ASX Announcement

3 November 2023

HIGH GRADE LITHIUM CARBONATE FROM PRAIRIE ADDITIONAL JORC DISCLOSURE

Arizona Lithium Limited (ASX: AZL, AZLO, AZLOA, OTC: AZLAF) ("Arizona Lithium", "AZL" or "the Company"), a company focused on the sustainable development of two large Lithium development projects in North America, the Big Sandy Lithium Project ("Big Sandy",) and the Prairie Lithium Project ("Prairie"), has reissued the announcement it released on 30 October 2023 outlining the results of processing testing of concentrated lithium brine. Additional information relating to these tests have been summarised in JORC Table 1 that accompanies the reissued announcement and is included in Section 2 under "Other substantive exploration data".

This ASX announcement is authorised for release by the Board.

For further information please contact:

Mr Paul Lloyd Managing Director Tel. +61 419 945 395 paul@arizonalithium.com

Arizona Lithium Level 2, 10 Outram Street West Perth WA 6005 Australia **T** +61 (8) 6313 3936 **E** info@arizonalithium.com ASX: AZL, AZLO AZLOA OTC: AZLAF

30 October 2023

HIGH GRADE LITHIUM CARBONATE FROM PRAIRIE

High purity lithium chemical produced at Lithium Research Centre, including 99%+ Li₂CO₃

HIGHLIGHTS

- AZL Chief Technical Officer, Brett Rabe, and his team at the Lithium Research Centre (LRC) successfully converted the lithium precursor into several high purity lithium products in a single step, including high purity lithium carbonate assaying over 99%.
- Testing at the LRC confirms that brine material from Prairie, after applying the current Direct Lithium Extraction (DLE) technology, can produce very high grade lithium carbonate with minimal processing.
- The rejection of impurities at the DLE step enables a very high quality product to be produced.
- The development is significant as it demonstrates that a highly automated extraction and concentration process, located remotely on a well pad, has the potential to produce a variety of high purity lithium chemicals at significantly lower CAPEX and OPEX than conventional technology.
- Results of the lithium carbonate have been validated by a 3rd party laboratory.
- AZL is preparing for a third and final phase of (DLE) pilot plant testing in November on its Prairie Lithium Project in Saskatchewan, Canada.
- Prairie is the highest grade Indicated lithium brine resource in Canada, with the majority of the Indicated resource at 127 mg/L Li.
- Prairie PFS on schedule for completion in December 2023.

Figure 1- High grade Lithium carbonate produced from Prairie Brine

Arizona Lithium Level 2, 10 Outram Street West Perth WA 6005 Australia **T** +61 (8) 6313 3936 **E** info@arizonalithium.com ASX: AZL, AZLO AZLOA OTC: AZLAF

Arizona Lithium Limited (ASX: AZL, AZLO, AZLOA, OTC: AZLAF) ("Arizona Lithium", "AZL" or "the Company"), a company focused on the sustainable development of two large lithium development projects in North America, the Big Sandy Lithium Project ("Big Sandy") and the Prairie Lithium Project ("Prairie"), is pleased to announce that it has successfully converted a lithium precursor involving Direct Lithium Extraction (DLE) and Cross Flow Reverse Osmosis (CFRO) technology to a variety of high purity battery chemicals, including 99%+ lithium carbonate.

The development is significant as it demonstrates that a highly automated extraction and concentration process, located remotely on a well pad, has the potential to produce a variety of high purity lithium chemicals at significantly lower CAPEX and OPEX than conventional technology. AZL plans to leverage the new design and production philosophy to rapidly bring the Prairie Lithium Project into production, with a study currently underway to develop final design details. In November, a DLE pilot plant will be commissioned in Saskatchewan that will produce over 10,000 litres of concentrate that will be converted into finished products at AZL's Lithium Research Centre in Tempe, Arizona. The finished products will be used to negotiate off-take agreements and strategic partnerships for AZL.

The Prairie Project resource was recently increased from 4.1 mt of LCE¹ to 5.7 mt of LCE (refer ASX Announcement 17 August 2023), representing a 39% increase in resource size, with a resource upgrade also successfully completed. 4.0 mt of LCE was upgraded to Indicated and 1.7 mt of LCE remains Inferred. This marked the first known lithium brine resource to be upgraded to Indicated in Saskatchewan and represents the highest-grade Indicated lithium brine resource in Canada. The majority of the targeted resource resides in the Middle Wymark Unit with a representative concentration of 127 mg/L Li (Figure 2).

Arizona Lithium Managing Director, Paul Lloyd, commented: *"Following the recently announced successful resource upgrade, we are very excited to have produced lithium carbonate at our Lithium Research Centre in Arizona. This further justifies the investment we have made into research, which will ultimately be rewarded by fast tracking both the Big Sandy and Prairie Lithium projects. We are focused on the rapid development of the Resource at the Prairie Project and producing Lithium Carbonate is a very positive step. We are all eagerly awaiting the upcoming DLE pilot plant operation in November 2023, which will allow us to produce further lithium concentrate and ultimately move Arizona Lithium one step closer to its first commercial facility, first Lithium production and the corresponding cash flows.*

Arizona Lithium CTO, Brett Rabe, commented: "The higher the purity of a midstream precursor, the lower the CAPEX, OPEX, environmental footprint and risk associated with final conversion. This is the beginning of a transition in the lithium supply chain, whereby advances in midstream processing will begin to re-shape the downstream and move the industry away from massive megaprojects with low process capability. I'm proud of the role that the Prairie Lithium Project, our process technology partners, and the Lithium Research Centre is playing in introducing new processing technologies which will ultimately result in more affordable EVs. Our collective work is beginning to show, and more advances are on the way."

About the Prairie Lithium Project

AZL's Prairie Lithium Project is located in the Williston Basin of Saskatchewan, Canada. The Prairie Project resource is 5.7 MT of LCE, composed of 4.0 MT LCE Indicated and 1.7 MT LCE Inferred². Located in one of the world's top mining friendly jurisdictions, the projects have easy access to key infrastructure including electricity, natural gas, fresh water, paved highways and railroads. The projects also aim to have strong environmental credentials which should result in less use of freshwater, land and waste, aligning with AZL's sustainable approach to lithium development.

Arizona Lithium also holds a proprietary lithium extraction process technology that selectively removes lithium from Brine. The Prairie Lithium Ion Exchange ("**PLIX**") is an ion-exchange material that selectively extracts lithium from brine, using equipment which is anticipated to be readily available at commercial scale. PLIX may have a global application, with the process currently being tested on lithium resources from around the world (including encouraging results with Big Sandy). While Prairie Lithium continues to develop, scale and operate its own DLE technology, the Company is also testing other DLE technologies to ensure it deploys the most cost-effective technology onto its resource.

¹ ASX Announcement: Prairie Lithium - "Acquisition of Canada's Highest Grade Lithium Brine Resource" – 21 December 2022

² PRAIRIE PROJECT RESOURCE UPGRADED 39% - ASX Announcement (August 17, 2023)

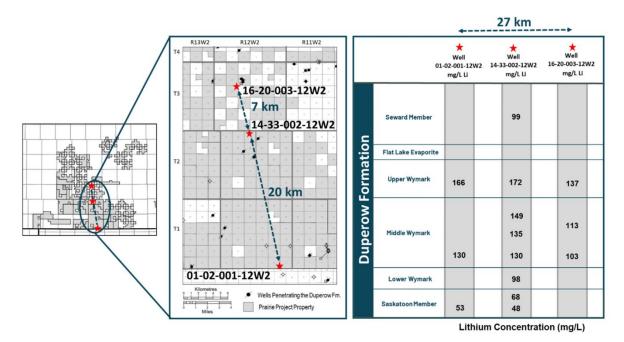


Figure 2 - Location map and representative lithium concentrations from Arizona Lithium's test wells³

Figure 3 – Location of AZL's Lithium development projects.

This announcement has been authorised for release by the Managing Director.

³ Lithium concentrations measured by Isobrine Solutions and confirmed by one other commercial laboratory in Edmonton, Alberta

UITHIUM

FOR FURTHER INFORMATION PLEASE CONTACT:

Mr Paul Lloyd Managing Director Arizona Lithium Limited Tel. +61 419 945 395 paul@arizonalithium.com

Competent Persons statement

Gordon MacMillan P.Geol., Principal Hydrogeologist of Fluid Domains, who is an independent consulting geologist of a number of brine mineral exploration companies and oil and gas development companies, reviewed and approves the technical information provided in the release. Mr. MacMillan is a member of the Association of Professional Engineers and Geoscientists of Alberta (APEGA), which is ROPO accepted for the purpose of reporting in accordance with the ASX listing rules. Mr. MacMillan has been practising as a professional in hydrogeology since 2000 and has 22 years of experience in mining, water supply, water injection, and the construction and calibration of numerical models of subsurface flow and solute migration. Mr. MacMillan is also a Qualified Person as defined by NI 43-101 rules for mineral deposit disclosure.

Information in this announcement that relates Exploration Results or to Mineral Resources have been extracted from the Company's announcement released to ASX on 14 August 2023. The announcement is available to view on the Company's website: www.arizonalithium.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which Mr MacMillan's findings are presented have not been materially modified from the original market announcement.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Arizona Lithium's Prairie Project (the Project) is approximately 200 km southeast of the city of Regina between the towns of Estevan and Weyburn. The center of the property has a latitude 49.21363°N and a longitude 103.63518°W. The southern limit of the property is on the border with the states of North Dakota and Montana, United States. The subsurface permits of the property itself encompass parts of Townships 1 to 7 and Ranges 7 to 16 West of the 2nd Meridian.

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 exploration and newly collected data from wells drilled or recompleted specifically to test lithium concentrations and brine productivity were used to evaluate the lithium Mineral Resource. Since 2021, six wells have been drilled and/or recompleted in the Duperow Formation in the Project area: Wells drilled and/or recompleted by Arizona Lithium: 101/14-33-002-12W2 (Year 2021)

Criteria	JORC Code explanation	Commentary
		 swabbing operations. Further measures taken to ensure sample representivity are discussed in 'Drill Sample Recovery'.
		Legacy field sampling for lithium occurred between 1996 and 2019 as part of a basin wide characterization and mapping program. Seventeen samples considered representative of the Duperow Formation were analyzed for lithium within, and immediately adjacent to, the Project. The samples were taken from Drill stem tests (DSTs), swab samples and directly from well-heads of producing Duperow Formation oil wells as part of brine sampling programs by the Saskatchewan Geological Survey and University of Alberta.
		Multiple steps were taken to acquire representative brine samples. Procedures are outlined below, with excerpts taken from the Rostron et al. (2002) and Jensen (2015) publications.
		 Drill stem test samples were voluntarily collected by operators and placed into sample kits for analysis. Sample kits consisted of three empty 250 ml bottles in a re-sealable plastic bag. Operators were asked to fill two containers with representative samples from the formation fluid and the third container was filled with drilling fluid. Bottles were labelled "A", "B" and "Drilling Fluid". All three samples were shipped to the Saskatchewan Industry and Resources Subsurface Core laboratory where the contents of bottle "A" were acidified with 2 ml of concentrated, double-distilled, 2.8 Normality nitric (HNO₃) acid to prevent precipitation of ions in solution. Safety and shipping regulations did not permit acidification of sample "A" at the well site, but testing demonstrated that
		 later acidification still provided excellent quality data. Producing wells with a water cut of >50% were also targeted for testing at strategic locations as part of yearly

Criteria	JORC Code explanation	Commentary
		sampling campaigns. Wellhead samples were collected at the producing wells following a modified procedure after Lico et al. (1982). Any production chemicals used on the producing well were halted prior to sample collection. Oil-water emulsions were sampled into 8 litre or 12 litre pre-cleaned plastic jugs directly from the wellhead and allowed to gravity separate inside the container. Control samples were taken to determine if production chemicals affected the hydrochemical signature of the produced waters. The water fraction was pre-filtered through glass wool, then through a 0.45-micron polyether sulfone filter to remove any colloids or organics that may have been present. Samples were aliquoted for field tests and laboratory analysis and split for anion and cation analysis. Anion samples were collected in tight-sealing containers and left untreated. Samples for cation determination were acidified to a pH<1 with triple distilled 2.8 Normality HNO ₃ acid and then tightly sealed for shipment and analysis. Sample containers were sealed with tamper- proof tape at the wellsite.
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Brine samples were collected from historical producing Duperow Formation wells and from six wells drilled and/or recompleted in the Project area since 2021. Wells drilled specifically to test the Duperow Formation in this area use reverse circulation drilling, are drilled with brine mud and are drilled with a bit size of 222 mm which is standard for these types of wells. The shallowest sample used in the lithium Mineral Estimate was collected northeast of the Property at a depth of 1,700 mKB (121/10-03-008-05W2). The deepest sample was collected southeast of the Property from a depth of 3,087 mKB (API# 33-105-01468-00-00)
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Brine collection procedures for Arizona Lithium's tests wells (101/14-33-002-12W2,

Criteria	JORC Code explanation	Commentary
	JORC Code explanation Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Commentary 104/01-02-001-12W2,141/16-20-003-12W2) are outlined here. The procedures were designed and undertaken to obtain the highest quality samples of original formation fluids. Prior to sampling operations, all lines and tanks were cleaned to remove any possible residual brine or hydrocarbon contamination. Samples were collected directly at the wellhead, or from sampling ports attached to flow lines as close to the wellhead as possible. Prior to sampling the test intervals, representative samples of all drilling and completion fluids were taken and analysed. Field determination of density, resistivity, and pH of the initial samples from the well was producing representative samples. Once it was determined that the well was producing formation water, samples were collected for lithium analysis in the laboratory. At the sample point, the well was opened to a waste receptacle for 5 to 10 seconds to remove any debris build-up in the sample lines, then the sample was collected into 1 L, 2 L, or 4 L clean plastic screw-top jugs. Field containers were immediately labelled with date, time, sample interval and then the container was transferred to the onsite laboratory for preliminary analysis. After a visual inspection for trace hydrocarbons and debris, samples with obvious debris were pre-filtered through glass wool. The sample was then filtered through a standard 0.45-micron filter to remove any particulates or oil. Once sufficient volume was filtered for analysis, samples were split into two to four containers (typically 1 L each), labelled with particulars (date, time, interval, an 'anonymous' sample ID for

Criteria	JORC Code explanation	Commentary
		 each laboratory), and sealed with secure tape on the caps. Each bottle was then sealed with tamper proof seals to ensure integrity. Samples were couriered to the various laboratories using full chain-of-custody documentation. Similar sample collection procedures used for Hub City Lithium's test wells (111/11-02-009-13W2, 101/14-36-008-13W2,101/02-22-007-09W2) are documented in their NI 43-101 Technical Report (April, 2023).
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Open-hole wireline logs provide the most widely available information to determine the porosity and water volume used in the Mineral Resource estimate. A petrophysical evaluation from open-hole wireline logs was completed by Arizona Lithium on 279 wells covering the Duperow Formation across the Project area to determine the average porosity over the net pay interval. Open-hole wireline logs typically include a gamma-ray, compensated neutron, lithodensity, sonic, spontaneous potential, and resistivity standard suite. These tools are used to measure different rock and fluid properties. Gamma-ray – the determination of lithology and facies based on natural radioactivity of the formation. Neutron logging tool - emits gammarays which detect hydrogen content of a formation and convert this to a porosity calculated curve. Density logging tools - emits gammarays to measure electron density to calculate porosity and photoelectric factor (PEF) to determine lithology. Combined with the neutron log, the density log can be used to identify fluid types, lithology and porosity. PEF logs - determines lithology from characteristic photoelectric absorption of the rock matrix. Sonic logging tool - measurement of

Criteria	JORC Code explanation	Commentary
		 formation acoustic properties (e.g., velocity), used for lithology and porosity determination. Resistivity logging tool - measurement of formation conductivity (reciprocal is formation resistivity) at different depths of investigation into the formation and generates shallow, medium, and deep resistivity curves that are used to estimate fluid types and quantities. Different resistivity logging tools are run depending on drilling mud chemistry (freshwater mud requires induction logging tools whereas saline mud requires laterologs)
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Lithium samples are collected in the form of water samples not core. Procedures taken to ensure representative brine samples were collected are discussed in 'Drill Sample Recovery'. To ensure the most precise and accurate measurements of lithium concentration, multiple laboratories were used for analyses for Arizona Lithium's test wells (101/14-33- 002-12W2, 104/01-02-001-12W2, 141/16- 20-003-12W2). • Each laboratory selected for use was required to pass a qualification test prior to their inclusion in the Project. The qualification test consisted of analyzing a set of three samples for lithium concentration on an artificially prepared saline brine solution, created by Salman Safarimohsenabad (University of Alberta/Recion Technologies Inc.). The original stock solution contained 116 mg/L lithium and was diluted 1:1 and 1:2 to create the sample set. Each laboratory was evaluated for accuracy (i.e., how close to 116 mg/L) and precision (i.e., how close the three samples were to each other), prior to their selection. This prepared sample

Criteria	JORC Code explanation	Commentary
		 was repeatedly run as part of major sample batches for QAQC. As described in 'Drill Sample Recovery' samples were determined to be representative of formation water once a sufficient volume of water was removed from the sampling interval and field parameters were found to be stable. The volume of water removed to ensure representativeness of the samples during depending on the size of the tested interval and the order of testing. This was typically achieved after removing two to three times the volume of water in the tubing. For each zone tested, up to 4 litres of filtered fluid was collected for laboratory analysis. Each laboratory was sent approximately 1 L. Each laboratory analysis takes less than 1 mL, so each lab had sufficient sample volume to run repeats, etc.
		Similar sample measurement procedures used for Hub City Lithium's test wells (111/11-02-009-13W2, 101/14-36-008- 13W2,101/02-22-007-09W2) are documented in their NI 43-101 Technical Report (April, 2023).
		Sample measurement procedures for legacy field sampling for lithium that occurred between 1996 and 2019 include:
		 Samples were analyzed for many dissolved chemical species and various isotopes. Several different laboratories were used, depending on the constituent being analyzed. Overall, the analytical techniques used in these studies produced high quality saline brine analyses, with routinely charge balance errors of less than 5%.
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, 	Up to four laboratories of different affiliations (e.g., large commercial, small commercial, internal, and academic) were utilised for analyses for Arizona Lithium's test wells.

Criteria	JORC Code explanation	Commentary
Criteria Iaboratory tests	JORC Code explanation handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Commentary Hub City Lithium used Isobrine Solutions to analyze the lithium samples from their wells. The laboratories Include: Arizona Lithium laboratory (Emerald Park, Saskatchewan) - Arizona Lithium's internal laboratory provided initial rapid (<12 hour) analysis of lithium and sodium concentrations of sampled brines. Results from this laboratory were used for selecting samples for further/confirmation analyses at the other two laboratories. Due to the lack of independent status, concentrations determined by this laboratory were not used in the final lithium concentration mapping but were used qualitatively and for additional confirmation of the results from the other laboratory in Edmonton, Alberta and affiliated with Arizona Lithium, was selected to provide rapid (one-to-two-day turnaround) lithium analyses and comprehensive analyses of selected brine samples. Isobrine Solutions specializes in analysing saline brines, including determining lithium, bromine, and stable isotopes along with other major and trace elements. Results from Isobrine Solutions were used for lithium concentration mapping, but only after they were confirmed by the other two participating laboratories, thereby mitigating the question of independence from Arizona Lithium. Isobrine Solutions uses an ICP- OES to analyse for lithium and sodium (among other elements), but in addition uses an Ion Chromatograph (IC) to measure chloride (and other elements). The independently determined sodium and chloride are used to calculate a Charge Balance Error, which is a quality control check on the lithium analysis. Element Materials Technology (Element) is a large commercial laboratory in Edmonton, Alberta. Element was used for lithium and alkalinity analysis of selected samples as they have been used for over 20 years as part of the University of Alberta/Isobrine/Saskatchewan Geological Survey sampling programs, and consequently brings continuity of the laboratory analysis. Element Materials Technolog

Criteria	JORC Code explanation	Commentary
		analyses conducted by Element were done on an ICP-MS.
		AGAT Laboratories (AGAT) is a large commercial laboratory in Edmonton Alberta and was used to confirm lithium analysis of selected samples of the other three laboratories. They are considered the most 'arm's length' to the Project. AGAT is accredited by CALA to ISO/IEC 17025:2017. AGAT conducted analyses for lithium using both ICP/MS, and ICP/OES, and after extensive testing it was determined that their ICP/OES using a constant 100 x dilution of samples provided accurate and precise results.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data 	The Mineral Resource assessment was based on two types of lithium data: historical data collected from oil and gas infrastructure in the Project; and reservoir testing completed by Arizona Lithium and Hub City Lithium in 2021 and 2022.
	entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data.	Arizona Lithium undertook a review of the historical sampling data to determine which samples were representative of formation water and which samples should be excluded due to QAQC concerns. The QP verified the lithium concentration data by reviewing Arizona Lithium's QAQC program, confirming the reported well names and concentrations in the referenced data sources, reviewing the reasonableness of the dataset based on regional water quality, and reviewing the dataset for consistency within the Project.
		A total of 72 samples were sent for analysis of lithium concentration during testing of the 101/14-33-002-12W2 and 104/01-02-001- 12W2 wells. All 72 samples were analyzed by Arizona Lithium and Isobrine Solutions. A subset of 29 of those 72 samples were sent to Element and of those 29 samples, 26 were sent for analysis to AGAT. Samples sent to three/four laboratories were the last two samples collected in a time series from each of the 14 zones investigated in the sampling program (three combined flow tests, eight zones in 101/14-33-002-12W2M, and three zones in 104/01-02-001-12W2).
		A total of 75 samples were sent for analysis of lithium concentration during testing of the 141/16-20-003-12W2 well. 32 samples were analysed by Isobrine Solutions, 21 samples

Criteria	JORC Code explanation	Commentary
		were analysed by Element and 22 samples were analysed by Arizona Lithium.
		In a typical hydrochemical sampling program, the quality assurance and quality control (QA/QC) measures would include 5% to 10% blind duplicate samples to test the precision of the analyses. A total of 32 samples were analysed at Isobrine Solutions and independently analysed by at least one other laboratory (Element, or Arizona Lithium). This far exceeds the 5% to 10% duplicate sample standard. As part of the QAQC process, the prepared laboratory standard (S. Safarimohsenabad, Recion Technologies Inc.) was included in batches to ensure continued accuracy of the laboratory analysis. Any time the laboratory obtained a lithium value outside the
		110 mg/L to 120 mg/L range, repeat analyses of the entire sample batches were conducted.
		Hub City Lithium has tested over 50 water samples from three wells since 2021 (NI 43- 101 Technical Report, April,2023)
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	For Arizona Lithium's test wells (101/14-33- 002-12W2 and 141/16-20-003-12W2), detailed site surveys were completed by Caltech Surveys. The surveys were carried out in accordance with Article XIII, Standards of Practice, Section 6 of the bylaws of the Saskatchewan Land Surveyors Association. These high-quality site surveys are routine for oil and gas wells drilled in Saskatchewan. The geographical land grid format survey is in NAD 83 and UTM Zone 13N.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and 	Lithium concentration samples from Duperow Formation brines have been collected all around Arizona Lithium's Property. The range in spacing between wells with
	 Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	lithium concentration measurements varies from 610 m between the most closely spaced wells to over 68,000 m between the most widely spaced wells. The Duperow Aquifer is judged to be hydraulically continuous within, and far beyond, the Arizona Lithium resource area.
		The DST-measured lithium concentrations in the Duperow Formation suggest that lithium concentrations are continuous across

Criteria	JORC Code explanation	Commentary
		the Project. This is based on regional hydrochemical mapping conducted over 25 years demonstrating systematic patterns of water chemistry across the project area. The Saskatchewan Phanerozoic Fluids and Petroleum Systems Project (Jensen et al., 2015) was based on hundreds of water samples collected and submitted to the Government of Saskatchewan. The reason there are not an equivalent number of lithium analyses, is simply because the operators were not required to analyse for lithium. Arizona Lithium's sampling program supports the interpretation of regionally consistent lithium values. Furthermore, sampling program results suggest some of the variability between previously reported lithium concentrations in the Duperow Formation may be due to the differing geologic units that were sampled.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Duperow Formation brines have been sampled from vertical wells that have been drilled perpendicular to the Duperow Formation stratigraphy. There is no relationship between the drilling orientation and the formation water quality, so no sampling bias related to sampling orientation is present.
Sample security	The measures taken to ensure sample security.	 Sample security procedures for Arizona Lithium's test wells (101/14-33-002-12W2, 104/01-02-001-12W2, 141/16-20-003- 12W2): Samples were collected directly from the wellhead into 1, 2, or 4L containers (as described above). Samples taken in the field were placed in bottles and were labelled according to the date of sample collection, name of the sampler, location of the sampling and number of the sample. After field processing (measurement, filtration, splitting) samples were labelled with anonymous tracking numbers, sealed, and security taped (tamper proof seals) and shipped to the laboratories. The samples were later double checked and sent to the 3rd party laboratories by Purolator shipping services whilst conforming to the required transport protocols. The corresponding Chain of Custody was either sent with the

Criteria	JORC Code explanation	Commentary
		samples or was sent to the 3 rd party by email. The 3 rd party always confirmed the receipt of the samples by sending the chain of custody including the analyses requests, sample descriptions, client identities (IDs), 3 rd party IDs and client notes. Similar sample security procedures used for Hub City Lithium's test wells (111/11-02- 009-13W2, 101/14-36-008-13W2,101/02- 22-007-09W2) are documented in their NI 43-101 Technical Report (April,2023).
		Sample security procedures for legacy field sampling for lithium that occurred between 1996 and 2019:
		• Samples were transported to the University of Alberta where they were relabeled, transferred, and split into "anonymous" sample containers. This was conducted to maintain confidentiality of the operator, date, well name, location, interval, and fluid recovery. The samples were then sent to various laboratories for analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Arizona Lithium's QP was involved throughout the testing program including participating in the development of the testing program, planning the QAQC for the water sampling, and witnessing the testing at the 101/14-33-002-12W2 well from October 19 to October 22, 2021. During the time that the QP was at the 101/14-33-002- 12W2 well, four different intervals of the Duperow Formation were developed until representative samples could be collected for laboratory analysis. The QP witnessed the sample preparation, analysis and security measures of the reservoir testing and can verify that the procedures were consistent with the description provided. Arizona Lithium's QP was not on site during the collection of the water samples from the 141/16-20-003-12W2 well but was on site for a previous sampling program completed in 2021. The QP witnessed the sample preparation, analysis and security measures of the reservoir testing completed in 2021 and can verify that the procedures were consistent with the description provided. The Author of Hub City Lithium's NI 43-101 Technical Report (April, 2023) has completed a detailed review of all technical

Criteria	JORC Code explanation	Commentary
		data and information provided in the report. Key aspects include verification of sample analysis, well-completion and production information, mineral ownership, and geologic data. The verification process involved reviewing all 3rd party reports and where possible, independently confirming data supplied by Hub City Lithium as valid. Interviews with testing companies, field staff and Hub City Lithium's employees were conducted as part of the review process.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Arizona Lithium rents 70 subsurface mineral permits, and leases 2 subsurface mineral parcels located in southeast Saskatchewan close to the United States border. The subsurface mineral permits are leased from the Saskatchewan Provincial Government and cover 549.5 square miles (351,709 acres or 1,423.2 km ²). Petroleum and Natural Gas (PNG) permits also exist across Arizona Lithium's Property and are leased to oil and gas producers. All permits and stratigraphic intervals are held 100% by Arizona Lithium or sub-leased from a geothermal company Deep Earth Energy Production Corp. (DEEP). Arizona Lithium entered into a binding legal Subsurface Mineral Permit Acquisition Agreement (SMPAA) with DEEP on October 20, 2021. The SMPAA covers an Area of Mutual Interest (AMI) over Townships 1 to 4 and Ranges 7 to 16 West of the 2nd Meridian. Any pre-existing or recently purchased subsurface mineral permits within the AMI now possess a stratified stratigraphic arrangement. Arizona Lithium holds 100% working interest in mineral rights from Top Madison Group to Top Red River Formation and DEEP holds 100% working interest in mineral rights from Top Red River Formation to Precambrian. No back-in rights, payments, or other agreements and encumbrances are applicable. The subsurface mineral permits are rented from the Saskatchewan Provincial Government, and the Subsurface Mineral Leases are leased. There has been no prior

Criteria	JORC Code explanation	Commentary
		ownership of the subsurface mineral permits across the Project for lithium.
		One mineral permit was awarded on December 17, 2019, which will expire in December 2027; three permits were acquired on April 20, 2020, which expire in April 2028; a total of 34 permits were acquired on April 19, 2021, which expire in April 2029; and a total of 16 permits were acquired on August 23, 2021, which expire in August 2029. On September 8 th , 2022, X permits were converted into 21 year mineral leases and expire on April 11 th , 2043. An additional 18 permits have been sub-leased from DEEP.
		Arizona Lithium has no royalty agreements with lithium entities, petroleum companies or other mineral right holders. The provincial royalty rate on mineral leases for lithium is currently set at 3%, with a royalty free period for the first 24 months of production.
		The Ministry of Energy and Resources (MER) has indicated to Arizona Lithium that the process to license wells for injection, water source, disposal, or production of lithium will follow that of the oil and gas industry.
		Arizona Lithium is not aware at the date of this report of any known environmental issues that could materially impact their ability to extract lithium from the Project.
		Appendix 1: Summary of 72 subsurface mineral permits and leases where Arizona Lithium has 100% working interest across the Duperow Formation.

Exploration done by other parties	Acknowledgment and appraisal exploration by other parties.	of	There has been abundant drilling for oil and gas in southeastern Saskatchewan. This oil and gas exploration work has produced the high quality geologic data (wireline logs, core, and reservoir testing) that was used in Arizona Lithium's report. Other parties including government and academic research teams have also leveraged oil and gas wells to evaluate brine chemistry. Academic research (lampen and Rostron, 2000; lampen, 2001; Shouakar- Stash, 2008) and the Saskatchewan Geological Survey / University of Alberta (Rostron et al., 2002; Jensen 2011, 2012, 2015, 2016; Jensen and Rostron, 2017, 2018; Jensen et al., 2019) have published several technical reports characterizing the lithium potential of various stratigraphic intervals in southern and central Saskatchewan.
			Brine-rich formation water from oil and gas producing intervals have been tested for lithium and other elements by these researchers from University of Alberta and the Saskatchewan Geological Survey. Historical brine samples from 15 wells in and adjacent to Arizona Lithium's Project have been analyzed for lithium concentrations and are interpreted to be representative of the Duperow Formation brine (lampen and Bostron 2000; Jampan 2001; Shouakar
			Rostron, 2000; Iampen, 2001; Shouakar- Stash, 2008) and the Saskatchewan Geological Survey / University of Alberta (Rostron et al., 2002; Jensen 2011, 2012, 2015, 2016; Jensen and Rostron, 2017, 2018; Jensen et al., 2019). Two of these wells (121/09- 13-002-22W2 and 141/14-12- 007-11W2) were sampled twice, resulting in a total of seventeen representative lithium concentrations.
			A total of thirteen of the lithium samples were published in the referenced reports. Four samples (101/07-27-007-06W2/03, 121/09- 03-007-11W2, 141/13-02-007-11W2, and 141/01-22-004-19W2/00) were sourced from an unpublished database. These additional data points were collected and analyzed by researchers at the University of Alberta between 1996 and 2004 and obtained under agreement from Isobrine Solutions Incorporated (Isobrine Solutions), a University of Alberta spin off company
			a University of Alberta spin-off company. Isobrine Solutions holds a Permit to Practice from APEGA, along with a Certificate of

Criteria	JORC Code explanation	Commentary
		Authorization from APEGS to practice in Saskatchewan. These data were provided to Arizona Lithium for their lithium exploration project in good faith.
		Based on the results of more recent drilling and testing since 2021 (below), Arizona Lithium believes there is a high degree of spatial correlation of lithium concentrations within individual Duperow Formation units and that the variation of lithium concentration between historical sampling programs may be due to the units sampled in the historical tests.
		 Wells drilled and tested by Arizona Lithium: 101/14-33-002-12W2 (Year 2021) 104/01-02-001-12W2 (Year 2021) 141/16-20-003-12W2 (Year 2022)
		Wells drilled and tested by Hub City Lithium in partnership with ROK Resources:
		 111/11-02-009-13W2 (Year 2022) 101/14-36-008-13W2 (Year 2022) 101/02-22-007-09W2 (Year 2022)
Geology	Deposit type, geological setting and style of mineralisation.	The target interval of this Project is porous carbonate rocks of the Upper Devonian (Frasnian) Duperow Formation, Saskatchewan Group (Gerhard et al., 1982; Kent and Christopher, 1994). Upper Devonian sediments were laid down in a northwest to southeast elongated Elk Point Basin that extended broadly from northwestern Alberta, through Saskatchewan, and across into North Dakota and Montana (Dunn, 1975). The Duperow Formation correlates westward with the Leduc Formation, a prominent series of reefs in the open-marine Alberta Basin. Middle and Late Devonian sedimentation was characterized by cyclic carbonates and evaporites. Cyclic ordering of strata from shelf carbonates to restricted supratidal carbonates and evaporites, are identified as shallowing-upward or "brining- upward" parasequences and these cyclic intervals are recognized throughout the entire Devonian stratigraphic column in the Elk Point Basin of southern Saskatchewan (Kent and Christopher, 1994). The Duperow Formation was deposited as a shallow- marine, carbonate inner platform to supratidal sabkha or tidal flat (Cen and Salad Hersi, 2006).

Criteria	JORC Code explanation	Commentary
		The deposit type being explored by Arizona Lithium is a lithium-bearing brine hosted by the Duperow Formation. Other lithium-rich brine deposits within oilfields include the brines within the Smackover Formation of the Gulf Coast and the Leduc Formation in Alberta (Kesler et al., 2012; Bowell et al., 2020).
		Lithium brines are defined as accumulations of saline groundwater enriched in dissolved lithium (Bradley, et al., 2017) within arid climates. Lithium brines are located within closed sedimentary basins with a close association with evaporite deposits which resulted from trapped evaporatively concentrated seawater (Bradley et al., 2013). Lithium brines are hosted within one or more aquifers which have had sufficient time to concentrate a brine (Bradley et al., 2017).
		Historical and newly acquired brine analysis data indicate that the Property is located within an area of extremely elevated TDS brine above 300,000 mg/L and with lithium concentrations of up to 258 mg/L within the Duperow Formation. Newly acquired geochemical data has allowed Arizona Lithium to characterize lithium content of the Duperow Formation within much of the Property. Lithium results from wells located across the Property and beyond indicate that lithium concentrations are elevated and laterally continuous across the Property. The northern limit of elevated lithium
		concentrations in the Duperow Formation occurs beyond the northern limits of the Property. Elevated lithium trends extend through the Property and south into North Dakota. Lithium values indicate low lithium concentrations from R18W2 and beyond to the west.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception 	 See Appendix 2: Summary Table of Drill Holes 279 wells with wireline logs to determine the average porosity over the net pay interval. 19 wells with brine samples analysed for lithium concentration.

Criteria	JORC Code explanation	Commentary
	 depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Based on the geologic setting, the Duperow Aquifer is judged to be hydraulically continuous within, and far beyond, the Arizona Lithium resource area. The DST- measured lithium concentrations in the Duperow Formation suggest that lithium concentrations are continuous across the Project. Arizona Lithium's and Hub City Lithium's sampling programs (2021-2022) support the interpretation of regionally consistent lithium values and suggests that some of the measured variability between previously reported lithium concentrations in the Duperow Formation may be due to the differing geologic units that were sampled.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Geophysical wireline logs from wells drilled through the Duperow Formation were used to identify the top and base of the formation. A total of 570 wells were used to determine the top of the Duperow Formation and 548 wells were used to determine the base of the Duperow Formation. 279 wells with wireline logs to determine the average porosity over the net pay interval and 19 wells with brine samples analysed for lithium concentration. The majority of the well drilled are vertical and drilled perpendicular to the Duperow Formation stratigraphy and therefore perpendicular to the mineralization.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps and cross sections include: Figure 1: Location map of Arizona Lithium's Prairie Project Property illustrating major infrastructure (primary roads, rail, highline power transmission lines) Figure 2: Location map of Arizona Lithium's Prairie Project Property including secondary roads

Criteria	JORC Code explanation	Commentary
		 Figure 3: Wells with Lithium Concentration Data surrounding Arizona Lithium's Prairie Project Figure 4: Wells drilled through the Duperow Formation with Petrophysical Evaluations completed for the Resource Assessment (279 wells) Figure 5: Stratigraphy of the Duperow Formation used in the Resource Assessment Figure 6: Cross section of wells in Saskatchewan with lithium concentrations within and adjacent to Arizona Lithium's Property Figure 7: West to East Cross Section Across the Property Figure 8: North to South Cross Section Across the Property
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The range of lithium concentrations within the intra-Duperow Formation stratigraphic intervals are summarized in Table 1: Column 1: The stratigraphic interval defined by Arizona Lithium Column 2: Representative lithium concentrations in the resource area based on the mass volume and brine volume estimates.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	The concentrate produced from CFRO was converted to 99%+ lithium carbonate at AZL's Lithium Research Center in Tempe, Arizona and validated by a 3rd party laboratory, Covalent Metrology in Sunnyvale, California.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further well drilling is planned to test pumping and injection rates. The additional wells should further demonstrate resource grade and productivity.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Each sample is tracked using a unique tracking number, thus all laboratory and reporting procedures are tied back to that tracking number. Each laboratory has internal procedures to ensure data integrity. However, we have a final check on transcription and reporting errors from the labs, by comparing the results of each sample to each other. Reporting and transcription errors post lab analysis are mitigated by multiple levels of review by professional geoscientists. Arizona Lithium undertook a review of the historical sampling data to determine which
		samples were representative of the formation water and which samples should be excluded due to QAQC concerns. The Mineral Resource QP verified the lithium concentration data by reviewing Arizona Lithium's program, confirming the reported well names and concentrations in the referenced data sources, reviewing the reasonableness of the dataset based on regional water quality, and reviewing the dataset for consistency within the Project.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	The QP was involved throughout the testing program including participating in the development of the testing program, planning the QAQC for the water sampling, and witnessing the testing at the 101/14-33- 002-12W2 well from October 19 to October 22, 2021. During the time that the QP was at the 101/14-33-002-12W2 well, four different intervals of the Duperow Formation were developed until representative samples could be collected for laboratory analysis. The QP witnessed the sample preparation, analysis and security measures of the reservoir testing and can verify that the procedures were consistent with the description provided under 'Drill Sample Recovery'.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	The Duperow Aquifer is laterally extensive and highly correlatable across the resource area. Based on Arizona Lithium's sampling program and historical sampling programs, the pore space is filled with a lithium-rich brine across the Project.

Criteria	JORC Code explanation	Commentary
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	Historical data compiled by the oil and gas industry and testing completed by Arizona Lithium, suggests it is possible to withdrawal commercial quantities of brine from the Duperow Formation.
		The Mineral Resource estimate is based on the total volume of water in the net pay and the interpolated lithium concentration within the resource area.
		Approximately 71% of the Mineral Resource estimate is classified as Indicated because the lithium grade, brine volume, and transmissivity have been estimated with sufficient confidence to allow the application of modifying factors in support of mine planning and evaluation of economic viability.
		In some areas the resource estimate is classified as Inferred because the uncertainty in the lithium grade or the uncertainty in the formation transmissivity were considered too large to support evaluation of economic viability.
		It is expected that with continued exploration all areas of the resource can be upgraded to Indicated or Measured classifications.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Arizona Lithium rents 70 subsurface mineral permits, and leases two subsurface mineral parcels located in southeast Saskatchewan close to the United States border. The subsurface mineral permits are leased from the Saskatchewan Provincial Government and cover 549.5 square miles (351,709 acres or 1,423.2 km ²).
		Across the Project, the top of the Duperow Formation varies in depth from 1,700 m true vertical depth (TVD) (900 mbsl) in the northeast to 2,500 m TVD (2,000 mbsl) in the southwest. Seven (7) structure elevation maps between the top of the Duperow (Seward member) and the bottom of the Duperow Formation (top of Souris River Formation) were prepared in the resource area. Between 548 wells (top Souris River Formation) and 570 wells (top Duperow Formation) were used in the interpolation of each surface. Based on the high quality of the wireline logs and the highly correlatable nature of the Durperow, the dimensions of the Mineral Resource are well constrained.
		Based on the geologic setting, regional hydraulic head mapping, and regional

Criteria	JORC Code explanation	Commentary	
		geochemical characterizations, Aquifer is judged to be continuous within, and far Arizona Lithium resource historical, and recently meas concentrations in the Duperor also suggest that lithium conce continuous across the Resource	hydraulically beyond, the area. The sured lithium w Formation, entrations are
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine 		the resource pping was ithium and for the intra- raphy were as Inc. for onal geologic construct the
	 production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding 	Interval	Number of Control Points
	 recovery of by-products. Estimation of deleterious elements or other non-grade variables of 	Seward Member (top Duperow Formation)	570
	economic significance (eg sulphur for	Seward Evaporite	567
	acid mine drainage characterisation).In the case of block model	Flat Lake Evaporite	559
	interpolation, the block size in relation to the average sample spacing and	Upper Wymark C Anhydrite	567
	the search employed.	Upper Wymark C	567
	 Any assumptions behind modelling of selective mining units. 	Upper Wymark B	565
	Any assumptions about correlation	Upper Wymark A	564
	between variables.Description of how the geological	Middle Wymark D	562
	interpretation was used to control the resource estimates.	Middle Wymark C	559
	• Discussion of basis for using or not	Middle Wymark B	557
	using grade cutting or capping. • The process of validation, the	Middle Wymark A	553
	checking process used, the	Lower Wymark	553
	comparison of model data to drill hole data, and use of reconciliation data if	Saskatoon	552
	available.	Souris River Formation (base Duperow Formation)	548
		Wells used in the structure a mapping span from Range 3W 21W2M and include the r townships in North Dakota and	2M to Range orthern two

Criteria	JORC Code explanation	Commentary
		to 11 in Saskatchewan. Thickness or structural anomalies identified in the maps were reviewed and corrected (when necessary) prior to interpolation. The interpolated surfaces represent the structure and thickness of the Duperow Formation. No Duperow Formation-aged faults have been identified.
		Isopach maps were created in GeoSCOUT [™] using the kriging gridding algorithm. The isopach maps were constructed to understand and assess thickness trends within the intra-Duperow Formation stratigraphy. Any anomalies in the maps were addressed by quality checking stratigraphic tops in the wells and shifting them accordingly.
		The structure maps of surfaces were exported from GeoSCOUT [™] and imported into FEFLOW [™] to determine the gross rock volume. Additionally, effective porosity maps net pay maps, and lithium concentration maps for each intra-Duperow interval were imported into FEFLOW [™] to calculate the net brine volume of the Duperow Aquifer.
		Validation of the FEFLOW generated isopach maps was achieved by comparing to the isopach maps generated in GeoSCOUT [™] .
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Not applicable.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	Not used.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	Lithium rich brine will be mined by pumping the water from production wells. Commercial scale production will likely require water production rates greater than 10,000 m3/day and as such water well networks will be required to meet the production targets. The evaluation of potential production rates is dependent on the geologic continuity, hydraulic heads, and transmissivity of the Duperow Formation. Relatively large datasets of geologic surfaces (selected from 270 wells) and hydraulic heads (measured in published studies and onsite wells) provide a high degree of confidence in the geologic continuity and hydraulic heads of the Duperow Formation. The transmissivity of the Formation is spatially variable has been

Criteria	JORC Code explanation	Commentary
		measured at: 3 Arizona Lithium wells (101/14-33-002-12W2, 104/01-02-001- 12W2, 141/16-20-003-12W2); 3 Hub City Lithium wells (111/11-02-009-12W2 13W2, 101/14-36-008-12W2 13W2, and 101/02- 22-007-12W2 09W2); and in 11 drill stem tests (DSTs). Analysis of the well tests was completed using Theis (1935), Driscol (1986), and Dougherty-Babu (1984). Evaluation of the potential deliverability from a single well was analysed using the Modified Moell method (Maathuis and van der Kamp, 2006). Potential deliverability from a well network was evaluated using Theis (1935) with superposition and an extended solution to MacMillan (2009). Evaluations of deliverability considered the geologic setting, linear well loss, and pressure interference between wells.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Lithium will be extracted from the brine via direct lithium extraction (DLE) technology. Arizona Lithium has pilot tested two different DLE technologies and both have produced average lithium recoveries of over 90%. Arizona Lithium has developed an ion exchange material called Plix that has been shown to recover an average of 92% of lithium from brine. This claim is based on a 3rd party verification report prepared in April 2021 by Coanda Research and Development. Plix is manufactured by Arizona Lithium using proprietary raw materials and reaction conditions. Testing for lithium extraction was performed at the Arizona Lithium laboratory under the supervision of Coanda Research and Development. Additional testing was conducted by SLB. The SLB testing utilized a proprietary full system solution, including DLE and cross-flow reverse osmosis (CFRO), optimized to operate with other flow sheet components, and achieved 93% recovery for DLE.
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental	Arizona Lithium is not aware at the date of this report of any known environmental issues that could materially impact their ability to extract lithium from the planned Project area. Arizona Lithium intends to place any required infrastructure within cultivated

Criteria	JORC Code explanation	Commentary
	impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	lands to help mitigate any adverse effects to populations of Species of Management Concern (SOMC) at the Project. Once the location of central processing facility is finalized, Arizona Lithium will complete the required detailed environmental surveys. Arizona Lithium aims to minimize surface environmental footprints by having multiple production wells drilled from a common surface pad, using existing surface infrastructure to minimize disturbance, such as using existing roads to access well pads, amongst other activities. Based on the Hunting, Angling and Biodiversity Information of Saskatchewan (HABISask) search, it is not believed that the Project is likely to cause any impacts to SOMC that cannot be mitigated through proper planning. The main waste product produced by the central processing facility will be lithium depleted brine. It is not currently foreseen that the Project will produce any surface tailings or process waste, and all lithium depleted brine is planned to be disposed through disposal wells into underlying
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	stratigraphy. Wireline logs were examined to determine the lithology across the intra-Duperow Formation intervals. Density logging tools emit gamma-rays to measure electron density of the formation. These data are used to determine lithology (Photoelectric factor (PEF)) and calculate porosity. The typical data density of the bulk density log is a measurement is taken approximately every 0.1m vertical depth. This represents several thousand sample data points per well, that throughout the area equates to several hundred thousand sample data points. The bulk density of each interval was one source of data used to interpret the average porosity over each interval. This exercise was completed for 279 wells.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, 	The Mineral Resource estimation is based on geological surfaces and Duperow Formation Aquifer quality data provided by Arizona Lithium. Historical and current lithium concentrations and geological data

Criteria	JORC Code explanation	Commentary
	confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	were incorporated into the lithium mass estimates. Approximately 71% of the Mineral Resource
	• Whether the result appropriately reflects the Competent Person's view of the deposit.	estimate is classified as Indicated because the lithium grade, brine volume, and transmissivity have been estimated with sufficient confidence to allow the application of modifying factors in support of mine planning and evaluation of economic viability.
		In some areas, the resource estimate is classified as Inferred because the uncertainty in the lithium grade or the uncertainty in the formation transmissivity were considered too large to support evaluation of economic viability.
		It is expected that with continued exploration all areas of the resource can be upgraded to Indicated or Measured classifications.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	No detailed audits have been completed.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Thes statements of relative accuracy and confidence of the estimate and with production data, where available. 	The Mineral Resource estimation has been performed according to the requirements of the CIM Best Practice Guidelines for Resource and Reserve Estimation for Lithium Brines (2012), CIM Definitions Standard (2014), Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines (2019), the CIM NI 43- 101F1 (2011), and the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012). Additional data and modelling will be required to further characterize the Mineral Resource. The Mineral Resource values have been rounded to reflect that they are estimates. There has been sufficient exploration to define most of the Resource as an Indicated Mineral Resource. The estimate of Mineral Resource may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues, but at present there are none known which could adversely affect the Mineral Resources estimated above.

Appendix 1:

Summary of 72 subsurface mineral permits and leases where Arizona Lithium has 100% WI across the Duperow Formation. Bold permit numbers indicate DEEP as the lessor, with the stratigraphic interval Top Madison to Top Red River held in trust for Arizona Lithium. Costs are expressed in Canadian dollars; MWR = Minimum Work Requirement.

Permit / Lease No.	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Cost (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
SMP002	1553.82	1553.82	4/23/2019	3,107.64	577,000	LS	Base Three Forks Group to top Precambrian	DEEP / In
SMP007	1292.16	1292.16	12/17/2019	2,584.32	485,000			PLi / Out
SMP008 SMP021	258.38 1742.94	258.38 1656.78	4/20/2020 4/20/2020	516.76 3,313.55	97,000 654,000		Top Madison Group to Top	
SMP022	257.95	257.95	4/20/2020	515.90	97,000		Precambrian	DEEP / In
SMP023	1547.57	1547.57	4/20/2020	3,095.13	581,000			
SMP010	9295.42	8842.41	4/20/2020	17,684.82	3,485,000	PNG	Top Madison Group to Top Winnipeg Formation	
SMP011	1293.55	1293.55	4/20/2020	2,587.10	485,000		Top Madison Group to Top Precambrian - except E/2 28-3- 12W2, 29-3-12W2 and 32-3-12W2 Top Madison Group to Top Winnipeg Formation	PLi / In
SMP044	3872.15	3807.55	4/19/2021	7,615.10	1,475,000			PLi / Out
SMP046 SMP047	128.76 258.21	128.76 258.21	4/19/2021 4/19/2021	257.51 516.43	50,000 99,000		Top Madison Group to Precambrian	
3112047	230.21	230.21	4/19/2021	510.43	53,000		Top Madison Group to Precambrian;	
SMP048	1227.21	1173.33	4/19/2021	2,346.67	468,000		except W/2 and NE-6-2-10 W2 top Madison Group to base Three Forks Group	DEEP / In
SMP049	258.38	258.38	4/19/2021	516.75	99,000		Top Madison Group to Precambrian	
SMP050	2252.20	2252.20	4/19/2021	4,504.40	858,000		Top Madison Group to Precambrian;	
SMP056	2266.02	2265.84	4/19/2021	4,531.68	863,000		except NW-6-4-11 W2, S/2-10-4-11 W2, NE-26-3-12 W2 and 36-3-12 W2 top Madison Group to top Winnipeg Formation	PLi / In
SMP058	1876.44	1876.44	4/19/2021	3,752.87	715,000		Top Madison Group to Precambrian	PLi / Out
SMP059	2643.97	2539.88	4/19/2021	5,079.76	1,007,000		Top Madison Group to Precambrian; except 23-6-10 W2 top Madison Group to Top Winnipeg Formation	PLi / Out
SMP061 SMP063	512.46 1738.78	512.46 1738.78	4/19/2021 4/19/2021	1,024.92 3,477.55	196,000 663,000	21/M	Top Madison Group to Precambrian	
SMP063	1738.78	1738.78	4/19/2021	3,618.16	689,000	3KM, PNG	Top Madison Group to Winnipeg	
SMP065	1810.75	1810.75	4/19/2021	3,621.49	690,000		Formation	
SMP066	1879.20	1815.16	4/19/2021	3,630.32	716,000			PLi / In
SMP067	2581.51	2581.51	4/19/2021	5,163.02	984,000		Top Madison Group to top Winnipeg Formation; except 14-2-12 W2 top Madison Group to Precambrian	
SMP068	2828.16	2828.13	4/19/2021	5,656.26	1,078,000		Top Madison Group to top Winnipeg Formation; except 22-2-11 W2, 28- 2-11 W2, 29-2-11 W2, 30-2-11 W2 and 32-2-11 W2 top Madison Group to Precambrian	
SMP070	2388.55	2018.87	4/19/2021	4,037.73	910,000		Top Madison Group to Precambrian; except 22-3-12 W2, 23-3-12 W2 and SE -24-3-12 W2 top Madison Group to top Winnipeg Formation	
SMP078	3157.57	1803.83	4/19/2021	3,607.66 2,821.47	1,203,000		Top Madison Group to Precambrian	PLi / Out
SMP079 SMP082	1410.74 2834.84	1410.74 2834.84	4/19/2021 4/19/2021	2,821.47 5,669.68	538,000 1,080,000		Top Madison Group to top Winnipeg	
SMP082	2319.43	2319.43	4/19/2021	4,638.86	884,000		Formation	
SMP084	2106.95	2106.95	4/19/2021	4,213.91	803,000	PNG, T	Top Madison Group to top Winnipeg Formation; except 25-2-12 W2, NE- 26-2-12 W2, 27-2-12 W2, 34-2-12 W2, 35-2-12W2 and 36-2-12 W2 top Madison Group to Precambrian	DI i / To
SML001	1526.19	1526.19	4/19/2021	15,261.90	582,000	PNG	Top Madison Group to Precambrian	PLi / In
SML002 SMP087	1223.27 2599.37	1221.99 2599.06	4/19/2021 4/19/2021	12,232.70 5,198.11	466,000 990,000	3KM, PNG	Top Madison Group to top Precambrian; except 34-3-12 W2, 2- 4-12 W2, 12-4-12 W2 and 13-4-12 W2 top Madison Group to top Winnipeg Formation	
SMP090	1546.80	1482.47	4/19/2021	2,964.95	590,000	PNG, CA, 3KM	Top Madison Group to Precambrian	PLi / Out
SMP099	1550.44	1550.44	4/19/2021	3,100.88	591,000	3KM, PNG	Top Madison Group to top Winnipeg Formation	PLi / In

Permit / Lease No.	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Cost (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
SMP100	1874.77	1874.77	4/19/2021	3,749.53	714,000		Top Madison Group to top Winnipeg Formation; except NE-5-1-13 W2 top Madison Group to Precambrian	
SMP101	516.70	516.70	4/19/2021	1,033.40	197,000		Top Madison Group to Precambrian	
SMP102	1806.44	1806.44	4/19/2021	3,612.88	688,000	PNG	Top Madison Group to Precambrian; except 16-1-13 W2, 21-1-13 W2 and 22-1-13 W2 top Madison Group to top Winnipeg Formation	DEEP / In
SMP103	2391.56	2391.56	4/19/2021	4,783.11	911,000	CA, PNG, 3KM	Top Madison Group to top Winnipeg Formation	PLi /
SMP104	2074.75	2074.75	4/19/2021	4,149.50	791,000	PNG, 3KM	1 officiation	
SMP105	2316.88	2316.88	4/19/2021	4,633.77	883,000	PNG	Top Madison Group to top Precambrian; except 4-2-13 W2 and SE-9-2-13 W2 and W/2-9-2-13 W2 top Madison Group to top Winnipeg Formation; NE-9-2-13 W2 top Madison Group to top Duperow Formation and base Souris River Formation to top Winnipeg Formation.	DEEP / In
SMP106	2017.84	1956.18	4/19/2021	3,912.37	769,000	PNG	Top Madison Group to top Precambrian; except 33-2-13 W2, 34-2-13 W2, W/2-35-2-13 W2, SE- 35-2-13 W2 and 36-2-13 W2 top Madison Group to top Winnipeg Formation	
SMP107	1548.07	1510.04	4/19/2021	3,020.09	590,000			
SMP108	2392.85	2392.85	4/19/2021	4,785.70	912,000	3KM, PNG		
SMP109	2203.46	2203.46	4/19/2021	4,406.91	840,000	PNG		PLi / In
SMP110	2523.42	2523.42	4/19/2021	5,046.84	961,000	3KM, PNG	Top Madison Group to Precambrian	121/111
SMP111	3049.83	3049.83	4/19/2021	6,099.66	1,162,000			
SMP112	4544.02	4544.02	4/19/2021	9,088.04	1,731,000	PNG		
SMP114	4394.98	4394.98	4/19/2021	8,789.95	1,674,000	CA,		DEEP / In
SMP115	4109.14	4109.14	4/19/2021	8,218.29	1,565,000	PNG	Top Madison Group to Precambrian	DEEP / In
SMP116 SMP117	4576.26 1604.93	4576.26 1604.93	4/19/2021 4/19/2021	9,152.52 3,209.86	1,743,000 612,000			
SMP117	2308.58	2308.58	4/19/2021	4,617.16	880,000	PNG	Top Madison Group to top Precambrian; except SE-4-3-14 W2, E/2-5-3-14 W2, E/2-7-3-14 W2, 18- 3-14 W2 and 19-3-14 W2 top Madison Group to top Winnipeg Formation	PLi / In
SMP119	3447.80	3447.80	4/19/2021	6,895.61	1,314,000		Top Madison Group to top Precambrian; except 17-3-14 W2 top Madison Group to top Winnipeg Formation	
SMP120 SMP121	3380.74 4585.77	3380.74 4388.70	4/19/2021 4/19/2021	6,761.48 8,777.40	1,288,000			DEEP / In
SMP121 SMP145	517.46	517.46	8/23/2021	1,034.92	1,747,000		Top Madicon Group to Procombridge	
SMP150	1291.87	1259.65	8/23/2021	2,519.30	497,000	PNG, 3KM, CA	Top Madison Group to Precambrian	PLi / In
SMP151 SMP152	1811.02 516.90	1811.02 516.90	8/23/2021 8/23/2021	3,622.05	697,000 199,000	PNG	Top Madison Group to Precambrian	PLi / Out
SMP152 SMP153	516.17	516.17	8/23/2021	1,032.34	199,000			
SMP154	1226.31	1157.61	8/23/2021	2,315.23	472,000	PNG,	Top Madison Group to Precambrian	PLi / Out
SMP156 SMP160	258.80 194.65	258.80 194.65	8/23/2021 8/23/2021	517.60 389.30	100,000 75,000	3KM		PLi / In
SMP162	2393.70	2393.70	8/23/2021	4,787.39	921,000	PNG	Top Madison Group to Precambrian	PLi / In
SMP143	3359.85	3359.85	8/23/2021	6,719.71	1,292,000	PNG, 3KM, CA	Top Madison Group to Precambrian	PLi / Out
SMP164	2327.11	2327.11	8/23/2021	4,654.22	895,000	PNG, 3KM	Top Madison Group to Precambrian	PLi / Out
AMP165 SMP167	515.00 261.40	515.00 245.07	8/23/2021 8/23/2021	1,030.01 490.13	198,000 101,000	PNG	Top Madison Group to Precambrian Top Madison Group to Precambrian	PLi / Out PLi / In
SMP168	130.07	130.07	8/23/2021	260.13	50,000		Top Madison Group to Precambrian	PLi / In

Permit / Lease No.	Surface Area (Ha)	Disposition Area (Ha)	Offering Date	Annual Cost (CAD \$)	MWR (CAD \$)	Restrictions	Stratigraphic Interval	Lessor / AMI (In / Out)
SMP169	2329.79	2329.79	8/23/2021	4,659.58	896,000	PNG	Top Madison Group to Precambrian	PLi / Out
SMP170	2192.98	2192.98	8/23/2021	4,385.97	843,000	PNG, 3KM	Top Madison Group to Precambrian	PLi / Out

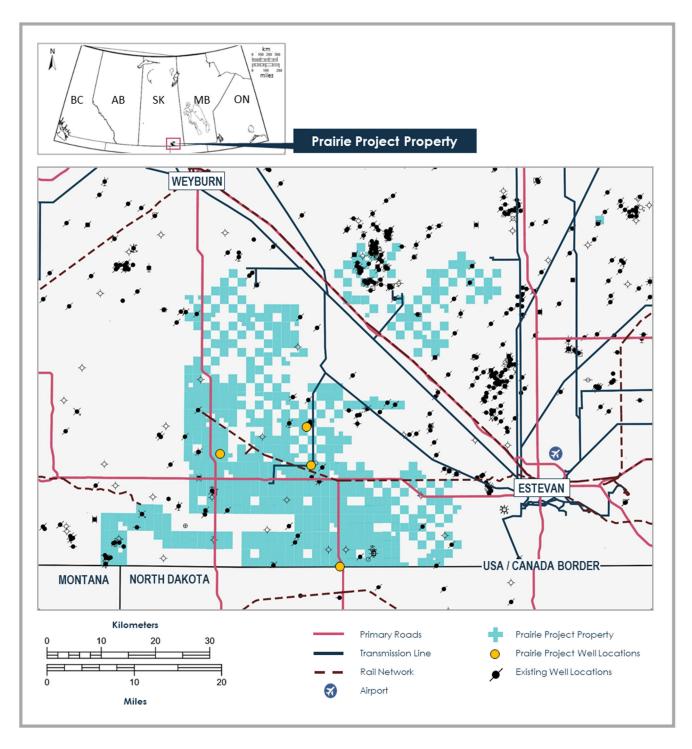
Appendix 2: Summary Table of Drill Holes:

279 wells with wireline logs to determine the average porosity over the net pay interval. ٠

Well ID	Reference Elevation - Kelly Bushing (m)	Measured Depth (m)	True Vertical Depth (m)	Vertical or Deviated Well	Surface Location	Surface Hole Easting (NAD83)	Surface Hole Northing (NAD83)	Bottom Hole Easting (NAD83)	Bottom Hole Northing (NAD83)
	Re _	Σ	F	>		ดั	Su	ă	Be
111/15-05-001-08W2/00	583.4	2850.5	2850.5	vertical	15-05-001-08W2	643156	5430584	643156	5430584
131/08-13-001-10W2/00	584.2	2814.2	2814.2	vertical	08-13-001-10W2	630707	5432981	630707	5432981
121/12-24-001-10W2/00	581.3	2810.9	2810.9	vertical	12-24-001-10W2	629438	5434660	629438	5434660
121/10-28-001-10W2/00	587.0	3165.0	3165.0	vertical	10-28-001-10W2	625275	5436213	625275	5436213
102/14-04-001-11W2/00 141/03-08-001-11W2/00	590.9 602.0	3839.5 3394.9	3496.2 3394.9	deviated	12-10-001-11W2 03-08-001-11W2	616345 613844	5431028 5430406	615352 613844	5429979 5430406
103/01-02-001-11W2/00	618.6	3731.0	3731.0	vertical vertical	01-02-001-12W2	609801	5430406	609801	5430406
131/16-12-001-12W2/00	603.7	2463.0	2462.8	vertical	16-12-001-12W2	611189	5431660	611185	5431658
121/13-18-001-12W2/00	631.9	2480.0	2480.0	vertical	13-18-001-12W2	601765	5432827	601765	5432827
101/01-26-001-12W2/00	596.7	3442.8	3442.2	vertical	01-26-001-12W2	609425	5435055	609430	5435066
101/02-03-001-13W2/00	668.9	2556.0	2555.7	vertical	02-03-001-13W2	597856	5428473	597856	5428509
141/15-31-001-15W2/00	710.0	2550.0	2550.0	vertical	15-31-001-15W2	573383	5437486	573383	5437486
101/15-04-001-16W2/00	678.4	2490.0	2490.0	vertical	15-04-001-16W2	566902	5429286	566902	5429286
101/02-14-001-16W2/00	703.8	2514.9	2514.9	vertical	02-14-001-16W2	570124	5431430	570124	5431430
131/03-32-001-16W2/00 141/15-14-001-17W2/00	695.3 688.1	3224.0 3205.0	3224.0 3205.0	vertical	03-32-001-16W2 15-14-001-17W2	564658 560374	5436326 5432589	564658 560374	5436326 5432589
121/07-23-001-17W2/00	680.6	3194.0	3194.0	vertical vertical	07-23-001-17W2	560224	5433166	560224	5433166
101/11-27-001-17W2/00	703.8	3198.8	3198.8	vertical	11-27-001-17W2	558309	5435227	558309	5435227
121/01-08-002-06W2/00	578.8	2725.0	2681.7	deviated	01-08-002-06W2	662588	5441580	662591	5441375
141/05-06-002-08W2/00	575.0	3406.3	3406.3	vertical	05-06-002-08W2	640344	5439709	640344	5439709
131/14-14-002-09W2/00	572.0	2686.0	2686.0	vertical	14-14-002-09W2	637598	5443567	637598	5443567
111/16-15-002-09W2/00	574.3	2683.5	2683.5	vertical	16-15-002-09W2	637043	5443389	637043	5443389
111/08-22-002-09W2/00	570.2	2611.3	2611.1	vertical	08-22-002-09W2	637026	5444232	637022	5444248
121/09-22-002-09W2/00	570.1	2665.0	2664.4	vertical	09-22-002-09W2	636858	5444592	636850	5444611
111/04-23-002-09W2/00 131/01-28-002-09W2/00	570.3 569.5	2659.0 2665.0	2659.0 2654.2	vertical	04-23-002-09W2	637472 635172	5443854 5445453	637472 635157	5443854 5445457
131/01-28-002-09W2/00 111/11-30-002-09W2/00	572.2	2675.0	2675.0	vertical vertical	01-28-002-09W2 11-30-002-09W2	631326	5445455	631329	5445457
113/11-30-002-09W2/00	571.5	2645.0	2640.9	deviated	11-30-002-09W2	631343	5446029	631346	5446023
101/03-16-002-10W2/00	584.6	3292.1	3292.1	vertical	03-16-002-10W2	624875	5441931	624875	5441931
131/15-25-002-10W2/00	571.1	2665.0	2662.6	deviated	15-25-002-10W2	629979	5446659	629989	5446528
131/04-36-002-10W2/00	571.4	2676.0	2675.7	vertical	04-36-002-10W2	629089	5446969	629076	5446968
141/01-29-002-12W2/00	598.3	2400.0	2400.0	vertical	01-29-002-12W2	604596	5444923	604596	5444923
101/14-33-002-12W2/00	598.0	2421.0	2421.0	vertical	14-33-002-12W2	605333	5447568	605333	5447568
111/05-34-002-12W2/00	595.5	2368.5	2368.5	vertical	05-34-002-12W2	606519	5446768	606519	5446768
101/06-02-002-14W2/00	681.6	2510.0	2510.0	vertical	06-02-002-14W2	589142	5438478	589142	5438478
101/08-05-002-14W2/00 141/08-16-002-14W2/00	680.0 647.1	3262.0 3189.1	3262.0 3189.1	vertical vertical	08-05-002-14W2 08-16-002-14W2	585087 586734	5438402 5441789	585087 586734	5438402 5441789
101/10-16-002-14W2/00	647.1	3101.2	3101.2	vertical	10-16-002-14W2	586232	5442040	586232	5442040
121/16-02-002-15W2/00	696.3	2521.0	2521.0	vertical	16-02-002-15W2	580121	5439085	580121	5439085
121/11-33-002-16W2/00	718.9	2420.0	2420.0	vertical	11-33-002-16W2	566245	5446566	566245	5446566
131/12-31-003-06W2/00	586.5	2514.0	2514.0	vertical	12-31-003-06W2	659249	5458185	659249	5458185
121/15-19-003-08W2/00	584.3	2577.0	2577.0	vertical	15-19-003-08W2	640462	5454730	640462	5454730
101/09-25-003-09W2/00	582.3	2557.0	2557.0	vertical	09-25-003-09W2	639369	5455949	639369	5455949
131/14-25-003-09W2/00	581.9	2491.0	2489.3	vertical	14-25-003-09W2	638408	5456447	638403	5456446
131/08-35-003-09W2/00 121/16-35-003-09W2/00	579.7 580.3	2497.0 2552.0	2497.0 2552.0	vertical vertical	08-35-003-09W2 16-35-003-09W2	637593 637547	5457265 5457941	637593 637547	5457265 5457941
121/13-36-003-09W2/00	583.5	2565.0	2552.0	deviated	13-36-003-09W2	637982	5457941	637990	5457941
121/15-02-003-10W2/00	569.0	2650.0	2649.6	vertical	15-02-003-10W2	627577	5449460	627550	5449474
131/03-14-003-10W2/00	570.6	2620.0	2620.0	vertical	03-14-003-10W2	627102	5451804	627102	5451804
131/03-21-003-10W2/00	565.7	2921.0	2921.0	vertical	03-21-003-10W2	623777	5453340	623777	5453340
101/09-22-003-10W2/00	578.5	2618.0	2618.0	vertical	09-22-003-10W2	626359	5454028	626359	5454028
121/09-34-003-10W2/00	577.0	2584.0	2584.0	vertical	09-34-003-10W2	626173	5457083	626173	5457083
111/14-15-003-15W2/00	655.1	3039.0	3039.0	vertical	14-15-003-15W2	576578	5451808	576578	5451808
111/04-22-003-15W2/00	653.7	3073.0	3006.3	vertical	04-22-003-15W2	576243	5452199	576242	5452191
101/07-07-003-17W2/00	706.5	2697.0	2697.0	vertical	07-07-003-17W2	552461	5449260	552461	5449260

101/07-23-003-17W2/00	741.3	3100.1	3100.1	vertical	07-23-003-17W2	558967	5452502	558967	5452502
101/01-10-003-21W2/00	771.0	2944.5	2944.5	vertical	01-10-003-21W2	518615	5448588	518615	5448588
141/06-30-004-04W2/00	591.3	2336.0	2336.0	vertical	06-30-004-04W2	679181	5466615	679181	5466615
141/14-18-004-06W2/00	593.5	2475.0	2475.0	vertical	14-18-004-06W2	659635	5463505	659635	5463505
132/15-18-004-06W2/00	594.5	2475.0	2472.6	vertical	15-18-004-06W2	659803	5463576	659794	5463578
141/04-01-004-07W2/00	588.6	2513.0	2513.0	vertical	04-01-004-07W2	657712	5458983	657712	5458983
141/15-07-004-07W2/00	589.1	2518.3	2518.1	vertical	15-07-004-07W2	650286	5461602	650282	5461607
121/05-13-004-07W2/00	593.7	2441.0	2441.0	vertical	05-13-004-07W2	657436	5462550	657436	5462550
191/10-14-004-07W2/00	592.5	3420.0	2712.1	vertical	01-14-004-07W2	657213	5462228	656698	5462734
121/08-22-004-07W2/00	594.2	2905.0	2905.0	vertical	08-22-004-07W2	655297	5463913	655297	5463913
121/07-16-004-08W2/00	590.7	2523.0	2523.0	vertical	07-16-004-08W2	643626	5462094	643626	5462094
101/11-18-004-08W2/00	588.1	2526.0	2523.6	vertical	11-18-004-08W2	639966	5462507	639969	5462494
131/02-19-004-08W2/00	589.6	2510.0	2509.2	vertical	02-19-004-08W2	640300	5463333	640297	5463342
131/12-20-004-08W2/00	591.5	2502.0	2503.2	vertical	12-20-004-08W2	641119	5464171	641119	5464171
	594.4	2302.0	2302.0		12-20-004-08W2 10-29-004-08W2		5465666		
121/10-29-004-08W2/00				vertical		641821		641821	5465666
141/06-30-004-08W2/00	591.6	2485.0	2485.0	vertical	06-30-004-08W2	639977	5465485	639977	5465485
141/01-31-004-08W2/00	593.7	2471.0	2470.8	vertical	01-31-004-08W2	640767	5466734	640767	5466742
141/09-31-004-08W2/00	597.7	3000.1	3000.1	vertical	09-31-004-08W2	640762	5467421	640762	5467421
101/08-01-004-09W2/00	586.4	2560.0	2560.0	vertical	08-01-004-09W2	639274	5458821	639274	5458821
141/01-10-004-09W2/00	581.6	2527.0	2527.0	vertical	01-10-004-09W2	636025	5459995	636025	5459995
111/13-11-004-09W2/00	583.9	2507.0	2507.0	vertical	13-11-004-09W2	636573	5461125	636573	5461125
121/16-13-004-09W2/00	586.3	2500.0	2500.0	vertical	16-13-004-09W2	638978	5462785	638978	5462785
121/10-14-004-09W2/00	585.0	2495.0	2495.0	vertical	10-14-004-09W2	637065	5462322	637065	5462322
111/12-22-004-09W2/00	588.4	2490.0	2489.5	vertical	12-22-004-09W2	634832	5463900	634832	5463900
121/16-23-004-09W2/00	588.3	2495.1	2494.6	vertical	16-23-004-09W2	637411	5464280	637413	5464280
111/06-24-004-09W2/00	590.1	2506.7	2506.3	vertical	06-24-004-09W2	638472	5463630	638489	5463646
131/03-25-004-09W2/00	588.5	2489.0	2488.1	vertical	03-25-004-09W2	638262	5464923	638259	5464904
141/01-27-004-09W2/00	589.9	2481.0	2480.9	vertical	01-27-004-09W2	635950	5464949	635950	5464950
121/12-27-004-09W2/00	590.2	2478.0	2477.8	vertical	12-27-004-09W2	634560	5465503	634562	5465492
191/13-34-004-09W2/00	593.8	2895.6	2563.6	deviated	16-33-004-09W2	634211	5467616	634634	5467713
141/06-11-004-10W2/00	585.0	2545.0	2545.0	vertical	06-11-004-10W2	627189	5460277	627189	5460277
141/16-24-004-10W2/00	585.6	2495.0	2494.7	vertical	16-24-004-10W2	629449	5464372	629447	5464374
141/14-35-004-10W2/00	587.4	2495.0	2378.8	deviated	14-35-004-10W2	626928	5467500	626946	5467517
	571.5		2378.8						
121/13-01-004-11W2/00		2875.5		vertical	13-01-004-11W2	618313	5458968	618313	5458968
121/01-04-004-11W2/00	568.2	2243.0	2243.0	vertical	01-04-004-11W2	614637	5457747	614637	5457747
131/13-20-004-11W2/00	572.4	2928.2	2928.2	vertical	13-20-004-11W2	611794	5463859	611794	5463859
131/06-07-004-12W2/00	590.8	2879.0	2878.8	vertical	06-07-004-12W2	600825	5459615	600826	5459649
121/04-09-004-12W2/00	589.1	2886.0	2885.3	vertical	04-09-004-12W2	603690	5459187	603698	5459172
141/01-22-004-19W2/00	755.6	3075.0	3075.0	vertical	01-22-004-19W2	538243	5461757	538243	5461757
121/09-36-005-04W2/00	594.3	2510.7	2510.4	vertical	09-36-005-04W2	687394	5478319	687397	5478301
141/15-11-005-05W2/00	593.4	2290.0	2290.0	vertical	15-11-005-05W2	675975	5472145	675975	5472145
121/13-12-005-05W2/00	593.1	2282.0	2281.8	vertical	13-12-005-05W2	676719	5471927	676722	5471928
121/02-14-005-05W2/00	595.4	2780.0	2780.0	vertical	02-14-005-05W2	675851	5472325	675851	5472325
121/07-15-005-05W2/00	593.4	2287.0	2287.0	vertical	07-15-005-05W2	674231	5472607	674231	5472607
121/15-23-005-05W2/00	596.6	2247.0	2247.0	vertical	15-23-005-05W2	675772	5475183	675772	5475183
111/02-24-005-05W2/00	594.8	2246.0	2246.0	vertical	02-24-005-05W2	677606	5474047	677606	5474047
121/15-24-005-05W2/00	599.2	2244.0	2236.9	deviated	15-24-005-05W2	677352	5475185	677321	5475145
111/05-26-005-05W2/00	595.2	2240.0	2238.2	vertical	05-26-005-05W2	675090	5475886	675089	5475911
131/14-27-005-05W2/00	594.8	2230.0	2230.0	vertical	14-27-005-05W2	673602	5476955	673602	5476955
141/05-33-005-05W2/00	595.6	2268.0	2263.5	deviated	05-33-005-05W2	671845	5477660	671907	5477658
111/07-33-005-05W2/00	596.2	2246.0	2246.0	vertical	07-33-005-05W2	672671	5477412	672671	5477412
101/09-33-005-05W2/00	601.7	2278.0	2277.4	vertical	09-33-005-05W2	672925	5478025	672937	5478056
121/12-33-005-05W2/00	594.0	2242.1	2242.1	vertical	12-33-005-05W2	671694	5477895	671694	5477895
111/14-33-005-05W2/00	597.2	2235.0	2235.0	vertical	14-33-005-05W2	672208	5478298	672208	5478298
141/05-34-005-05W2/00	599.3	2269.8	2269.8	vertical	05-34-005-05W2	673398	5477688	673398	5477688
191/11-34-005-05W2/00	599.3	2269.8	2269.8		06-34-005-05W2	673813	547768	673807	
				deviated					5477853
191/15-34-005-05W2/00	596.5	2445.0	2184.4	vertical	10-34-005-05W2	674099	5478074	674084	5478435
101/05-05-005-06W2/00	599.7	2415.0	2415.0	vertical	05-05-005-06W2	660608	5469123	660608	5469123
141/16-10-005-06W2/00	595.7	2361.0	2361.0	vertical	16-10-005-06W2	665070	5471745	665070	5471745
111/07-04-005-07W2/00	598.6	2850.0	2850.0	vertical	07-04-005-07W2	653461	5468832	653461	5468832
112/07-04-005-07W2/00	598.2	2423.1	2423.1	vertical	07-04-005-07W2	653373	5468835	653373	5468835
131/11-04-005-07W2/00	598.3	2450.0	2450.0	vertical	11-04-005-07W2	652690	5469368	652690	5469368
121/15-08-005-07W2/00	599.8	2851.5	2850.8	vertical	15-08-005-07W2	651501	5471204	651512	5471216
131/08-14-005-07W2/00	596.0	2388.2	2388.2	vertical	08-14-005-07W2	656794	5472372	656794	5472372
111/03-15-005-07W2/00	600.0	2416.0	2415.5	vertical	03-15-005-07W2	654492	5471708	654501	5471733
101/05-07-005-08W2/00	600.8	2448.0	2448.0	vertical	05-07-005-08W2	639422	5470147	639422	5470147
131/08-15-005-08W2/00	601.5	2467.0	2467.0	vertical	08-15-005-08W2	645375	5471935	645375	5471935
141/11-28-005-08W2/00	601.3	2422.7	2375.3	deviated	11-28-005-08W2	642918	5475481	642977	5475696
131/15-30-005-08W2/00	598.3	2396.0	2396.0	vertical	15-30-005-08W2	639979	5475925	639977	5475915
			2389.0	vertical	05-32-005-08W2	640820	5476698	640820	5476698
101/05-32-005-08W2/00	602.4	2389.0	2369.0	vertical		040020	J470090	040020	3470050
101/05-32-005-08W2/00 121/16-32-005-08W2/00	602.4 602.0	2389.0	2359.0	vertical	16-32-005-08W2	641986	5477474	641986	5477474

131/11-33-005-08W2/00	601.7	2370.0	2370.0	vertical	11-33-005-08W2	642836	5477257	642836	5477257
121/03-35-005-08W2/00	600.2	2417.0	2398.2	deviated	03-35-005-08W2	646163	5476259	646079	5476310
141/10-18-005-09W2/00	596.1	2431.0	2430.9	vertical	10-18-005-09W2	630492	5472022	630506	5472031
131/09-23-005-09W2/00	601.8	2432.0	2432.0	vertical	09-23-005-09W2	637148	5473904	637148	5473904
131/14-29-005-09W2/00	600.2	2861.0	2861.0	vertical	14-29-005-09W2	631524	5475679	631524	5475679
191/14-28-005-10W2/00	593.7	2775.0	2701.3	deviated	15-28-005-10W2	623782	5475357	623566	5475391
121/05-22-005-12W2/00	577.4	2440.0	2439.9	vertical	05-22-005-12W2	605030	5472525	605031	5472523
101/09-35-005-17W2/00	630.0	2835.2	2835.2	vertical	09-35-005-17W2	559158	5475576	559158	5475576
101/11-08-006-03W2/00	595.9	2631.6	2631.6	vertical	11-08-006-03W2	689946	5481808	689946	5481808
141/01-03-006-05W2/00	598.1	2257.0	2257.0	vertical	01-03-006-05W2	674631	5478963	674631	5478963
101/01-04-006-05W2/00	599.3	2236.0	2236.0	vertical	01-04-006-05W2	672780	5478725	672780	5478725
111/03-04-006-05W2/00	598.8	2230.0	2230.0	vertical	03-04-006-05W2	672140	5478704	672140	5478704
101/16-05-006-05W2/00	600.4	2250.0	2250.0	vertical	16-05-006-05W2	671246	5479963	671246	5479963
192/02-09-006-05W2/00	599.2	2669.0	2657.5		07-09-006-05W2	672347	5480667	672350	5480561
				deviated					
101/09-02-006-06W2/00	600.1	2590.0	2590.0	vertical	09-02-006-06W2	666432	5479438	666432	5479438
101/03-06-006-06W2/00	600.6	2885.5	2885.5	vertical	03-06-006-06W2	659134	5478365	659134	5478365
111/14-06-006-06W2/00	599.3	2722.1	2722.1	vertical	14-06-006-06W2	659192	5479516	659192	5479516
101/10-10-006-06W2/00	602.5	2065.2	2065.2	vertical	10-10-006-06W2	664341	5480994	664341	5480994
131/15-13-006-06W2/00	599.3	2227.0	2227.0	vertical	15-13-006-06W2	667410	5483127	667410	5483127
111/09-29-006-06W2/00	603.9	2655.0	2654.7	vertical	09-29-006-06W2	661415	5485660	661431	5485661
141/12-16-006-07W2/00	601.0	2309.0	2307.1	deviated	12-16-006-07W2	652112	5482311	652103	5482308
131/09-32-006-07W2/00	609.0	2282.0	2282.0	vertical	09-32-006-07W2	651454	5487250	651454	5487250
131/06-04-006-08W2/00	601.8	2376.0	2376.0	vertical	06-04-006-08W2	642831	5478417	642831	5478417
131/14-04-006-08W2/00	600.2	2369.0	2368.8	vertical	14-04-006-08W2	642684	5479236	642681	5479244
121/16-05-006-08W2/00	601.0	2384.0	2384.0	vertical	16-05-006-08W2	641963	5479045	641963	5479045
131/09-09-006-08W2/00	599.6	2356.0	2356.0	vertical	09-09-006-08W2	643584	5480495	643584	5480495
111/14-09-006-08W2/00	600.6	2367.0	2367.0	vertical	14-09-006-08W2	642842	5480690	642842	5480690
141/07-10-006-08W2/00	600.9	2368.0	2366.7	deviated	07-10-006-08W2	644946	5480100	644957	5480116
121/10-23-006-08W2/00	600.5	2311.0	2311.0	vertical	10-23-006-08W2	646300	5483626	646300	5483626
122/05-33-006-10W2/00	606.1	2036.0	2011.0	deviated	05-33-006-10W2	622821	5485998	622682	5485915
101/09-01-006-11W2/00	596.5	2750.0	2750.0		09-01-006-11W2	619290	5478212	619290	5478212
				vertical					
131/14-12-006-11W2/00	605.7	2763.0	2761.3	vertical	14-12-006-11W2	618260	5480260	618263	5480260
131/03-14-006-11W2/00	601.3	2729.0	2728.3	vertical	03-14-006-11W2	616695	5480741	616703	5480725
191/14-14-006-11W2/00	600.6	2835.0	2774.6	deviated	12-14-006-11W2	616484	5481453	616576	5481648
131/07-15-006-11W2/00	597.3	2855.0	2801.0	deviated	07-15-006-11W2	615686	5480941	615499	5481034
192/11-15-006-11W2/00	596.1	3029.0	2615.5	vertical	13-15-006-11W2	614656	5481571	615063	5481250
	595.6	2695.0	2695.0		12-15-006-11W2		5481501		
131/12-15-006-11W2/00				vertical		614657		614657	5481501
131/08-16-006-11W2/00	596.1	2738.0	2738.0	vertical	08-16-006-11W2	614169	5480981	614169	5480981
192/08-16-006-11W2/00	594.6	2905.0	2606.7	vertical	09-16-006-11W2	614412	5481250	614264	5480930
121/10-16-006-11W2/00	595.6	2748.0	2747.0	deviated	10-16-006-11W2	613891	5481171	613890	5481217
111/16-20-006-11W2/00	600.7	2719.0	2719.0	vertical	16-20-006-11W2	612727	5483128	612727	5483128
111/14-26-006-11W2/00	608.8	2711.0	2711.0	vertical	14-26-006-11W2	616758	5485008	616758	5485008
			2923.3						
111/09-28-006-11W2/00	608.7	2923.3		vertical	09-28-006-11W2	614347	5484541	614347	5484541
131/01-29-006-11W2/00	605.0	2752.0	2752.0	vertical	01-29-006-11W2	612528	5483870	612528	5483870
121/07-29-006-11W2/00	604.6	2809.0	2809.0	vertical	07-29-006-11W2	612126	5484061	612126	5484061
141/10-29-006-11W2/00	605.7	2820.0	2820.0	vertical	10-29-006-11W2	612254	5484689	612254	5484689
132/11-32-006-11W2/00	607.6	2845.0	2838.5	deviated	11-32-006-11W2	611647	5486146	611642	5486175
111/12-33-006-11W2/00	612.6	2748.0	2748.0	vertical	12-33-006-11W2	613205	5485946	613205	5485946
131/08-34-006-11W2/00	610.4	2788.0	2735.0	deviated	08-34-006-11W2	615699	5485661	615770	5485883
131/11-34-006-11W2/00	614.7	2841.0	2841.0	vertical	11-34-006-11W2	614870	5486372	614870	5486372
141/13-34-006-11W2/00	614.0	1950.0	1950.0	vertical	13-34-006-11W2	614647	5486616	614647	5486616
191/16-34-006-11W2/00	614.7	3027.5	2576.0	vertical	04-02-007-11W2	615596	5487053	615773	5486564
141/04-35-006-11W2/00	609.2	2750.4	2750.4	vertical	04-35-006-11W2	616339	5485499	616339	5485499
131/11-35-006-11W2/00	609.2	2743.0	2743.0	vertical	11-35-006-11W2	616611	5486220	616611	5486220
121/06-20-006-13W2/00	582.7	2918.0	2918.0	vertical	06-20-006-13W2	592333	5481903	592333	5481903
111/10-20-006-13W2/00	580.0	2375.3	2375.3	vertical	10-20-006-13W2	592863	5482449	592863	5482449
101/07-07-006-15W2/00	623.9	2435.0	2284.9	vertical	07-07-006-15W2	571719	5478560	571710	5478559
111/08-02-006-16W2/00	626.1	2849.9	2849.6	vertical	08-02-006-16W2	569035	5476791	569034	5476806
121/13-06-006-18W2/00	674.7	2084.0	2083.0	deviated	13-06-006-18W2	541645	5477367	541675	5477335
121/08-11-007-07W2/00	604.3				08-11-007-07W2		5489875	655918	
		2232.0	2232.0	vertical		655918			5489875
111/11-16-007-07W2/00	610.5	2636.0	2636.0	vertical	11-16-007-07W2	651835	5491807	651835	5491807
121/03-24-007-07W2/00	607.8	2635.0	2610.0	deviated	03-24-007-07W2	656587	5492964	656527	5492771
111/07-17-007-08W2/00	612.0	2286.0	2286.0	vertical	07-17-007-08W2	640809	5491149	640809	5491149
111/01-22-007-08W2/00	611.5	2263.3	2263.3	vertical	01-22-007-08W2	644383	5492473	644383	5492473
111/06-24-007-08W2/00	612.5	2257.0	2257.0	vertical	06-24-007-08W2	646906	5492946	646906	5492946
121/13-28-007-08W2/00									
	614.5	2485.0	2478.0	deviated	13-28-007-08W2	641333	5495303	641418	5495336
101/09-29-007-08W2/00	613.3	2518.0	2509.6	vertical	09-29-007-08W2	641131	5494909	641143	5494902
142/07-30-007-08W2/00	616.3	2279.8	2275.6	vertical	07-30-007-08W2	639239	5494383	639235	5494424
121/06-33-007-08W2/00	615.7	1825.0	1825.0	vertical	06-33-007-08W2	641723	5496170	641723	5496170
131/15-15-007-09W2/00	613.6	2708.1	2708.1	vertical	15-15-007-09W2	634070	5492110	634070	5492110
	606.1	1919.0	1919.0	vertical	12-05-007-10W2	620386	5487817	620394	5487836
121/12-05-007-10W2/00									


111/14/3.007/10072.00 60-3 252.5 vertical 14.1-5.071/00 6613.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 6110.00 5617/20 56180.10 6157/20 56180.11 6157/20 56180.11 6157/20 56180.11 6157/20 56180.11 6157/20 56180.11 6157/20 56180.11 6157/20 56180.11 6157/20 56187/20 <th></th>										
111/123-00-007-110/200 612.3 275.4 vertical 13-02-071/10/2 615.802 540731 615482 540731 615482 540731 615482 540731 615482 540731 61566 5488135 61576 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 540730 61575 540730 61575 540730 61575 540730 61575 540730 61575 540730 614815 540730 614815 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 54083	131/14-13-007-10W2/00	604.3	2552.5	2551.5	vertical	14-13-007-10W2	627187	5491812	627173	5491805
111/123-00-007-110/200 612.3 275.4 vertical 13-02-071/10/2 615.802 540731 615482 540731 615482 540731 615482 540731 615482 540731 61566 5488135 61576 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 615766 5488135 540730 61575 540730 61575 540730 61575 540730 61575 540730 61575 540730 614815 540730 614815 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 540832 540730 54083	121/07-02-007-11W2/00	609.4	2821.0	2821.0	vertical	07-02-007-11W2	616310	5487278	616310	5487278
14/13/23/2007.11W/200 61.09 2000.0 vertical 13/02/071/W2 61.5470 5488234 61.556 5488314 14/03/02/07/01W/200 61.15 2744.0 2744.0 vertical 67-03-0711W/2 61.577 548730 548734 61.577 548730 11/06/03/007/11W/200 61.53 2744.0 2744.0 vertical 67-03-0711W/2 61.572 548732 61.073 548732 11/16/03/007/11W/200 61.53 2744.0 2744.0 vertical 61.670-011W/2 61.582 5488722 61.427 5488723 61.576 5488525 61.576 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5488625 61.426 5489721 61.620 5489721 5488625 61.426 5489721 5488625 548734 5489640 5489741 54899640 5499711 5499										
141/33-00-007-1100/200 61.1 27440 2744										
111079-33-007-11W200 611.5 2744.0 venical 067-307-11W2 614773 9487300 614773 9487300 121.016-03-007-11W200 611.5 270.0 ventcal 16-30-007-11W2 614913 9487935 6149113 9487935 121.016-01-007-11W200 611.3 34800 ventcal 16-90-007-11W2 611.44 5489745 611.34 548774 131.011-12-007-11W200 610.3 1355.0 1955.0 ventcal 051-1007-11W20 617.35 5486525 617.36 5486525 131.011-12-007-11W200 610.2 277.0 277.0 277.0 87.0 81.80.0711W2 611.2 4509826 611.356 596825 611.356 596825 611.356 596825 611.356 596825 611.356 596828 611.356 596828 611.356 596828 611.356 596828 611.356 596828 611.356 596828 611.356 596828 611.356 5968283 611.356 5968283 611.356 5968786 596878 5968783										
10.109 0.107.11W2/0 61.45 281.50 vertical 0.90.300.707.11W2 61.977.5 548792 61.1475 121.16 5-0.007.11W2/06 61.37 286.00 286.01 16.43.007.11W2 61.93.81 5487926 61.378 5487926 61.378 5487926 61.378 548792 61.378 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 548793 61.439 5488933 5488933 5489893 54894939										
12)1/16-03-007-11W2/00 15.10 2709.0 vertical 16-03-007-11W2 611415 5487978 611415 5487978 12/16-05-007-11W2/00 609.3 2744.0 vertical 05-10-007-11W2 611482 5488723 614823 5488723 614823 5488723 614823 5488723 614823 5488723 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 5448532 614727 54771 547870 54767 54771 547870 54771 547870 54771 54787 54771 54771 54787 547871 547842 5468714 547844 5468714 547844 5468714 547849 5468714 547849 5468714 547840 547840 547840 5478474 546664 547814 546664 547814 5468670 547840 547840 547840 547840 547840 547840 <t< td=""><td>111/07-03-007-11W2/00</td><td>611.5</td><td>2744.0</td><td>2744.0</td><td>vertical</td><td>07-03-007-11W2</td><td>614773</td><td>5487300</td><td>614773</td><td>5487300</td></t<>	111/07-03-007-11W2/00	611.5	2744.0	2744.0	vertical	07-03-007-11W2	614773	5487300	614773	5487300
121/146-33-007-11W2/06 015.3 2708.0 vertical 16-05-00571W2 6114815 5489748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488748 6114828 5488723 6114829 5488723 6114829 5488723 6114829 5488723 6114829 5488723 6114823 5488723 6114823 5488723 6114823 5488723 6114823 5488723 6114823 5488723 6114823 5488723 6114823 5488723 6114823 5488723 611483 5489784 611483 5489784 611483 5489784 611483 5489784 611483 5489784 611483 5489724 611483 5489724 611483 5489724 611483 5489724 611483 5489724 611483 5489724 55149724 5514974 55149744 55149744 55149744 55149744 55149744 55149844 5514984 5514984<	101/08-03-007-11W2/00	614.5	2815.0	2815.0	vertical	08-03-007-11W2	615073	5487432	615073	5487432
12116 99 007-11W2/00 613.7 2880.0 2880.0 2880.0 2840.0		615.8	2709.0	2709.0		16-03-007-11W2		5487995	614915	5487995
14102-10-00-71-110/20 60.5 2744.0 vertical 00-10-00-7110/2 612835 5488723 614839 5488723 614839 5488723 614839 5488723 614839 5488723 615725 5488523 617725 5488523 617725 5488523 617725 5488523 617725 5488523 617725 5488523 617725 5488523 617725 5488523 617724 547663 5499925 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5499253 5498254 549254 549254 549254 5498254 549253 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537 579835 5486537										
112/10:11-007-118/200 613.3 1935.0 1935.0 vertical 09-11.007-118/20 6176.3 5489625 6176.3 5489625 13/10-12-000 60.0 1903.1 1903.3 vertical 06-14-007-118/20 6179.0 549925 6176.3 5489625 11/10:21-000-7118/200 61.52 2757.0 277.0 vertical 06-14-007-118/20 6112.22 5492421 6112.22 5492421 6112.22 5492421 6112.22 5492421 6112.22 5492421 6112.22 5492421 6112.22 5492421 612.22 5492421 612.22 5492421 612.22 5492421 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549635 549637 549635 549635 549637 549635 549635 549635 549635 549635 549635 549635 5496355 549635 5496355										
1311112-007-118/200 607.1 1895.0 1895.0 vertical 101-12-007-118/2 617463 5460750 617863 5460750 131/06-16-007-118/200 617.6 2627.0 267.0 vertical 06-14-007-118/2 610124 5490620 610135 5400750 611355 5492838 611355 5492838 611355 5492838 611355 5492838 611355 5492838 611355 5492838 611355 5492838 611355 5492831 611262 5492831 611262 5492831 611262 5492831 611262 5492831 611262 5492831 611262 5492831 611262 5492831 611262 5492831 5493831 5493831 5493831	141/02-10-007-11W2/00	609.5	2744.0	2744.0	vertical	02-10-007-11W2	614829		614829	5488723
141/00-14-007-119/200 660.0 1903.1 1903.1 vertical 06-14-007-119/20 615.991 5490980 615991 5490980 111/12-12-007-119/200 615.2 2757.0 2757.0 vertical 15-20-007-119/20 611.28 5490823 111/12-12-007-119/200 65.2 2757.0 2757.0 vertical 15-20-007-119/2 610309 549231 601284 5492421 111/12-10-007-139/200 75.4 262.0 2662.0 vertical 10-20-007-139/2 601809 549233 601809 549233 11/10-12-007-139/200 55.4 274.3 274.4 vertical 06-6-607-159/2 759839 548657 579839 548657 579835 544667 549770 54466 549770 57985 54466 549770 579859 549787 549787 549666 549770 559340 51171-5 50160 549780 559340 559340 559340 559342 559340 559342 559342 559342 559342 559342 559342 55	121/03-11-007-11W2/00	610.3	1935.0	1935.0	vertical	03-11-007-11W2	615725	5488532	615725	5488532
141/00-14-007-118/200 60:00 1903.1 1903.1 vertical 06:14-007-118/2 61:0124 5490622 111/13:2-10:07-118/200 61:52 2757.0 277.0 vertical 15:2-0:07-118/2 61:136 5490622 111/12:2-10:07-118/200 65:12 270.3 vertical 12:2-10:07-118/2 61:136 5492421 13/10/11-20-007-118/200 65:3.4 262:0 266:2.0 vertical 10:2-0:07-118/2 66:109 5492421 11/10/2-10:07-18/200 55:3.2 23:4.6 vertical 10:2-0:07-18/22 578633 5466537 11/10/2-10:07-18/200 55:3.2 23:4.6 vertical 10:2-0:07-18/22 578637 546657 11/10/2-10:06-0677/00 65:2.2 21:6.2 11:6.2 10:6.00-06/92 658186 5498050 547837 11/11/2-06-06787/00 65:2.2 27:5.0 vertical 11:6.2 00:8022 550342 550342 11/11/2-06-06879/00 65:2.2 27:5.0 vertical 11:6.2 00:802 651865 5498050	131/11-12-007-11W2/00	607.1	1895.0	1895.0	vertical	11-12-007-11W2	617463	5489625	617463	5489625
131.058-18-007-118/200 617.6 2627.0 2627.0 vertical 06.18-007-118/2 610.124 5496818 1111/12-21-007-118/200 61-5.2 275.0 Vertical 15-21-007-118/2 610.305 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 611.365 5498818 5498818 5498818 5498817 670.357 579815 549810 5446537 549815 549805 549805 549865 5498859 5498537 549815 549805 549805 549865 5498657 549815 5498807 5498015 549805 549805 5498857 559324 649377 5593240 643727 5593240 643727 5593240 643727 5593240 643727 5593240 643727 5593240 643727 5593241 5593241 5593241 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>615991</td> <td></td> <td></td> <td>5490790</td>							615991			5490790
1111/12:2:10:07:118/200 615.2 2275.0 2275.0 vertical 15:20:07:118/20 613:365 5492838 613:365 5492821 1311/12:2:10:02:07:118/20 613:64 2703:0 vertical 10:2:10:07:118/20 613:63 5492821 1311/10:2:10:07:138/20 605:0 233:0.0 vertical 10:02:07:118/20 556:660 5487344 556:660 5487344 556:660 5487344 556:660 5487344 556:660 5487344 576:833 546:667 5492823 576:833 546:667 5494263 110/05:2:70:07:158/20 553:10:07:158/20 553:10:07:158/20 553:10:07:158/20 549621 549626 549283 570:657 549621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5492621 5502646 5492621 5502646 5492621 5502646 5492621 5502646 5492621 5502846 5492621 5502342 5503342 550342 5503424 <td></td>										
111/12:21-007-119/200 61.45 2703.0 2703.0 vertical 12:21:007-119/20 61282 5492421 612822 5492421 612822 5492421 612822 5492421 612822 5492421 612822 5492421 612822 5493231 121/10-02-007-139/200 578.9 2330.0 2330.0 2330.0 vertical 10-02-007-139/2 56646 5497341 596640 5497341 596640 5497343 596640 5497302 576839 546657 5494700 548657 5498607 5498102 57835 5498015 5498101 5495270 5499015 5499115 550140 550140 550140 550143 5501445 5501426 6501435 5501445 5501445 5501445 5501445 5501445 5501445										
131/01-29-007-129/200 603.4 2602.0 2662.0 vertical 01-29-007-129/20 59493231 00.1809 5493231 121/10-22-007-139/200 594.5 2714.3 2714.3 2714.3 vertical 00-60-007-159/2 596640 54673244 596640 5467324 111/00-27-007-159/200 593.3 234.4 2302.4 devtatel 04-27-007-159/2 576629 546803 5492933 101/05-37-007-159/200 593.0 239.9 239.9 vertical 10-63-0007-159/200 5494708 596967 5492733 121/10-23-008-699/2/00 613.2 216.2 vertical 11-66-008-0092 651166 5496059 550342 637327 5503424 637327 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637326 5503424 637365 5503424 637366 <	111/15-20-007-11W2/00	615.2	2757.0	2757.0	vertical	15-20-007-11W2	611365	5492838	611365	5492838
121/10-22-007-139/200 578.9 2330.0 2330.0 vertical 10-02-007-139/2 596640 5487344 596640 5482537 111/06-27-007-159/2/00 581.3 2334.6 2319.4 deviated 04-27-007-159/2 5486537 570839 546653 5492502 576666 5492708 549657 549270 549616 5492702 546616 5492703 549615 549270 549615 549270 549615 549270 549615 549270 549915 549271 549015 549270 549915 570307 5499015 549271 549015 549251 570307 5499015 549251 570307 5499015 549251 570307 5499015 5502540 550240 550240 550240 550240 550240 550240 550240 550240 550240 550240 550243 5502440 550245 5502453 5502445 5502453 5502445 5502453 5502453 5502453 5502453 5502453 5502453 5502453 5502453 5502453<	111/12-21-007-11W2/00	614.5	2703.0	2703.0	vertical	12-21-007-11W2	612282	5492421	612282	5492421
121/10-22-007-139/200 578.9 2330.0 2330.0 vertical 10-02-007-139/2 596640 5487344 596640 5482537 111/06-27-007-159/2/00 581.3 2334.6 2319.4 deviated 04-27-007-159/2 5486537 570839 546653 5492502 576666 5492708 549657 549270 549616 5492702 546616 5492703 549615 549270 549615 549270 549615 549270 549615 549270 549915 549271 549015 549270 549915 570307 5499015 549271 549015 549251 570307 5499015 549251 570307 5499015 549251 570307 5499015 5502540 550240 550240 550240 550240 550240 550240 550240 550240 550240 550240 550243 5502440 550245 5502453 5502445 5502453 5502445 5502453 5502453 5502453 5502453 5502453 5502453 5502453 5502453 5502453<	131/01-29-007-12W2/00	603.4	2662.0	2662.0	vertical	01-29-007-12W2	601809	5493231	601809	5493231
121/08-06-007-159/200 594.5 2714.3 2714.3 vertical 0.69-007-159/2 570639 546637 570639 546637 111/08-27-007-159/200 584.0 2399.0 2399.0 vertical 67-31-007-159/20 544.0 54492783 101/10-35-006-159/200 63.9 2475.0 2475.0 vertical 11-03-008-169/20 549015 5499015 573057 5498015 121/10-20-006-059/200 63.9 2475.0 2475.0 vertical 11-06-008-069/200 6518.6 5598659 5503292 640379 5502340 141/10-26-006-109/200 61.17 2576.0 2575.0 2575.0 vertical 16-20-008-109/2 617320 5502344 637320 5502344 637320 5502344 637320 5502344 63726 5502445 5502644 101/01-28-008-109/20 61.52 258.0 vertical 16-20-008-109/2 617320 5503432 622665 5503424 62065 5503434 62065 5503434 62065 5503434 620565 5503434 620665 </td <td></td>										
111/04-27-007-15W2/00 583.3 2344.6 2309.4 deviated 0472-007-15W2/0 5840.6 5949.2583 101/05-31-007-15W2/0 655.5 2245.0 2245.0 vertical 16.35-007.15W2/0 5895270 5496105 5495270 121/10-03.06-05W2/0 651.2 2245.0 2245.0 vertical 11.05-008.06W2 6701357 5499015 673027 5499015 673027 5499015 673027 5499015 673027 559320 653186 5498609 653186 5498609 637320 5502340 637320 5502340 637320 5502344 637320 5502344 637320 5502342 632324 5502442 5502442 5502442 5502442 5502442 5502442 5502442 5502442 550342 550264 11/12-30-068-10W2/06 613.2 2578.0 2577.7 vertical 15.30-068-10W2/06 6201707 5504934 11/12-30-068-10W2/06 601-22.068-13W2/06 6051.2 2758.0 2520.0 vertical 16.32-068-10W2/06 6201-22.068-13W2/06 6201-22.068-13W2/06										
101/05-31.007-15W2/00 584.0 2599.9 vertical 105.31.007.15W2/0 5696.7 5494708 101/16-55.007-18W2/00 663.9 2475.0 2475.0 2475.0 2475.0 549015 5499270 549015 5499270 549015 5499270 549015 5499270 549015 5499270 549015 5499270 540915 5499270 540915 5499270 540915 5499270 540915 5499015 5499105 5593240 5593240 5593240 5593240 5593240 5593240 5593240 5593242 5593242 5593242 5593242 5593242 5593242 5593342 5593342 5593342 5593342 5593342 5593342 5593342 5593342 5593454 5593342 5593454 5593454 5593454 5593454 5593454 5593454 5593454 5593454 5593465 5593342 5593465 5593454 5593465 5593454 5593465 5593455 5593564 5593445 5593564 5593342 5593149 5593145 5593455 <td></td>										
101/16-35-007-18W2/00 659.5 2249.0 2470.0 549015 5499270 549015 5499270 121/10-30.080-65W2/00 615.2 22166.2 2475.0 vertical 110-508.06W2 659186 5498609 559186 5498609 131/15-20-008-60W2/0 612.7 2570.0 2578.0 vertical 07-24-008.06W2 629132 550240 623720 5502540 131/15-20-068-10W2/00 615.2 2585.0 2575.0 vertical 07-24-008.0W2 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621244 5502942 612145 550342 62965 550342 62965 550342 62965 550342 62965 550342 62964 550767 550494 11/10-30-006-10W2/00 615.2 2586.0 2586.0 22908-11W2 550134 550464 103767 5504941 103767 5504941 103767 5504941 5507677	111/04-27-007-15W2/00	583.3	2344.6	2302.4	deviated	04-27-007-15W2	574629	5492802	574666	5492583
101/16-35-007-18W2/00 659.5 2249.0 2470.0 549015 5499270 549015 5499270 121/10-30.080-65W2/00 615.2 22166.2 2475.0 vertical 110-508.06W2 659186 5498609 559186 5498609 131/15-20-008-60W2/0 612.7 2570.0 2578.0 vertical 07-24-008.06W2 629132 550240 623720 5502540 131/15-20-068-10W2/00 615.2 2585.0 2575.0 vertical 07-24-008.0W2 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621234 5502942 621244 5502942 612145 550342 62965 550342 62965 550342 62965 550342 62965 550342 62964 550767 550494 11/10-30-006-10W2/00 615.2 2586.0 2586.0 22908-11W2 550134 550464 103767 5504941 103767 5504941 103767 5504941 5507677	101/05-31-007-15W2/00	584.0	2599.9	2599.9	vertical	05-31-007-15W2	569667	5494708	569667	5494708
121/10:0-308-05W2000 603.9 2475.0 vertical 11:0-0-008-05W2 673057 5499015 673057 5499001 653166 5498009 653166 5498009 550320 5502540 653120 5502540 653720 5502540 653720 5502540 653720 5502540 653720 5502673 622723 5502673 622725 5502673 622720 5502673 622720 5502673 622720 5502673 622720 5502673 622720 5502673 622725 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503342 652265 5503343 11/1/1-1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/										
141/11-06-008-06W2/00 618.2 2166.2 vertical 11-06-008-06W2 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5498609 658186 5502322 640379 5502340 637320 5502340 637320 5502340 637320 5502342 627234 5502342 627234 5502342 627234 5502342 627234 5503342 637265 5503342 637265 5503342 637265 5503343 619335 5503343 619335 5503343 619335 5504831 111/11-3000910W2/00 6312 2280 vertical 14-12-008-13W2/0 5501632 559124 5501640 111/01-32.000-13W2/00 605.1 22750 22510 vertical 16-32-008-13W2 559182 5501632 559182 5501632 559182 5501645 5501425 5501455 5501455 5501455 5501452 5501455 550145										
131/15-20-008-098/200 6217 2560.2 2599.1 deviate 15-20-008-08/W2 640244 5502540 63720 5502540 131/07-20-008-099/200 631.7 2578.0 2578.0 vertical 16-20-008-10W/20 63720 5502540 63720 5502540 627234 5502540 627234 5502542 627235 5502673 627265 5503342 622265 5503342 622665 5503342 622665 5503342 622665 5503342 622665 5503342 622665 5503431 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 55040351 610356 5504351 610355 55040351 610356 55040351 610356 5504351 610356 55040351 610356 55040351 <td></td>										
141/07-24-008-09W2/00 617.0 2578.0 yerical 107-24-008-09W2 657220 5502540 627220 5502440 627220 5502440 627220 5502440 627220 5502440 627220 5502440 627220 5502440 627220 5502420 627230 5502420 627230 5502420 627230 5502420 627230 5502420 627230 5502431 627230 5502431 627230 5502431 627230 5504351 627230 5504354 627230 5504354 627230 5504354 627230 5504354 62775 5504354 62765 5504354 62767 5504354 62076 5504354 62076 5504354 62076 5504354 62076 5504354 62076 5504354 62076 5504354 62076 5504354 62076 5504355 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335 5501335										
111/16-20-008-100/2/00 611-2 2575.0 vertical 06-20-008-100/2/0 621234 5502942 621234 5502944 111/10-32-008-100/2/00 6115.2 2586.0 vertical 07-22-008-100/2/0 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 629865 5503342 629865 5503431 111/14-32-008-130/2/00 6613.1 2475.0 vertical 02-22-008-130/2 595119 5501632 595234 5501485 121/05-23-008-130/2/00 663.1 2475.0 vertical 05-22-008-130/2 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5503431 5111/01-33-008-130/2 593612 5502633 5501485 5503431 5111/01-33-008-130/2 593612 5502633 5501485 5501485 5501455 5501451 550341 5503445	131/15-20-008-08W2/00	621.7	2602.0	2589.1	deviated	15-20-008-08W2	640344	5503292	640379	5503400
111/16-20-008-100/2/00 611-2 2575.0 vertical 06-20-008-100/2/0 621234 5502942 621234 5502944 111/10-32-008-100/2/00 6115.2 2586.0 vertical 07-22-008-100/2/0 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 622865 5503342 629865 5503342 629865 5503431 111/14-32-008-130/2/00 6613.1 2475.0 vertical 02-22-008-130/2 595119 5501632 595234 5501485 121/05-23-008-130/2/00 663.1 2475.0 vertical 05-22-008-130/2 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5503431 5111/01-33-008-130/2 593612 5502633 5501485 5503431 5111/01-33-008-130/2 593612 5502633 5501485 5501485 5501455 5501451 550341 5503445	141/07-24-008-09W2/00	617.0	2578.0	2578.0	vertical	07-24-008-09W2	637320	5502540	637320	5502540
141/09-23-008-10W2/00 615.2 2584.8 vertical 09-23-008-10W2/20 622668 5502673 622665 5503342 111/15-30-008-10W2/00 615.9 2580.0 vertical 10-28-008-10W2/20 622865 5503342 622965 5503342 622965 5503342 622967 5504934 620767 5504934 620767 5504934 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 599518 5501632 595182 5501435 5501435 5501435 5501435 5501435 5501435 5501435 5501435 5501471 511/03-27008-13W2/00 602.5 2515.0 10/30-02-008-13W2/00 603.6 2580.0 2580.0 vertical 01-33-008-13W2 593642 593642 593642 593642 5936424 593745 5511268 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5502942</td> <td></td> <td></td>								5502942		
101/01/28-008-100/2/00 615.9 2600.0 vertical 01/28-008-100/2/0 622965 5503342 622965 5503342 111/15/30-008-100/2/00 615.2 2588.0 2577 vertical 02/32-008-100/2 619356 5503431 131/02-32-008-130/2/00 605.1 2475.0 2475.0 vertical 02/32-008-130/2 559514 5501640 131/09-22-008-130/2/00 605.1 2475.0 2475.0 vertical 09/22-008-130/2 5595182 5501640 131/09-22-008-130/2/00 603.3 2620.0 2620.0 vertical 09/22-008-130/2 5595182 5501485 111/01-33-008-130/2/00 602.8 2555.2 2553.4 vertical 10/3-3008-130/2 5594145 5505395 111/10-33-008-130/2/00 602.6 2550.2 vertical 10/3-3008-130/2 594145 5505395 111/10-33-008-130/2 604.4 2490.0 vertical 10/3-3008-130/2 594145 5505596 111/10-60-006/2/007 657.4 2591.5 vertical 10/3-3-0008-130/2 <										
111/15-30-008-100/200 613.9 2577.0 vertical 115.30-008-100/20 619356 5504351 1619356 5504351 131(02-32-008-130/200 605.1 2252.0 vertical 1612-3058130/2 550756 5509434 520765 5509434 520765 5509434 520765 5509434 520765 5509434 520765 5509430 5501632 555124 5501632 555124 5501632 555124 5501632 555124 5501630 5501485 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
111/02-32-008-100/200 615.2 2588.0 vertical 102-32-008-100/20 620767 55904954 620767 55904954 111/14-12-008-130/200 6068.1 2252.0 vertical 08-22-008-130/20 555130 5501632 555132 5501632 555182 5501640 131/09-22-008-130/200 603.3 2240.0 vertical 09-22-008-130/2 595182 5502033 550182 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501485 5501435 550133 5506113 5501455 550273 555314 5502733 594501 5502733 594501 5502735 555314 55049451 550547										
111/14-12-008-13W2/00 608.8 2252.0 2252.0 vertical 14-12-008-13W2 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5499034 597769 5490033 595182 5501632 595182 5502053 595182 5502053 595182 5502053 595182 5502033 595182 5502735 5504135 55144 5507735 5504315 550431 5507735 5504315 5504315 5504315 5504315 5504315 5504315 5504315 5504315 550596 594145 5505596 594145 5505596 594145 5505596 594145 5505596 591458 511268 633967 5516286 6430612 537418 5406012 537418 5406012 537418 5512486 633967 5516286 643141 531268 643745 5511268 6431602 643131 5516286 6431602 643131 5516286 643967 5516286 643967 5516286 643967 5516286	111/15-30-008-10W2/00	613.9	2578.0	2577.7	vertical	15-30-008-10W2	619356	5504351	619356	5504333
141/08-22-008-13W2/00 605.1 2475.0 vertical 08-22-008-13W2 595119 5501632 595234 5501683 131/09-22-008-13W2/00 603.1 2240.0 2240.0 vertical 09-22-008-13W2 595182 5501685 5501485 5950185 5501485 5950185 5501485 595142 5501485 595143 5501485 595143 5501485 595137 5505471 550375 553373 5504315 5111/101-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2/0 5505471 593571 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 550596 591445 550596 591445 5505596 591445 550596 591445 5501680 63131 5516102 131/06-08-009-00W2 653723 5516280 630311 5516102 1312/07-009-02W2/00 613.6 2515.2 2515.5 vertical 08-17-009-02W2/00 6352 5516280	131/02-32-008-10W2/00	615.2	2588.0	2588.0	vertical	02-32-008-10W2	620767	5504954	620767	5504954
141/08-22-008-13W2/00 605.1 2475.0 vertical 08-22-008-13W2 595119 5501632 595234 5501683 131/09-22-008-13W2/00 603.1 2240.0 2240.0 vertical 09-22-008-13W2 595182 5501685 5501485 5950185 5501485 5950185 5501485 595142 5501485 595143 5501485 595143 5501485 595137 5505471 550375 553373 5504315 5111/101-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2/0 5505471 593571 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 5505596 591445 550596 591445 550596 591445 5505596 591445 550596 591445 5501680 63131 5516102 131/06-08-009-00W2 653723 5516280 630311 5516102 1312/07-009-02W2/00 613.6 2515.2 2515.5 vertical 08-17-009-02W2/00 6352 5516280	111/14-12-008-13W2/00	608.8	2252.0	2252.0	vertical	14-12-008-13W2	597769	5499034	597769	5499034
131/09-22-008-13W2(00 603.1 2240.0 vertical 09-22-008-13W2 595182 5502053 595182 5502053 121/05-22-008-13W2(00 602.5 2515.3 2514.9 deviated 03-22-008-13W2 59518 5501485 595218 111/01-33-008-13W2(00 602.5 2515.3 2514.9 deviated 03-27-008-13W2 593450 5502733 594501 5502735 111/01-33-008-13W2(00 603.6 2580.0 2880.0 vertical 16-33-008-13W2 593451 5505596 594145 5505596 101/06-02-008-13W2(00 653.9 2442.5 vertical 16-33-008-13W2 593471 551268 131/16-18-009-06W2(00 633.6 2232.2 2512.5 deviated 13-36-009-09W2 653972 5511268 653745 5511268 131/16-18-009-06W2(00 615.2 2616.2 vertical 11-34-009-10W2 623988 5510490 63118 5516297 132(13-36-009-09W2(00 615.2 2680.2 2680.2 268984 5510496 623113										
121/05-23-008-13W2/00 603.3 262.0.0 262.0.0 vertical 05-23-008-13W2 595618 5501485 595618 5501485 111/03-27-008-13W2/00 602.5 251.3. 251.4.9 deviated 01-33-008-13W2 594500 5502735 594501 5504294 593637 5504315 111/16-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2 593571 5505576 101/06-02-008-19W2/00 663.9 1994.3 vertical 16-33-008-13W2 594145 550556 101/06-02-008-19W2/00 663.6 253.9 1994.3 vertical 06-02-008-19W2 537418 5496012 537418 5496012 537418 5496012 531268 667745 5511268 141/14-22-009-09W2/00 661.6 2551.5 2551.5 vertical 18-37-009-10W2 635972 5516280 63516287 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 <td></td>										
111/03-27-00613W2/00 602.5 251.3 251.4 generating 94400 5502733 594501 5502733 111/01-33-008-13W2/00 603.6 2557.0 2553.4 vertical 10-33-008-13W2 593642 5504294 593637 5504315 111/16-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2 593571 5505596 594145 5505596 101/06-02-008-19W2/00 653.8 2442.5 2442.5 vertical 0-60-008-10W2 657745 5511268 657745 5511696 630131 5516102 132/13-36-009-09W2/00 625.8 2462.0 2461.2 vertical 13-36-009-09W2 623972 5516280 633667 5516287 142/11-24-009-10W2/00 615.2 2551.5 vertical 11-24-009-10W2 62183 5510496 63113 5510497 142/11-24-009-10W2/00 615.2 2581.5 vertical 12-07-009-12W2 607633 5508760 607843 550884 141/12-10-009-12W2/00 609.8 2455.0 ver										
111/01-13-008-13W2/00 602.8 2557.0 2553.4 vertical 01-33-008-13W2 593642 5504294 593637 5505471 111/16-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2 593571 55055471 593571 5505576 101/06-02-008-19W2/00 663.9 1994.3 1994.3 vertical 06-02-008-19W2 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 5496012 537418 551515 5511568 551150 657745 5511268 657745 5511268 637637 5516387 134/06-17-099-10W2/00 615.2 2658.0 2668.0 vertical 11-24-099-10W2 62937 5512445 62937 5512445 62937 5512445 62937 5512445 62937 5512445 62937 5512445 62937 5512445 62937 5512445 629	121/05-23-008-13W2/00	603.3	2620.0	2620.0	vertical	05-23-008-13W2	595618	5501485	595618	5501485
111/16-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2 593571 5505471 593571 5505471 141/13-34-008-13W2/00 663.4 2490.0 vertical 13-34-008-13W2 594145 5505596 594145 5505596 131/06-18-009-06W2/00 653.8 2442.5 vertical 06-18-009-06W2 627745 5511268 657745 5511268 657745 5511268 637745 5511268 637745 5511268 637745 5511268 637745 5511268 637145 5510287 141/14-32-009-09W2/00 615.2 2651.5 2551.5 vertical 11-36-009-09W2 62183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510344 551245 51141 512420 2469.7 devided 10-2-00-12W2 607823 5512445 626937 5512445 626937 5512445 621133 5510349 6351571 103120-00-21W2/0 607843 550649<	111/03-27-008-13W2/00	602.5	2515.3	2514.9	deviated	03-27-008-13W2	594500	5502733	594501	5502725
111/16-33-008-13W2/00 603.6 2580.0 vertical 16-33-008-13W2 593571 5505471 593571 5505471 141/13-34-008-13W2/00 663.4 2490.0 vertical 13-34-008-13W2 594145 5505596 594145 5505596 131/06-18-009-06W2/00 653.8 2442.5 vertical 06-18-009-06W2 627745 5511268 657745 5511268 657745 5511268 637745 5511268 637745 5511268 637745 5511268 637745 5511268 637145 5510287 141/14-32-009-09W2/00 615.2 2651.5 2551.5 vertical 11-36-009-09W2 62183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510349 621183 5510344 551245 51141 512420 2469.7 devided 10-2-00-12W2 607823 5512445 626937 5512445 626937 5512445 621133 5510349 6351571 103120-00-21W2/0 607843 550649<	111/01-33-008-13W2/00	602.8	2557.0	2553.4	vertical	01-33-008-13W2	593642	5504294	593637	5504315
141/13-34-008-13W2/00 604.4 2490.0 vertical 13-34-008-13W2 594145 5505596 594145 5505596 101/06-02-008-19W2/00 653.9 1994.3 1994.3 vertical 06-02-008-19W2 657745 5511268 657745 5511268 657745 5511268 657745 5511268 657745 5511268 657745 551268 657745 551268 657745 551268 657745 5512687 141/04-13-2009-09W2/00 615.2 2461.2 vertical 108-17-009-10W2 621183 5510349 621183 5510349 621183 5510349 621183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 5510349 62183 551046 63525 55116287 111/12-4091-1009-10W2 667623 5508766 607843 5508761 154445 55055971 594405 5505971 594405 5505971 5										
101/06-02-008-19W2/00 653.9 1994.3 1994.3 vertical 06-02-008-19W2 537418 5496012 537418 5496012 131/06-18-009-06W2/00 626.8 2442.5 2442.5 vertical 06-18-009-06W2 659745 5511268 657745 5511268 132/13-36-009-09W2/00 633.8 2462.0 2461.2 vertical 11-32-009-09W2 623988 5510606 631311 5516102 141/143-27-009-10W2/00 616.2 2551.5 vertical 08-17-009-10W2 621183 5510349 621183 5510349 141/10-12-009-12W2/00 618.0 2195.0 vertical 11-24-009-10W2 62637 5512445 626937 5512445 111/12-07-09-12W2/00 600.8 2455.0 vertical 12-27-009-12W2 603525 5511760 603525 5511760 603525 5511760 603525 551746 5510549 111/10-3-09-13W2/00 618.3 2195.0 vertical 12-28-009-13W2 594405 5505971 594405 5505971 594405										
131/06-18-009-66W2/00 626.8 2442.5 vertical 06-18-009-68W2 657745 5511268 657745 5511268 141/14-32-009-09W2/00 633.6 2532.2 2519.5 deviated 14-32-009-09W2 62598 5516280 633967 5516280 141/08-17-009-10W2/00 616.2 2551.5 2551.5 vertical 08-17-009-10W2 62183 5510349 62183 5510349 62183 5510349 62183 550349 62183 5510349 62183 5510349 62183 550349 62183 550363 141/10-12-009-10W2/00 618.0 2195.0 vertical 11-24-009-10W2 607623 5508760 607843 5508363 141/10-12-009-12W2/00 610.6 2542.0 2465.0 vertical 03-03-009-13W2 607623 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 5505971 594405 <td></td>										
141/14-32-009-09W2/00 633.6 2532.2 2519.5 deviated 14-32-009-09W2 629988 5516069 630131 5516102 132/13-36-009-09W2/00 615.2 2561.2 vertical 13-36-009-09W2 635972 5516280 635967 5516287 141/08-17-009-10W2/00 615.2 2561.5 vertical 11-24-009-10W2 621183 5510349 621183 5510349 621183 5510349 621183 5508760 607843 5508363 598948 5508363 598948 5508363 598948 5508370 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5513760 607843 5508970 111/12-20-009-12W2 607623 550870 607843 5505971 111/04-03-009-13W2/00 601.0 258.0 2485.0 vertical 12-22-009-12W2 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 6135072 2505685 52022 5506	101/06-02-008-19W2/00	653.9	1994.3	1994.3	vertical	06-02-008-19W2	537418	5496012	537418	5496012
132/13-36-009-09W2/00 625.8 2461.2 vertical 13-36-009-09W2 635972 5516280 635967 5516287 141/08-17-009-10W2/00 616.2 2551.5 2551.5 vertical 08-17-009-10W2 62183 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512450 626937 5512760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 551183 8512445 6141114/08-03-09-13W2/00 5032445 2485.0 vertical </td <td>131/06-18-009-06W2/00</td> <td>626.8</td> <td>2442.5</td> <td>2442.5</td> <td>vertical</td> <td>06-18-009-06W2</td> <td>657745</td> <td>5511268</td> <td>657745</td> <td>5511268</td>	131/06-18-009-06W2/00	626.8	2442.5	2442.5	vertical	06-18-009-06W2	657745	5511268	657745	5511268
132/13-36-009-09W2/00 625.8 2461.2 vertical 13-36-009-09W2 635972 5516280 635967 5516287 141/08-17-009-10W2/00 616.2 2551.5 2551.5 vertical 08-17-009-10W2 62183 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512450 626937 5512760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511760 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 5511780 603525 551183 8512445 6141114/08-03-09-13W2/00 5032445 2485.0 vertical </td <td>141/14-32-009-09W2/00</td> <td>633.6</td> <td>2532.2</td> <td>2519.5</td> <td>deviated</td> <td>14-32-009-09W2</td> <td>629988</td> <td>5516069</td> <td>630131</td> <td>5516102</td>	141/14-32-009-09W2/00	633.6	2532.2	2519.5	deviated	14-32-009-09W2	629988	5516069	630131	5516102
141/08-17-009-10W2/00 616.2 2551.5 vertical 08-17-009-10W2 621183 5510349 621183 5510349 142/11-24-009-10W2/00 615.2 2608.0 vertical 11-24-009-10W2 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512445 626937 5512455 5510760 607843 5508363 141/10-12-009-12W2 607623 5508760 607843 5508834 121/12-22-009-12W2/00 601.6 2542.0 2465.0 vertical 03-03-09-13W2 595202 5506489 595202 5506489 595202 5506885 11/1/2-28-09-13W2/00 611.0 2558.0 vertical 04-01-09-14W2 587222 5505885 587222 5505885 141/12-01-010-09W2/00 626.3 2488.6 vertical 12-01-010-09W2 636189 551746 636189 551746 636189 551746 636189 5517446										
142/11-24-009-10W2/00 615.2 2608.0 vertical 11-24-009-10W2 626937 5512445 626937 5512445 111/12-07-009-12W2/00 618.0 2195.0 2195.0 vertical 12-07-009-12W2 598948 5508363 598948 5508363 141/101-2009-12W2/00 60.6 2542.0 2465.0 vertical 10-12-009-12W2 603525 5511760 603525 5501760 603525 5505971 594405 5505971 141/03-03-009-13W2/00 618.3 2195.0 2485.0 vertical 08-03-009-13W2 595202 5506489 595202 5506489 111/12-28-009-13W2/00 618.3 2195.0 vertical 04-01-009-14W2 587292 5505855 141/26-01-009-14W2/00 5951245 551746 636189 5517446 12/04-01-099-14W2/00 626.3 2486.6 vertical 04-01-009-14W2 587292 5505885 587292 5505885 14746 131/08-16-010-10W2/00 626.3 2438.6 vertical 10-02-010-09W2 635189 551746				-						
111/12-07-009-12W2/00 618.0 2195.0 vertical 12-07-009-12W2 598948 5508363 598948 5508363 141/10-12-009-12W2/00 610.6 2542.0 2469.7 deviated 10-12-009-12W2 607623 5508760 607843 5508363 121/12-22-009-12W2/00 609.8 2455.0 2485.0 vertical 03-03-009-13W2 603525 5511760 603525 5511760 111/03-03-009-13W2/00 611.0 2558.0 2485.0 vertical 03-03-009-13W2 595202 5506489 595202 5506489 111/12-28-009-13W2/00 618.3 2195.0 vertical 04-01-009-14W2 595202 5506489 595202 5506885 121/04-01-00-9W2/00 626.3 2438.6 vertical 12-01-010-9W2 636189 551746 636189 551746 191/07-02-010-09W2/00 626.3 2448.6 vertical 10-02-010-09W2 635079 5517236 635081 5517236 131/08-16-010-10W2/00 626.3 2448.7 2448.7 vertical										
141/10-12-009-12W2/00 610.6 2542.0 2469.7 deviated 10-12-009-12W2 607623 5508760 607843 5508834 121/12-22-009-12W2/00 609.8 2455.0 2455.0 vertical 12-22-009-12W2 603525 5511760 603525 5511760 111/03-03-009-13W2/00 611.0 2558.0 vertical 03-009-13W2 594405 5505971 594405 5506489 111/12-28-009-13W2/00 618.3 2195.0 vertical 12-28-009-13W2 595202 5508489 595202 550885 121/04-01-009-14W2/00 526.3 2438.6 vertical 12-28-009-13W2 595262 550885 587292 550885 141/12-01-010-09W2/00 626.3 2438.6 vertical 12-01-010-09W2 636189 5517466 636189 5517466 636189 5517466 636189 5517466 636189 551723 635081 5517129 131/08-16-010-10W2/00 620.5 2075.0 Vertical 09-04-010-11W2 612652 5516840 612652 551	142/11-24-009-10W2/00	615.2	2608.0	2608.0	vertical	11-24-009-10W2	626937	5512445	626937	5512445
121/12-22-009-12W2/00 609.8 2455.0 vertical 12-22-009-12W2 603525 5511760 603525 5511760 111/03-03-009-13W2/00 605.7 2485.0 2485.0 vertical 03-03-009-13W2 594405 5505971 594405 5505971 141/08-03-009-13W2/00 611.0 2558.0 vertical 08-03-009-13W2 592202 5506489 595202 5506489 111/12-28-009-13W2/00 618.3 2195.0 vertical 12-28-009-13W2 592262 5513188 592262 5505885 121/04-01-009-14W2/00 594.1 2242.0 vertical 12-01-010-09W2 636189 5517446 636189 5517446 636189 5517236 635081 5517129 131/08-16-010-10W2/00 626.3 2486.9 vertical 09-04-010-11W2 612652 5516840 612652 5516840 612652 5516840 612652 5516941 612452 5516941 121/03-10-010-15W2/00 584.2 2445.7 2445.7 vertical 03-010-15W2 575543 <td< td=""><td>111/12-07-009-12W2/00</td><td>618.0</td><td>2195.0</td><td>2195.0</td><td>vertical</td><td>12-07-009-12W2</td><td>598948</td><td>5508363</td><td>598948</td><td>5508363</td></td<>	111/12-07-009-12W2/00	618.0	2195.0	2195.0	vertical	12-07-009-12W2	598948	5508363	598948	5508363
121/12-22-009-12W2/00 609.8 2455.0 vertical 12-22-009-12W2 603525 5511760 603525 5511760 111/03-03-009-13W2/00 605.7 2485.0 2485.0 vertical 03-03-009-13W2 594405 5505971 594405 5505971 141/08-03-009-13W2/00 611.0 2558.0 vertical 08-03-009-13W2 592202 5506489 595202 5506489 111/12-28-009-13W2/00 618.3 2195.0 vertical 12-28-009-13W2 592262 5513188 592262 5505885 121/04-01-009-14W2/00 594.1 2242.0 vertical 12-01-010-09W2 636189 5517446 636189 5517446 636189 5517236 635081 5517129 131/08-16-010-10W2/00 626.3 2486.9 vertical 09-04-010-11W2 612652 5516840 612652 5516840 612652 5516840 612652 5516941 612452 5516941 121/03-10-010-15W2/00 584.2 2445.7 2445.7 vertical 03-010-15W2 575543 <td< td=""><td>141/10-12-009-12W2/00</td><td>610.6</td><td>2542.0</td><td>2469.7</td><td>deviated</td><td>10-12-009-12W2</td><td>607623</td><td>5508760</td><td>607843</td><td>5508834</td></td<>	141/10-12-009-12W2/00	610.6	2542.0	2469.7	deviated	10-12-009-12W2	607623	5508760	607843	5508834
111/03-03-009-13W2/00 605.7 2485.0 2485.0 vertical 03-03-009-13W2 594405 5505971 594405 5505971 141/08-03-009-13W2/00 611.0 2558.0 vertical 08-03-009-13W2 595202 5506489 595202 5506489 111/12-28-009-13W2/00 618.3 2195.0 2195.0 vertical 12-28-009-13W2 592262 551188 592262 5513188 121/04-01-009-14W2/00 626.3 2438.6 2438.6 vertical 12-01-010-09W2 636189 5517446 636189 5517446 191/07-02-010-09W2/00 625.3 2462.0 2448.9 deviated 10-02-010-09W2 635079 5517236 635081 5517129 131/08-16-010-10W2/00 620.5 2075.0 2075.0 vertical 09-04-010-11W2 612652 5516840 612652 5516840 191/08-06-010-15W2/00 584.8 2495.0 2474.4 deviated 09-06-010-15W2 574539 5516983 574539 5516840 101/16-14-010-17W2/00 584.2										
141/08-03-009-13W2/00611.02558.02558.0vertical08-03-009-13W259520255064895952025506489111/12-28-009-13W2/00618.32195.02195.0vertical12-28-009-13W259226255131885922625513188121/04-01-009-14W2/00594.12242.02242.0vertical04-01-009-14W258729255058855872925505885141/12-01-010-09W2/00626.32438.6vertical12-01-010-09W263519955174466351895517446191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257055055169335745395516981101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W25575445519664557544551966433-023-00171-00-00584.63608.8verticalSESW 18-163-9763030542065963030542065933-023-00171-00-00584.633605.23505.2verticalNWNW 22-162-10158887541147758887541147733-023-00221-00-00660.5<	, ,									
111/12-28-009-13W2/00618.32195.02195.0vertical12-28-009-13W259226255131885922625513188121/04-01-009-14W2/00594.12242.02242.0vertical04-01-009-14W258729255058855872925505885141/12-01-010-09W2/00626.32438.62438.6vertical12-01-010-09W263618955174466361895517446191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257055055160375705485519681101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W25754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-9763033054205963033054205933-023-0021-00-00660.53505.23505.2verticalNWNW 20-163-10257576542087457576542087433-023										
121/04-01-009-14W2/00594.12242.0vertical04-01-009-14W258729255058855872925505885141/12-01-010-09W2/00625.32438.62438.6vertical12-01-010-09W263618955174466361895517446191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257755055160375705485515829121/03-10-015W2/00584.22445.72445.7vertical03-10-010-15W257453955169835745395519664101/16-14-010-17W2/00584.22445.72445.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-95641916542254641916542255433-023-00177-00-00592.53444.2verticalSWSW 24-163-976303305420659630330542065933-023-00216-00-00660.53505.2verticalNWNW 20-163-1025757365420874575736542087433-023-00224-00-00664.43459.5										
141/12-01-010-09W2/00626.32438.62438.6vertical12-01-010-09W263618955174466361895517446191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02495.0vertical03-10-010-515W257055055169335745395516981101/16-14-010-15W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.8werticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.2verticalSWSW 24-163-976303305420679630330542067933-023-00216-00-00660.03389.43389.4verticalNWNW 22-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 20-163-1025757365420874575736542087433-023-00223-00-00664.3 </td <td>111/12-28-009-13W2/00</td> <td>618.3</td> <td>2195.0</td> <td>2195.0</td> <td>vertical</td> <td>12-28-009-13W2</td> <td>592262</td> <td>5513188</td> <td>592262</td> <td>5513188</td>	111/12-28-009-13W2/00	618.3	2195.0	2195.0	vertical	12-28-009-13W2	592262	5513188	592262	5513188
141/12-01-010-09W2/00626.32438.62438.6vertical12-01-010-09W263618955174466361895517446191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02495.0vertical03-10-010-515W257055055169335745395516981101/16-14-010-15W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.8werticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.2verticalSWSW 24-163-976303305420679630330542067933-023-00216-00-00660.03389.43389.4verticalNWNW 22-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 20-163-1025757365420874575736542087433-023-00223-00-00664.3 </td <td>121/04-01-009-14W2/00</td> <td>594.1</td> <td>2242.0</td> <td>2242.0</td> <td>vertical</td> <td>04-01-009-14W2</td> <td>587292</td> <td>5505885</td> <td>587292</td> <td>5505885</td>	121/04-01-009-14W2/00	594.1	2242.0	2242.0	vertical	04-01-009-14W2	587292	5505885	587292	5505885
191/07-02-010-09W2/00625.32462.02448.9deviated10-02-010-09W263507955172366350815517129131/08-16-010-10W2/00620.52075.02075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W25705505516037570548551829121/03-10-010-15W2/00580.82495.02495.0vertical03-10-010-15W257453955169835745395519681101/16-14-010-17W2/00584.22445.72445.7vertical05-11-011-14W2584418552720058442755272433-023-00171-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00216-00-00660.53505.23505.2verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00644.43459.53459.5verticalNWNW 20-163-986173525424808617352542480833-023-00224-00-00603.53504.03224.0verticalNWNW 21-163-986160935426791616612542157133-023-00223-0		626.3		2438.6						
131/08-16-010-10W2/00620.52075.0vertical08-16-010-10W262240355200636224035520063121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257055055160375705485515829121/03-10-010-15W2/00580.82495.02495.0vertical03-10-010-15W257453955169835745395516981101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52435.7vertical05-11-011-14W2584418552723058427552720033-023-00171-00-00584.63608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-0023-00-00664.43459.5verticalNWNW 20-163-1025757365420874575736542087433-023-00223-00-00664.33365.63365.6verticalNWNW 20-163-986160125421571616612542157133-023-00223-00-00664.33365.63224.0vertical<										
121/09-04-010-11W2/00616.02557.32557.3vertical09-04-010-11W261265255168406126525516840191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257055055160375705485515829121/03-10-010-15W2/00580.82495.02495.0vertical03-10-010-15W257453955169835745395516981101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-10158887541147758887541147733-023-00216-00-00666.03389.4verticalNWNW 20-163-102575736542087457536542087433-023-00221-00-00664.43459.5verticalNWNW 10-163-986173525424808617352542480833-023-00224-00-00603.53504.03224.0verticalSWNE 11-163-976294405426592616388542699133-023-00233-00-00589.8329										
191/08-06-010-15W2/00574.92545.02474.4deviated09-06-010-15W257055055160375705485515829121/03-10-010-15W2/00580.82495.02495.0vertical03-10-010-15W257453955169835745395516981101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-00216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-9861173525424808617352542480833-023-00224-00-00603.53504.03224.0verticalSWNE 11-163-9762944054268062944054268033-023-00234-00-00603.53504.03224.0verticalSWNE 11-163-9762944054268062944054268033-023-00234-00-0										
121/03-10-010-15W2/00580.82495.02495.0vertical03-10-010-15W257453955169835745395516981101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-00216-00-00666.03389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-9861173525424808617352542480833-023-00224-00-00603.53504.03224.0verticalSESW 33-164-986160125421571616612542157133-023-00234-00-00589.83293.43293.4verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00589.73305.63305.6verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00589.8<	,									
101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-0216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00224-00-00603.53504.03224.0verticalSESW 33-164-98616093542680629440542468033-023-00234-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00589.73305.63305.6verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00	191/08-06-010-15W2/00	574.9	2545.0	2474.4	deviated	09-06-010-15W2	570550	5516037	570548	5515829
101/16-14-010-17W2/00584.22445.72445.7vertical16-14-010-17W255754455196645575445519664121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-0216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00224-00-00603.53504.03224.0verticalSESW 33-164-98616093542680629440542468033-023-00234-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00589.73305.63305.6verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00	121/03-10-010-15W2/00	580.8	2495.0	2495.0	vertical	03-10-010-15W2	574539	5516983	574539	5516981
121/05-11-011-14W2/00604.52436.02435.7vertical05-11-011-14W25844185527230584427552722033-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-00216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00234-00-00603.53504.03224.0verticalSESW 33-164-986160935426792616388542699133-023-00234-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00590.73305.63305.6verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00590.73305.63305.6verticalSEW 33-164-976257565427002625756542700233-023-00234-00-00 <t< td=""><td>,,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	,,									
33-023-00171-00-00584.63608.83608.8verticalSESW 18-163-956419165422554641916542255433-023-00177-00-00592.53444.23444.2verticalSWSW 24-163-976303305420659630330542065933-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-00216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542159133-023-00224-00-00603.53504.03224.0verticalSEW 33-164-986160935426792616388542699133-023-00234-00-00589.83293.43293.4verticalSWNE 11-163-976294405424808629440542468033-023-00234-00-00590.73305.63305.6verticalSWNE 14-163-996101935422696610193542269633-023-00251-00-00643.12697.52697.5verticalSWNE 14-163-9961019354226966101935422696				-						
33-023-00177-00-00 592.5 3444.2 vertical SWSW 24-163-97 630330 5420659 630330 5420659 33-023-00189-00-00 660.5 3505.2 3505.2 vertical NWNW 22-162-101 58887 5411477 588887 5411477 33-023-00216-00-00 666.0 3389.4 3389.4 vertical NWNW 20-163-102 575736 5420874 575736 5420874 33-023-00216-00-00 664.4 3459.5 vertical NWNW 10-163-98 617352 5424808 617352 5424808 617352 5424808 33-023-00223-00-00 648.3 3365.6 vertical NWNE 21-163-98 616612 5421571 616612 5421591 33-023-00224-00-00 603.5 3504.0 3224.0 vertical SESW 33-164-98 616093 5426792 616388 5426991 33-023-00233-00-00 589.8 3293.4 vertical SWNE 11-163-97 629440 5424680 629440 5424680 33-023-00234-00-00 5890.7 3305.6 vertical <td></td>										
33-023-00189-00-00660.53505.23505.2verticalNWNW 22-162-1015888875411477588887541147733-023-00216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00224-00-00603.53504.03224.0verticalSESW 33-164-986160935426792616388542699133-023-00234-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00590.73305.63305.6verticalSESW 33-164-976257565427002625756542700233-023-00251-00-00643.12697.52697.5verticalSWNE 14-163-9961019354226966101935422696										
33-023-00216-00-00666.03389.43389.4verticalNWNW 20-163-1025757365420874575736542087433-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00224-00-00603.53504.03224.0verticalSESW 33-164-986160935426792616388542699133-023-00233-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00590.73305.63305.6verticalSESW 33-164-976257565427002625756542700233-023-00251-00-00643.12697.52697.5verticalSWNE 14-163-9961019354226966101935422696	33-023-00177-00-00	592.5	3444.2	3444.2	vertical	SWSW 24-163-97	630330	5420659	630330	5420659
33-023-00216-00-00 666.0 3389.4 3389.4 vertical NWNW 20-163-102 575736 5420874 575736 5420874 33-023-00221-00-00 604.4 3459.5 3459.5 vertical NWNW 10-163-98 617352 5424808 617352 5424808 33-023-00223-00-00 648.3 3365.6 3365.6 vertical NWNE 21-163-98 616612 5421571 616612 5421571 33-023-00224-00-00 603.5 3504.0 3224.0 vertical SESW 33-164-98 616093 5426792 616388 5426991 33-023-00233-00-00 589.8 3293.4 3293.4 vertical SWNE 11-163-97 629440 5424680 629440 5424680 33-023-00234-00-00 590.7 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00234-00-00 590.7 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00231-00-00 643.1 2697.5 2697.5	33-023-00189-00-00	660.5	3505.2	3505.2	vertical	NWNW 22-162-101	588887	5411477	588887	5411477
33-023-00221-00-00604.43459.53459.5verticalNWNW 10-163-986173525424808617352542480833-023-00223-00-00648.33365.63365.6verticalNWNE 21-163-986166125421571616612542157133-023-00224-00-00603.53504.03224.0verticalSESW 33-164-986160935426792616388542699133-023-00233-00-00589.83293.43293.4verticalSWNE 11-163-976294405424680629440542468033-023-00234-00-00590.73305.63305.6verticalSESW 33-164-976257565427002625756542700233-023-00251-00-00643.12697.52697.5verticalSWNE 14-163-9961019354226966101935422696									575736	
33-023-00223-00-00 648.3 3365.6 3365.6 vertical NWNE 21-163-98 616612 5421571 616612 5421571 33-023-00224-00-00 603.5 3504.0 3224.0 vertical SESW 33-164-98 616093 5426792 616388 5426991 33-023-00233-00-00 589.8 3293.4 3293.4 vertical SWNE 11-163-97 629440 5424680 629440 5424680 33-023-00234-00-00 590.7 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00231-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696										
33-023-00224-00-00 603.5 3504.0 3224.0 vertical SESW 33-164-98 616093 5426792 616388 5426991 33-023-00233-00-00 589.8 3293.4 3293.4 vertical SWNE 11-163-97 629440 5424680 629440 5424680 33-023-00234-00-00 590.7 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00251-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696										
33-023-00233-00-00 589.8 3293.4 3293.4 vertical SWNE 11-163-97 629440 5424680 629440 5424680 33-023-00234-00-00 590.7 3305.6 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00251-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696										
33-023-00234-00-00 590.7 3305.6 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00251-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696					vertical					
33-023-00234-00-00 590.7 3305.6 3305.6 vertical SESW 33-164-97 625756 5427002 625756 5427002 33-023-00251-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696	33-023-00233-00-00	589.8	3293.4	3293.4	vertical	SWNE 11-163-97	629440	5424680	629440	5424680
33-023-00251-00-00 643.1 2697.5 2697.5 vertical SWNE 14-163-99 610193 5422696 610193 5422696	33-023-00234-00-00	590.7	3305.6	3305.6			625756	5427002	625756	
33-023-00233-00-00 023.4 3332.1 3332.1 VERTICAI NWSE 3-163-99 608530 5425440 608530 5425440										
	33-023-00253-00-00	o29.4	3332.1	JJJZ.1	vertical	NWSE 3-163-99	06530	5425440	06530	5425440

		1					1		
33-023-00261-00-00	647.7	3316.5	3316.5	vertical	SENE 28-163-102	578369	5418919	578369	5418919
33-023-00307-00-00	676.4	3374.1	3374.1	vertical	NWNW 27-163-101	588558	5419445	588558	5419445
33-023-00313-00-00	644.7	3316.2	3316.2	vertical	NWNW 25-163-102	582211	5419210	582211	5419210
33-023-00317-00-00	654.4	3291.8	3291.8	vertical	NENE 13-163-102	583322	5422618	583322	5422618
33-023-00327-00-00	683.4	3384.2	3384.2	vertical	SWNE 30-163-100	594340	5419196	594340	5419196
33-023-00340-00-00	611.4	3017.8	3017.8	vertical	SWNW 31-163-97	622283	5418011	622283	5418011
33-023-00387-00-00	580.6	2874.3	2874.3	vertical	NESW 6-163-95	641813	5426187	641813	5426187
33-023-00445-00-00	630.6	3435.7	3435.7	vertical	SWSE 9-162-96	636000	5414183	636000	5414183
33-023-00459-00-00	662.6	2612.1	2612.1	vertical	NENW 8-163-100	595143	5424212	595143	5424212
33-023-00460-00-00	645.6	2651.8	2651.8	vertical	SWSW 7-163-99	603052	5423456	603052	5423456
33-023-00741-00-00	670.0	2682.2	2682.2	vertical	SWSE 8-163-100	595875	5423211	595875	5423211

• 19 wells with brine samples analysed for lithium concentration in the project area.

Well ID	Reference Elevation - Kelly Bushing (m)	Measured Depth (m)	True Vertical Depth (m)	Vertical or Deviated Well	Surface Location	Surface Hole Easting (NAD83)	Surface Hole Northing (NAD83)	Bottom Hole Easting (NAD83)	Bottom Hole Northing (NAD83)
103/01-02-001-12W2/00	618.6	3731	3731	vertical	01-02-001-12W2	609801.4	5428760	609801.4	5428760
101/14-33-002-12W2/00	598	2421	2421	vertical	14-33-002-12W2	605332.5	5447568	605332.5	5447568
121/09-13-002-22W2/00	761.3	3270.1	3270.1	vertical	09-13-002-22W2	513400.5	5441333	513400.5	5441333
141/16-20-003-12W2/00	593.3	2374	2374	vertical	16-20-003-12W2	603468.3	5454117	603463.2	5454116
101/04-19-004-08W2/00	587.2	2476	2476	vertical	04-19-004-08W2	639532.5	5463307	639532.5	5463307
141/01-22-004-19W2/00	755.6	3075	3075	vertical	01-22-004-19W2	538242.9	5461757	538242.9	5461757
111/02-05-005-21W2/00	754.6	2879	2862.8	deviated	02-05-005-21W2	514973.6	5466460	515093.8	5466344
101/07-27-007-06W2/03	612	1732.5	1732.5	vertical	07-27-007-06W2	663558.7	5495102	663558.7	5495102
101/02-22-007-09W2/00	614.9	1941	1940.7	vertical	02-22-007-09W2	634094.7	5492296	634094.6	5492301
141/13-02-007-11W2/00	610.9	2000	2000	vertical	13-02-007-11W2	615469.8	5488153	615469.8	5488153
121/09-03-007-11W2/00	614.5	1932	1932	vertical	09-03-007-11W2	615059.5	5487701	615059.5	5487701
141/14-12-007-11W2/00	606.8	1902	1900.9	vertical	14-12-007-11W2	617572.5	5489933	617576.8	5489935
121/10-03-008-05W2/00	603.9	2475	2475	vertical	10-03-008-05W2	673057	5499015	673057	5499015
101/14-36-008-13W2/00	615.3	2581	2581	vertical	14-36-008-13W2	597644.8	5505630	597644.8	5505630
111/11-02-009-13W2/00	613.5	2593	2590.4	vertical	11-02-009-13W2	596055	5506763	596033.9	5506773
141/11-17-009-21W2/00	764.5	2624	2624	vertical	11-17-009-21W2	513002.8	5509358	513002.8	5509358
33-023-00259-00-00	704.4	3587.8	3587.8	vertical	SESW 8-161-99	605305	5404070	605305	5404070
33-023-00273-00-00	698.6	2910.8	2910.8	vertical	SENW 8-161-99	605239.6	5404887	605239.6	5404887
33-023-00327-00-00	683.4	3384.2	3384.2	vertical	SWNE 30-163-100	594340.3	5419196	594340.3	5419196

Figure 1: Location map of Arizona Lithium's Prairie Project Property illustrating major infrastructure (primary roads, rail, highline power transmission lines)

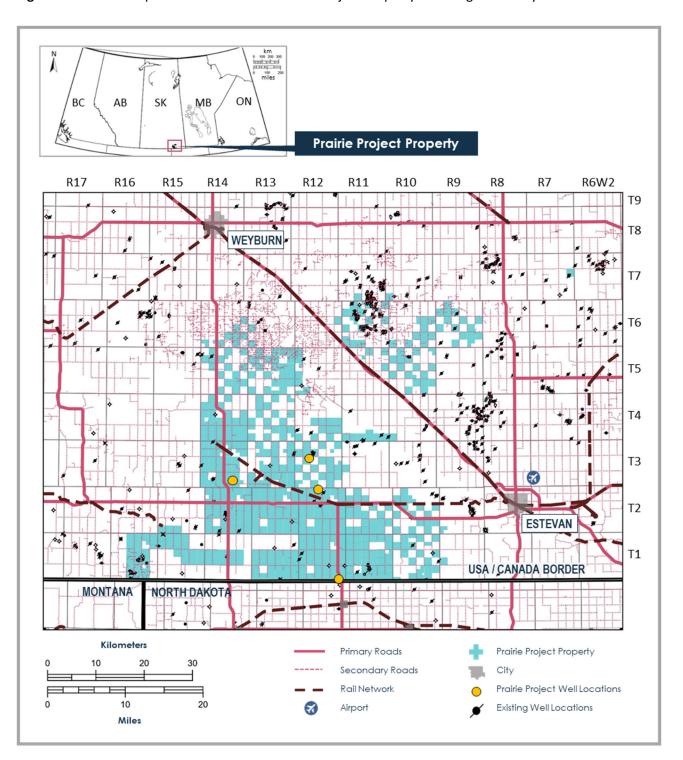


Figure 2: Location map of Arizona Lithium's Prairie Project Property including secondary roads

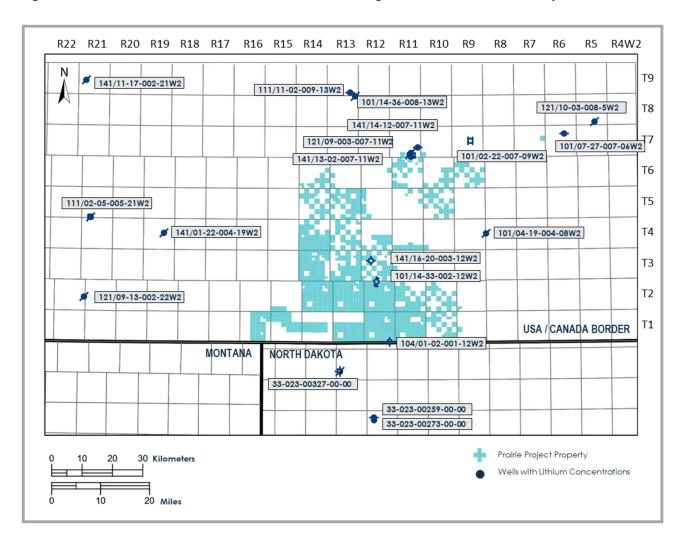
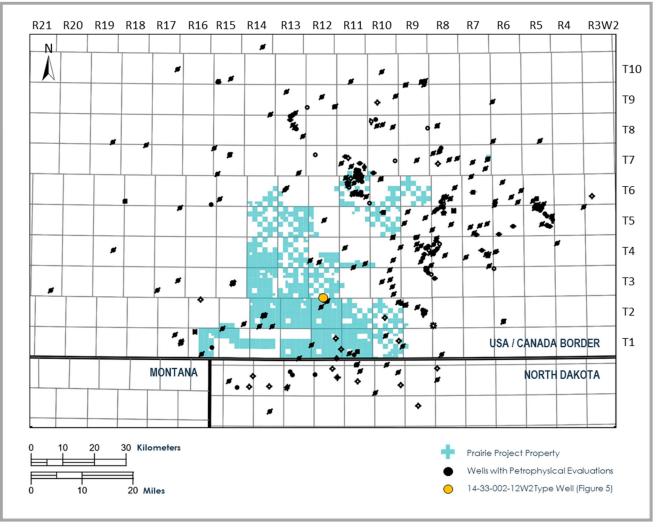
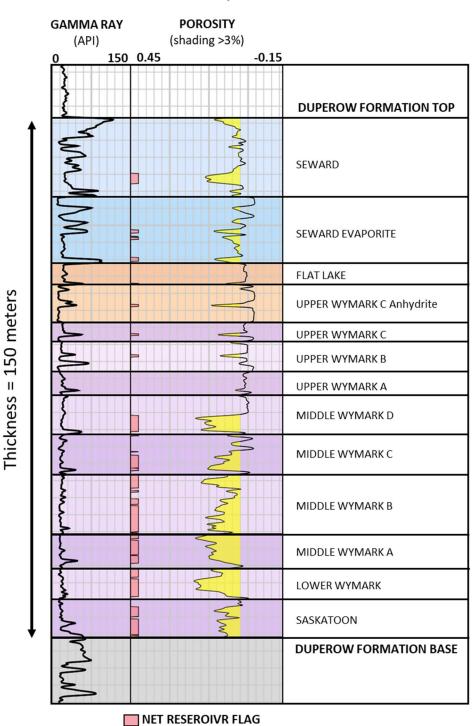




Figure 3: Wells with Lithium Concentration Data surrounding Arizona Lithium's Prairie Project

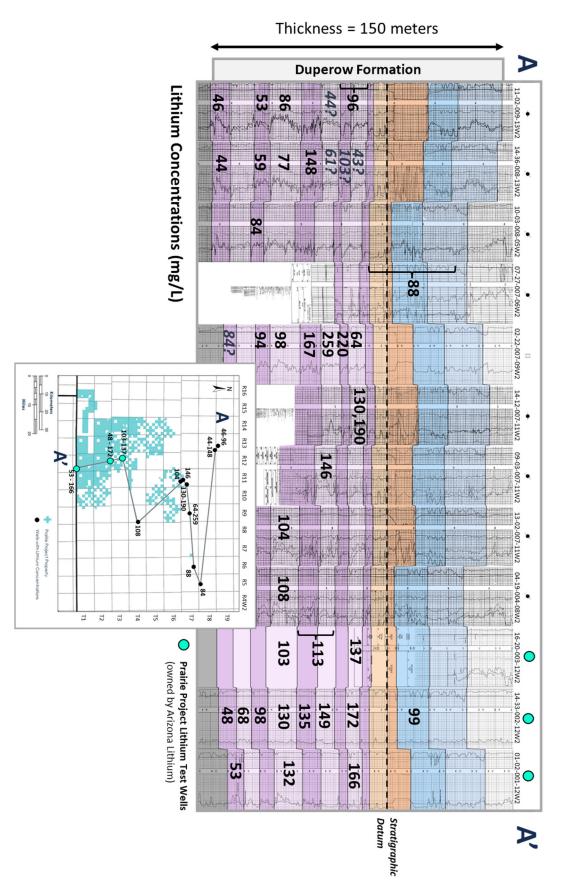
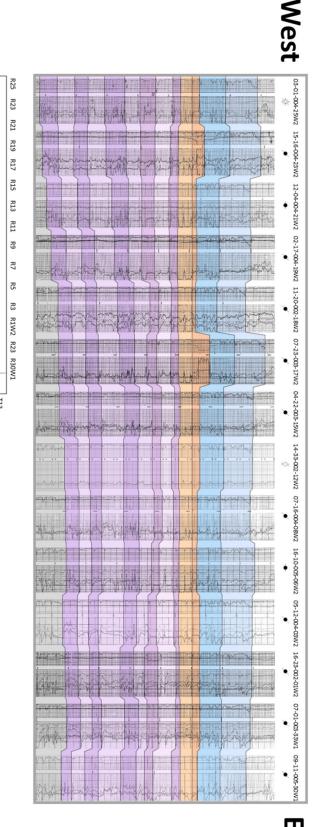
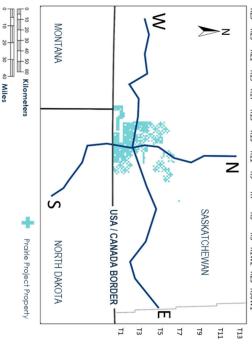
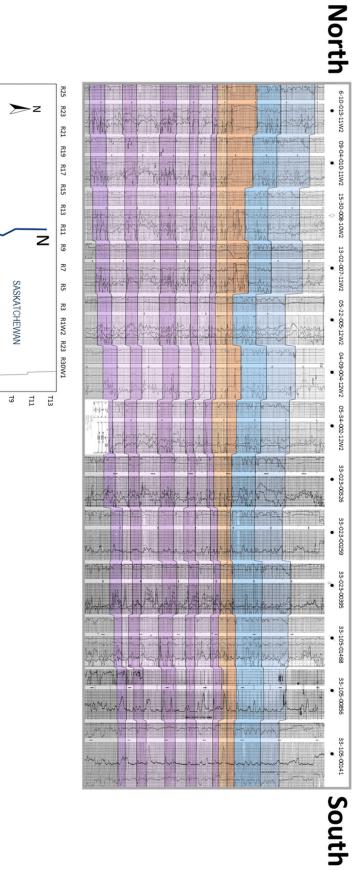
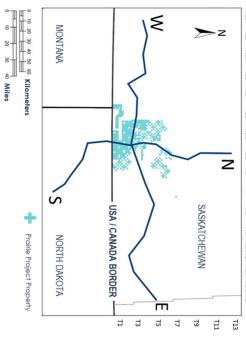

Figure 4: Wells drilled through the Duperow Formation with Petrophysical Evaluations completed for the Resource Assessment (279 wells)

Figure 5: Stratigraphy of the Duperow Formation used in the Resource Assessment illustrated on well 101/14-33-002-12W2.




Well: 101/14-33-002-12W2


Figure 7: West to East Cross Section Across the Property



East

Figure 8: North to South Cross Section Across the Property

Table 1: Representative lithium concentrations within the Indicated Resource area based on the mass

 volume and brine volume estimates

Stratigraphic Interval	Representative Lithium Concentration (mg/L)				
Seward	99				
Seward Evaporite	98				
Flat Lake Evaporite	96				
Upper Wymark C Anhydrite	162				
Upper Wymark C	160				
Upper Wymark B	159				
Upper Wymark A	159				
Middle Wymark D	144				
Middle Wymark C	136				
Middle Wymark B	117				
Middle Wymark A	96				
Lower Wymark	69				
Saskatoon Member	49				

Competent Persons statement for Prairie and Registered Overseas Professional Organisation (ROPO) and JORC Tables

Gordon MacMillan P.Geol., Principal Hydrogeologist of Fluid Domains, who is an independent consulting geologist of a number of brine mineral exploration companies and oil and gas development companies, reviewed and approves the technical information provided in the release and JORC Code – Table 1 attached to this release. Mr. MacMillan is a member of the Association of Professional Engineers and Geoscientists of Alberta (APEGA), which is ROPO accepted for the purpose of reporting in accordance with the ASX listing rules. Mr. MacMillan has been practising as a professional in hydrogeology since 2000 and has 23 years of experience in mining, water supply, water injection, and the construction and calibration of numerical models of subsurface flow and solute migration. Mr. MacMillan is also a Qualified Person as defined by NI 43-101 rules for mineral deposit disclosure.