

Lithium Exploration Target at Youanmi

- Modelling demonstrates potential scale and continuity of only ~35% of the existing 2,500m Youanmi Mineralised Trend
- Exploration Target estimated for lithium mineralisation in central area at Youanmi
- Exploration Target includes upper and lower pegmatite units only in <u>central 900m</u> <u>section of 2500m</u> corridor open north, south and down dip
- Initial Exploration Target <u>does not include numerous adjacent stacked pegmatites</u> based upon prospective geology and historic drilling intersections
- Exploration Target highlights <u>continuity and predictability of Youanmi mineralised</u> trend as Scorpion advances towards maiden Mineral Resource Estimate
- Further drilling planned to infill central area target at 40x 40m spacing, plus test along strike and down dip existing 2,500m corridor
- Next phase of exploration will include additional drilling, geological mapping, soil geochemistry, metallurgical test work and XRD mineral analysis

Scorpion Minerals Limited (ASX:SCN) (**Scorpion**, **SCN** or **the Company**) is pleased to publish an initial Exploration Target for the Company's Youanmi Lithium Project (**Youanmi**) in Western Australia. Youanmi comprises E57/978, E57/1049, E57/1056 and E57/1377 (the **Tenements**) and covers an area of 177km², located 450km northeast of Perth in the East Murchison Mineral Field (Figures 6 and 7).

Lithium Exploration Target

The Exploration Target for the Youanmi Project includes the Upper and Lower Pegmatites in the central 900m of the project area ("Central Target Area") (see Figures 1 to 4). The estimated range of potential mineralisation is:

7.6 – 13.6 million tonnes grading at 1.0 - 1.4% Li₂O* (see Table 1 for details)

The approximate Exploration Target ranges are listed in Table 1 and locations shown in Figure 1.

Table 1: Exploration Target Ranges Upper and Lower Pegmatite

Target	Tonnes R	ange (MT)	Li₂O Range (%)		
	Minimum	Maximum	Minimum	Maximum	
Lower Pegmatite	6.0	10.7	1.0	1.4	
Upper Pegmatite	1.6	2.9	1.0	1.4	
Total Exploration Target	7.6	13.6	1.0	1.4	

*The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

BOARD OF DIRECTORS

Ms Bronwyn Barnes
Non-Executive Chairman

Ms Kate Stoney
Executive Director Finance, Joint Company
Secretary

Mr Michael Kitney
Non-Executive Director

MANAGEMENT

Mr Michael Fotios
Chief Executive Officer

Mr Michael Langford Chief Investment Officer

Mr Josh Merriman Joint Company Secretary

SCORPION MINERALS LIMITED

ABN 40 115 535 030 Level 2, 50 Kings Park Rd West Perth WA 6005

T: +61 8 6241 1877 **F**: +61 8 6241 1811

www.scorpionminerals.com.au

Commenting on the Exploration Target for Youanmi, Scorpion's CEO Michael Fotios said: "We are delighted to be reporting this robust Exploration Target for Youanmi, which clearly shows the potential scale and high-grade nature of the project. This Exploration Target is an important step in demonstrating the potential value of the Youanmi Project, as it binds together a significant amount of work completed to date including over 8,000m of drilling and extensive sampling and mapping.

Importantly, this initial Exploration Target covers only ~35% of the entire mineralised strike identified to date at Youanmi, which supports our view that this system will continue to grow considerably with further drilling. Our targeted drilling over the past 12 months has provided a vast amount of technical data and we are currently in the process of integrating this into our Maiden JORC Resource Estimate for the project. Drilling so far has shown that mineralisation remains open in all directions at Youanmi, and we are confident that further drilling in the near-term will add to this initial Exploration Target range."

Summary of Exploration Target Data & Methodology

The Exploration Target is based on interpretation of exploration completed to date (see summary of ASX releases below) and includes:

- 93 Reverse Circulation (RC) drill holes completed for 8,246m;
- 2,310 drill hole assay results;
- 36 surface rock chip sampling assay results;
- Detailed 1:1000 scale surface geological mapping;
- Geophysical datasets including detailed airborne magnetics and radiometrics; and
- Wireframing and 3D modelling of the Upper and Lower Pegmatites in the Central Area.

The Exploration Target only includes the wireframed size of the Upper and Lower pegmatites in the central 900m of the existing 2500m strike tested by historic RC drilling (Figure 1 and 2). The Exploration Target does not include other pegmatites mapped and sampled that have limited or no RC drill testing to date.

The Central Target Area has largely been drilled at 80m x 80m spacing (Figure 2). Geological modelling and wireframing of the pegmatites completed including projections down dip in the north where the drill spacing is wider resulting in the range of the tonnage estimate (Figure 4). The Upper and Lower pegmatites are both mineralised from wall to wall, remain open down dip/plunge and along strike of the wireframed area.

Tonnage was estimated by calculating the volume of the wireframes and multiplying by a density of 2.7 tonnes/m 3 . The weighted average grade was calculated for the lithium assays inside the wireframes being about 1.20% Li $_2$ O within a range of intercept grades from 1.0 to 1.4% Li $_2$ O.

The proposed exploration activities designed to test the validity of the Exploration Target and provide the information necessary for a Mineral Resource Estimate are summarised on page 4 below.

Drilling to has demonstrated significant high-grade lithium mineralisation hosted by shallow east dipping stacked LCT pegmatites along 2,500m of strike and extending to a minimum of 175m below surface. Individual pegmatites are up to 1,000m long and surface exposures suggest widths from 5m to 15m. Drilling has intersected lithium mineralisation up to 14 metres in thickness.

Mineralisation is open in all directions with, significantly, a wide zone of mineralisation of 14m @ 1.50% Li₂O from 126m in SYRC037 and 9m @ 1.50% Li₂O from 160m in SYRC014 intersected on the most northern section open to the north, down plunge and down dip (Figure 3).

These results indicate that the pegmatite is thickening down plunge and dip to the northeast and further drilling will be completed in this area to follow up.

Youanmi Lithium Project - Historic Exploration Summary

Historic exploration was outlined in ASX releases dated 9 December 2022 and 6 February 2023. Youanmi sits at the northern end of a 20km long corridor of Lithium, Caesium, Tantalum ("LCT") pegmatite intrusions that have delivered significant results for other explorers at the southern end of the trend (Figures 5 and 6).

Limited historic exploration at Youanmi included, geological mapping, rock chip sampling, airborne magnetic surveys and RC drilling. Geological mapping has identified a 3km long zone of intermittent outcropping LCT pegmatites located about 1km east of a contact between a late-stage granite and the Youanmi Layered Mafic Complex.

Previous RC drill testing at Youanmi consisted of 54 holes by Lithium Australia (19MYRC005 to 19MYRC058), and 39 holes by Scorpion Minerals (SYRC001 to SYRC039) in wide spaced RC fences along the 2500 long zone with the majority drilled in the southern half of the trend. Significant intercepts from previous drilling included:

Lithium Australia:

- 8m @ 1.39% Li₂O from 8m
- 6m @ 1.61% Li₂O from 22m
- 7m @ 1.42% Li₂O from 20m
- 7m @ 1.38% Li₂O from 0m
- 6m @ 1.64% Li₂O from 11m
- 6m @ 1.35% Li₂O from 62m

Scorpion Minerals:

- 14m @ 1.50% Li₂O from 126m
- 9m @ 1.50% Li₂O from 160m
- 9m @ 1.37% Li₂O from 112m
- 9m @ 1.36% Li₂O from 55m
- 10m @ 1.12 Li₂O from 130m
- 8m @ 1.29 Li₂O from 24m
- 10m @ 0.98% Li₂O from 83m
- 6m @ 1.60% Li₂O from 49m
- 7m @ 1.19% Li₂O from 76m
- 9m @ 0.90% Li₂O from 108m
- 6m @ 1.31% Li₂O from 44m
- 5m @ 1.56% Li₂O from 92m
- 6m @ 1.21% Li₂O from 13m
- 5m @ 1.37% Li₂O from 22m

- 4m @ 1.70% Li₂O from 48m
- 6m @ 1.06% Li₂O from 33m
- 5m @ 1.25% Li₂O from 55m
- 5m @ 1.24% Li₂O from 147m
- 5m @ 1.24% Li₂O from 100m
- 6m @ 1.00% Li₂O from 130m
- 5m @ 1.13% Li₂O from 79m
- 6m @ 0.92% Li₂O from 113m
- 4m @ 1.38% Li₂O from 20m
- 4m @ 1.35% Li₂O from 47m
- 6m @ 0.89% Li₂O from 52m
- 4m @ 1.28% Li₂O from 67m
- 4m @ 1.23% Li₂O from 129m

It is important to note that exploration by other explorers to the south has identified significant LCT mineralisation in east-west oriented pegmatites. Shallow dipping pegmatite orientation is a characteristic of significant LCT pegmatite systems.

Next Steps

Scorpion plans to undertake the following exploration programmes over Q4 2023 and Q1 2024, regular updates on progress will be provided:

- Infill RC drilling of existing exploration target at 40m x 40m spacing
- Diamond drill testing of exploration target and initial metallurgical test work
- Extensional RC drilling of exploration target down dip and along strike
- RC drilling of parallel pegmatites to determine extent and composition
- Follow up geological mapping and rock chip sampling
- High resolution airborne photography if required
- Auger soil geochemistry aimed at identifying additional pegmatites under shallow soil cover
- Initial Diamond drill testing of existing targets at depth
- Airborne and/or Ground EM surveys

Technical information included in this announcement has previously been provided to the market in releases dated:

19 th December 2022	SCN Expands Lithium Footprint – Major Project Acquisition
6 th February 2023	Youanmi Lithium Project Drilling Commences
23 rd March 2023	Drilling Confirms 3km of LCT Pegmatites Strike at Youanmi
29 th March 2023	Drilling Confirms 3km of LCT Pegmatites Strike – Amended
13 th April 2023	High Grade Lithium Drilling Results - Youanmi Project
15 th May 2023	Youanmi Infill Drilling Underway
30 th May 2023	Youanmi Infill Drilling Completed
8 th June 2023	Scorpion Appoints Lithium Industry Pioneer as CEO
23 rd June 2023	Further High-Grade Lithium Results – Youanmi Project
4 th July 2023	Infill RC Drilling Underway at Youanmi
5 th July 2023	More High-Grade Lithium at Youanmi - 2.36% Li2O
26 th July 2023	Infill RC Drilling Complete at Youanmi
27 th July 2023	Scorpion signs MOU with Sunwoda at Youanmi
3 rd August 2023	Infill Drilling Delivers More High-Grade Lithium at Youanmi
17 th August 2023	High Grade Lithium at Youanmi

This announcement has been authorised by the board of directors of the Company.

-ENDS-

Enquiries

For more information, please contact:

Mr Michael Fotios Chief Executive Officer info@scorpionminerals.com.au Sam Burns Six Degrees Investor Relations T +61 (0) 400 164 067

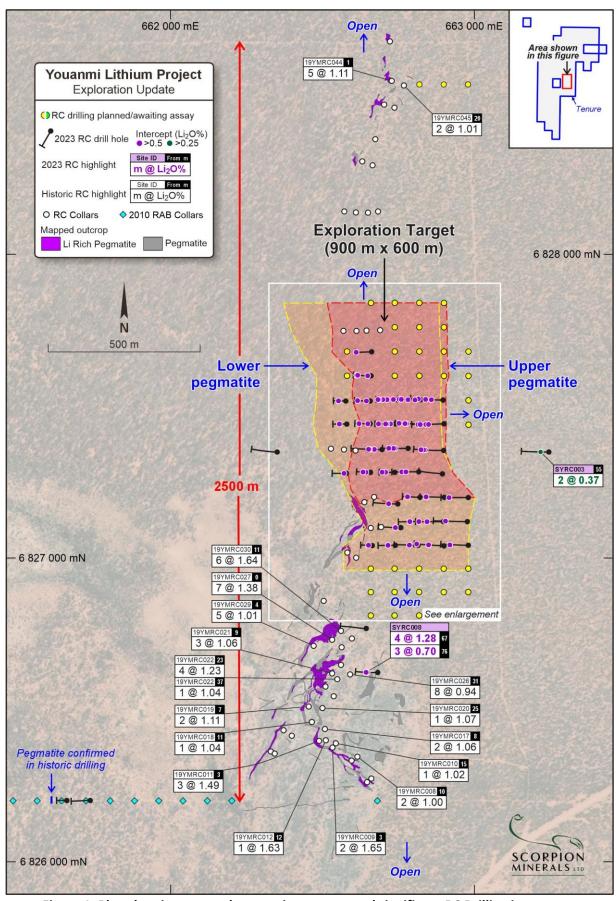


Figure 1: Plan showing mapped pegmatite outcrop and significant RC Drilling intercepts.

Figure 2: Plan enlargement showing mapped pegmatite outcrop and significant RC Drilling intercepts.

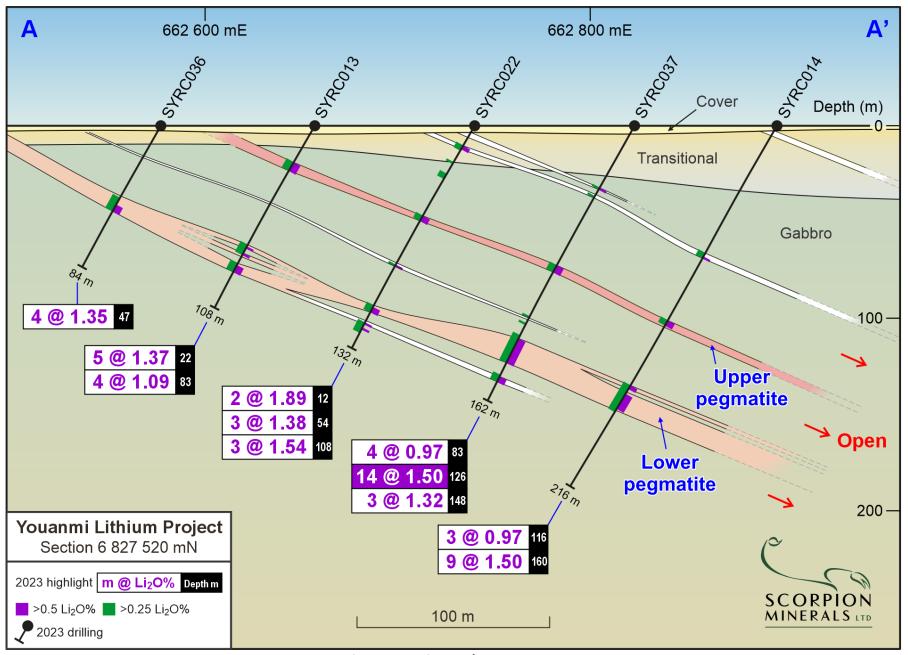


Figure 3: Section A-A' 6 827 520 mN

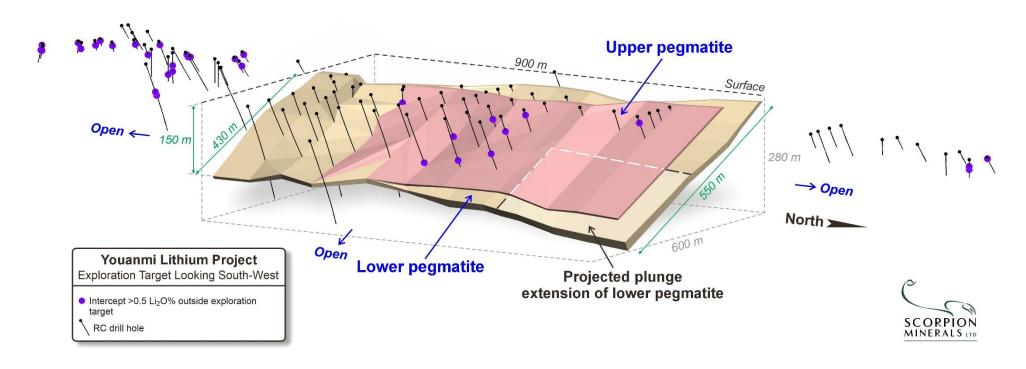
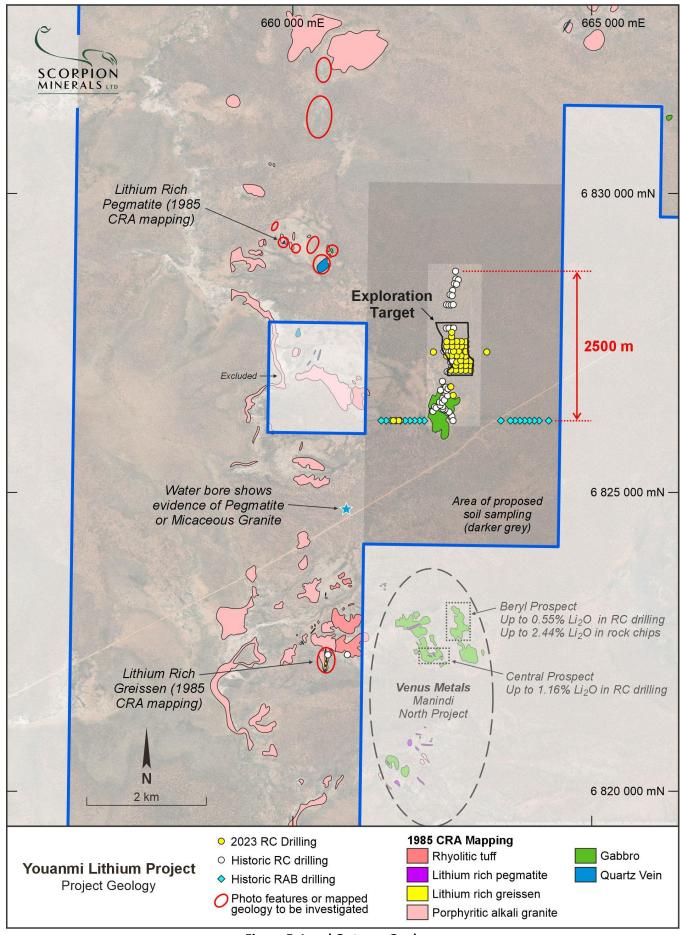



Figure 4: Oblique view of Exploration Target looking Southwest

Figure 5: Local Outcrop Geology

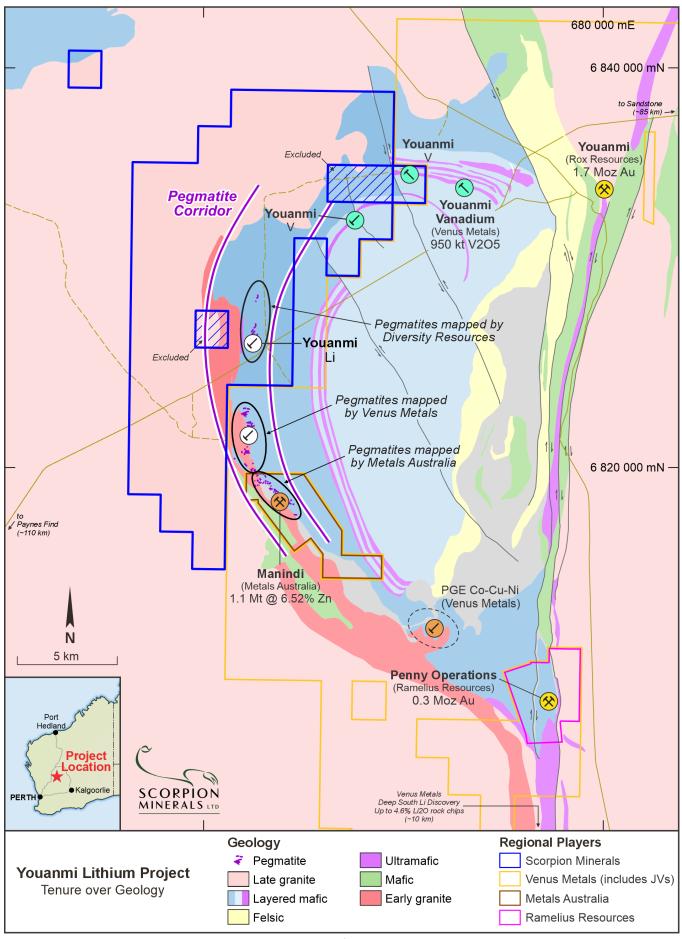


Figure 6: Plan Showing Tenements over Simplified Regional Geology and Adjacent Explorers

About Scorpion Minerals Limited

Scorpion Minerals Limited (ASX:SCN) is an Australian mineral exploration and resource development company with a focus on creating wealth for shareholders through the discovery of world-class deposits, over a diversified range of minerals. Our current efforts are centred on our Pharos and Youanmi Projects, located in the Murchison Province of Western Australia.

The Pharos Project

The Pharos Project consists of 1,335 square kilometres of granted tenure, located approximately 50km northwest of the small mining town of Cue in the Murchison Mineral Field. The project is easily accessible from the Great Northern Highway by the sealed Jack Hills Mine access road and then by unsealed tracks. Scorpion holds a 100% interest in the project.

The project is prospective for lithium, PGE-Ni-Cu, gold, iron ore, and VMS hosted Cu-Zn-Ag Au mineralisation, and contains the Mt Mulcahy deposit. The 'South Limb Pod' zone of mineralisation at Mt Mulcahy contains a JORC 2012 Measured, Indicated and Inferred Resource of 647,000 tonnes @ 2.4% copper, 1.8% zinc, 0.1% cobalt and 20g/t Ag.

The Youanmi Project

The Youanmi Project consists of 177 square kilometres of granted tenure, located approximately 130 kilometres northeast of the small mining centre of Payne's Find in the East Murchison Mineral Field. The project is easily accessible from the Great Northern Highway by the Payne's Find-Sandstone Road which cuts the southern end of the project area and then by unsealed station tracks. Scorpion holds an option to purchase a 100% interest in the project.

The project is prospective for lithium, PGE-Ni-Cu, gold and vanadium mineralisation.

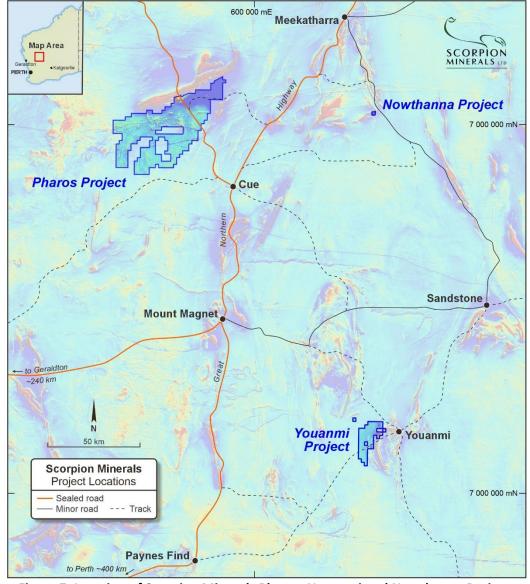


Figure 7: Location of Scorpion Minerals Pharos, Youanmi and Nowthanna Projects

Table 2: Current Mineral Resource Estimate, Mt Mulcahy Project

(refer ASX release 25/9/2014 "Maiden Copper - Zinc Resource at Mt Mulcahy", which also contains a list of significant drill intersections for the deposit, listed within that report at Table 2)

	Mt Mulcahy South Limb Pod Mineral Resource Estimate										
Resource	Grade						Contained Metal				
Category		Cu	Zn	Со	Ag	Au					Au
category	Tonnes	(%)	(%)	(%)	(g/t)	(g/t)	Cu (t)	Zn (t)	Co (t)	Ag (oz)	(oz)
Measured	193,000	3.0	2.3	0.1	25	0.3	5,800	4,400	220	157,000	2,000
Indicated	372,000	2.2	1.7	0.1	19	0.2	8,200	6,300	330	223,000	2,000
Inferred	82,000	1.5	1.3	0.1	13	0.2	1,200	1,100	60	35,000	
TOTAL	647,000	2.4	1.8	0.1	20	0.2	15,200	11,800	610	415,000	4,000

Competent Persons Statement 1

The information in this report that relates to the Exploration Target, Exploration Results and Mineral Resources at the Mt Mulcahy and Pharos Projects is based on information compiled or reviewed by Mr Michael Fotios, who is a member of the Australian Institute of Mining and Metallurgy. Mr Fotios is CEO of Scorpion Minerals Limited and has sufficient experience which is relevant to the style of mineralisation and types of deposit under consideration and to the activity he is undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)'. Mr Fotios consents to the inclusion of the information in the form and context in which it appears.

Competent Persons Statement 2

The information in this report that relates to the Mt Mulcahy Mineral Resource is based on information originally compiled by Mr Rob Spiers, an independent consultant to Scorpion Minerals Limited and a then full-time employee and Director of H&S Consultants Pty Ltd (formerly Hellman & Schofield Pty Ltd), and reviewed by Mr Fotios. This information was originally issued in the Company's ASX announcement "Maiden Copper-Zinc Resource at Mt Mulcahy", released to the ASX on 25th September 2014. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the findings are presented have not materially modified from the original market announcements.

Forward Looking Statements

Scorpion Minerals Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Scorpion Minerals Limited, its Directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it. This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimate.

JORC 2012 Table

SECTION 1 – Sample Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling by Lithium Australia NL in 2019 Sampling technique for Reverse Circulation (RC) drilling was appropriate and industry standard. 1 m split samples of approximately 3-4 kg were collected from a rig-mounted cyclone and adjustable cone splitter (checks were made before and during drilling by the geologist to ensure the splitter box was level and sample splits representative). Certified standards, blanks and duplicates accounted for 10% of the total samples submitted to the lab. Duplicate samples were collected to check repeatability and blanks were inserted to check for contamination. Lithium mineralisation (lepidolite) was observed in RC drill cuttings. Historic Rock Chip Sampling Rock chip samples were collected to best represent the source material. RC Drilling by Scorpion Minerals Sampling technique for Reverse Circulation (RC) drilling was appropriate and industry standard. 1 m split samples of approximately 3-4 kg were collected from a rig-mounted cyclone and cone splitter (checks were made before and during drilling by the geologist to ensure the splitter box was level and sample splits representative).
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC Drilling by Lithium Australia NL in 2019 RC drilling was carried out by Westside Drilling Pty Ltd using a truck-mounted MK10 Almet Masters RC drill rig. RC holes in the programme have been drilled on a variety of azimuths and dips. RC Drilling by Scorpion Minerals RC drilling carried out by iDrilling using a Hydco 350RC drill rig Holes drilled at -60 degrees to the West at a 270 degree azimuth.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Bulk waste samples from the cone splitter were assessed by the geologist and recorded in the logs as high, medium or low. After every metre drilled the driller ensured the entire sample was blown out by lifting the bit and running air down the hole and up the tube before drilling continued. No recovery issues were reported by the geologist.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	 RC drill samples were geologically logged to a level of detail to support future Mineral Resource estimation studies.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Relevant data fields included weathering, lithology, minerals, colour, grain size, veins, recovery and moisture. Samples were geologically logged onto hardcopy logging sheets and later transferred into a database. All wet-sieved logging samples were collected into chip-trays and stored for future reference. All drill holes were logged in full. The database contains lithological data for all holes in the database. Rock chip samples were geologically logged. No Diamond drilling has been undertaken. Sampling has been by RC drilling through a rig-mounted cyclone and adjustable cone splitter. Sampling technique is appropriate and industry standard. Quality control procedures adopted to ensure maximum representivity of samples. Sample sizes are considered to be appropriate to accurately represent the lithium mineralisation at Youanmi based on the style of mineralisation and the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e lack of bias) and precision have been established. 	 RC Drilling by Lithium Australia NL in 2019 Samples collected from the drilling were sent to Nagrom in Kelmscott, WA for sample preparation and analysis. Samples were analysed for a suite of 11 elements, i.e., Li, Rb, Cs, Be, Bi, Sn, Ta, Al, Fe, K and Si. Analysis completed by geochemical procedure ICP005 using peroxide fusion digestion and ICP-MS and ICP-OES analytical methods. Field duplicates, certified standards and blanks accounted for 10% of the samples collected from the drilling and sent to the lab. Field and internal QAQC samples produced results deemed acceptable. RC Drilling by Scorpion Minerals Samples collected from the drilling were sent to Nagrom in Kelmscott, WA for sample preparation and analysis. Samples were analysed for 8 elements. Li, Rb, Cs, Be, Sn, Ta, Nb and W. Historic Rock Chip Sampling Samples range from about 500 grams to 1 kilogram in weight, with each sample comprising several pieces.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 All samples were assayed for Cs, Li, Nb, Rb, Sn, Ta and W. Some batches were also assayed for extra multi elements. Analyses were performed by Intertek Genalysis and SGS in Perth Most samples were digested with either a four-acid mix (nitric, hydrochloric, perchloric, hydrofluoric) or by sodium peroxide fusion in zirconia or nickel crucibles, followed by ICP-MS. A few elements were analysed by X-ray fluorescence. Both laboratories are NATA certified. No independent verification of sampling has been reported. No twinning of holes. Primary data is captured using industry standard worksheets. No adjustments were made to any of the assay data.
Location of data points	 Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The RC drill hole locations (collars) were picked-up using a Garmin GPS with +/-3m accuracy and considered adequate for first-pass drilling. Rock chip samples were located using a Garmin GPS with +/-3m accuracy and considered adequate for this purpose. Grid systems used were Geodetic datum: GDA 94; Projection: MGA, Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drilling targeting mineralised horizons was completed on approximately 80 m spaced sections with drill hole spacing of approximately 40 to 80m. Examination of drilling results will be required to determine if this is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation procedures.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The dip of the pegmatites is approximately 20-40° to the east. Holes were oriented appropriately at right angles to the stratigraphy.
Sample security	The measures taken to ensure sample security.	 RC Drilling by Lithium Australia NL in 2019 Industry standard measures were taken to ensure sample security. Chain of custody of RC drilling samples was managed by Lithium Australia personnel. All sample bags were properly sealed and couriered from Mt Magnet to Perth. RC Drilling by Scorpion Minerals 2023 Samples were stored in a fenced area on site. Chain of custody of samples was managed by Scorpion Minerals personnel. All sample were transported by Scorpion Minerals personnel or Company representatives to Nagrom in Perth.

Criteria		JORC Code explanation		Commentary
Audits or	•	The results of any audits or reviews of sampling techniques	•	No audits or a review have yet been undertaken.
reviews		and data.		

Section 2 Reporting of Exploration Results

Criteria		JORC Code explanation		Commentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	E 57/958, E 57/1049 and E 57/1056 are held by Diversity Resources Pty Ltd, a private company. E 57/1377 is held by Scorpion Minerals Limited. All tenements are in good standing. Terms of the agreement between Diversity Resources and Scorpion Minerals is discussed in ASX announcement dated 19/12/2022 titled "SCN Expands Lithium Footprint – Major Project Acquisition"
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	The tenement area has been historically explored by many explorers since 1967. Australian Gold Resources Limited (AGR) explored for vanadium within tenement E57/978. Lithium Australia NL completed the RC drilling in 2019.
Geology	•	Deposit type, geological setting and style of mineralisation.	•	The project area lies on the northern part of the Youanmi Complex, a layered gabbroic intrusion. The tenements host abundant lithium pegmatites intruding layered mafic rocks, with the latter also hosting vanadium-rich magnetite horizons. The pegmatites are strongly fractioned with the dominant lithium mineral being lepidolite (a lithium mica). Within E57/978 there are also vanadiferous units that have been dislocated by a major fault. To the east of the fault, they strike east-west with a moderate dip to the south. To the west the units are offset by a number of minor faults and strike northeast-southwest, dipping moderately to the southeast. Oxidised mineralisation extends to between 20 m and 50 m, with an average depth of 40 m. There is minimal overburden.
Drill hole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	Refer to the body of text of this report and relevant Tables for information material to the understanding of the exploration results.
Data aggregation methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually	•	RC Drilling by Lithium Australia NL in 2019 Significant RC drilling intervals have been chosen using a 0.5% Li2O cut-off and 2 m internal dilution.

Criteria	JORC Code explanation	Commentary
	 Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No cutting of high grades has occurred. <u>RC Drilling by Scorpion Minerals 2023</u> Significant RC drilling intervals have been chosen using a 0.5% Li2O cut-off and 2 m internal dilution. No cutting of high grades has occurred.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The dip of the pegmatites is approximately 20-40° to the east. Holes were oriented appropriately at right angles to the stratigraphy.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See plans and sections included in this report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Reported results considered representative.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material exploration data has been included.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Planned activities discussed in text. Refer to text and diagrams in body of this release.