Review of AEM at Mongers Lake Reveals New Bedrock Conductors - A review of Geoscience Australia's national SKYTEM data at Mongers Lake has revealed 2 newly identified conductors which are coincident with previously announced Ni-Cu-PGM soil anomalies at the Red Well Prospect: - <u>REM1</u>: A large, strong late time basement conductor has been identified coincident with strong Ni-Ci-PGM metals and important nickel fertility ratios in soil. - <u>REM2</u>: Located 1.5 km to the west a second moderate basement conductor has been identified coincident with strong Ni-Ci-PGM metals and important nickel fertility ratios in soil. - Both anomalies are interpreted to represent high priority drill targets for the discovery of bedrock nickel sulphide mineralisation. - These newly identified drill targets are strategically located within the richly endowed Yalgoo-Singleton Greenstone 20 km south of the high grade Rothsay gold deposit and 40km north of the >2Moz Mt Gibson deposit. - The planning of follow up ground based Fixed Loop EM survey is currently in progress. Albion Resources Limited ("Albion" or the "Company") is pleased to announce that the review of airborne EM data is now complete on the Company's 100% owned Mongers Lake Project. The project covers the northern extents of the Yalgoo-Singleton Greenstone Belt located between the Mt Gibson and Rothsay Gold Projects in the highly prospective Murchison Province of Western Australia (Figure 4). **Figure 1**: Interpreted AEM anomaly profile and models on Airborne MrtpcMrtplap Magnetic image showing the location of the late-time EM anomalies (pink stars). #### Airborne EM and Soil Nickel Sulphide Fertility Review On the eastern margin of the project tenure, in the Red Well prospect area, a strong basement conductor is identified called *REM1* (Figure 1 & 2). This anomaly occurs within the high amplitude NW strike magnetic linears truncated by regional North-easterly faulting. Adjacent to this is another smaller basement conductor called *REM2* (Figure 1 & 2). Soil sampling results from the Mongers Lake project were reported by Albion Resources in June (See ALB announcement 6th June 2023). At the Red Well prospect, three significant coherent nickel-copper-platinum-palladium-in-soil anomalies that extend for a combined 3 km strike were identified. The recently reviewed SKYTEM data was conducted through the two most easterly Ni-Cu-PGM-in-soil anomalies where bedrock conductors were identified across both target areas (Figure 2B). **Figure 2A**: (top) Airborne magnetic MrtpcMrtplap image showing EM anomalies (black stars), Ni-Cu-PGM (black dash), 'Kambalda Ratio' (blue dash) soil anomalies and cross structure (red dash). Figure 2B (middle) colour gridded Ni-in-soil image showing EM anomalies (black stars). Figure 2C (bottom) colour gridded Kambalda Ratio-in-soil image showing EM anomalies (black stars). In light of this breakthrough, a nickel fertility review of the soil data was completed by utilising the important "Kambalda Ratio" (Ni/Cr x Cu/Zn) which is specifically to detect Ni-Cu-Platinum Group Metal (PGM)-bearing sulphide accumulations at depth (Brand, 1999)1. Importantly, both bedrock conductors are strongly associated with nickel sulphide fertility Kambalda ratios (Figure 2C). #### **Conclusions & Further Work** It is clear that both the REM1 and REM2 bedrock conductor anomalies are highly prospective for the discovery of nickel-copper-PGM sulphide deposits. Bedrock EM anomalies and coincident geochemical Ni-Cu-PGM and Kambalda Ratio anomalies and coincident magnetic features are characteristic of classic magmatic nickel-copper-PGM systems typical of Archean greenstone terrains such as for example the Andover Ni-Ci-PGM deposit in the Pilbara (Azure Minerals Limited: ASX:ASZ) and other nickel sulfide deposits in Kambalda like those mined by Mincor Resources (ASX:MCR). In light of the recent delineation of these high priority targets, it has been recommended to conduct ground based fixed loop EM (FLEM) across both targets and along strike in order to accurately define these anomalies for drill targeting. The planning of the program is currently underway which will assist in evaluating where drill permits will need to be lodged to conduct reconnaissance percussion drilling in early 2024. **Figure 4:** Mongers Lake Project Location Map on GSWA 500K Geology showing the location of the Red Well prospect area. #### References ¹Brand, N., 1999. Element Ratios in Nickel Sulphide Exploration: Vectoring Towards Ore Environments This announcement has been approved for release by the Board. #### FOR FURTHER INFORMATION: Steven Formica Non-Executive Chairman info@albionresources.com.au #### **COMPETENT PERSONS STATEMENT** The information in this announcement that relates to Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr Leo Horn. Mr Horn is a member of the Australian Institute of Geoscientists. Mr Horn has sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this announcement and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code"). Mr Horn consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. # JORC Code, 2012 Edition - Table 1 ## Section 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections) | Criteria | JORC Code explanation | Commentary | |--------------------------|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Ultrafine soil sampling by Albion Resources was conducted from a 30-40cm cleared area to a depth of approximately 25cm. The sample was dry sieved to collect 200-300 grams of -2mm. Two field duplicates were taken every 100 samples. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Drilling not reported in this announcement | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Drilling not reported in this announcement | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Drilling not reported in this announcement | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Drilling not reported in this announcement | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Ultrafine soil samples were sieved to -2 micron at Labwest Minerals Analysis Pty Ltd and run for gold plus a 49 multi-element package by aqua regia microwave digestion | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Drilling not reported in this announcement | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control | Location of soil samples by Albion Resources were recorded using a handheld GPS which is considered appropriate for soil sampling results. | | A 14 1 | RESOURCES | | | |---|--|--|--| | Criteria | JORC Code explanation | Commentary | | | Data
spacing and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Soil sampling was conducted at 100 m spacing with north-south oriented lines spaced 200m apart. | | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Soil sampling was planned and conducted along more detailed east-west lines at 100m in order to define mineralisation that may be on northwest or northeast orientations | | | Sample
security | The measures taken to ensure sample security. | Albion Resources ensured that sample security was maintained to ensure the integrity of sample quality. | | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Audits and reviews have not been undertaken at Albion | | ### Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |---|---|---| | Mineral
tenement
and land
tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | Mongers Lake E59/2576 and E59/2641 are 100% held by Albion Resources. There are no known native title impediments to exploration over the areas of soil sampling at Red Well and Clay Pans | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | There is no known work by previous explorers of significance over the areas of soil sampling at Red Well and Clay Pans | | Geology | Deposit type, geological setting and style of mineralisation. | Mineralisation has not yet been identified at Mongers Lake. However, interpretation of the soils and EM data suggest Red Well is prospective for magmatic nickel-copper-PGM mineralisation | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | ● Statistic soil information at Red Well is included below: Metal Nickel ppm Copper ppm Platinum Palladium Pt+Pd Ni/Cr*Cu/Zn | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Drilling not reported in this announcement. | | Criteria | JORC Code explanation | Commentary | |--|---|--| | Deletienshin | These relationships are particularly | Manager Control of the th | | Relationship
between
mineralisatio
n widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | Mineralisation has not yet been identified on the project within rocks or drilling | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | See relevant maps in the body of this announcement. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and
high grades and/or widths should be
practiced to avoid misleading reporting of
Exploration Results. | All available data has been presented in figures. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | An EM review was completed by experienced geophysicist David McInnes of Montana G.I.S. The review was focused Geoscience Australia's national AEM data coverage program (GA Porj Num 5002). The data was collected along 20 km spaced traverses using the SkyTEM system: a Heliborne (AEM) platform. The EM system is designed to detect bedrock conductors such as massive Ni-Cu-PGM sulphide. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further work is detailed in the body of the announcement. |