		n/a
BD259	Soil	6714350	329250		2.0	n/a	3.00	11.82	30.00	5.50	27.70		n/a
BD260	Soil	6714400	329250		n/a	n/a	2.00	2.63	55.00	1.60	9.60		n/a
BD261	Soil	6714450	329250		1.0	n/a	3.00	9.58	15.00	1.80	8.30		n/a
BD262	Soil	6713000	329750		n/a	n/a	n/a	0.73	8.00	0.20	5.50		n/a
BD263	Soil	6713050	329750		n/a	n/a	2.00	1.05	35.00	0.60	9.50		n/a
BD264	Soil	6713100	329750		n/a	0.06	1.00	0.59	103.00	1.00	12.10		n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
BD266	Soil	6713200	329750		n/a	0.07	1.00	1.51	59.00	1.00	15.80		n/a
BD267	Soil	6713250	329750		n/a	0.11	1.00	0.97	82.00	0.70	11.30		n/a
BD268	Soil	6713300	329750		1.0	0.08	1.00	0.47	71.00	1.10	13.10		n/a
BD269	Soil	6713350	329750		1.0	0.08	2.00	0.74	73.00	0.90	24.10		0.20
BD270	Soil	6713450	329750		n/a	n/a	2.00	1.53	38.00	0.80	9.40		n/a
BD271	Soil	6713500	329750		24.0	n/a	2.00	10.02	260.00	0.70	11.40		0.20
BD272	Soil	6713550	329750		n/a	n/a	2.00	1.52	39.00	0.60	10.10		n/a
BD273	Soil	6713600	329750		6.0	0.06	3.00	1.85	129.00	1.80	7.80		n/a
BD274	Soil	6713650	329750		1.0	n/a	3.00	0.95	77.00	1.40	8.20		n/a
BD275	Soil	6713700	329750		n/a	n/a	2.00	0.89	43.00	1.90	6.60		n/a
BD276	Soil	6713700	329750		n/a	n/a	2.00	0.80	36.00	1.90	6.00		n/a
BD277	Soil	6713750	329750		2.0	n/a	3.00	0.87	41.00	2.40	7.50		n/a
BD278	Soil	6713800	329750		2.0	n/a	16.00	3.02	42.00	1.50	13.80		n/a
BD279	Soil	6713850	329750		1.0	n/a	2.00	0.85	66.00	2.10	9.00		n/a
BD280	Soil	6713900	329750		n/a	n/a	3.00	0.96	44.00	1.70	11.50		n/a
BD281	Soil	6713950	329750		n/a	n/a	4.00	0.81	41.00	2.10	14.90		n/a
BD282	Soil	6714000	329750		1.0	n/a	4.00	0.96	32.00	1.70	14.20		n/a
К229728	ROCK	6712554	330674	Qtz veining boudinaged	155.0				280.00				
К229729	ROCK	6712550	330670	Gossanous malachite iron stone	820.0				23000.00				
K229730	ROCK	6712552	330672	Biotite schist	70.0				10600.00				
OL1-1	SOIL	6715251	327887	Bulk_soil	1.0		4.00						
OL1-10	SOIL	6715251	328112	Bulk_soil	1.0		1.00						
OL1-11	SOIL	6715251	328137	Bulk_soil	1.0		2.00						
OL1-12	SOIL	6715251	328162	Bulk_soil	1.0		2.00						
OL1-13	SOIL	6715251	328187	Bulk_soil	1.0		1.00						
OL1-14	SOIL	6715251	328212	Bulk_soil	1.0		1.00						
OL1-15	SOIL	6715251	328237	Bulk_soil	1.0		1.00						
OL1-16	SOIL	6715251	328262	Bulk_soil	1.0		1.00						
OL1-17	SOIL	6715251	328287	Bulk_soil	1.0		1.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL1-19	SOIL	6715251	328337	Bulk_soil	1.0		1.00						
OL1-2	SOIL	6715251	327912	Bulk_soil	1.0		4.00						
OL1-20	SOIL	6715251	328362	Bulk_soil	2.0		6.00						
OL1-21	SOIL	6715251	328387	Bulk_soil	3.0		2.00						
OL1-22	SOIL	6715251	328412	Bulk_soil	1.0		3.00						
OL1-23	SOIL	6715251	328437	Bulk_soil	1.0		4.00						
OL1-24	SOIL	6715251	328462	Bulk_soil	1.0		3.00						
OL1-25	SOIL	6715251	328487	Bulk_soil	3.0		6.00						
OL1-26	SOIL	6715251	328512	Bulk_soil	1.0		4.00						
OL1-27	SOIL	6715251	328537	Bulk_soil	1.0		4.00						
OL1-28	SOIL	6715251	328562	Bulk_soil	2.0		4.00						
OL1-29	SOIL	6715251	328587	Bulk_soil	1.0		6.00						
OL1-3	SOIL	6715251	327937	Bulk_soil	1.0		3.00						
OL1-30	SOIL	6715251	328612	Bulk_soil	1.0		3.00						
OL1-31	SOIL	6715251	328637	Bulk_soil	1.0		2.00						
OL1-32	SOIL	6715251	328662	Bulk_soil	1.0		7.00						
OL1-33	SOIL	6715251	328687	Bulk_soil	3.0		46.00						
OL1-34	SOIL	6715251	328712	Bulk_soil	2.0		47.00						
OL1-35	SOIL	6715251	328737	Bulk_soil	2.0		6.00						
OL1-36	SOIL	6715251	328762	Bulk_soil	2.0		4.00						
OL1-37	SOIL	6715251	328787	Bulk_soil	1.0		7.00						
OL1-38	SOIL	6715251	328812	Bulk_soil	1.0		8.00						
OL1-39	SOIL	6715251	328837	Bulk_soil	2.0		3.00						
OL1-4	SOIL	6715251	327962	Bulk_soil	2.0		1.00						
OL1-40	SOIL	6715251	328862	Bulk_soil	1.0		3.00						
OL1-41	SOIL	6715251	328887	Bulk_soil	2.0		1.00						
OL1-5	SOIL	6715251	327987	Bulk_soil	1.0		1.00						
OL1-6	SOIL	6715251	328012	Bulk_soil	1.0		2.00						
OL1-7	SOIL	6715251	328037	Bulk_soil	1.0		2.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL1-9	SOIL	6715251	328087	Bulk_soil	1.0		1.00						
OL2-1	SOIL	6714851	327887	Bulk_soil	1.0		2.00						
OL2-10	SOIL	6714851	328112	Bulk_soil	1.0		2.00						
OL2-11	SOIL	6714851	328137	Bulk_soil	2.0		1.00						
OL2-12	SOIL	6714851	328162	Bulk_soil	1.0		1.00						
OL2-13	SOIL	6714851	328187	Bulk_soil	2.0		2.00						
OL2-14	SOIL	6714851	328212	Bulk_soil	1.0		1.00						
OL2-15	SOIL	6714851	328237	Bulk_soil	1.0		2.00						
OL2-16	SOIL	6714851	328262	Bulk_soil	1.0		2.00						
OL2-17	SOIL	6714851	328287	Bulk_soil	2.0		2.00						
OL2-18	SOIL	6714851	328312	Bulk_soil	1.0		3.00						
OL2-19	SOIL	6714851	328337	Bulk_soil	1.0		9.00						
OL2-2	SOIL	6714851	327912	Bulk_soil	1.0		2.00						
OL2-20	SOIL	6714851	328362	Bulk_soil	1.0		12.00						
OL2-21	SOIL	6714851	328387	Bulk_soil	1.0		11.00						
OL2-22	SOIL	6714851	328412	Bulk_soil	1.0		11.00						
OL2-23	SOIL	6714851	328437	Bulk_soil	1.0		7.00						
OL2-24	SOIL	6714851	328462	Bulk_soil	1.0		9.00						
OL2-25	SOIL	6714851	328487	Bulk_soil	1.0		9.00						
OL2-26	SOIL	6714851	328512	Bulk_soil	1.0		9.00						
OL2-27	SOIL	6714851	328537	Bulk_soil	1.0		12.00						
OL2-28	SOIL	6714851	328562	Bulk_soil	1.0		12.00						
OL2-29	SOIL	6714851	328587	Bulk_soil	1.0		12.00						
OL2-3	SOIL	6714851	327937	Bulk_soil	1.0		2.00						
OL2-30	SOIL	6714851	328612	Bulk_soil	1.0		8.00						
OL2-31	SOIL	6714851	328637	Bulk_soil	1.0		7.00						
OL2-32	SOIL	6714851	328662	Bulk_soil	1.0		6.00						
OL2-33	SOIL	6714851	328687	Bulk_soil	1.0		6.00						
OL2-34	SOIL	6714851	328712	Bulk_soil	1.0		6.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL2-36	SOIL	6714851	328762	Bulk_soil	2.0		4.00						
OL2-37	SOIL	6714851	328787	Bulk_soil	1.0		2.00						
OL2-38	SOIL	6714851	328812	Bulk_soil	1.0		1.00						
OL2-39	SOIL	6714851	328837	Bulk_soil	3.0		2.00						
OL2-4	SOIL	6714851	327962	Bulk_soil	1.0		1.00						
OL2-40	SOIL	6714851	328862	Bulk_soil	1.0		3.00						
OL2-41	SOIL	6714851	328887	Bulk_soil	1.0		8.00						
OL2-42	SOIL	6714851	328912	Bulk_soil	2.0		4.00						
OL2-43	SOIL	6714851	328937	Bulk_soil	1.0		3.00						
OL2-44	SOIL	6714851	328962	Bulk_soil	1.0		8.00						
OL2-45	SOIL	6714851	328987	Bulk_soil	1.0		1.00						
OL2-46	SOIL	6714851	329012	Bulk_soil	1.0		2.00						
OL2-47	SOIL	6714851	329037	Bulk_soil	1.0		4.00						
OL2-48	SOIL	6714851	329062	Bulk_soil	2.0		3.00						
OL2-49	SOIL	6714851	329087	Bulk_soil	1.0		1.00						
OL2-5	SOIL	6714851	327987	Bulk_soil	1.0		2.00						
OL2-6	SOIL	6714851	328012	Bulk_soil	1.0		2.00						
OL2-7	SOIL	6714851	328037	Bulk_soil	1.0		2.00						
OL2-8	SOIL	6714851	328062	Bulk_soil	1.0		2.00						
OL2-9	SOIL	6714851	328087	Bulk_soil	1.0		2.00						
OL3-1	SOIL	6714351	327887	Bulk_soil	1.0		2.00						
OL3-10	SOIL	6714351	328112	Bulk_soil	1.0		2.00						
OL3-11	SOIL	6714351	328137	Bulk_soil	1.0		2.00						
OL3-12	SOIL	6714351	328162	Bulk_soil	1.0		1.00						
OL3-13	SOIL	6714351	328187	Bulk_soil	1.0		1.00						
OL3-14	SOIL	6714351	328212	Bulk_soil	1.0		2.00						
OL3-15	SOIL	6714351	328237	Bulk_soil	2.0		1.00						
OL3-16	SOIL	6714351	328262	Bulk_soil	1.0		1.00						
0L3-17	SOIL	6714351	328287	Bulk_soil	1.0		1.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL3-19	SOIL	6714351	328337	Bulk_soil	1.0		1.00						
OL3-2	SOIL	6714351	327912	Bulk_soil	1.0		2.00						
OL3-20	SOIL	6714351	328362	Bulk_soil	1.0		1.00						
OL3-21	SOIL	6714351	328387	Bulk_soil	1.0		1.00						
OL3-22	SOIL	6714351	328412	Bulk_soil	1.0		1.00						
OL3-23	SOIL	6714351	328437	Bulk_soil	1.0		1.00						
OL3-24	SOIL	6714351	328462	Bulk_soil	1.0		1.00						
OL3-25	SOIL	6714351	328487	Bulk_soil	1.0		1.00						
OL3-26	SOIL	6714351	328512	Bulk_soil	1.0		1.00						
OL3-27	SOIL	6714351	328537	Bulk_soil	1.0		2.00						
OL3-28	SOIL	6714351	328562	Bulk_soil	1.0		1.00						
OL3-29	SOIL	6714351	328587	Bulk_soil	1.0		2.00						
OL3-3	SOIL	6714351	327937	Bulk_soil	1.0		1.00						
OL3-30	SOIL	6714351	328612	Bulk_soil	1.0		1.00						
OL3-31	SOIL	6714351	328637	Bulk_soil	1.0		3.00						
OL3-32	SOIL	6714351	328662	Bulk_soil	1.0		4.00						
OL3-33	SOIL	6714351	328687	Bulk_soil	1.0		9.00						
OL3-34	SOIL	6714351	328712	Bulk_soil	1.0		6.00						
OL3-35	SOIL	6714351	328737	Bulk_soil	2.0		4.00						
OL3-36	SOIL	6714351	328762	Bulk_soil	1.0		10.00						
OL3-37	SOIL	6714351	328787	Bulk_soil	1.0		7.00						
OL3-38	SOIL	6714351	328812	Bulk_soil	1.0		4.00						
OL3-39	SOIL	6714351	328837	Bulk_soil	1.0		4.00						
OL3-4	SOIL	6714351	327962	Bulk_soil	2.0		2.00						
OL3-40	SOIL	6714351	328862	Bulk_soil	1.0		7.00						
OL3-41	SOIL	6714351	328887	Bulk_soil	2.0		6.00						
OL3-42	SOIL	6714351	328912	Bulk_soil	4.0		7.00						
OL3-43	SOIL	6714351	328937	Bulk_soil	4.0		3.00						
OL3-44	SOIL	6714351	328962	Bulk_soil	8.0		2.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL3-46	SOIL	6714351	329012	Bulk_soil	1.0		3.00						
OL3-47	SOIL	6714351	329037	Bulk_soil	3.0		3.00						
OL3-48	SOIL	6714351	329062	Bulk_soil	2.0		6.00						
OL3-49	SOIL	6714351	329087	Bulk_soil	2.0		2.00						
OL3-5	SOIL	6714351	327987	Bulk_soil	1.0		2.00						
OL3-50	SOIL	6714351	329112	Bulk_soil	6.0		4.00						
OL3-51	SOIL	6714351	329137	Bulk_soil	3.0		2.00						
OL3-52	SOIL	6714351	329162	Bulk_soil	1.0		4.00						
OL3-53	SOIL	6714351	329187	Bulk_soil	1.0		3.00						
OL3-54	SOIL	6714351	329212	Bulk_soil	2.0		7.00						
OL3-55	SOIL	6714351	329237	Bulk_soil	7.0		2.00						
OL3-56	SOIL	6714351	329262	Bulk_soil	1.0		11.00						
OL3-57	SOIL	6714351	329287	Bulk_soil	1.0		7.00						
OL3-58	SOIL	6714351	329312	Bulk_soil	1.0		6.00						
OL3-59	SOIL	6714351	329337	Bulk_soil	1.0		9.00						
OL3-6	SOIL	6714351	328012	Bulk_soil	1.0		2.00						
OL3-60	SOIL	6714351	329362	Bulk_soil	1.0		8.00						
OL3-61	SOIL	6714351	329387	Bulk_soil	1.0		8.00						
OL3-7	SOIL	6714351	328037	Bulk_soil	1.0		1.00						
OL3-8	SOIL	6714351	328062	Bulk_soil	1.0		1.00						
OL3-9	SOIL	6714351	328087	Bulk_soil	2.0		1.00						
OL4-1	SOIL	6713895	326437	Bulk_soil	1.0		1.00						
OL4-10	SOIL	6713895	326662	Bulk_soil	1.0		2.00						
OL4-11	SOIL	6713895	326687	Bulk_soil	1.0		2.00						
OL4-12	SOIL	6713895	326712	Bulk_soil	1.0		2.00						
OL4-13	SOIL	6713895	326737	Bulk_soil	1.0		2.00						
OL4-14	SOIL	6713895	326762	Bulk_soil	1.0		2.00						
OL4-15	SOIL	6713895	326787	Bulk_soil	1.0		2.00						
OL4-16	SOIL	6713895	326812	Bulk_soil	1.0		2.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL4-18	SOIL	6713895	326862	Bulk_soil	1.0		2.00						
OL4-19	SOIL	6713895	326887	Bulk_soil	1.0		2.00						
OL4-2	SOIL	6713895	326462	Bulk_soil	1.0		2.00						
OL4-20	SOIL	6713895	326912	Bulk_soil	1.0		2.00						
OL4-21	SOIL	6713895	326937	Bulk_soil	1.0		1.00						
OL4-22	SOIL	6713895	326962	Bulk_soil	1.0		1.00						
OL4-23	SOIL	6713895	326987	Bulk_soil	1.0		1.00						
OL4-24	SOIL	6713895	327012	Bulk_soil	1.0		1.00						
OL4-25	SOIL	6713895	327037	Bulk_soil	1.0		3.00						
OL4-26	SOIL	6713895	327062	Bulk_soil	1.0		1.00						
OL4-27	SOIL	6713895	327087	Bulk_soil	1.0		1.00						
OL4-28	SOIL	6713895	327112	Bulk_soil	1.0		1.00						
OL4-29	SOIL	6713895	327137	Bulk_soil	1.0		2.00						
OL4-3	SOIL	6713895	326487	Bulk_soil	1.0		1.00						
OL4-30	SOIL	6713895	327162	Bulk_soil	1.0		2.00						
OL4-31	SOIL	6713895	327187	Bulk_soil	1.0		1.00						
OL4-32	SOIL	6713895	327212	Bulk_soil	1.0		1.00						
OL4-33	SOIL	6713895	327237	Bulk_soil	1.0		1.00						
OL4-34	SOIL	6713895	327262	Bulk_soil	1.0		1.00						
OL4-35	SOIL	6713895	327287	Bulk_soil	1.0		1.00						
OL4-36	SOIL	6713895	327312	Bulk_soil	1.0		2.00						
OL4-37	SOIL	6713895	327337	Bulk_soil	1.0		2.00						
OL4-38	SOIL	6713895	327362	Bulk_soil	1.0		2.00						
OL4-39	SOIL	6713895	327387	Bulk_soil	1.0		2.00						
OL4-4	SOIL	6713895	326512	Bulk_soil	1.0		1.00						
OL4-40	SOIL	6713895	327412	Bulk_soil	1.0		1.00						
OL4-41	SOIL	6713895	327437	Bulk_soil	1.0		1.00						
OL4-42	SOIL	6713895	327462	Bulk_soil	2.0		1.00						
OL4-43	SOIL	6713895	327487	Bulk_soil	1.0		1.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL4-45	SOIL	6713895	327537	Bulk_soil	1.0		1.00						
OL4-46	SOIL	6713895	327562	Bulk_soil	1.0		1.00						
OL4-47	SOIL	6713895	327587	Bulk_soil	1.0		1.00						
OL4-48	SOIL	6713895	327612	Bulk_soil	1.0		1.00						
OL4-49	SOIL	6713895	327637	Bulk_soil	1.0		1.00						
OL4-5	SOIL	6713895	326537	Bulk_soil	1.0		2.00						
OL4-50	SOIL	6713895	327662	Bulk_soil	2.0		1.00						
OL4-51	SOIL	6713895	327687	Bulk_soil	1.0		2.00						
OL4-52	SOIL	6713895	327712	Bulk_soil	1.0		2.00						
OL4-53	SOIL	6713895	327737	Bulk_soil	3.0		1.00						
OL4-54	SOIL	6713895	327762	Bulk_soil	2.0		2.00						
OL4-55	SOIL	6713895	327787	Bulk_soil	1.0		1.00						
OL4-56	SOIL	6713895	327812	Bulk_soil	1.0		2.00						
OL4-57	SOIL	6713895	327837	Bulk_soil	1.0		1.00						
OL4-58	SOIL	6713895	327862	Bulk_soil	1.0		1.00						
OL4-59	SOIL	6713895	327887	Bulk_soil	1.0		1.00						
OL4-6	SOIL	6713895	326562	Bulk_soil	1.0		1.00						
OL4-60	SOIL	6713895	327912	Bulk_soil	1.0		1.00						
OL4-61	SOIL	6713895	327937	Bulk_soil	1.0		1.00						
OL4-62	SOIL	6713895	327962	Bulk_soil	3.0		2.00						
OL4-63	SOIL	6713895	327987	Bulk_soil	1.0		2.00						
OL4-64	SOIL	6713895	328012	Bulk_soil	1.0		2.00						
OL4-65	SOIL	6713895	328037	Bulk_soil	1.0		1.00						
OL4-66	SOIL	6713895	328062	Bulk_soil	2.0		1.00						
OL4-67	SOIL	6713895	328087	Bulk_soil	1.0		1.00						
OL4-68	SOIL	6713895	328112	Bulk_soil	1.0		1.00						
OL4-69	SOIL	6713895	328137	Bulk_soil	1.0		2.00						
0L4-7	SOIL	6713895	326587	Bulk_soil	1.0		1.00						
OL4-70	SOIL	6713895	328162	Bulk_soil	1.0		1.00						

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OL4-72	SOIL	6713895	328212	Bulk_soil	1.0		1.00						
OL4-73	SOIL	6713895	328237	Bulk_soil	1.0		1.00						
OL4-74	SOIL	6713895	328262	Bulk_soil	1.0		1.00						
OL4-75	SOIL	6713895	328287	Bulk_soil	1.0		1.00						
OL4-76	SOIL	6713895	328312	Bulk_soil	1.0		2.00						
OL4-77	SOIL	6713895	328337	Bulk_soil	1.0		2.00						
OL4-78	SOIL	6713895	328362	Bulk_soil	1.0		1.00						
OL4-79	SOIL	6713895	328387	Bulk_soil	1.0		9.00						
OL4-8	SOIL	6713895	326612	Bulk_soil	1.0		1.00						
OL4-80	SOIL	6713895	328412	Bulk_soil	1.0		2.00						
OL4-81	SOIL	6713895	328437	Bulk_soil	1.0		2.00						
OL4-9	SOIL	6713895	326637	Bulk_soil	1.0		2.00						
OTS1	SOIL	6713657	330344	Bulk_soil	1.0		2.00						
OTS101	SOIL	6714151	327825	Bulk_soil	1.0								
OTS102	SOIL	6714155	327848	Bulk_soil	4.0								
OTS103	SOIL	6714159	327876	Bulk_soil	3.0								
OTS104	SOIL	6714159	327896	Bulk_soil	5.0								
OTS105	SOIL	6714160	327916	Bulk_soil	1.0								
OTS106	SOIL	6714159	327939	Bulk_soil	1.0								
OTS107	SOIL	6714179	327962	Bulk_soil	1.0								
OTS108	SOIL	6714176	327988	Bulk_soil	3.0								
OTS109	SOIL	6714164	328016	Bulk_soil	1.0								
OTS110	SOIL	6714173	328040	Bulk_soil	12.0								
OTS111	SOIL	6714184	328062	Bulk_soil	1.0								
OTS112	SOIL	6714187	328090	Bulk_soil	1.0								
OTS113	SOIL	6714190	328123	Bulk_soil	1.0								
OTS114	SOIL	6714196	328148	Bulk_soil	1.0								
OTS115	SOIL	6714205	328171	Bulk_soil	1.0								
OTS116	SOIL	6714211	328198	Bulk_soil	1.0								

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
OTS118	SOIL	6714220	328248	Bulk_soil	4.0								
OTS119	SOIL	6714208	328271	Bulk_soil	1.0								
OTS120	SOIL	6714181	328293	Bulk_soil	1.0								
OTS2	SOIL	6713652	330361	Bulk_soil	1.0		2.00						
OTS3	SOIL	6713647	330381	Bulk_soil	1.0		2.00						
OTS4	SOIL	6713643	330401	Bulk_soil	1.0		3.00						
OTS5	SOIL	6713638	330421	Bulk_soil	1.0		1.00						
OTS6	SOIL	6713633	330441	Bulk_soil	1.0		2.00						
OTS7	SOIL	6713629	330461	Bulk_soil	4.0		1.00						
S95627	AUG	6711547	332438		4.0				5.00				
S95628	AUG	6711546	332386		3.0				4.00				
S95629	AUG	6711544	332336		5.0				4.00				
S95630	AUG	6711548	332287		3.0				4.00				
S95631	AUG	6711547	332237		4.0				16.00				
\$95632	AUG	6711546	332187		6.0				14.00				
S95633	AUG	6711548	332136		8.0				9.00				
S95634	AUG	6711547	332087		6.0				17.00				
S95635	AUG	6711550	332037		10.0				7.00				
S95636	AUG	6711545	331987		6.0				4.00				
S95637	AUG	6711546	331937		8.0				26.00				
\$95638	AUG	6711547	331886		3.0				7.00				
\$95639	AUG	6711543	331836		3.0				5.00				
S95641	AUG	6711545	331787		3.0				13.00				
S95642	AUG	6711550	331737		6.0				10.00				
S95643	AUG	6711546	331686		6.0				13.00				
S95644	AUG	6711545	331638		7.0				13.00				
S95645	AUG	6711547	331586		13.0				6.00				
\$95646	AUG	6711546	331536		3.0				5.00				
S95647	AUG	6713959	329837		4.0				7.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S95649	AUG	6713965	329937		5.0				7.00				
\$95650	AUG	6713954	329987		5.0				6.00				
S95651	AUG	6713954	330038		6.0				6.00				
S95652	AUG	6713962	330088		2.0				5.00				
\$95653	AUG	6713954	330137		5.0				5.00				
S95654	AUG	6713764	330338		4.0				4.00				
S95655	AUG	6713748	330287		5.0				4.00				
S95656	AUG	6713759	330238		4.0				5.00				
S95657	AUG	6713765	330187		9.0				12.00				
S95658	AUG	6713758	330137		12.0				10.00				
S95659	AUG	6713739	330087		6.0				11.00				
S95661	AUG	6713754	330037		7.0				10.00				
S95662	AUG	6713743	329987		4.0				13.00				
S95663	AUG	6713757	329937		7.0				22.00				
S95664	AUG	6713563	330137		5.0				13.00				
S95665	AUG	6713556	330188		2.0				6.00				
S95666	AUG	6713568	330238		2.0				5.00				
S95667	AUG	6713547	330287		5.0				4.00				
\$95668	AUG	6713549	330337		5.0				4.00				
\$95669	AUG	6713554	330387		2.0				1.00				
S95670	AUG	6713556	330439		85.0				2.00				
S95671	AUG	6713538	330488		2.0				1.00				
S95672	AUG	6713548	330536		1.0				1.00				
S95673	AUG	6713551	330587		1.0				2.00				
S95674	AUG	6713550	330637		5.0				4.00				
S95675	AUG	6713363	330635		6.0				5.00				
\$95676	AUG	6713350	330587		4.0				3.00				
S95677	AUG	6713358	330537		5.0				5.00				
\$95678	AUG	6713359	330487		3.0				3.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S95681	AUG	6713363	330386		4.0				4.00				
S95682	AUG	6713362	330337		2.0				8.00				
S95683	AUG	6713357	330287		2.0				5.00				
S95684	AUG	6713352	330237		7.0				13.00				
S95685	AUG	6713355	330187		4.0				11.00				
S95686	AUG	6713357	330138		5.0				15.00				
S95687	AUG	6713165	329638		2.0				17.00				
S95688	AUG	6713166	329687		2.0				11.00				
S95689	AUG	6713163	329738		1.0				8.00				
S95690	AUG	6713163	329788		1.0				14.00				
S95691	AUG	6713160	329837		n/a				10.00				
S95692	AUG	6713151	329887		1.0				8.00				
S95693	AUG	6713159	329937		1.0				10.00				
S95694	AUG	6713167	329989		1.0				5.00				
S95695	AUG	6713162	330038		4.0				14.00				
S95696	AUG	6713155	330087		1.0				8.00				
S95697	AUG	6713149	330138		2.0				3.00				
\$95698	AUG	6713158	330187		2.0				10.00				
S95699	AUG	6713161	330237		1.0				7.00				
S95701	AUG	6713158	330288		3.0				10.00				
S95702	AUG	6713155	330337		2.0				10.00				
S95703	AUG	6713164	330387		2.0				13.00				
S95704	AUG	6713154	330437		7.0				9.00				
S95705	AUG	6713160	330487		4.0				15.00				
S95706	AUG	6713162	330536		5.0				10.00				
S95707	AUG	6713165	330588		2.0				12.00				
\$95708	AUG	6713166	330637		3.0				4.00				
\$95709	AUG	6713170	330687		5.0				6.00				
S95710	AUG	6713161	330737		1.0				1.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S95712	AUG	6713162	330838		11.0				5.00				
S95713	AUG	6713160	330888		10.0				5.00				
S95714	AUG	6713146	330936		11.0				4.00				
S95715	AUG	6713157	330987		9.0				5.00				
S95716	AUG	6713152	331037		5.0				5.00				
S95717	AUG	6713170	331087		2.0				4.00				
S95718	AUG	6713168	331138		4.0				4.00				
S95719	AUG	6712960	331639		4.0				5.00				
S95721	AUG	6712956	331586		2.0				4.00				
S95722	AUG	6712959	331537		2.0				4.00				
S95723	AUG	6712949	331487		1.0				5.00				
S95724	AUG	6712958	331437		4.0				5.00				
S95725	AUG	6712963	331387		7.0				4.00				
S95726	AUG	6712962	331336		10.0				5.00				
S95727	AUG	6712974	331287		7.0				5.00				
S95728	AUG	6712958	331237		4.0				5.00				
S95729	AUG	6712959	331187		5.0				4.00				
\$95730	AUG	6712970	331137		7.0				4.00				
S95731	AUG	6712959	331087		3.0				9.00				
S95732	AUG	6712955	331036		5.0				5.00				
S95733	AUG	6712959	330987		5.0				5.00				
S95734	AUG	6712953	330936		14.0				13.00				
S95735	AUG	6712951	330887		13.0				11.00				
S95736	AUG	6712950	330837		6.0				8.00				
S95737	AUG	6712961	330786		6.0				8.00				
S95738	AUG	6712952	330738		3.0				8.00				
\$95739	AUG	6712964	330687		4.0				16.00				
S95741	AUG	6712955	330637		4.0				11.00				
S95742	AUG	6712952	330587		1.0				5.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S95744	AUG	6712964	330485		9.0				17.00				
S95745	AUG	6712964	330436		4.0				26.00				
S95746	AUG	6712959	330387		5.0				25.00				
S95747	AUG	6712958	330337		5.0				13.00				
S95748	AUG	6712960	330285		6.0				25.00				
S95749	AUG	6712958	330236		3.0				9.00				
S95750	AUG	6712959	330188		4.0				9.00				
S95751	AUG	6712956	330136		2.0				7.00				
S95752	AUG	6712761	330138		1.0				7.00				
S95753	AUG	6712756	330188		1.0				4.00				
S95754	AUG	6712778	330238		2.0				7.00				
S95755	AUG	6712772	330288		1.0				5.00				
S95756	AUG	6712756	330337		2.0				7.00				
S95757	AUG	6712762	330388		1.0				1.00				
S95758	AUG	6712762	330438		6.0				25.00				
S95759	AUG	6712761	330487		4.0				14.00				
S95761	AUG	6712759	330537		10.0				19.00				
S95762	AUG	6712768	330587		6.0				22.00				
S95763	AUG	6712770	330637		3.0				16.00				
S95764	AUG	6712759	330688		2.0				15.00				
S95765	AUG	6712757	330737		7.0				39.00				
S95766	AUG	6712762	330787		5.0				10.00				
S95767	AUG	6712763	330837		3.0				11.00				
S95768	AUG	6712756	330887		3.0				11.00				
S95769	AUG	6712759	330939		4.0				10.00				
S95770	AUG	6712754	330987		4.0				11.00				
S95771	AUG	6712753	331037		9.0				10.00				
S95772	AUG	6712760	331087		9.0				11.00				
\$95773	AUG	6712762	331138		3.0				6.00				
SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
----------	--------	---------	--------	--------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------
S95775	AUG	6712760	331239		2.0				4.00				
S95776	AUG	6711165	332437		2.0				3.00				
S95777	AUG	6711159	332387		5.0				10.00				
S95778	AUG	6711154	332337		5.0				10.00				
S95779	AUG	6711157	332286		10.0				13.00				
S95781	AUG	6711157	332237		11.0				14.00				
S95782	AUG	6711162	332187		11.0				15.00				
S95783	AUG	6711156	332137		8.0				5.00				
S95784	AUG	6711158	332087		7.0				5.00				
S95785	AUG	6711156	332036		2.0				6.00				
S95786	AUG	6711151	331985		2.0				6.00				
S95787	AUG	6711155	331937		4.0				8.00				
S95788	AUG	6711154	331887		15.0				9.00				
S95789	AUG	6711153	331837		3.0				5.00				
S95790	AUG	6711144	331787		6.0				7.00				
S95791	AUG	6711157	331736		2.0				5.00				
S95792	AUG	6711151	331686		4.0				5.00				
S95793	AUG	6711160	331636		2.0				7.00				
S95794	AUG	6711156	331587		2.0				10.00				
S95795	AUG	6711154	331537		3.0				6.00				
S95796	AUG	6710752	331937		5.0				7.00				
S95797	AUG	6710743	331988		3.0				8.00				
S95798	AUG	6710762	332038		3.0				10.00				
S95799	AUG	6710760	332089		2.0				3.00				
S96501	AUG	6710158	329337		2.0		5.00		11.00				
S96502	AUG	6710158	329737		1.0		5.00		11.00				
\$96503	AUG	6710158	330137		1.0		10.00		13.00				
S96504	AUG	6710158	330537		1.0		5.00		33.00				
\$96505	AUG	6710158	330937		1.0		5.00		15.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96507	AUG	6710158	331737		2.0		5.00		15.00				
S96508	AUG	6710158	331937		1.0		10.00		28.00				
S96509	AUG	6710158	332137		4.0		10.00		32.00				
S96510	AUG	6710158	332337		4.0		10.00		23.00				
S96511	AUG	6710158	332537		4.0		5.00		33.00				
S96512	AUG	6710558	332537		1.0		5.00		15.00				
S96513	AUG	6710558	332337		2.0		5.00		11.00				
S96514	AUG	6710558	332137		3.0		10.00		15.00				
S96515	AUG	6710558	331937		2.0		5.00		18.00				
S96516	AUG	6710558	331737		2.0		5.00		15.00				
S96517	AUG	6710958	332537		8.0		n/a		27.00				
S96518	AUG	6710958	332337		10.0		10.00		36.00				
S96519	AUG	6710958	332137		2.0		20.00		23.00				
S96520	AUG	6710958	331937		1.0		10.00		62.00				
S96521	AUG	6710958	331737		2.0		10.00		37.00				
S96522	AUG	6710958	331537		1.0		10.00		21.00				
S96523	AUG	6710958	331337		5.0		5.00		16.00				
S96524	AUG	6710958	330937		n/a		10.00		13.00				
S96525	AUG	6710958	330537		1.0		5.00		52.00				
S96526	AUG	6710958	330137		2.0		10.00		17.00				
S96527	AUG	6710958	329737		2.0		10.00		12.00				
S96528	AUG	6710958	329337		1.0		5.00		8.00				
S96529	AUG	6711358	332537		3.0		10.00		14.00				
S96530	AUG	6711358	332337		2.0		15.00		17.00				
S96531	AUG	6711358	332137		2.0		10.00		32.00				
S96532	AUG	6711358	331937		1.0		15.00		45.00				
\$96533	AUG	6711358	331737		4.0		15.00		29.00				
S96534	AUG	6711358	331537		1.0		10.00		76.00				
S96535	AUG	6711358	331337		1.0		10.00		25.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96537	AUG	6711758	332337		4.0		10.00		8.00				
S96538	AUG	6711758	332137		5.0		15.00		30.00				
S96539	AUG	6711758	331937		9.0		20.00		38.00				
S96540	AUG	6711758	331737		1.0		10.00		56.00				
S96541	AUG	6711758	331537		2.0		10.00		150.00				
S96542	AUG	6711758	331337		2.0		10.00		47.00				
S96543	AUG	6711758	331137		1.0		10.00		28.00				
S96544	AUG	6711758	330937		1.0		10.00		33.00				
S96545	AUG	6712158	332537		n/a		10.00		5.00				
S96546	AUG	6712158	332337		1.0		5.00		8.00				
S96547	AUG	6712158	332137		1.0		n/a		13.00				
S96548	AUG	6712158	331937		11.0		15.00		32.00				
S96549	AUG	6712158	331737		10.0		20.00		62.00				
S96550	AUG	6712158	331537		5.0		15.00		54.00				
S96551	AUG	6712158	331337		3.0		10.00		175.00				
S96552	AUG	6712158	331137		2.0		10.00		50.00				
S96553	AUG	6712158	330937		7.0		20.00		29.00				
S96554	AUG	6712158	330737		8.0		10.00		16.00				
S96555	AUG	6712158	330537		1.0		10.00		12.00				
S96556	AUG	6712558	329737		1.0		10.00		8.00				
S96557	AUG	6712558	329937		3.0		10.00		15.00				
S96558	AUG	6712558	330137		3.0		10.00		21.00				
S96559	AUG	6712558	330337		3.0		5.00		24.00				
S96560	AUG	6712558	330537		6.0		10.00		41.00				
S96561	AUG	6712558	330737		2.0		10.00		90.00				
S96562	AUG	6712558	330937		96.0		10.00		325.00				
\$96563	AUG	6712558	331137		9.0		15.00		86.00				
S96564	AUG	6712558	331337		3.0		5.00		47.00				
\$96565	AUG	6712558	331537		2.0		10.00		23.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96567	AUG	6712558	331937		1.0		10.00		17.00				
S96568	AUG	6712558	332137		1.0		5.00		14.00				
S96569	AUG	6712558	332537		1.0		10.00		13.00				
S96570	AUG	6712958	331537		1.0		15.00		12.00				
S96571	AUG	6712958	331337		7.0		10.00		15.00				
S96572	AUG	6712958	331137		3.0		15.00		32.00				
S96573	AUG	6712958	330937		2.0		5.00		42.00				
S96574	AUG	6712958	330737		11.0		15.00		102.00				
S96575	AUG	6712958	330537		2.0		15.00		68.00				
S96576	AUG	6712958	330337		3.0		10.00		155.00				
S96577	AUG	6712958	330137		1.0		10.00		58.00				
S96578	AUG	6712958	329937		2.0		10.00		12.00				
S96579	AUG	6712958	329737		1.0		n/a		8.00				
S96580	AUG	6712958	329537		n/a		5.00		11.00				
S96581	AUG	6713358	329337		2.0		5.00		35.00				
S96582	AUG	6713358	329537		n/a		10.00		74.00				
S96583	AUG	6713358	329737		2.0		10.00		52.00				
S96584	AUG	6713358	329937		5.0		10.00		43.00				
S96585	AUG	6713358	330137		4.0		10.00		90.00				
S96586	AUG	6713358	330337		1.0		10.00		62.00				
S96587	AUG	6713358	330537		13.0		20.00		42.00				
S96588	AUG	6713358	330737		5.0		15.00		29.00				
S96589	AUG	6713358	330937		2.0		10.00		18.00				
S96590	AUG	6713358	331137		2.0		5.00		33.00				
S96591	AUG	6713358	331337		3.0		5.00		10.00				
S96592	AUG	6713358	331737		n/a		10.00		28.00				
\$96593	AUG	6713358	332137		2.0		5.00		19.00				
S96594	AUG	6713358	332537		6.0		15.00		20.00				
S96595	AUG	6713758	330737		4.0		5.00		11.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96597	AUG	6713758	330537		2.0		n/a		26.00				
S96598	AUG	6713758	330337		3.0		n/a		20.00				
S96599	AUG	6713758	330137		14.0		15.00		41.00				
S96600	AUG	6713758	329937		3.0		n/a		64.00				
S96601	AUG	6713758	329737		3.0		n/a		23.00				
S96602	AUG	6713758	329537		6.0		n/a		125.00				
S96603	AUG	6713758	329337		1.0		n/a		54.00				
S96604	AUG	6713758	329137		n/a		5.00		130.00				
S96605	AUG	6713758	328937		3.0		n/a		36.00				
S96606	AUG	6714158	326137		1.0		n/a		18.00				
S96607	AUG	6714158	326537		1.0		n/a		8.00				
S96608	AUG	6714158	326937		2.0		n/a		11.00				
S96609	AUG	6714158	327337		1.0		n/a		10.00				
S96610	AUG	6714158	327737		1.0		n/a		10.00				
S96611	AUG	6714158	328137		1.0		5.00		10.00				
S96612	AUG	6714158	328537		3.0		n/a		13.00				
S96613	AUG	6714158	328737		1.0		n/a		16.00				
S96614	AUG	6714158	328937		5.0		10.00		49.00				
S96615	AUG	6714158	329137		2.0		5.00		62.00				
S96616	AUG	6714158	329337		1.0		n/a		54.00				
S96617	AUG	6714158	329537		1.0		5.00		56.00				
S96618	AUG	6714158	329737		1.0		n/a		33.00				
S96619	AUG	6714158	329937		1.0		n/a		26.00				
S96620	AUG	6714158	330137		2.0		n/a		23.00				
S96621	AUG	6714158	330337		1.0		n/a		21.00				
S96622	AUG	6714158	330537		1.0		n/a		7.00				
S96623	AUG	6714158	330737		n/a		n/a		7.00				
S96624	AUG	6714158	330937		n/a		n/a		7.00				
S96625	AUG	6714158	331337		1.0		n/a		22.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96627	AUG	6714158	332137		n/a		n/a		12.00				
S96628	AUG	6714158	332537		1.0		n/a		7.00				
S96629	AUG	6714958	332537		1.0		n/a		9.00				
S96630	AUG	6714958	332137		1.0		n/a		15.00				
S96631	AUG	6714958	331737		1.0		5.00		16.00				
S96632	AUG	6714958	331337		1.0		n/a		16.00				
S96633	AUG	6714958	330937		2.0		n/a		14.00				
S96634	AUG	6714958	330537		1.0		n/a		8.00				
S96635	AUG	6714958	330137		1.0		n/a		13.00				
S96636	AUG	6714958	329737		1.0		n/a		11.00				
S96637	AUG	6714958	329537		n/a		n/a		4.00				
S96638	AUG	6714958	329337		3.0		n/a		8.00				
S96639	AUG	6714958	329137		6.0		n/a		15.00				
S96640	AUG	6714958	328937		n/a		n/a		45.00				
S96641	AUG	6714958	328737		1.0		n/a		43.00				
S96642	AUG	6714958	328537		1.0		10.00		190.00				
S96643	AUG	6714958	328337		2.0		5.00		44.00				
S96644	AUG	6714958	328137		1.0		10.00		34.00				
S96645	AUG	6714958	327737		1.0		5.00		12.00				
S96646	AUG	6714958	327337		2.0		5.00		12.00				
S96647	AUG	6714958	326937		1.0		n/a		11.00				
S96648	AUG	6714958	326537		1.0		5.00		16.00				
S96649	AUG	6714958	326137		1.0		n/a		7.00				
S96650	AUG	6714558	328537		1.0		5.00		9.00				
S96651	AUG	6714558	328737		2.0		5.00		33.00				
S96652	AUG	6714558	328937		1.0		n/a		52.00				
\$96653	AUG	6714558	329137		1.0		5.00		31.00				
S96654	AUG	6714558	329337		1.0		5.00		78.00				
S96655	AUG	6714558	329537		1.0		n/a		54.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96701	AUG	6710764	332137		2.0				5.00				
S96702	AUG	6710754	332187		8.0				4.00				
S96703	AUG	6710758	332237		8.0				4.00				
S96704	AUG	6710751	332287		11.0				4.00				
S96705	AUG	6710743	332337		8.0				6.00				
S96706	AUG	6710757	332389		8.0				5.00				
S96707	AUG	6710759	332436		9.0				14.00				
S96708	AUG	6711969	331136		10.0				11.00				
S96709	AUG	6711959	331188		7.0				11.00				
S96710	AUG	6711937	331237		2.0				5.00				
S96711	AUG	6711942	331287		9.0				14.00				
S96712	AUG	6711963	331337		7.0				25.00				
S96713	AUG	6711965	331387		4.0				10.00				
S96714	AUG	6711968	331439		5.0				7.00				
S96715	AUG	6711962	331488		4.0				4.00				
S96716	AUG	6711963	331538		2.0				5.00				
S96717	AUG	6711965	331588		1.0				5.00				
S96718	AUG	6711961	331637		7.0				6.00				
S96719	AUG	6711972	331687		4.0				8.00				
S96721	AUG	6711968	331737		1.0				2.00				
S96722	AUG	6711951	331787		7.0				15.00				
S96723	AUG	6711952	331839		4.0				6.00				
S96724	AUG	6711973	331888		4.0				7.00				
S96725	AUG	6711979	331938		7.0				6.00				
S96726	AUG	6711965	331987		4.0				6.00				
S96727	AUG	6711961	332038		3.0				3.00				
S96728	AUG	6711974	332088		5.0				7.00				
S96729	AUG	6711975	332139		6.0				3.00				
\$96730	AUG	6711966	332188		4.0				4.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96732	AUG	6711966	332287		12.0				4.00				
S96733	AUG	6711965	332338		6.0				2.00				
S96734	AUG	6712359	332136		7.0				6.00				
S96735	AUG	6712361	332087		7.0				6.00				
S96736	AUG	6712354	332037		5.0				4.00				
S96737	AUG	6712349	331987		5.0				6.00				
S96738	AUG	6712347	331935		9.0				5.00				
S96739	AUG	6712356	331887		9.0				5.00				
S96741	AUG	6712353	331837		18.0				5.00				
S96742	AUG	6712355	331787		1.0				2.00				
S96743	AUG	6712328	331737		3.0				6.00				
S96744	AUG	6712343	331687		4.0				6.00				
S96745	AUG	6712368	331636		4.0				6.00				
S96746	AUG	6712351	331587		2.0				4.00				
S96747	AUG	6712343	331537		2.0				4.00				
S96748	AUG	6712372	331488		10.0				14.00				
S96749	AUG	6712367	331437		4.0				7.00				
S96750	AUG	6712352	331385		4.0				6.00				
S96751	AUG	6712353	331338		8.0				10.00				
S96752	AUG	6712363	331287		7.0				10.00				
S96753	AUG	6712379	331237		2.0				14.00				
S96754	AUG	6712349	331187		2.0				14.00				
S96755	AUG	6712363	331137		3.0				16.00				
S96756	AUG	6712372	331087		3.0				17.00				
S96757	AUG	6712360	331037		3.0				10.00				
S96758	AUG	6712364	330987		3.0				8.00				
\$96759	AUG	6712370	330934		2.0				7.00				
S96761	AUG	6712368	330887		1.0				6.00				
S96762	AUG	6712355	330835		3.0				15.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96764	AUG	6712356	330737		5.0				6.00				
S96765	AUG	6712360	330686		4.0				7.00				
S96766	AUG	6712376	330638		4.0				6.00				
S96767	AUG	6712560	330638		5.0				21.00				
S96768	AUG	6712569	330688		1.0				13.00				
S96769	AUG	6712565	330737		2.0				18.00				
S96770	AUG	6712560	330787		4.0				18.00				
S96771	AUG	6712557	330837		3.0				21.00				
S96772	AUG	6712557	330889		1.0				6.00				
S96773	AUG	6712556	330937		4.0				14.00				
S96774	AUG	6712562	330988		3.0				28.00				
S96775	AUG	6712567	331038		3.0				22.00				
S96776	AUG	6712576	331087		4.0				14.00				
S96777	AUG	6712571	331137		3.0				13.00				
S96778	AUG	6712564	331186		4.0				21.00				
S96779	AUG	6712564	331237		4.0				13.00				
S96781	AUG	6712562	331287		4.0				10.00				
S96782	AUG	6712571	331338		11.0				7.00				
S96783	AUG	6712569	331389		2.0				4.00				
S96784	AUG	6712567	331437		6.0				8.00				
S96785	AUG	6712556	331488		2.0				2.00				
S96786	AUG	6712561	331538		2.0				5.00				
S96787	AUG	6712563	331587		3.0				6.00				
S96788	AUG	6712548	331637		6.0				6.00				
S96789	AUG	6712758	331637		7.0				6.00				
S96790	AUG	6712760	331588		10.0				7.00				
S96791	AUG	6712767	331536		6.0				5.00				
S96792	AUG	6712761	331487		11.0				6.00				
\$96793	AUG	6712775	331436		5.0				6.00				

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
S96795	AUG	6712759	331337		7.0				6.00				
S96796	AUG	6712755	331287		4.0				8.00				
FR000479	ROCK	6713485	329560	Peg drill spoil 2-12m		0.01	2.13	30.20	134.50	7.62	18.95	0.40	0.09
FR000480	ROCK	6713388	329741	20m peg outcrop		0.06	0.49	3.20	4.92	0.28	21.20	n/a	n/a
FR000481	ROCK	6713551	330271	Peg on ridge		n/a	0.36	4.62	2.15	0.43	16.05	n/a	0.05
FR000482	ROCK	6713238	330365	Peg on ridge		0.01	0.24	0.36	1.75	0.24	5.67	0.01	0.01
FR000483	ROCK	6712821	330568	Drill spoil 10 to 13m		0.04	0.34	7.38	97.00	4.49	13.50	0.23	0.04
FR000565	ROCK	6711548	332224	Peq?		0.04	0.32	12.20	1.79	0.26	20.30	0.02	0.04
FR000566	ROCK	6711550	332216	Vqz		0.01	0.21	0.18	1.32	0.20	0.84	n/a	n/a
FR000567	ROCK	6711548	332220	Peg		0.03	0.20	0.73	1.53	0.23	6.03	n/a	n/a
FR000568	ROCK	6711547	332240	Peg		0.02	0.19	1.24	1.03	0.16	19.55	0.01	0.01
FR000766	ROCK	6712711	330810	malachite historic working	515.0	15.35	2.42	42.10	267000.00	5.40	9.32	28.50	4.00
FR000767	ROCK	6713390	329688	massive white qtz outcrop	4.0	0.04	1.88	0.15	386.00	0.51	5.83	0.07	0.02
FR000768	ROCK	6713406	329725	100m mica rich pegmatite on granite contact	1.0	0.06	1.26	0.82	48.80	0.15	30.20	0.02	0.01
FR000769	ROCK	6713391	329755	Middle of 100m mica rich pegmatite outcrop	1.0	0.04	0.20	1.17	31.90	0.17	14.05	0.01	0.01
FR000770	ROCK	6713337	329795	end of 100m rich mica rich pegmatite outcrop	2.0	0.20	0.52	0.78	21.00	0.18	29.10	0.04	0.01
FR000771	ROCK	6713497	329573	gossan ironstone outcrop????	1.0	0.46	2.31	0.39	196.50	16.80	17.65	0.21	0.02
FR000772	ROCK	6713342	329465	5m wide 50m long mica rich pegmatite outcrop	1.0	0.08	0.29	0.06	12.60	0.21	19.40	n/a	n/a
FR000773	ROCK	6713345	329424	end of 50m 5m wide mica rich pegmatite outcrop	n/a	0.05	0.18	0.04	4.64	0.13	26.80	0.01	n/a
FR000774	ROCK	6713323	329443	50m mica rich pegmatite with granite and biotites outcrop	1.0	0.06	0.31	1.76	9.49	0.17	73.60	0.02	n/a
FR000775	ROCK	6713345	329403	end 50m of mica rich pegmatite with granite outcrop	1.0	0.05	0.31	1.21	12.75	0.49	178.00	0.01	0.01
FR000776	ROCK	6713292	329400	gossan ironstone outcrop	1.0	0.19	1.23	1.60	168.50	2.93	36.00	1.58	0.13
FR000777	ROCK	6713246	329402	micas-rich granite	1.0	0.14	0.26	0.53	6.37	0.16	36.50	0.02	n/a
FR000778	ROCK	6713413	329109	micas rich pegmatite small dyke	1.0	0.05	0.54	6.02	50.30	0.47	10.95	0.42	n/a
FR000779	ROCK	6713588	329163	qtz vein	n/a	0.01	0.32	0.07	11.25	0.49	1.64	0.10	n/a
FR000780	ROCK	6713321	329986	mica rich pegmatite outcrop	1.0	0.05	0.43	11.90	6.47	0.18	5.88	0.02	0.05
FR000781	ROCK	6713128	330657	mica rich pegmatite outcrop	10.0	0.29	0.32	1.16	5620.00	0.59	29.40	0.49	0.07
FR000782	ROCK	6713302	330530	mica rich pegmatite outcrop	1.0	0.02	0.38	15.85	4.94	0.18	13.60	0.03	0.06
FR000783	ROCK	6713254	330541	massive qtz vein	n/a	0.01	0.52	0.09	7.64	0.26	0.53	0.03	n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
FR000799	ROCK	6712539	330937	Peg Thin		0.04	0.19	0.16	3.69	0.38	10.85	0.01	n/a
FR000800	ROCK	6712816	330996	Peg thin		0.05	0.40	0.23	5.27	0.31	15.40	0.02	0.01
FR000801	ROCK	6712793	330801	thin peg in sheared schist		0.01	0.19	0.36	5.90	0.27	15.30	0.02	0.01
FR000803	ROCK	6712862	330460	Peg NW 5m thick		0.03	0.20	5.23	9.71	0.26	35.50	0.02	0.01
FR000804	ROCK	6712960	329976	Shear parallel vqz NW		0.04	0.64	0.07	3.64	0.56	31.20	0.02	n/a
FR000805	ROCK	6712966	329957	Peg 2m wide NW silver bladed mineral patches		0.02	0.34	0.90	2.26	0.21	21.50	0.01	n/a
FR000806	ROCK	6712965	329959	Biotite granite contact peg		0.05	0.59	0.24	2.13	0.22	22.20	0.02	n/a
FR000807	ROCK	6712929	329947	peg NW same as 806		0.13	0.33	0.49	2.39	0.26	37.20	0.02	0.01
FR000808	ROCK	6712884	329941	Peg NW		0.03	0.67	0.49	2.45	0.32	43.80	0.03	n/a
FR000809	ROCK	6712783	329949	Peg same as 806		0.03	0.24	0.32	1.76	0.24	30.10	0.01	n/a
FR000810	ROCK	6713485	329829	Peg 2m wide NNW		0.06	0.29	38.90	4.05	0.25	21.40	0.02	0.02
FR000811	ROCK	6713541	330281	Mica rich peg WNW		n/a	0.28	0.76	6.26	0.58	18.25	0.04	0.01
FR000812	ROCK	6713488	330295	Thin peg		0.01	0.30	12.35	2.20	0.46	11.45	0.02	0.06
FR000813	ROCK	6713577	330347	Thin peg in granite contact		0.08	0.12	1.66	1.78	0.23	60.70	0.02	0.02
FR000814	ROCK	6713610	330126	Peg NNW		0.01	0.27	0.67	2.54	0.29	10.45	0.02	0.01
FR000815	ROCK	6713751	329869	Thick localised Peg NW		0.03	0.23	35.30	4.59	0.38	22.60	0.02	0.08
FR000816	ROCK	6713761	329833	Coarse blocky feldspar peg NW		0.01	0.16	1.80	2.05	0.20	51.40	0.02	0.03
FR000817	ROCK	6713722	329615	Musc rich peg NNW		0.03	0.46	3.46	59.00	0.68	9.84	0.13	0.01
FR000818	ROCK	6713604	329679	10m wide peg NE		0.01	0.23	2.89	2.82	0.25	24.90	0.01	0.02
FR000819	ROCK	6713473	329692	Peg NNE same as 818		0.02	0.27	2.35	2.61	0.23	15.60	0.02	0.01
FR000820	ROCK	6712941	330403	Peg NNW 10m wide		0.06	0.29	0.90	8.64	0.38	34.70	0.02	0.01
FR000821	ROCK	6713239	330366	Peg NNW		n/a	0.21	0.48	1.62	0.23	5.46	0.01	0.01
FR000822	ROCK	6712313	331634	Thin peg in mafic		n/a	0.36	20.10	4.18	1.05	17.85	0.01	0.10
FR000823	ROCK	6712305	331742	Peg		0.08	0.17	10.70	3.53	0.45	44.30	0.04	0.08
FR000826	ROCK	6711549	332229	Peg with trace fine grain red mineral		0.01	0.38	116.50	1.41	0.40	12.05	0.03	0.13
FR000827	ROCK	6711908	331972	15m wide peg NNW		n/a	0.21	3.34	2.28	0.25	26.60	0.01	0.01
FR000828	ROCK	6711970	331911	Peg 7m wide N		0.05	0.15	1.26	2.79	0.32	10.75	0.02	0.02
FR000829	ROCK	6712092	331829	Peg NNW		0.03	0.24	3.24	4.80	0.34	18.30	0.02	0.02
FR000830	ROCK	6712221	331727	Peg NNW		0.01	0.28	1.93	1.98	0.30	4.45	0.02	0.09

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
FR000832	ROCK	6712329	331704	Biotite rock contact wide peg zone		0.02	0.24	5.85	4.13	1.77	5.96	0.07	0.05
FR000833	ROCK	6712329	331704	Peg large musc		0.08	0.21	24.60	4.02	0.49	19.05	0.03	0.21
FR000834	ROCK	6712430	331653	Peg wide 20m zone		0.12	0.40	18.85	3.21	0.35	38.50	0.08	0.06
FR000835	ROCK	6712491	331582	Peg spod? NNW		0.01	0.12	13.80	2.16	0.34	14.70	0.04	0.07
FR000836	ROCK	6712433	331469	Peg nnw		0.01	0.22	11.40	3.74	0.19	30.90	0.02	0.08
FR000837	ROCK	6712610	331331	Peg with musc qtz clusters after sillimanite?		n/a	0.24	2.22	1.90	0.19	18.65	0.02	0.01
FR000838	ROCK	6712777	331132	Peg NNW		0.02	2.18	61.80	8.92	0.37	24.80	0.02	0.23
FR000839	ROCK	6712799	331844	Strongly weathered granite		0.02	0.70	0.19	9.58	0.75	4.40	0.18	0.01
FR000840	ROCK	6711977	331975	Peg 5m wide		0.02	0.19	12.00	1.14	0.34	17.85	0.01	0.05
FR000841	ROCK	6711572	332134	Thin peg NE		0.01	0.27	1.09	4.64	0.30	15.90	0.03	0.02
FR000842	ROCK	6711002	332477	Peg NNW		0.04	0.20	42.50	2.23	0.24	20.10	0.03	0.08
FR000843	ROCK	6710909	332609	Peg		0.05	0.36	2.04	11.40	0.48	20.40	0.02	0.07
FR000844	ROCK	6711196	332490	Peg NNW		0.05	0.09	0.20	3.70	0.31	23.70	0.03	0.01
FR000845	ROCK	6711126	332405	Peg NNW		0.03	0.09	4.05	3.71	0.22	26.40	0.01	0.04
FR000846	ROCK	6711251	332359	Peg NNW		0.02	0.26	7.71	4.14	0.53	16.35	0.02	0.02
FR000847	ROCK	6713701	329384	Weathered musc granite near contact greenstone		0.02	4.68	11.75	114.00	1.64	13.45	0.52	0.08
FR000848	ROCK	6714568	329909	Peg in granite		0.02	1.04	0.93	8.39	0.70	15.55	0.12	0.01
FR000849	ROCK	6714989	330340	Coarse musc weathered Peg NW feldspar into clays		n/a	0.24	0.28	2.09	0.30	5.04	0.04	n/a
FR000850	ROCK	6714762	330634	Pegmatitic granite		n/a	1.28	0.22	9.60	1.36	18.75	0.18	0.01
FR000851	ROCK	6714758	330844	Musc peg granite		0.03	0.62	41.70	1.39	0.35	64.80	0.04	n/a
FR000852	ROCK	6715212	330313	Highly weathered musc granite		0.01	0.33	0.27	2.50	0.32	10.50	0.10	n/a
FR000853	ROCK	6715338	330101	coarse muscovite sample		0.03	1.78	1.62	2.21	0.89	10.30	0.56	0.06
FR000854	ROCK	6715336	330102	Musc qtz rock		n/a	0.46	0.26	2.45	0.30	13.20	0.08	0.01
FR000855	ROCK	6715606	330264	Qtz feldspar thin peg		0.03	0.39	0.19	1.68	0.36	56.90	0.06	0.01
FR000856	ROCK	6713488	329561	Drill spoil 5-7M weathered peg		0.01	1.01	67.00	62.00	4.53	13.05	0.30	0.13
FR000858	ROCK	6713651	329687	Feldsar sample		0.03	0.15	2.07	2.80	0.15	53.90	0.01	0.01
FR000859	ROCK	6713736	329589	Fe stained vqz		0.05	1.24	0.45	341.00	5.68	5.65	0.45	0.01
FR000860	ROCK	6713746	329580	Weathered peg NW		0.06	1.08	13.30	129.00	0.95	8.39	0.25	0.11
FR000862	ROCK	6713642	329452	Peg granite		0.04	0.42	0.10	27.50	0.29	103.50	0.05	0.01

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
FR000864	ROCK	6712415	330871	Peg NNW green mica		0.02	0.21	3.70	7.63	0.28	14.10	0.03	n/a
FR000865	ROCK	6712542	330726	Thin peg in musc aplite granite		0.02	0.27	1.80	3.54	0.13	8.29	0.01	0.01
FR000866	ROCK	6712576	330741	Thin peg in aplite granite NW		0.29	0.20	12.75	4.41	0.19	31.40	0.01	0.02
FR000867	ROCK	6712575	330741	Feldspar sample		0.96	0.21	0.80	7.57	0.16	56.00	0.01	n/a
FR000868	ROCK	6712678	330623	Peg NW Silver clear radial mineral		0.08	0.33	0.53	4.18	0.16	17.65	0.02	n/a
FR000869	ROCK	6712278	331121	Biotite granite		0.15	0.60	0.10	14.10	0.25	31.00	0.03	n/a
FR000870	ROCK	6712837	330324	Peg in aplitic granite		0.03	0.26	1.70	5.54	0.29	18.50	0.02	0.01
FR000871	ROCK	6712813	330306	Fe vqz		0.32	1.09	30.40	339.00	2.66	80.20	4.38	0.67
FR000872	ROCK	6712805	330185	thin peg in biotite		0.06	0.49	4.33	5.15	0.23	24.50	0.04	0.01
FR000873	ROCK	6712802	330184	Contact peg biotite? + qtz rock		0.03	0.49	6.26	14.65	0.72	6.58	0.05	0.05
FR000874	ROCK	6712803	330147	Feldspar sample from peg NNE		0.05	0.22	15.25	2.64	0.16	26.10	0.02	0.01
FR000875	ROCK	6712799	330146	Peg in biotite granite NNE		0.04	0.26	18.05	5.23	0.21	6.69	0.01	0.01
FR000876	ROCK	6713652	329685	Peg sample from NW trend wide intersection zone		0.03	0.18	7.29	2.55	0.18	16.60	0.02	0.02
FR000877	ROCK	6713542	329806	Peg 2m wide NNW		0.02	0.34	3.87	2.84	0.23	10.55	0.02	0.01
FR000878	ROCK	6713365	329907	5m wide peg NE		0.07	0.38	8.14	5.18	0.22	18.10	0.04	0.02
FR000879	ROCK	6713314	330177	Peg from wide 20m intersection zone		n/a	0.29	2.86	4.52	0.20	16.80	0.02	0.01
FR000880	ROCK	6717544	330197	Feldspar sample		0.01	0.24	0.18	0.89	0.57	1.17	0.02	0.01
FR000885	ROCK	6716403	330310	sample from large vqz structure EW	n/a	0.01	0.24	0.04	1.44	0.38	1.34	0.03	n/a
FR000886	ROCK	6716042	328298	Vqz	n/a	0.01	0.20	0.04	1.64	0.42	0.17	0.01	n/a
FR000887	ROCK	6715741	328451	Drill spoil vqz	n/a	0.01	0.24	0.03	1.86	0.45	0.23	n/a	n/a
FR000888	ROCK	6716103	328428	Purple vqz in schist	n/a	0.01	1.10	0.10	4.12	0.37	1.08	0.14	0.01
FR000889	ROCK	6716115	328420	highly weathered peg in schist		0.03	6.03	46.10	317.00	9.47	79.50	0.39	0.83
FR000890	ROCK	6716858	328089	Weathered peg in greenstone		0.25	1.89	0.31	190.50	4.45	14.30	0.81	0.01
FR000894	ROCK	6710036	332764	Thin peg nnw		0.04	0.31	3.32	4.13	1.76	21.80	0.01	0.02
FR000895	ROCK	6710716	332574	Peg 3m wide NNW		0.03	0.40	0.86	6.14	0.33	18.00	0.02	n/a
FR000896	ROCK	6710913	332466	Peg 5m wide same as 895		0.03	0.28	0.19	3.63	0.25	63.00	0.01	n/a
FR000897	ROCK	6711060	332542	Pegmatitic musc granite dyke		0.02	0.25	3.46	2.76	0.19	15.10	0.02	0.02
FR000898	ROCK	6711250	332474	Peg NNW		0.01	0.25	0.09	2.31	0.40	54.30	0.01	n/a
FR000927	ROCK	6709952	331399	Biotite granite		0.05	0.88	0.47	3.91	0.18	22.30	0.01	n/a

SampleID	Sample	North	East	Sample_Description	Au_ppb	Ag_ppm	As_ppm	Bi_ppm	Cu_ppm	Mo_ppm	Pb_ppm	Se_ppm	Te_ppm
FR000960	ROCK	6715321	328023	Thin musc rich peg in granite		0.04	0.98	0.42	1.88	0.22	48.20	0.03	0.01
FR000961	ROCK	6715191	328333	Fe mn vqz on contact with schist		0.13	1.80	7.02	130.50	0.79	18.40	0.42	0.25
FR000962	ROCK	6715186	328329	Qz musc rock nnw		0.01	0.29	0.33	2.32	1.04	1.72	0.04	0.02
FR000963	ROCK	6715466	328278	Thin peg in schist		0.13	0.75	42.00	24.70	0.38	18.30	0.21	0.03
FR000964	ROCK	6715489	328377	Thin peg in schist		0.22	0.59	71.30	56.40	2.72	54.30	0.13	0.29
FR000965	ROCK	6715567	328680	Peg in granite		0.01	0.92	39.00	13.00	0.31	12.95	0.06	0.01
FR000966	ROCK	6715594	328699	Peg in granite		0.01	1.71	5.50	15.95	1.17	19.80	0.19	0.03
FR000967	ROCK	6715549	328673	highly weathered schist?? float in creek bed with long 5cm bladed minerals		0.01	2.41	0.64	66.40	3.85	13.00	0.76	0.01
FR000968	ROCK	6715481	328656	Highly weathered peg		0.02	8.09	3.49	80.40	3.30	11.90	0.68	0.02
FR000969	ROCK	6715430	328634	Coarse mica peg rock creek float		0.01	12.05	3.27	11.90	0.55	4.16	0.03	0.02
FR000970	ROCK	6715227	328696	Peg weathered intense		0.03	39.60	1.61	53.90	1.56	11.35	0.34	0.04
FR000971	ROCK	6715814	327514	Sugary vqz	n/a	0.02	0.63	0.24	3.20	0.38	3.00	0.01	n/a
FR000972	ROCK	6715652	328261	Thin coarse mica rich peg nnw		0.03	0.63	0.25	8.14	0.57	9.94	0.09	n/a
FR000973	ROCK	6715585	328279	weathered peg mica rich		0.10	1.21	0.28	173.50	0.64	34.30	0.32	0.01
FR000974	ROCK	6719454	327149	Thin peg nw weathered insitu??		0.03	0.96	0.83	7.56	0.38	57.40	0.07	0.01
FR000975	ROCK	6719371	328334	Extremly weathered peg???		0.04	2.44	0.58	31.10	0.58	8.06	0.33	0.01
FR000976	ROCK	6710147	333113	qz fld peg		0.01	0.23	0.59	1.78	0.17	19.30	0.01	0.01