ADDITIONAL NEW GOLD DISCOVERY AT HORSE WELL - 58m @ 1.7g/t Au

the New Konik prospect intersects wide, high-grade gold from near surface at yandal GOLD PROJECT IN WESTERN AUSTRALIA

Key Points:

- New discovery in hole HWAC1488: 58m @ 1.7g/t Au from 17m (to BOH), incl. 10m @ 4.2g/t Au
- The new Konik trend had not been identified or drilled by past explorers
- Strickland appears to have intersected the same structure in aircore drilling 200 m to the south (assays pending - see Figure 1)
- The Konik shear zone can be traced in geophysical datasets extending 600 m to the south
- Historic holes were drilled parallel to the Konik shear zone and failed to test the structure
- The aircore rig will undertake closer spaced aircore lines over the Konik shear zone in preparation for subsequent RC drilling
- \quad RC rig scheduled to arrive in the last week of October
- Strickland remains extremely well funded after completing its sale of the Millrose gold deposit to Northern Star Resources Ltd in July 2023 for ~ $\mathbf{\$ 6 1 m i l l i o n}$

Introduction

Strickland Metals Limited (ASX:STK) (Strickland or the Company) is pleased to provide an update on its 100\% owned Horse Well prospect at the Yandal Gold Project.

Management Comment

Andrew Bray, Chief Executive Officer, said: "Our ongoing aircore program has delivered another fantastic discovery at the newly identified Konik trend, HWAC1488: 58m @ 1.7g/t Au from 17m (to BOH), including 10m @ 4.2g/t Au. The discovery highlights how fertile the Horse Well prospect area is, and also the area's potential to deliver additional gold mineralisation with strong grades and over large widths. Most pleasing about HWAC1488 is its proximity to surface.

The shear zone can be traced approximately 600 m to the south of HWAC1488 in geophysical datasets. Two additional holes drilled by Strickland 200m to the south-east of the discovery hole intersected similar alteration and veining to HWAC1488, suggesting continuation of the mineralised structure (assays pending - see Figure 1). Three historical holes were drilled by previous explorers proximal to the Konik shear structure, however, the drill rig orientation was parallel to the shear structure meaning the holes missed the target.
Closer spaced aircore drilling is planned to map the shear structure 600 m to the south in preparation for $R C$ drilling.
Given we're a little over halfway through the aircore program, it is an incredible result to have thus far delivered two new discoveries at Konik and Marwari (HWAC1472: 31m @ 5.6g/t Au), as well as identifying a large, undrilled prospective corridor to the north-west at Pegasus, which appears to be the extension of Marwari.
The aircore rig has arrived at the Pegasus target and will shortly commence drilling a number of aircore fence lines to map the geology and test for extensions to the Marwari discovery (see announcement 27 September 2023). After completing the fence lines at Pegasus, the rig will move to Konik and complete four short fence lines before moving back to continue the southern extensional drilling of the Marwari structure. These aircore fence lines should accurately map the mineralising structures in preparation for substantial follow up RC drilling.

Additionally, there are still large parts of the Horse Well prospect area away from these discoveries that the Company plans to continue systematically testing, with significant potential remaining for additional discoveries.

An $R C$ rig will arrive towards the end of the month to assist with an expanded drill program leading into Christmas."

STRICKLAND

METALS LIMITED

Aircore drilling

As announced to the market on 10 August 2023, Strickland is currently undertaking an aggressive 40,000m aircore program, with the initial phase of drilling focusing on mapping the Horse Well shear structures. This program has since been expanded to over 50,000m. Previous exploration across the area focused on drilling areas of outcropping mineralisation identified from historic surface geochemical techniques. This work subsequently led to the existing Horse Well inferred Mineral Resource of $148 \mathrm{Koz} .{ }^{1}$ However, since the late 1990's when these resources were discovered, there has been no systematic drilling programs or applications of modern exploration techniques. Prior to this program, no work had been done to test for extensions to the known Mineral Resources or under areas of transported cover, or indeed targeting new discoveries away from the existing Mineral Resources.

Konik Structure

Drilling by Strickland designed to test the NW-trending shear zones across the Horse Well area has intersected significant shearing, veining and silica-potassic alteration in hole HWAC1488, returning a wide, near surface gold result of:

HWAC1488: 4 m @ 1.7g/t Au from 2 m , and 58 m @ 1.7g.t Au from 17m (including $10 \mathrm{~m} @ 4.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$)

Figure 1: Location of HWAC1488 and showing the southern extension of the target zone

[^0]
STRICKLAND

METALS LIMITED
This result represents another exciting new discovery for Strickland, termed Konik, in an area that has not been historically drill tested. The mineralisation at Konik is hosted within a shear zone on the contact between intermediate volcaniclastics and basalt. The shear zone is denoted by silica-potassic alteration associated with massive quartz veining (Figure 2).

The newly identified Konik trend is traceable in geophysical datasets for a further 600m south of discovery hole HWAC1488 (Figure 1). Historic exploration had not tested the shear structure. The structure is truncated by a NE fault structure to the north and another NE fault structure to the south. As previously mentioned by Strickland, these cross-cutting NE structures appear critical to the high-grade mineralisation intersected throughout the wider project area.

Ongoing aircore drilling by Strickland has tested the Konik trend 200m to the south of HWAC1488, successfully locating the shear zone, quartz veining and silica-potassic alteration along strike (assays pending).

The controls on mineralisation appear somewhat different to what Strickland has intersected at Marwari (and expects to see at Pegasus) given the lack of BIF unit, thus providing additional targets outside the Marwari trend for the ongoing aircore program.

Historic proximal holes were focused on testing the NE-trending structure, drilling parallel to the mineralised shear zone. Historic hole HWRC131 intersected oxide mineralisation east of the mineralised shear zone ($8 \mathrm{~m} @ 1.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ from 35 m), with follow-up drilling testing only the barren basalt (Figure 2).

Konik provides a near surface, high grade gold target for Strickland to continue advancing, with an additional lateritic gold component directly below transported cover.

Figure 2: Cross section showing HWAC1488 intersection

Following on from this new discovery, the current drill program is being expanded to undertake closer spaced aircore drilling along the prospective Konik trend once drill testing of the Pegasus prospect is complete (Figure 3).

Further Results

To date, Strickland has completed approximately $30,000 \mathrm{~m}$ of aircore drilling across the Horse Well area, with significant results from the drilling completed to date summarised in Appendix A. The program has been expanded to over 50,000m given the ongoing success.

The Company is also eagerly awaiting assays from drilling south of the Marwari discovery hole. The Company expects to receive and release these results within the fortnight.

Figure 3: Marwari and Konik discoveries and new Pegasus trend

STRICKLAND

METALS LIMITED

This announcement was approved by the Chief Executive Officer of Strickland.

For more information contact

Andrew Bray

Chief Executive Officer
Phone: +61 (8) 63179875
info@stricklandmetals.com.au
stricklandmetals.com.au

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Geology Manager and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

APPENDIX A - Drilling Results

Table 1: Horse Well AC drill results

Hole ID	Coordinates (MGA94 Zone 51)			Hole Type	$\begin{aligned} & \text { Azi } \\ & \text { (deg) } \end{aligned}$	$\begin{aligned} & \text { Dip } \\ & \text { (deg) } \end{aligned}$	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	$\begin{gathered} \text { Grade } \\ (\mathrm{g} / \mathrm{t}) \end{gathered}$	Grade Summary/Comments
	Easting (m)	Northing (m)	$\begin{gathered} \mathrm{RL} \\ (\mathrm{~m}) \end{gathered}$									
HWAC1275	270450	7131400	560	AC	270	-60	62					NSA
HWAC1276	270500	7131400	560	AC	270	-60	58					NSA
HWAC1277	270550	7131400	560	AC	270	-60	64					NSA
HWAC1278	270600	7131400	560	AC	270	-60	62					NSA
HWAC1279	270650	7131400	560	AC	270	-60	73					NSA
HWAC1280	270700	7131400	560	AC	270	-60	65					NSA
HWAC1281	270750	7131400	560	AC	270	-60	78					NSA
HWAC1282	270800	7131400	560	AC	270	-60	66					NSA
HWAC1283	270850	7131400	560	AC	270	-60	64					NSA
HWAC1284	270900	7131400	560	AC	270	-60	54					NSA
HWAC1285	270950	7131400	560	AC	270	-60	66					NSA
HWAC1286	271000	7131400	560	AC	270	-60	56					NSA
HWAC1287	271050	7131400	560	AC	270	-60	45					NSA
HWAC1288	271100	7131400	560	AC	270	-60	72					NSA
HWAC1289	271150	7131400	560	AC	270	-60	78					NSA
HWAC1290	271200	7131400	560	AC	270	-60	90					NSA
HWAC1291	271250	7131400	560	AC	270	-60	91					NSA
HWAC1292	271300	7131400	560	AC	270	-60	75					NSA
HWAC1293	271350	7131400	560	AC	270	-60	81					NSA
HWAC1294	271400	7131400	560	AC	270	-60	85					NSA
HWAC1295	271450	7131400	560	AC	270	-60	63					NSA
HWAC1296	271550	7131400	560	AC	270	-60	84					NSA
HWAC1297	271650	7131400	560	AC	270	-60	91					NSA
HWAC1298	271750	7131400	560	AC	270	-60	81					NSA
HWAC1299	272050	7131300	560	AC	270	-60	91					NSA
HWAC1300	272100	7131300	560	AC	270	-60	61					NSA
HWAC1301	272150	7131300	560	AC	270	-60	81					NSA
HWAC1302	272200	7131300	560	AC	270	-60	65	55	56	1	4.9	1 metre @ 4.9g/t Au from 55 metres
HWAC1303	270450	7131200	560	AC	270	-60	57					NSA
HWAC1304	270500	7131200	560	AC	270	-60	70					NSA
HWAC1305	270550	7131200	560	AC	270	-60	64					NSA
HWAC1306	270600	7131200	560	AC	270	-60	70					NSA
HWAC1307	270650	7131200	560	AC	270	-60	68					NSA
HWAC1308	270700	7131200	560	AC	270	-60	79					NSA
HWAC1309	270750	7131200	560	AC	270	-60	95					NSA
HWAC1310	270800	7131200	560	AC	270	-60	77					NSA
HWAC1311	270850	7131200	560	AC	270	-60	68	66	67	1	0.6	1 metre @ 0.6g/t Au from 66 metres
HWAC1312	270900	7131200	560	AC	270	-60	69	44	45	1	1.0	1 metre @ $1.0 \mathrm{~g} / \mathrm{t}$ Au from 44 metres
HWAC1313	270950	7131200	560	AC	270	-60	77					NSA
HWAC1314	271000	7131200	560	AC	270	-60	73					NSA
HWAC1315	271050	7131200	560	AC	270	-60	76					NSA
HWAC1316	271100	7131200	560	AC	270	-60	69					NSA
HWAC1317	271150	7131200	560	AC	270	-60	75					NSA
HWAC1318	271200	7131200	560	AC	270	-60	85	39	40	1	1.6	1 metre @ 1.6g/t Au from 39 metres
HWAC1319	271250	7131200	560	AC	270	-60	91					NSA
HWAC1320	271300	7131200	560	AC	270	-60	102	63	64	1	0.6	1 metre @ 0.6g/t Au from 63 metres
HWAC1321	271350	7131200	560	AC	270	-60	87	38	39	1	1.0	1 metre @ $1.0 \mathrm{~g} / \mathrm{t}$ Au from 38 metres
HWAC1322	271400	7131200	560	AC	270	-60	79					NSA
HWAC1323	271450	7131200	560	AC	270	-60	75					NSA
HWAC1324	271550	7131200	560	AC	270	-60	69					NSA
HWAC1325	271650	7131200	560	AC	270	-60	107					NSA
HWAC1326	271750	7131200	560	AC	270	-60	97					NSA
HWAC1327	272050	7131200	560	AC	270	-60	77					NSA
HWAC1328	272150	7131200	560	AC	270	-60	68					NSA
HWAC1329	270450	7131000	560	AC	270	-60	72					NSA
HWAC1330	270500	7131000	560	AC	270	-60	72					NSA
HWAC1331	270550	7131000	560	AC	270	-60	94					NSA
HWAC1332	270600	7131000	560	AC	270	-60	80					NSA
HWAC1333	270650	7131000	560	AC	270	-60	72					NSA
HWAC1334	270700	7131000	560	AC	270	-60	71	47	48	1	1.8	1 metre @ 1.8g/t Au from 47 metres
HWAC1335	270750	7131000	560	AC	270	-60	69					NSA
HWAC1336	270800	7131000	560	AC	270	-60	42					NSA
HWAC1337	270850	7131000	560	AC	270	-60	72					NSA
HWAC1338	270900	7131000	560	AC	270	-60	72					NSA
HWAC1339	270950	7131000	560	AC	270	-60	77					NSA
HWAC1340	271000	7131000	560	AC	270	-60	96	46	47	1	1.4	1 metre @ $1.4 \mathrm{~g} / \mathrm{t}$ Au from 46 metres
HWAC1341	271050	7131000	560	AC	270	-60	76					NSA
HWAC1342	271100	7131000	560	AC	270	-60	81	40	44	4	0.6	4 metres @ 0.6g/t Au from 40 metres
HWAC1343	271150	7131000	560	AC	270	-60	84					NSA
HWAC1344	271200	7131000	560	AC	270	-60	76					NSA
HWAC1345	271250	7131000	560	AC	270	-60	78	30	35	5	0.7	5 metres @ 0.7g/t Au from 30 metres (incl. 1 metre @ $1.9 \mathrm{~g} / \mathrm{t}$ Au from 30 metres)
including								30	31	1	1.9	
and								38	39	1	1.6	1 metre @ $1.6 \mathrm{~g} / \mathrm{t}$ Au from 38 metres
and								48	55	7	0.5	7 metres @ 0.5g/t Au from 48 metres
HWAC1346	271300	7131000	560	AC			85					NSA
HWAC1347	271350	7131000	560	AC	270	-60	73	12	14	2	0.8	2 metres @ 0.8g/t Au from 12 metres
and								32	33	1	1.0	1 metre @ 1.0g/t Au from 32 metres
HWAC1348	271400	7131000	560	AC	270	-60	61	20	21	1	1.0	1 metre @ $1.0 \mathrm{~g} / \mathrm{t}$ Au from 20 metres
and								24	27	3	0.7	

Hole ID	Coordinates (MGA94 Zone 51)			Hole Type	$\begin{gathered} \text { Azi } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { Dip } \\ \text { (deg) } \end{gathered}$	Total Depth (m)	Depth From (m)	$\begin{aligned} & \text { Depth } \\ & \text { To }(m) \end{aligned}$	Intercept Width (m)	Grade (g/t)	Grade Summary/Comments
	Easting (m)	Northing (m)	$\begin{gathered} \hline \mathrm{RL} \\ (\mathrm{~m}) \\ \hline \end{gathered}$									
including								26	27	1	1.3	3 metres @ $0.7 \mathrm{~g} / \mathrm{t}$ Au from 24 metres (incl. 1 metre @ $1.3 \mathrm{~g} / \mathrm{t}$ Au from 26 metres)
and								33	38	5	0.8	5 metres @ 0.8g/t Au from 33 metres
HWAC1349	271450	7131000	560	AC	270	-60	90					NSA
HWAC1350	271550	7131000	560	AC	270	-60	44					NSA
HWAC1351	271650	7131000	560	AC	270	-60	109					NSA
HWAC1352	271750	7131000	560	AC	270	-60	103					NSA
HWAC1353	272150	7131000	560	AC	270	-60	99					NSA
HWAC1354	272250	7131000	560	AC	270	-60	52					NSA
HWAC1355	272050	7131100	560	AC	270	-60	93	34	35	1	1.5	1 metre @ 1.5g/t Au from 34 metres
HWAC1356	272100	7131100	560	AC	270	-60	52					NSA
HWAC1357	272150	7131100	560	AC	270	-60	90					NSA
HWAC1358	272200	7131100	560	AC	270	-60	85					NSA
HWAC1359	272250	7131100	560	AC	270	-60	72					NSA
HWAC1360	270500	7130800	560	AC	270	-60	73					NSA
HWAC1361	270550	7130800	560	AC	270	-60	61					NSA
HWAC1362	270600	7130800	560	AC	270	-60	63					NSA
HWAC1363	270650	7130800	560	AC	270	-60	63					NSA
HWAC1364	270700	7130800	560	AC	270	-60	67					NSA
HWAC1365	270750	7130800	560	AC	270	-60	67	45	46	1	0.8	1 metre @ 0.8g/t Au from 45 metres
HWAC1376	271300	7130800	560	AC	270	-60	100	52	56	4	7.8	4 metres @ 7.88/t Au from 52 metres
HWAC1377	271350	7130800	560	AC	270	-60	104	32	44	12	0.9	12 metres @ 0.9g/t Au from 32 metres (incl. 4 metres @ $1.4 \mathrm{~g} / \mathrm{t}$ Au from 40 metres)
including								40	44	4	1.4	
and								72	80	8	1.3	8 metres @ 1.3g/t Au from 72 metres
and								88	92	4	0.5	4 metres @ 0.5g/t Au from 88 metres
HWAC1378	271400	7130800	560	AC	270	-60	68					NSA
HWAC1379	271450	7130800	560	AC	270	-60	73	45	48	3	0.5	3 metres @ 0.5g/t Au from 45 metres
and								54	55	1	0.7	1 metres @ 0.7g/t Au from 54 metres
HWAC1380	271500	7130800	560	AC	270	-60	69	0	1	1	0.7	1 metre @ 0.7g/t Au from 0 metres
and								14	15	1	0.8	1 metre @ 0.8g/t Au from 14 metres
and								21	22	1	0.7	1 metre @ 0.7g/t Au from 21 metres
and								25	64	39	6.1	39 metres @ 6.1g/t Au from 25 metres (incl. 7 metres @$22.2 \mathrm{~g} / \mathrm{t}$ Au from 45 metres)
including								45	52	7	22.2	
HWAC1381	271550	7130800	560	AC	270	-60	113					NSA
HWAC1382	271650	7130800	560	AC	270	-60	84					NSA
HWAC1383	271750	7130800	560	AC	270	-60	106					NSA
HWAC1384	271850	7130800	560	AC	270	-60	51					NSA
HWAC1385	271950	7130800	560	AC	270	-60	82					NSA
HWAC1386	272050	7130800	560	AC	270	-60	95					NSA
HWAC1387	272150	7130800	560	AC	270	-60	91					NSA
HWAC1388	272250	7130800	560	AC	270	-60	64					NSA
HWAC1389	272300	7130800	560	AC	270	-60	51					NSA
HWAC1390	271800	7130900	560	AC	270	-60	126					NSA
HWAC1391	271850	7130900	560	AC	270	-60	91					NSA
HWAC1392	271900	7130900	560	AC	270	-60	95					NSA
HWAC1393	271950	7130900	560	AC	270	-60	80					NSA
HWAC1394	272000	7130900	560	AC	270	-60	49					NSA
HWAC1395	272050	7130900	560	AC	270	-60	46					NSA
HWAC1396	272100	7130900	560	AC	270	-60	64	20	24	4	0.7	4 metres @ 0.7g/t Au from 20 metres
HWAC1397	272150	7130900	560	AC	270	-60	54					NSA
HWAC1398	272200	7130900	560	AC	270	-60	51					NSA
HWAC1399	272250	7130900	560	AC	270	-60	61					NSA
HWAC1400	271700	7130700	560	AC	270	-60	90					NSA
HWAC1401	271750	7130700	560	AC	270	-60	77					NSA
HWAC1402	271800	7130700	560	AC	270	-60	48					NSA
HWAC1403	271850	7130700	560	AC	270	-60	86					NSA
HWAC1404	271900	7130700	560	AC	270	-60	105					NSA
HWAC1405	271950	7130700	560	AC	270	-60	96					NSA
HWAC1406	272000	7130700	560	AC	270	-60	117	28	32	4	0.5	4 metres @ 0.5g/t Au from 28 metres
HWAC1407	272050	7130700	560	AC	270	-60	108					NSA
HWAC1408	272100	7130700	560	AC	270	-60	87					NSA
HWAC1409	272150	7130700	560	AC	270	-60	56					NSA
HWAC1410	272200	7130700	560	AC	270	-60	56					NSA
HWAC1411	272250	7130700	560	AC	270	-60	42					NSA
HWAC1412	272300	7130700	560	AC	270	-60	45					NSA
HWAC1413	270950	7130700	560	AC	270	-60	65					NSA
HWAC1414	271000	7130700	560	AC	270	-60	64					NSA
HWAC1415	271050	7130700	560	AC	270	-60	71	37	38	1	0.8	1 metre @ 0.8g/t Au from 37 metres
HWAC1416	271100	7130700	560	AC	270	-60	77					NSA
HWAC1417	271150	7130700	560	AC	270	-60	75					NSA
HWAC1418	270600	7130600	560	AC	270	-60	66					NSA
HWAC1419	270650	7130600	560	AC	270	-60	63					NSA
HWAC1420	270700	7130600	560	AC	270	-60	62					NSA
HWAC1421	270750	7130600	560	AC	270	-60	68					NSA
HWAC1422	270800	7130600	560	AC	270	-60	64					NSA
HWAC1423	270850	7130600	560	AC	270	-60	60	57	60		0.8	3 metres @ 0.88/t Au from 57 metres
HWAC1424	270900	7130600	560	AC	270	-60	63	29	30	1	0.6	1 metre @ 0.6g/t Au from 29 metres
and								43	44	1	0.7	1 metre @ 0.7g/t Au from 43 metres
HWAC1425	270950	7130600	560	AC	270	-60	66					NSA
HWAC1426	271000	7130600	560	AC	270	-60	72	24	29	5	0.5	5 metres @ 0.5g/t Au from 24 metres
HWAC1427	271050	7130600	560	AC	270	-60	77					NSA
HWAC1428	271100	7130600	560	AC	270	-60	87					NSA
HWAC1429	271150	7130600	560	AC	270	-60	84					NSA
HWAC1430	271200	7130600	560	AC	270	-60	66					NSA

Hole ID	Coordinates (MGA94 Zone 51)			Hole Type	$\begin{gathered} \text { Azi } \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \text { Dip } \\ \text { (deg) } \end{gathered}$	Total Depth (m)	Depth From (m)	$\begin{aligned} & \text { Depth } \\ & \text { To (m) } \end{aligned}$	Intercept Width (m)	$\begin{aligned} & \text { Grade } \\ & (\mathrm{g} / \mathrm{t}) \end{aligned}$	Grade Summary/Comments
	Easting (m)	Northing (m)	$\begin{aligned} & \mathrm{RL} \\ & (\mathrm{~m}) \end{aligned}$									
HWAC1431	271250	7130600	560	AC	270	-60	69	0	12	12	1.0	12 metres @ 1.0g/t Au from 0 metres
HWAC1432	271300	7130600	560	AC	270	-60	73					NSA
HWAC1433	271350	7130600	560	AC	270	-60	57					NSA
HWAC1434	271400	7130600	560	AC	270	-60	51	44	47	3	1.3	3 metres @ 1.3g/t Au from 44 metres
HWAC1435	271450	7130600	560	AC	270	-60	59					NSA
HWAC1436	271500	7130600	560	AC	270	-60	62					NSA
HWAC1437	271550	7130600	560	AC	270	-60	45					NSA
HWAC1438	271600	7130600	560	AC	270	-60	57	35	49	14	1.3	14 metres @ 1.3g/t Au from 35 metres
HWAC1439	271650	7130600	560	AC	270	-60	78	25	30	5	0.5	5 metres @ 0.5g/t Au from 25 metres
HWAC1440	271750	7130600	560	AC	270	-60	54	15	16	1	0.6	1 metre @ 0.6g/t Au from 15 metres
and								31	32	1	0.8	1 metre @ 0.8g/t Au from 31 metres
HWAC1441	271850	7130600	560	AC	270	-60	112					NSA
HWAC1442	271950	7130600	560	AC	270	-60	110					NSA
HWAC1443	272050	7130600	560	AC	270	-60	128					NSA
HWAC1444	272150	7130600	560	AC	270	-60	121	37	38	1	0.6	1 metre @ 0.6g/t Au from 37 metres
HWAC1445	272250	7130600	560	AC	270	-60	55					NSA
HWAC1446	270650	7130500	560	AC	270	-60	54					NSA
HWAC1447	270700	7130500	560	AC	270	-60	51					NSA
HWAC1448	270750	7130500	560	AC	270	-60	61					NSA
HWAC1449	270800	7130500	560	AC	270	-60	56					NSA
HWAC1450	270850	7130500	560	AC	270	-60	57					NSA
HWAC1451	270900	7130500	560	AC	270	-60	58					NSA
HWAC1452	270950	7130500	560	AC	270	-60	64					NSA
HWAC1453	271000	7130500	560	AC	270	-60	61					NSA
HWAC1454	271050	7130500	560	AC	270	-60	90					NSA
HWAC1455	271100	7130500	560	AC	270	-60	89					NSA
HWAC1456	271150	7130500	560	AC	270	-60	98					NSA
HWAC1457	271200	7130500	560	AC	270	-60	101					NSA
HWAC1458	271250	7130500	560	AC	270	-60	66					NSA
HWAC1459	271300	7130500	560	AC	270	-60	53					NSA
HWAC1460	271350	7130500	560	AC	270	-60	41					NSA
HWAC1461	271400	7130500	560	AC	270	-60	39					NSA
HWAC1462	271450	7130500	560	AC	270	-60	46					NSA
HWAC1463	271500	7130500	560	AC	270	-60	50					NSA
HWAC1464	271550	7130500	560	AC	270	-60	57					NSA
HWAC1465	271600	7130500	560	AC	270	-60	68					NSA
HWAC1466	271650	7130500	560	AC	270	-60	64					NSA
HWAC1467	271700	7130500	560	AC	270	-60	67					NSA
HWAC1468	271750	7130500	560	AC	270	-60	95					NSA
HWAC1469	271800	7130500	560	AC	270	-60	103	56	68	12	1.2	12 metres @ 1.2g/t Au from 56 metres
and								76	80	4	0.7	4 metres @ 0.7g/t Au from 76 metres
HWAC1470	271850	7130500	560	AC	270	-60	121	44	48	4	0.5	4 metres @ 0.5g/t Au from 44 metres
and								84	88	4	0.5	4 metres @ 0.58/t Au from 84 metres
HWAC1471	271900	7130500	560	AC	270	-60	108					NSA
HWAC1472	271950	7130500	560	AC	270	-60	103	72	103	31	5.6	31 metres @ $5.6 \mathrm{~g} / \mathrm{t}$ Au from 72 metres (incl. 8 metres @$17.7 \mathrm{~g} / \mathrm{t}$ Au from 72 metres)
including								72	80	8	17.7	
HWAC1473	272000	7130500	560	AC	270	-60	107					NSA
HWAC1474	272050	7130500	560	AC	270	-60	113					NSA
HWAC1475	272100	7130500	560	AC	270	-60	97					NSA
HWAC1476	272150	7130500	560	AC	270	-60	112					NSA
HWAC1477	272200	7130500	560	AC	270	-60	99					NSA
HWAC1478	272250	7130500	560	AC	270	-60	38					NSA
HWAC1479	272300	7130500	560	AC	270	-60	52					NSA
HWAC1480	272350	7130500	560	AC	270	-60	53					NSA
HWAC1481	270650	7130400	560	AC	270	-60	60					NSA
HWAC1482	270750	7130400	560	AC	270	-60	65					NSA
HWAC1483	270700	7130400	560	AC	270	-60	65					NSA
HWAC1484	270800	7130400	560	AC	270	-60	69					NSA
HWAC1485	270850	7130400	560	AC	270	-60	75					NSA
HWAC1486	270900	7130400	560	AC	270	-60	86					NSA
HWAC1487	270950	7130400	560	AC	270	-60	71					NSA
HWAC1488	271000	7130400	560	AC	270	-60	75	2	6	4	1.7	4 metres @ $1.7 \mathrm{~g} / \mathrm{t}$ Au from 2 metres
and								11	12	1	0.7	1 metre @ 0.7g/t Au from 11 metres
and								17	75	58	1.7	58 metres @ 1.7g/t Au from 17 metres (incl. 10 metres @
including								60	70	10	4.2	$4.2 \mathrm{~g} / \mathrm{t}$ Au from 60 metres)
HWAC1489	271050	7130400	560	AC	270	-60	78					NSA
HWAC1490	271100	7130400	560	AC	270	-60	93					NSA
HWAC1491	271150	7130400	560	AC	270	-60	88					NSA
HWAC1492	271200	7130400	560	AC	270	-60	89	16	20	4	0.9	4 metres @ 0.9g/t Au from 16 metres
and								24	32	8	0.5	8 metres @ 0.5g/t Au from 24 metres
and								36	44	8	0.5	8 metres @ 0.5g/t Au from 36 metres
HWAC1493	271250	7130400	560	AC	270	-60	70					NSA
HWAC1494	271300	7130400	560	AC	270	-60	71					NSA
HWAC1495	271350	7130400	560	AC	270	-60	52					NSA
HWAC1496	271400	7130400	560	AC	270	-60	48					NSA
HWAC1497	271450	7130400	560	AC	270	-60	48					NSA
HWAC1498	271500	7130400	560	AC	270	-60	41					NSA
HWAC1499	271550	7130400	560	AC	270	-60	46					NSA
HWAC1515	271150	7130300	560	AC	270	-60	94	84	88	4	0.5	4 metres @ 0.5g/t Au from 84 metres
HWAC1516	271200	7130300	560	AC	270	-60	94					NSA
HWAC1517	271250	7130300	560	AC	270	-60	100	48	60	12	0.7	12 metres @ 0.7g/t Au from 48 metres
HWAC1518	271300	7130300	560	AC	270	-60	75					NSA

[^1]Table 2: Horse Well Drill Hole Details

Hole ID	Hole Type	Total Depth (m)	Grid	Easting (m)	Northing (m)	RL (m)	Drill Date	Assay Status
HWAC1275	AC	62	MGA94 Zone 51	270450	7131400	560	29/07/2023	Received
HWAC1276	AC	58	MGA94 Zone 51	270500	7131400	560	29/07/2023	Received
HWAC1277	AC	64	MGA94 Zone 51	270550	7131400	560	29/07/2023	Received
HWAC1278	AC	62	MGA94 Zone 51	270600	7131400	560	29/07/2023	Received
HWAC1279	AC	73	MGA94 Zone 51	270650	7131400	560	30/07/2023	Received
HWAC1280	AC	65	MGA94 Zone 51	270700	7131400	560	30/07/2023	Received
HWAC1281	AC	78	MGA94 Zone 51	270750	7131400	560	30/07/2023	Received
HWAC1282	AC	66	MGA94 Zone 51	270800	7131400	560	30/07/2023	Received
HWAC1283	AC	64	MGA94 Zone 51	270850	7131400	560	30/07/2023	Received
HWAC1284	AC	54	MGA94 Zone 51	270900	7131400	560	30/07/2023	Received
HWAC1285	AC	66	MGA94 Zone 51	270950	7131400	560	30/07/2023	Received
HWAC1286	AC	56	MGA94 Zone 51	271000	7131400	560	30/07/2023	Received
HWAC1287	AC	45	MGA94 Zone 51	271050	7131400	560	30/07/2023	Received
HWAC1288	AC	72	MGA94 Zone 51	271100	7131400	560	30/07/2023	Received
HWAC1289	AC	78	MGA94 Zone 51	271150	7131400	560	31/07/2023	Received
HWAC1290	AC	90	MGA94 Zone 51	271200	7131400	560	31/07/2023	Received
HWAC1291	AC	91	MGA94 Zone 51	271250	7131400	560	31/07/2023	Received
HWAC1292	AC	75	MGA94 Zone 51	271300	7131400	560	31/07/2023	Received
HWAC1293	AC	81	MGA94 Zone 51	271350	7131400	560	31/07/2023	Received
HWAC1294	AC	85	MGA94 Zone 51	271400	7131400	560	31/07/2023	Received
HWAC1295	AC	63	MGA94 Zone 51	271450	7131400	560	02/08/2023	Received
HWAC1296	AC	84	MGA94 Zone 51	271550	7131400	560	02/08/2023	Received
HWAC1297	AC	91	MGA94 Zone 51	271650	7131400	560	02/08/2023	Received
HWAC1298	AC	81	MGA94 Zone 51	271750	7131400	560	02/08/2023	Received
HWAC1299	AC	91	MGA94 Zone 51	272050	7131300	560	02/08/2023	Received
HWAC1300	AC	61	MGA94 Zone 51	272100	7131300	560	02/08/2023	Received
HWAC1301	AC	81	MGA94 Zone 51	272150	7131300	560	03/08/2023	Received
HWAC1302	AC	65	MGA94 Zone 51	272200	7131300	560	03/08/2023	Received
HWAC1303	AC	57	MGA94 Zone 51	270450	7131200	560	03/08/2023	Received
HWAC1304	AC	70	MGA94 Zone 51	270500	7131200	560	03/08/2023	Received
HWAC1305	AC	64	MGA94 Zone 51	270550	7131200	560	03/08/2023	Received
HWAC1306	AC	70	MGA94 Zone 51	270600	7131200	560	03/08/2023	Received
HWAC1307	AC	68	MGA94 Zone 51	270650	7131200	560	03/08/2023	Received
HWAC1308	AC	79	MGA94 Zone 51	270700	7131200	560	03/08/2023	Received
HWAC1309	AC	95	MGA94 Zone 51	270750	7131200	560	04/08/2023	Received
HWAC1310	AC	77	MGA94 Zone 51	270800	7131200	560	04/08/2023	Received
HWAC1311	AC	68	MGA94 Zone 51	270850	7131200	560	04/08/2023	Received
HWAC1312	AC	69	MGA94 Zone 51	270900	7131200	560	04/08/2023	Received
HWAC1313	AC	77	MGA94 Zone 51	270950	7131200	560	04/08/2023	Received
HWAC1314	AC	73	MGA94 Zone 51	271000	7131200	560	04/08/2023	Received
HWAC1315	AC	76	MGA94 Zone 51	271050	7131200	560	04/08/2023	Received
HWAC1316	AC	69	MGA94 Zone 51	271100	7131200	560	04/08/2023	Received
HWAC1317	AC	75	MGA94 Zone 51	271150	7131200	560	04/08/2023	Received
HWAC1318	AC	85	MGA94 Zone 51	271200	7131200	560	05/08/2023	Received
HWAC1319	AC	91	MGA94 Zone 51	271250	7131200	560	05/08/2023	Received
HWAC1320	AC	102	MGA94 Zone 51	271300	7131200	560	05/08/2023	Received
HWAC1321	AC	87	MGA94 Zone 51	271350	7131200	560	05/08/2023	Received
HWAC1322	AC	79	MGA94 Zone 51	271400	7131200	560	05/08/2023	Received
HWAC1323	AC	75	MGA94 Zone 51	271450	7131200	560	05/08/2023	Received
HWAC1324	AC	69	MGA94 Zone 51	271550	7131200	560	05/08/2023	Received
HWAC1325	AC	107	MGA94 Zone 51	271650	7131200	560	06/08/2023	Received
HWAC1326	AC	97	MGA94 Zone 51	271750	7131200	560	06/08/2023	Received
HWAC1327	AC	77	MGA94 Zone 51	272050	7131200	560	06/08/2023	Received
HWAC1328	AC	68	MGA94 Zone 51	272150	7131200	560	06/08/2023	Received
HWAC1329	AC	72	MGA94 Zone 51	270450	7131000	560	06/08/2023	Received
HWAC1330	AC	72	MGA94 Zone 51	270500	7131000	560	07/08/2023	Received
HWAC1331	AC	94	MGA94 Zone 51	270550	7131000	560	07/08/2023	Received
HWAC1332	AC	80	MGA94 Zone 51	270600	7131000	560	07/08/2023	Received
HWAC1333	AC	72	MGA94 Zone 51	270650	7131000	560	07/08/2023	Received
HWAC1334	AC	71	MGA94 Zone 51	270700	7131000	560	07/08/2023	Received
HWAC1335	AC	69	MGA94 Zone 51	270750	7131000	560	07/08/2023	Received
HWAC1336	AC	42	MGA94 Zone 51	270800	7131000	560	07/08/2023	Received
HWAC1337	AC	72	MGA94 Zone 51	270850	7131000	560	07/08/2023	Received
HWAC1338	AC	72	MGA94 Zone 51	270900	7131000	560	07/08/2023	Received
HWAC1339	AC	77	MGA94 Zone 51	270950	7131000	560	08/08/2023	Received
HWAC1340	AC	96	MGA94 Zone 51	271000	7131000	560	08/08/2023	Received
HWAC1341	AC	76	MGA94 Zone 51	271050	7131000	560	08/08/2023	Received
HWAC1342	AC	81	MGA94 Zone 51	271100	7131000	560	08/08/2023	Received
HWAC1343	AC	84	MGA94 Zone 51	271150	7131000	560	08/08/2023	Received
HWAC1344	AC	76	MGA94 Zone 51	271200	7131000	560	08/08/2023	Received
HWAC1345	AC	78	MGA94 Zone 51	271250	7131000	560	08/08/2023	Received
HWAC1346	AC	85	MGA94 Zone 51	271300	7131000	560	09/08/2023	Received
HWAC1347	AC	73	MGA94 Zone 51	271350	7131000	560	09/08/2023	Received
HWAC1348	AC	61	MGA94 Zone 51	271400	7131000	560	09/08/2023	Received
HWAC1349	AC	90	MGA94 Zone 51	271450	7131000	560	09/08/2023	Received
HWAC1350	AC	44	MGA94 Zone 51	271550	7131000	560	09/08/2023	Received
HWAC1351	AC	109	MGA94 Zone 51	271650	7131000	560	09/08/2023	Received
HWAC1352	AC	103	MGA94 Zone 51	271750	7131000	560	09/08/2023	Received
HWAC1353	AC	99	MGA94 Zone 51	272150	7131000	560	10/08/2023	Received
HWAC1354	AC	52	MGA94 Zone 51	272250	7131000	560	10/08/2023	Received
HWAC1355	AC	93	MGA94 Zone 51	272050	7131100	560	10/08/2023	Received
HWAC1356	AC	52	MGA94 Zone 51	272100	7131100	560	10/08/2023	Received
HWAC1357	AC	90	MGA94 Zone 51	272150	7131100	560	10/08/2023	Received

Hole ID	Hole Type	Total Depth (m)	Grid	Easting (m)	Northing (m)	RL (m)	Drill Date	Assay Status
HWAC1358	AC	85	MGA94 Zone 51	272200	7131100	560	10/08/2023	Received
HWAC1359	AC	72	MGA94 Zone 51	272250	7131100	560	11/08/2023	Received
HWAC1360	AC	73	MGA94 Zone 51	270500	7130800	560	11/08/2023	Received
HWAC1361	AC	61	MGA94 Zone 51	270550	7130800	560	11/08/2023	Received
HWAC1362	AC	63	MGA94 Zone 51	270600	7130800	560	11/08/2023	Received
HWAC1363	AC	63	MGA94 Zone 51	270650	7130800	560	11/08/2023	Received
HWAC1364	AC	67	MGA94 Zone 51	270700	7130800	560	11/08/2023	Received
HWAC1365	AC	67	MGA94 Zone 51	270750	7130800	560	11/08/2023	Received
HWAC1366	AC	37	MGA94 Zone 51	270800	7130800	560	11/08/2023	Received
HWAC1367	AC	82	MGA94 Zone 51	270850	7130800	560	12/08/2023	Received
HWAC1368	AC	66	MGA94 Zone 51	270900	7130800	560	12/08/2023	Received
HWAC1369	AC	68	MGA94 Zone 51	270950	7130800	560	12/08/2023	Received
HWAC1370	AC	67	MGA94 Zone 51	271000	7130800	560	12/08/2023	Received
HWAC1371	AC	76	MGA94 Zone 51	271050	7130800	560	12/08/2023	Received
HWAC1372	AC	79	MGA94 Zone 51	271100	7130800	560	12/08/2023	Received
HWAC1373	AC	81	MGA94 Zone 51	271150	7130800	560	12/08/2023	Received
HWAC1374	AC	93	MGA94 Zone 51	271200	7130800	560	12/08/2023	Received
HWAC1375	AC	102	MGA94 Zone 51	271250	7130800	560	13/08/2023	Received
HWAC1376	AC	100	MGA94 Zone 51	271300	7130800	560	13/08/2023	Received
HWAC1377	AC	104	MGA94 Zone 51	271350	7130800	560	13/08/2023	Received
HWAC1378	AC	68	MGA94 Zone 51	271400	7130800	560	13/08/2023	Received
HWAC1379	AC	73	MGA94 Zone 51	271450	7130800	560	13/08/2023	Received
HWAC1380	AC	69	MGA94 Zone 51	271500	7130800	560	13/08/2023	Received
HWAC1381	AC	113	MGA94 Zone 51	271550	7130800	560	13/08/2023	Received
HWAC1382	AC	84	MGA94 Zone 51	271650	7130800	560	13/08/2023	Received
HWAC1383	AC	106	MGA94 Zone 51	271750	7130800	560	13/08/2023	Received
HWAC1384	AC	51	MGA94 Zone 51	271850	7130800	560	13/08/2023	Received
HWAC1385	AC	82	MGA94 Zone 51	271950	7130800	560	13/08/2023	Received
HWAC1386	AC	95	MGA94 Zone 51	272050	7130800	560	13/08/2023	Received
HWAC1387	AC	91	MGA94 Zone 51	272150	7130800	560	14/08/2023	Received
HWAC1388	AC	64	MGA94 Zone 51	272250	7130800	560	14/08/2023	Received
HWAC1389	AC	51	MGA94 Zone 51	272300	7130800	560	14/08/2023	Received
HWAC1390	AC	126	MGA94 Zone 51	271800	7130900	560	15/08/2023	Received
HWAC1391	AC	91	MGA94 Zone 51	271850	7130900	560	15/08/2023	Received
HWAC1392	AC	95	MGA94 Zone 51	271900	7130900	560	15/08/2023	Received
HWAC1393	AC	80	MGA94 Zone 51	271950	7130900	560	15/08/2023	Received
HWAC1394	AC	49	MGA94 Zone 51	272000	7130900	560	15/08/2023	Received
HWAC1395	AC	46	MGA94 Zone 51	272050	7130900	560	15/08/2023	Received
HWAC1396	AC	64	MGA94 Zone 51	272100	7130900	560	15/08/2023	Received
HWAC1397	AC	54	MGA94 Zone 51	272150	7130900	560	15/08/2023	Received
HWAC1398	AC	51	MGA94 Zone 51	272200	7130900	560	17/08/2023	Received
HWAC1399	AC	61	MGA94 Zone 51	272250	7130900	560	17/08/2023	Received
HWAC1400	AC	90	MGA94 Zone 51	271700	7130700	560	17/08/2023	Received
HWAC1401	AC	77	MGA94 Zone 51	271750	7130700	560	18/08/2023	Received
HWAC1402	AC	48	MGA94 Zone 51	271800	7130700	560	18/08/2023	Received
HWAC1403	AC	86	MGA94 Zone 51	271850	7130700	560	18/08/2023	Received
HWAC1404	AC	105	MGA94 Zone 51	271900	7130700	560	18/08/2023	Received
HWAC1405	AC	96	MGA94 Zone 51	271950	7130700	560	18/08/2023	Received
HWAC1406	AC	117	MGA94 Zone 51	272000	7130700	560	18/08/2023	Received
HWAC1407	AC	108	MGA94 Zone 51	272050	7130700	560	19/08/2023	Received
HWAC1408	AC	87	MGA94 Zone 51	272100	7130700	560	19/08/2023	Received
HWAC1409	AC	56	MGA94 Zone 51	272150	7130700	560	19/08/2023	Received
HWAC1410	AC	56	MGA94 Zone 51	272200	7130700	560	19/08/2023	Received
HWAC1411	AC	42	MGA94 Zone 51	272250	7130700	560	19/08/2023	Received
HWAC1412	AC	45	MGA94 Zone 51	272300	7130700	560	19/08/2023	Received
HWAC1413	AC	65	MGA94 Zone 51	270950	7130700	560	20/08/2023	Received
HWAC1414	AC	64	MGA94 Zone 51	271000	7130700	560	20/08/2023	Received
HWAC1415	AC	71	MGA94 Zone 51	271050	7130700	560	20/08/2023	Received
HWAC1416	AC	77	MGA94 Zone 51	271100	7130700	560	20/08/2023	Received
HWAC1417	AC	75	MGA94 Zone 51	271150	7130700	560	20/08/2023	Received
HWAC1418	AC	66	MGA94 Zone 51	270600	7130600	560	20/08/2023	Received
HWAC1419	AC	63	MGA94 Zone 51	270650	7130600	560	22/08/2023	Received
HWAC1420	AC	62	MGA94 Zone 51	270700	7130600	560	22/08/2023	Received
HWAC1421	AC	68	MGA94 Zone 51	270750	7130600	560	22/08/2023	Received
HWAC1422	AC	64	MGA94 Zone 51	270800	7130600	560	22/08/2023	Received
HWAC1423	AC	60	MGA94 Zone 51	270850	7130600	560	22/08/2023	Received
HWAC1424	AC	63	MGA94 Zone 51	270900	7130600	560	22/08/2023	Received
HWAC1425	AC	66	MGA94 Zone 51	270950	7130600	560	22/08/2023	Received
HWAC1426	AC	72	MGA94 Zone 51	271000	7130600	560	22/08/2023	Received
HWAC1427	AC	77	MGA94 Zone 51	271050	7130600	560	23/08/2023	Received
HWAC1428	AC	87	MGA94 Zone 51	271100	7130600	560	23/08/2023	Received
HWAC1429	AC	84	MGA94 Zone 51	271150	7130600	560	23/08/2023	Received
HWAC1430	AC	66	MGA94 Zone 51	271200	7130600	560	23/08/2023	Received
HWAC1431	AC	69	MGA94 Zone 51	271250	7130600	560	23/08/2023	Received
HWAC1432	AC	73	MGA94 Zone 51	271300	7130600	560	23/08/2023	Received
HWAC1433	AC	57	MGA94 Zone 51	271350	7130600	560	24/08/2023	Received
HWAC1434	AC	51	MGA94 Zone 51	271400	7130600	560	24/08/2023	Received
HWAC1435	AC	59	MGA94 Zone 51	271450	7130600	560	24/08/2023	Received
HWAC1436	AC	62	MGA94 Zone 51	271500	7130600	560	24/08/2023	Received
HWAC1437	AC	45	MGA94 Zone 51	271550	7130600	560	24/08/2023	Received
HWAC1438	AC	57	MGA94 Zone 51	271600	7130600	560	24/08/2023	Received
HWAC1439	AC	78	MGA94 Zone 51	271650	7130600	560	24/08/2023	Received
HWAC1440	AC	54	MGA94 Zone 51	271750	7130600	560	24/08/2023	Received
HWAC1441	AC	112	MGA94 Zone 51	271850	7130600	560	24/08/2023	Received
HWAC1442	AC	110	MGA94 Zone 51	271950	7130600	560	25/08/2023	Received
HWAC1443	AC	128	MGA94 Zone 51	272050	7130600	560	25/08/2023	Received

Hole ID	Hole Type	Total Depth (m)	Grid	Easting (m)	Northing (m)	RL (m)	Drill Date	Assay Status
HWAC1444	AC	121	MGA94 Zone 51	272150	7130600	560	25/08/2023	Received
HWAC1445	AC	55	MGA94 Zone 51	272250	7130600	560	25/08/2023	Received
HWAC1446	AC	54	MGA94 Zone 51	270650	7130500	560	25/08/2023	Received
HWAC1447	AC	51	MGA94 Zone 51	270700	7130500	560	26/08/2023	Received
HWAC1448	AC	61	MGA94 Zone 51	270750	7130500	560	26/08/2023	Received
HWAC1449	AC	56	MGA94 Zone 51	270800	7130500	560	26/08/2023	Received
HWAC1450	AC	57	MGA94 Zone 51	270850	7130500	560	26/08/2023	Received
HWAC1451	AC	58	MGA94 Zone 51	270900	7130500	560	26/08/2023	Received
HWAC1452	AC	64	MGA94 Zone 51	270950	7130500	560	26/08/2023	Received
HWAC1453	AC	61	MGA94 Zone 51	271000	7130500	560	26/08/2023	Received
HWAC1454	AC	90	MGA94 Zone 51	271050	7130500	560	26/08/2023	Received
HWAC1455	AC	89	MGA94 Zone 51	271100	7130500	560	27/08/2023	Received
HWAC1456	AC	98	MGA94 Zone 51	271150	7130500	560	27/08/2023	Received
HWAC1457	AC	101	MGA94 Zone 51	271200	7130500	560	27/08/2023	Received
HWAC1458	AC	66	MGA94 Zone 51	271250	7130500	560	27/08/2023	Received
HWAC1459	AC	53	MGA94 Zone 51	271300	7130500	560	27/08/2023	Received
HWAC1460	AC	41	MGA94 Zone 51	271350	7130500	560	28/08/2023	Received
HWAC1461	AC	39	MGA94 Zone 51	271400	7130500	560	28/08/2023	Received
HWAC1462	AC	46	MGA94 Zone 51	271450	7130500	560	28/08/2023	Received
HWAC1463	AC	50	MGA94 Zone 51	271500	7130500	560	28/08/2023	Received
HWAC1464	AC	57	MGA94 Zone 51	271550	7130500	560	28/08/2023	Received
HWAC1465	AC	68	MGA94 Zone 51	271600	7130500	560	28/08/2023	Received
HWAC1466	AC	64	MGA94 Zone 51	271650	7130500	560	28/08/2023	Received
HWAC1467	AC	67	MGA94 Zone 51	271700	7130500	560	28/08/2023	Received
HWAC1468	AC	95	MGA94 Zone 51	271750	7130500	560	28/08/2023	Received
HWAC1469	AC	103	MGA94 Zone 51	271800	7130500	560	29/08/2023	Received
HWAC1470	AC	121	MGA94 Zone 51	271850	7130500	560	29/08/2023	Received
HWAC1471	AC	108	MGA94 Zone 51	271900	7130500	560	29/08/2023	Received
HWAC1472	AC	103	MGA94 Zone 51	271950	7130500	560	29/08/2023	Received
HWAC1473	AC	107	MGA94 Zone 51	272000	7130500	560	29/08/2023	Received
HWAC1474	AC	113	MGA94 Zone 51	272050	7130500	560	30/08/2023	Received
HWAC1475	AC	97	MGA94 Zone 51	272100	7130500	560	30/08/2023	Received
HWAC1476	AC	112	MGA94 Zone 51	272150	7130500	560	30/08/2023	Received
HWAC1477	AC	99	MGA94 Zone 51	272200	7130500	560	30/08/2023	Received
HWAC1478	AC	38	MGA94 Zone 51	272250	7130500	560	02/09/2023	Received
HWAC1479	AC	52	MGA94 Zone 51	272300	7130500	560	02/09/2023	Received
HWAC1480	AC	53	MGA94 Zone 51	272350	7130500	560	02/09/2023	Received
HWAC1481	AC	60	MGA94 Zone 51	270650	7130400	560	02/09/2023	Received
HWAC1482	AC	65	MGA94 Zone 51	270750	7130400	560	02/09/2023	Received
HWAC1483	AC	65	MGA94 Zone 51	270700	7130400	560	02/09/2023	Received
HWAC1484	AC	69	MGA94 Zone 51	270800	7130400	560	02/09/2023	Received
HWAC1485	AC	75	MGA94 Zone 51	270850	7130400	560	02/09/2023	Received
HWAC1486	AC	86	MGA94 Zone 51	270900	7130400	560	02/09/2023	Received
HWAC1487	AC	71	MGA94 Zone 51	270950	7130400	560	03/09/2023	Received
HWAC1488	AC	75	MGA94 Zone 51	271000	7130400	560	03/09/2023	Received
HWAC1489	AC	78	MGA94 Zone 51	271050	7130400	560	03/09/2023	Received
HWAC1490	AC	93	MGA94 Zone 51	271100	7130400	560	03/09/2023	Received
HWAC1491	AC	88	MGA94 Zone 51	271150	7130400	560	03/09/2023	Received
HWAC1492	AC	89	MGA94 Zone 51	271200	7130400	560	04/09/2023	Received
HWAC1493	AC	70	MGA94 Zone 51	271250	7130400	560	04/09/2023	Received
HWAC1494	AC	71	MGA94 Zone 51	271300	7130400	560	04/09/2023	Received
HWAC1495	AC	52	MGA94 Zone 51	271350	7130400	560	04/09/2023	Received
HWAC1496	AC	48	MGA94 Zone 51	271400	7130400	560	04/09/2023	Received
HWAC1497	AC	48	MGA94 Zone 51	271450	7130400	560	04/09/2023	Received
HWAC1498	AC	41	MGA94 Zone 51	271500	7130400	560	04/09/2023	Received
HWAC1499	AC	46	MGA94 Zone 51	271550	7130400	560	04/09/2023	Received
HWAC1500	AC	57	MGA94 Zone 51	271600	7130400	560	04/09/2023	Pending
HWAC1501	AC	51	MGA94 Zone 51	271650	7130400	560	05/09/2023	Pending
HWAC1502	AC	62	MGA94 Zone 51	271700	7130400	560	05/09/2023	Pending
HWAC1503	AC	71	MGA94 Zone 51	271750	7130400	560	05/09/2023	Pending
HWAC1504	AC	87	MGA94 Zone 51	271800	7130400	560	05/09/2023	Pending
HWAC1505	AC	85	MGA94 Zone 51	271850	7130400	560	05/09/2023	Pending
HWAC1506	AC	94	MGA94 Zone 51	271900	7130400	560	05/09/2023	Pending
HWAC1507	AC	98	MGA94 Zone 51	271950	7130400	560	05/09/2023	Pending
HWAC1508	AC	131	MGA94 Zone 51	272000	7130400	560	06/09/2023	Pending
HWAC1509	AC	114	MGA94 Zone 51	272050	7130400	560	06/09/2023	Pending
HWAC1510	AC	102	MGA94 Zone 51	272100	7130400	560	06/09/2023	Pending
HWAC1511	AC	106	MGA94 Zone 51	272150	7130400	560	06/09/2023	Pending
HWAC1512	AC	124	MGA94 Zone 51	272200	7130400	560	07/09/2023	Pending
HWAC1513	AC	48	MGA94 Zone 51	272250	7130400	560	07/09/2023	Pending
HWAC1514	AC	89	MGA94 Zone 51	271100	7130300	560	07/09/2023	Pending
HWAC1515	AC	94	MGA94 Zone 51	271150	7130300	560	07/09/2023	Received
HWAC1516	AC	94	MGA94 Zone 51	271200	7130300	560	07/09/2023	Received
HWAC1517	AC	100	MGA94 Zone 51	271250	7130300	560	08/09/2023	Received
HWAC1518	AC	75	MGA94 Zone 51	271300	7130300	560	08/09/2023	Received
HWAC1519	AC	87	MGA94 Zone 51	270750	7130200	560	08/09/2023	Pending
HWAC1520	AC	93	MGA94 Zone 51	270800	7130200	560	08/09/2023	Pending
HWAC1521	AC	93	MGA94 Zone 51	270850	7130200	560	08/09/2023	Pending
HWAC1522	AC	99	MGA94 Zone 51	270900	7130200	560	08/09/2023	Pending
HWAC1523	AC	100	MGA94 Zone 51	270950	7130200	560	09/09/2023	Pending
HWAC1524	AC	95	MGA94 Zone 51	271000	7130200	560	09/09/2023	Pending
HWAC1525	AC	89	MGA94 Zone 51	271050	7130200	560	09/09/2023	Pending
HWAC1526	AC	93	MGA94 Zone 51	271100	7130200	560	09/09/2023	Pending
HWAC1527	AC	93	MGA94 Zone 51	271150	7130200	560	09/09/2023	Pending
HWAC1528	AC	91	MGA94 Zone 51	271200	7130200	560	09/09/2023	Pending
HWAC1529	AC	93	MGA94 Zone 51	271250	7130200	560	09/09/2023	Pending

Hole ID	Hole Type	Total Depth (m)	Grid	Easting (m)	Northing (m)	RL (m)	Drill Date	Assay Status
HWAC1530	AC	60	MGA94 Zone 51	271300	7130200	560	09/09/2023	Pending
HWAC1531	AC	62	MGA94 Zone 51	271350	7130200	560	10/09/2023	Pending
HWAC1532	AC	62	MGA94 Zone 51	271400	7130200	560	10/09/2023	Pending
HWAC1533	AC	67	MGA94 Zone 51	271450	7130200	560	10/09/2023	Pending
HWAC1534	AC	51	MGA94 Zone 51	271500	7130200	560	10/09/2023	Pending
HWAC1535	AC	54	MGA94 Zone 51	271550	7130200	560	10/09/2023	Pending
HWAC1536	AC	58	MGA94 Zone 51	271600	7130200	560	10/09/2023	Pending
HWAC1537	AC	54	MGA94 Zone 51	271650	7130200	560	11/09/2023	Pending
HWAC1538	AC	54	MGA94 Zone 51	271700	7130200	560	11/09/2023	Pending
HWAC1539	AC	60	MGA94 Zone 51	271750	7130200	560	11/09/2023	Pending
HWAC1540	AC	60	MGA94 Zone 51	271800	7130200	560	11/09/2023	Pending
HWAC1541	AC	89	MGA94 Zone 51	271850	7130200	560	11/09/2023	Pending
HWAC1542	AC	82	MGA94 Zone 51	271900	7130200	560	11/09/2023	Pending
HWAC1543	AC	88	MGA94 Zone 51	271950	7130200	560	12/09/2023	Pending
HWAC1544	AC	107	MGA94 Zone 51	272000	7130200	560	12/09/2023	Pending
HWAC1545	AC	116	MGA94 Zone 51	272050	7130200	560	13/09/2023	Pending
HWAC1546	AC	103	MGA94 Zone 51	272100	7130200	560	13/09/2023	Pending
HWAC1547	AC	117	MGA94 Zone 51	272150	7130200	560	13/09/2023	Pending
HWAC1548	AC	99	MGA94 Zone 51	271900	7130000	560	14/09/2023	Pending
HWAC1549	AC	98	MGA94 Zone 51	271950	7130000	560	14/09/2023	Pending
HWAC1550	AC	113	MGA94 Zone 51	272000	7130000	560	14/09/2023	Pending
HWAC1551	AC	110	MGA94 Zone 51	272050	7130000	560	14/09/2023	Pending
HWAC1552	AC	75	MGA94 Zone 51	271850	7130000	560	15/09/2023	Pending
HWAC1553	AC	117	MGA94 Zone 51	272150	7130000	560	15/09/2023	Pending
HWAC1554	AC	105	MGA94 Zone 51	272200	7130000	560	15/09/2023	Pending
HWAC1555	AC	116	MGA94 Zone 51	272250	7130000	560	15/09/2023	Pending
HWAC1556	AC	71	MGA94 Zone 51	272300	7130000	560	15/09/2023	Pending
HWAC1557	AC	106	MGA94 Zone 51	272100	7130000	560	16/09/2023	Pending
HWAC1558	AC	87	MGA94 Zone 51	271750	7130550	560	16/09/2023	Pending
HWAC1559	AC	97	MGA94 Zone 51	271800	7130550	560	16/09/2023	Pending
HWAC1560	AC	122	MGA94 Zone 51	271850	7130550	560	16/09/2023	Pending
HWAC1561	AC	115	MGA94 Zone 51	271900	7130550	560	16/09/2023	Pending
HWAC1562	AC	123	MGA94 Zone 51	271950	7130550	560	16/09/2023	Pending
HWAC1563	AC	117	MGA94 Zone 51	272000	7131550	560	17/09/2023	Pending
HWAC1564	AC	81	MGA94 Zone 51	271850	7130300	560	17/09/2023	Pending
HWAC1565	AC	93	MGA94 Zone 51	271900	7130300	560	17/09/2023	Pending
HWAC1566	AC	102	MGA94 Zone 51	271950	7130300	560	17/09/2023	Pending
HWAC1567	AC	105	MGA94 Zone 51	272000	7130300	560	19/09/2023	Pending
HWAC1568	AC	114	MGA94 Zone 51	272050	7130300	560	19/09/2023	Pending
HWAC1569	AC	119	MGA94 Zone 51	272050	7131550	560	19/09/2023	Pending
HWAC1570	AC	86	MGA94 Zone 51	271900	7130100	560	19/09/2023	Pending
HWAC1571	AC	83	MGA94 Zone 51	271950	7130100	560	19/09/2023	Pending
HWAC1572	AC	110	MGA94 Zone 51	272000	7130100	560	20/09/2023	Pending
HWAC1573	AC	100	MGA94 Zone 51	272050	7130100	560	20/09/2023	Pending
HWAC1574	AC	106	MGA94 Zone 51	272100	7130100	560	20/09/2023	Pending
HWAC1575	AC	86	MGA94 Zone 51	272150	7130100	560	20/09/2023	Pending
HWAC1576	AC	117	MGA94 Zone 51	272200	7130200	560	21/09/2023	Pending
HWAC1577	AC	123	MGA94 Zone 51	272250	7130200	560	21/09/2023	Pending
HWAC1578	AC	46	MGA94 Zone 51	272300	7130200	560	21/09/2023	Pending
HWAC1579	AC	41	MGA94 Zone 51	272350	7130200	560	21/09/2023	Pending
HWAC1580	AC	74	MGA94 Zone 51	271850	7130100	560	21/09/2023	Pending
HWAC1581	AC	60	MGA94 Zone 51	271800	7130150	560	22/09/2023	Pending
HWAC1582	AC	98	MGA94 Zone 51	271850	7130150	560	22/09/2023	Pending
HWAC1583	AC	74	MGA94 Zone 51	271900	7130150	560	22/09/2023	Pending
HWAC1584	AC	82	MGA94 Zone 51	271950	7130150	560	22/09/2023	Pending
HWAC1585	AC	94	MGA94 Zone 51	272000	7130150	560	22/09/2023	Pending
HWAC1586	AC	112	MGA94 Zone 51	272050	7130150	560	22/09/2023	Pending
HWAC1587	AC	117	MGA94 Zone 51	272100	7130150	560	23/09/2023	Pending
HWAC1588	AC	136	MGA94 Zone 51	272150	7130150	560	24/09/2023	Pending
HWAC1589	AC	60	MGA94 Zone 51	270250	7133000	560	24/09/2023	Pending
HWAC1590	AC	66	MGA94 Zone 51	270300	7133000	560	24/09/2023	Pending
HWAC1591	AC	68	MGA94 Zone 51	270350	7133000	560	25/09/2023	Pending
HWAC1592	AC	90	MGA94 Zone 51	270400	7133000	560	25/09/2023	Pending
HWAC1593	AC	78	MGA94 Zone 51	270450	7133000	560	25/09/2023	Pending
HWAC1594	AC	66	MGA94 Zone 51	270500	7133000	560	25/09/2023	Pending
HWAC1595	AC	58	MGA94 Zone 51	270550	7133000	560	25/09/2023	Pending
HWAC1596	AC	79	MGA94 Zone 51	270600	7133000	560	25/09/2023	Pending
HWAC1597	AC	66	MGA94 Zone 51	270650	7133000	560	26/09/2023	Pending
HWAC1598	AC	84	MGA94 Zone 51	270700	7133000	560	26/09/2023	Pending
HWAC1599	AC	71	MGA94 Zone 51	270750	7133000	560	26/09/2023	Pending
HWAC1600	AC	72	MGA94 Zone 51	270800	7133000	560	26/09/2023	Pending
HWAC1601	AC	45	MGA94 Zone 51	270850	7133000	560	26/09/2023	Pending
HWAC1602	AC	81	MGA94 Zone 51	270900	7133000	560	26/09/2023	Pending
HWAC1603	AC	57	MGA94 Zone 51	270950	7133000	560	27/09/2023	Pending
HWAC1604	AC	54	MGA94 Zone 51	271000	7133000	560	27/09/2023	Pending
HWAC1605	AC	66	MGA94 Zone 51	270450	7132600	560	27/09/2023	Pending
HWAC1606	AC	67	MGA94 Zone 51	270500	7132600	560	27/09/2023	Pending
HWAC1607	AC	81	MGA94 Zone 51	270550	7132600	560	27/09/2023	Pending
HWAC1608	AC	86	MGA94 Zone 51	270600	7132600	560	27/09/2023	Pending

STRICKLAND

METALS LIMITED

APPENDIX B - JORC Tables

JORC Table 1 - Horse Well

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.

Commentary

Strickland Aircore Drilling

2023

- All drilling (prefix HWAC) and sampling was undertaken in an industry standard manner.
- AC hole samples were collected on a 1 metre basis from a gravity-fed rotary splitter below the drill rig cyclone.
- For each metre drilled, 'A-bag' splits (roughly 10% of the total sample) was collected directly from the splitter chute in pre-numbered calico bags, with the remaining bulk sample being collected in a bucket below the splitter and ground dumped in rows of 20 metres.
- Each ground-dumped metre was scoop sampled using and placed in a prenumbered SKA***** prefixed calico bag in 4 metre composites. Four metre composite samples ranged in weight from $2.5-3 \mathrm{~kg}$.
- The 1 m A-bag splits were tied and stored in water-proof green bags at the drill pad for use in the case of re-splitting, additional QAQC analysis, or if the at-rig geologist determined 1 m samples are to be preferentially sent to the lab instead of SKA***** 4 m composites. When 1 m A-bag splits were submitted to the laboratory, an SKR***** prefix calico bag was used.
- Certified reference material was inserted into the sample sequence at a 1:50 ratio (i.e., every SKA/SKR***00 and SKA/SKR***50 calico bag). Duplicate samples were collected at a 1:50 ratio (i.e., every SKA/SKR***25 and SKA/SKR ${ }^{* * *} 75$) to give an overall QAQC ratio of 1:25 for all sampling.
- The independent laboratory pulverises the entire sample for analysis as described below.

2021

- All drilling (prefix HNAC) and sampling was undertaken in an industry standard manner.

Criteria	JORC Code explanation	Commentary
		- AC hole samples were collected on a 1 metre basis from a cone splitter on the drill rig cyclone and ground dumped in rows of 20 metres. Each metre was spear sampled using an angled 50 mm PVC pipe and placed in a prenumbered SKA***** prefixed calico bag in 4 metre composites. These four metre composite samples ranged from $2.5-3 \mathrm{~kg}$. Standard reference material was inserted into every $50^{\text {th }}$ pre-numbered SKA ${ }^{* * * * *}$ prefixed bag. - The independent laboratory pulverises the entire sample for analysis as described below.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- Aircore drilling utilising the Bostech Aircore Core System (85-87mm). - Rotary polycrystalline diamond composite (PDC) drill bits were utilised at the top of fresh rock, or where ground was too hard for the standard aircore bit to penetrate. - Rotary hammer drill bits were used sparingly where veining prevented both the PDC and standard AC drill bits from penetrating.
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- AC samples were visually assessed for recovery. - Samples were considered representative with generally good recovery. Sample recovery was recorded per metre drilled. - Samples were dry. Sample condition is recorded per metre drilled. - No sample bias is observed.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Aircore holes were logged qualitatively and quantitatively on a 1 m basis. - Qualitative: lithology, alteration, structure. - Quantitative: vein percentage; mineralisation (sulphide) percentage. - All holes were logged for the entire length of hole. - All drilled metres for each AC hole were chipped, archived and photographed.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	2023 - AC chips were rotary split, sampled dry and recorded at the time of logging. - OREAS certified reference material (CRM) was inserted at a ratio of 1:50 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample. - Field Duplicates and CRMs were submitted to the lab using unique Sample IDs at a ratio of 1:50 throughout sampling. - The entire $2.5-3 \mathrm{~kg}$ AC 4 m composite or $2.5-3 \mathrm{~kg} 1 \mathrm{~m}$ split was sent to Intertek Laboratory, Maddington WA. All samples were sorted and dried at 105 C, crushed to $\sim 3 \mathrm{~mm}$ and linearly split, ensuring jars are filled to 85% full. Samples were then analysed by Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm. - Intertek separately analysed 1 CRM in every 50 samples as well as 1 duplicate assay in every 50 samples as part of standard QAQC protocol for Photon analysis. - The sample size was appropriate for the grain size of sampled material. 2021 - AC chips were cone split, sampled dry and recorded at the time of logging. - The entire ${ }^{\sim} 3 \mathrm{~kg}$ AC composite sample was pulverized to $75 \mu \mathrm{~m}$ (85% passing). - Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratory's discretion. - Duplicate samples taken every 50th sample. - The sample size was appropriate for the grain size of sampled material.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of	2023 - Photon Assay is an appropriate technique adopted for gold analysis. - QA samples were inserted at a combined ratio of 1:25 throughout. Field duplicates were collected at a 1:50 ratio. OREAS certified reference material (CRM) was inserted at a ratio of 1:50. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The

Criteria	JORC Code explanation	Commentary
	accuracy (ie lack of bias) and precision have been established.	reference material type was selected based on the geology, weathering, and analysis method of the sample. - All samples were sorted and dried at 105 C , crushed to $\sim 3 \mathrm{~mm}$ and linearly split, ensuring jars are filled to 85% full. Samples were then analysed by Photon-Assay (PAAU002) method with detection limits of 0.02-350 ppm. - Intertek separately analyse 1 CRM in every 50 samples as well as 1 duplicate assay in every 50 samples as part of standard QAQC protocol for Photon analysis. - Magnetic Susceptibility measurements were collected at one metre intervals utilizing a KT-10 instrument. At the start of each hole, the KT-10 instrument was calibrated/checked against a reference material before collecting 1 m interval data from sample piles. - A handheld Olympus Vanta XRF instrument was utilised to aid the at-rig geologist determining downhole lithologies. The instrument was calibrated at the start of each analysis session, with a QC reading taken on alternating Certified Reference Materials (Blank and OREAS45d) at a ratio of 1:20 samples. Handheld XRF readings were taken on pulverized material from dry bottom of hole samples systematically, and from dry samples throughout a hole where the geologist determined geochemical data was necessary to determine lithology.
		2021 - Fire assay $(50 \mathrm{~g})$, total technique, appropriate for gold. - AAS determination, appropriate for gold. - Certified reference material standards, 1 in 50 samples. - Blanks: A lab barren quartz flush is requested following a predicted high grade sample (i.e. visible gold). - Lab: Random pulp duplicates were taken on average 1 in every 10 samples. - Fire assay is a total digest technique and is considered appropriate for gold. - Certified reference material standards, 1 in 50 samples. - Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.

STRICKLAND

metals limited

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Logging and sampling were recorded directly into LogChief, utilising lookup tables and in-file validations, on a Toughbook by a geologist at the rig. - Logs, handheld XRF geochemical data, Magnetic Susceptibility data and sampling were imported daily into Micromine for further validation and geological confirmation. - When received, assay results were plotted on section and verified against neighbouring drill holes. - From time to time, assays will be repeated if they fail company QAQC protocols. - All sampling was routinely inspected by senior geological staff. Significant intersections were inspected by senior geological staff and STK corporate staff. - Data was validated daily by the STK Database Administrator, with import validation protocols in place. Data was exported daily to Mitchell River Group and externally validated and imported to the SQL database. - No adjustments have been made to assay data. - Data is managed and hosted by Mitchell River Group.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drill collars were surveyed using a GARMIN GPSMap64 with expected relative accuracy of approximately 3 m . - Holes are located in MGA Zone 51. - RLs were assigned a nominal value of 570 m during drilling and corrected during data import by draping on the DGPS-generated surface DTM. Data points for creation of the surface topography were collected by DownUnder Surveys in 2022 on a 50 m grid spacing across the entire Horse Well Region. - Collar locations are to be updated at a later date by DGPS.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	2023 - Aircore holes were completed on a 50 metre (East-West) by 200 metre(North-South) grid spacing. Infill aircore holes on a 50 metre (EastWest) by 100 metre (North-South) grid spacing are completed where deemed necessary for geological and grade continuity understanding. - Each drill hole was positioned to an Azimuth of 270 degrees at a dip of -60 degrees and drilled to blade refusal. - 1 metre split samples were collected from the rotary splitter located directly

Criteria	JORC Code explanation	Commentary
		below the drill rig cyclone and stored at the drill pad. - 4 metre composite samples were collected throughout each hole. - Composite samples are initially submitted to the laboratory, with 1 metre sample splits submitted if 4 metre composite samples are regarded as anomalous in gold (i.e., 4 m assays returned are $>0.2 \mathrm{~g} / \mathrm{t} \mathrm{Au}$). 2021 - Aircore holes were completed on 100 metre (east-west) and 200 metre (north-south spacings). Each hole was positioned 270 degrees to the west at a -60 degree dip and drilled to blade refusal. Further, closer spaced drilling is required to fully establish the degree of geological and grade continuity. - Samples were composited over four metre intervals.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Further drilling is required to fully evaluate the initial aircore drilling results. - Drilling has been conducted perpendicular to interpreted regional structures. - Drilling has been spaced at 50 metres (East-West) to ensure adequate coverage across regional structures. - The orientation of drilling is not considered to introduce a sampling bias.
Sample security	- The measures taken to ensure sample security.	Strickland Drilling - Sampling was recorded in both hardcopy and digital format. These were collected by company personnel and delivered directly to the laboratory via STK personnel. Pre-Strickland Drilling: - The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- Sampling procedures throughout the drilling process were monitored and supervised by senior geological staff. - Historic data has been validated by the Mitchell River Group and is deemed accurate and precise. - All results reported by the Laboratory and data exported by Strickland Metals is externally validated by the Mitchell River Group prior to importing into the database. - Monthly QAQC reports and recommendations are generated for all drilling, geochemical and assay data by Mitchell River Group.

STRICKLAND

METALS LIMITED
Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- Horse Well is located on 100% owned STK tenure (tenement ID) E69/1772. - L11 Capital Pty Ltd holds a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Exploration prior to Alloy Resources in the region was minimal and limited to shallow RAB and air-core drilling completed in the mid - 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.
Geology	- Deposit type, geological setting and style of mineralisation.	- Horse Well is an Archean aged gold project with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- Refer to tabulations in the body of this announcement. - Drillholes with $>0.5 \mathrm{~g} / \mathrm{t}$ Au over 4 metre composite and 1 metre split samples are summarised in Table 1. - A summary of all drill hole collar details, completed to date, is recorded in Appendix A.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- No top-cuts have been applied when reporting results. - The primary gold determination is reported where any secondary assaying does not differ significantly from the primary. - The $A C$ intervals are taken as values $>0.5 \mathrm{~g} / \mathrm{t}$ Au with maximum internal dilution of 3 metres. - No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	- Further drilling is required to fully evaluate these initial AC drill intercepts. - Drilling has been conducted perpendicular to regional structures. - Drilling has been spaced at 50 metres (East-West) to ensure adequate coverage across regional structures. - Downhole intercept lengths are reported.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- Please refer to the main body of text.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- A summary of exploration results are contained within Annexure A, Table 1.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- All meaningful and material information has been included in the body of the text.

JORC Code explanation
Further work

- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Commentary

- Infill Aircore drilling to achieve a 50 m (East-West) by 100 m (North-South) grid around anomalous results.
- Follow-up RC drilling to follow up on the anomalous aircore drill intercepts.
- Diamond Drilling, where necessary, to understand geological controls on mineralisation.

[^0]: ${ }^{1} 2,226,800 \mathrm{t} @ 2.07 \mathrm{~g} / \mathrm{t}$ Au for 148 k oz Au inferred (Refer to ASX release dated 26 August 2019 for full details).

[^1]: *significant intercepts were based on a single metre intercept grading greater than 0.5g/t Au.

