

ASX ANNOUNCEMENT 7 November 2023

Yule East AC Drill Results Delivers Further Encouragement

Yule River Shear Zone shows typical Archaean gold system features on major structural corridor

Yule East Air-Core Results

- Wide-spaced program along selective drill lines 63 holes for 7,835m
 - Encouraging alteration observed in broad 500m wide, approx. 10km long major structural corridor
 - Further gold and copper anomalism recorded
 - Variable to strong shearing, quartz veining and broad pyrite alteration

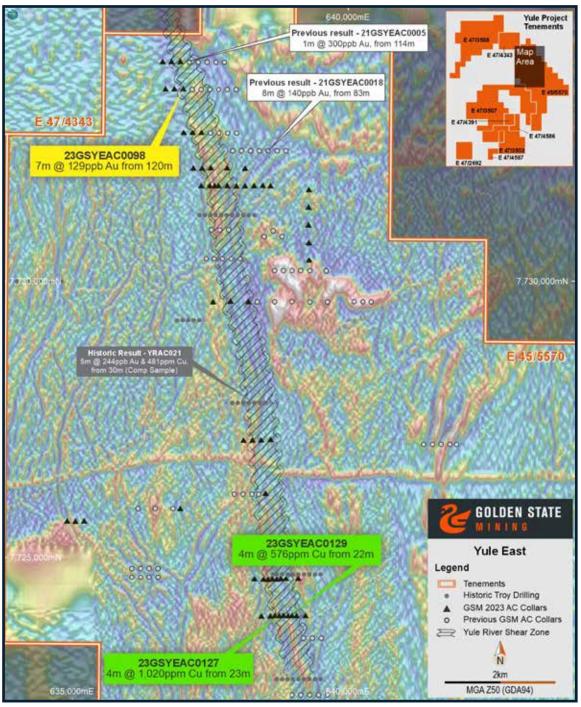


Figure 1: Yule East Collar Plan showing significant results.

Lithium, gold and base metals exploration company Golden State Mining Limited (ASX code: "GSM" or the "Company") is pleased to provide the remaining drilling results for its air-core ("AC") program conducted at Yule East (E45/5570) in the Pilbara, Western Australia.

Golden State's Managing Director, Michael Moore commented: "The recent gold and base metals AC drilling at Yule East probed a number of areas in and around the Yule River shear zone where pathfinder anomalism has been reported in previous drilling. These latest results from this wide-spaced, shallow drilling along selected drill lines demonstrates typical Archaean gold system features with deformed zones of strong shearing, quartz veining, chlorite and broad persistent pyrite alteration. Additional base metal copper anomalism associated with this major feature was also recorded.

The new results have further confirmed that we are dealing with a significant +10km structural corridor of some 500m in width with strong gold host characteristics and further gold anomalism and pathfinders. In addition, two anomalous +500pm copper intersections were recorded which once again corroborates what we have seen in previous drilling.

The technical team at GSM will now use this recent work to refine the model and to delineate the future drill target areas at Yule East based on the valuable vectoring data we have gathered to date. We are now preparing all necessary approvals for the next phase of drilling in 2024."

Yule project - lithium-gold (GSM holds or earning 100%)

Yule East prospect (E45/5570) - gold

GSM has now received all remaining results from a reconnaissance AC program (refer to ASX announcement dated 24 October 2023) conducted at Yule East (Figure 1). This program included follow up drilling from previous anomalous AC results (refer to ASX release dated 15 March 2022) along the Yule River Shear Zone ("YRSZ") and investigation of a Kanowna Belle-style target model based on Archaean gold deposits within the Eastern Yilgarn region of Western Australia. In total, 63 holes were completed for a total of 7,835m. These results are detailed below with significant results provided in Appendix 1.

AC drilling demonstrated typical Archaean gold system features within an approximate 10km long, significant north trending structural corridor up to 500m wide which is interpreted to represent the YRSZ (and associated splays). Field logging observations recorded encouragingly broad zones with "classic gold host" hallmarks including partially to strongly sheared, banded, broad chlorite-silica-epidote-leucoxene alteration zones within schist and metasedimentary host rock types. Accompanying broad, persistent zones of irregular, fine-grained disseminated pyritic (0.1-5% pyrite) and irregular blue grey quartz veining were also recorded.

The best gold result was reported at the end of hole 23GSYEAC0098 with 7m (a) 129ppb Au from 120m including a composite sample interval of 4m (a) 190ppb Au from 120m. Another interval of gold anomalism was reported 320m to the west in hole 23GSYEAC0096 with 12m (a) 51ppb Au from 90m & 4m (a) 50ppb Au from 126m. The most consistent area of +50ppb gold and associated pathfinder anomalism was recorded in the northern section of YRSZ. Although drilling did not intersect any ore-grade gold intercepts, the wide-spaced nature of the AC drilling, on selective drill lines, along with the variable to strong deformation, shear fabric development and broad alteration including sulphide disseminated zones, provided confidence in the potential gold fertility of this underexplored Yule East ground and the YRSZ structural corridor.

Additional base metal copper anomalism associated with this major feature was also recorded in several AC holes at Yule East (refer to ASX release dated 23 February 2022). Of particular note are two anomalous +500ppm copper ('Cu') intersections that were recorded in selected multi-element composite samples from two holes based on anomalous +200ppm portable X-ray Fluorescent ("pXRF") copper readings taken on single-metre drill spoil piles within the corresponding intervals. 23GSYEAC0127 reported 4m @ 1020ppm (0.1%) Cu from 23m in saprolite interpreted as a highly weathered metasediment unit. Hole 23GSYEAC0129, drilled 160m east of hole 23GSYEAC0127 also reported elevated copper anomalism with 4m @ 576ppm Cu from 22m in a similar host unit. Further multi-element sampling is required to follow up more elevated pXRF readings (+200ppm up to 600ppm Cu) recorded further down these two holes.

GOLDEN STATE

Eucla

Cu - Au - Ni

The GSM technical team will now fully evaluate the latest gold and copper results in conjunction with all previous and historic drilling data to determine their significance and establish the appropriate follow up drilling strategy. Statutory approvals are now in preparation for the next drilling program.

GSM Overview

- Vule (Li) in the Pilbara's Mallina Basin
 - Nomad lithium Prospect Li-Cs-Rb + As pathfinder footprint identified
 - ~2km end of Hole Li-Cs-Rb bedrock anomaly from AC drilling
 - RC drilling follow up 6m @ 421ppm Cs fr 103m
 - Balla Yule Prospect Li anomalism
- Yule (Au-Base Metals) in the Pilbara's Mallina Basin
 - Multiple gold targets in favourable structural setting 13km from the 9.5 Moz Hemi gold resource
 - Target 1 East 4m @ 2.3g/t Au incl. 1m @ 7.6g/t
 - Yule East interpreted as a Kanowna Belle structural setting analogy
- Paynes Find (Li) extensive lithium and pathfinder geochemistry anomalies generated
- Southern Cross East (Au) Gold and pathfinder soil geochemistry anomalies generated

WESTERN AUSTRALIA

Port Hedland

Li - Au

Willona

Leonoral

Paynes Find Li

Leinste

Laverton

Kalgoorlie

Southern Cross

East - Au

Karialha

Meekatharra

Geraldton

PERTH

Ashburton Pb - Ag - Au

For further information please contact:

Mike Moore (Managing Director) on 08 6323 2384 Greg Hancock (Non-Executive Director) on 08 6323 2384 Email info@gsmining.com.au

ENDS

BOARD OF DIRECTORS

Michael Moore Managing Director

Damien Kelly Non-Executive Chairman

Brenton Siggs Non-Executive Director

Greg Hancock Non-Executive Director

ISSUED CAPITAL

Shares
Options

191.0 m 22.0 m

REGISTERED OFFICE

Level 1, Suite 15 19-21 Outram Street West Perth WA 6005

≈ + 61 (08) 6323 2384
= + 61 (08) 9467 9114

☑ info@gsmining.com.au

Golden State Mining Limited ABN 52 621 105 995

FORWARD LOOKING STATEMENTS

As a result of a variety of risks, uncertainties and other factors, actual events, trends and results may differ materially from any forward looking and other statements mentioned or implied herein not purporting to be of historical fact. In certain cases, forward-looking information may be identified by (without limitation) such terms as "anticipates", "believes", "should", "could", "estimates", "target", "likely", "plan", "expects", "may", "intend", "shall", "will", or "would". Any statements concerning mining reserves, resources and exploration results may also be forward looking in that they involve estimates based on assumptions. Forward looking statements are based on management's beliefs, opinions and estimates as of the respective dates they are made. The Company does not assume any obligation to update forward looking statements even where beliefs, opinions and estimates change or should do so given changed circumstances and developments.

COMPETENT PERSONS STATEMENT

The information in this report that relates to gold exploration Results, is based on information compiled by Geoff Willetts who is a Member of the Australian Institute of Geoscientists (AIG). Geoff Willetts is the Exploration Manager, a full-time employee of Golden State Mining Limited (GSM) and holds shares and options in the Company.

Geoff Willetts has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Geoff Willetts consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. Information on previous explorers and historical results are summarised in the Independent Geologist's Report of the Golden State Mining Limited Prospectus dated 22 August 2018.

This release was authorised by Mr. Michael Moore, Managing Director of Golden State Mining Limited.

APPENDIX 1: Yule East AC Drilling Significant Intervals

Target	HOLE_ID	TYPE	DEPTH	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth	From (m)	Interval (m)	Au_ppb	Cu_ppm	As_ppm
YE Area 1	23GSYEAC0093	AC	147	636,639	7,733,970	40	-60	270	92	4	70	NR	NR
YE Area 1	23GSYEAC0094	AC	123	636,799	7,733,970	40	-60	270	No	Significant F	Results	NR	NR
YE Area 1	23GSYEAC0095	AC	113	636,959	7,733,970	40	-60	270	No	Significant F	Results	NR	NR
YE Area 1	23GSYEAC0096	AC	147	636,690	7,733,470	40	-60	270	90	12	51	NR	NR
									126	4	50	NR	NR
YE Area 1	23GSYEAC0097	AC	138	636,850	7,733,470	40	-60	270	No	Significant F	Results	NR	NR
YE Area 1	23GSYEAC0098	AC	127	637,010	7,733,470	40	-60	270	120	7	129	NR	NR
								including	120	4	191	NR	NR
								including	126	1	92	57	162
YE Area 2	23GSYEAC0099	AC	147	637,018	7,732,680	40	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0100	AC	138	637,178	7,732,680	40	-60	270	101	4	61	NR	NR
YE Area 2	23GSYEAC0101	AC	143	637,338	7,732,680	40	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0102	AC	147	637,332	7,731,719	40	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0103	AC	147	637,487	7,731,721	26	-60	270	No Significant Results		NR	NR	
YE Area 2	23GSYEAC0104	AC	147	637,653	7,731,721	26	-60	270	No Significant Results		NR	NR	
YE Area 2	23GSYEAC0105	AC	135	637,574	7,731,721	28	-60	270	No Significant Results		NR	NR	
YE Area 2	23GSYEAC0106	AC	147	637,812	7,731,721	26	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0107	AC	120	637,975	7,731,716	25	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0108	AC	132	638,133	7,731,718	26	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0109	AC	117	638,452	7,731,725	20	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0104	AC	147	637,653	7,731,721	26	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0105	AC	135	637,574	7,731,721	28	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0106	AC	147	637,812	7,731,721	26	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0107	AC	120	637,975	7,731,716	25	-60	270	No	Significant F	Results	NR	NR
YE Area 2	23GSYEAC0108	AC	132	638,133	7,731,718	40	-60	270	No Significant Results		NR	NR	
YE Area 2	23GSYEAC0109	AC	117	638,452	7,731,725	20	-60	270	No Significant Results		NR	NR	
YE Area 2	23GSYEAC0110	AC	124	638,294	7,731,720	23	-60	270	No	Significant F	Results	NR	NR
YE Area 3	23GSYEAC0111	AC	124	638,591	7,731,720	18	-60	270	No	Significant F	Results	NR	NR
YE Area 3	23GSYEAC0112	AC	116	639,290	7,731,651	17	-60	0	No	Significant F	Results	NR	NR
YE Area 3	23GSYEAC0113	AC	133	639,286	7,731,326	16	-60	0	No	Significant F	Results	NR	NR
YE Area 3	23GSYEAC0114	AC	124	639,282	7,731,008	16	-60	0	No	Significant F	Results	NR	NR

YE Area 3	23GSYEAC0115	AC	111	639,288	7,730,687	18	-60	0	No Oir-	ificant Reculto	NR	NR
										ificant Results		
YE Area 3	23GSYEAC0116	AC	63	639,293	7,730,370	17	-60	0		ificant Results	NR	NR
YE Area 4	23GSYEAC0117	AC	135	638,103	7,727,112	24	-60	270	No Sign	ificant Results	NR	NR
Prospect	HOLE_ID	TYPE	DEPTH	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth		terval (m) Au_ppb	Cu_ppm	As_ppm
YE Area 4	23GSYEAC0118	AC	117	638,264	7,727,114	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 4	23GSYEAC0119	AC	129	638,423	7,727,116	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 4	23GSYEAC0120	AC	144	638,592	7,727,124	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 5	23GSYEAC0121	AC	144	638,501	7,726,147	27	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0122	AC	75	638,299	7,724,596	26	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0123	AC	102	638,463	7,724,590	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0124	AC	147	638,778	7,724,598	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0125	AC	147	639,098	7,724,604	22	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0126	AC	104	638,426	7,723,926	20	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0127	AC	107	638,745	7,723,932	24	-60	270	23	4 BD	1020	60
YE Area 8	23GSYEAC0128	AC	95	638,587	7,723,927	22	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0129	AC	145	638,907	7,723,933	19	-60	270	22	4 BD	576	80
YE Area 8	23GSYEAC0130	AC	147	639,067	7,723,932	22	-60	0	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0131	AC	147	639,227	7,723,936	22	-60	0	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0132	AC	130	638,668	7,723,932	22	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0133	AC	122	638,822	7,723,937	22	-60	270	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0134	AC	147	638,985	7,723,934	22	-60	270	No Sign	ificant Results	NR	NR
YE Area 10	23GSYEAC0135	AC	78	639,163	7,719,976	25	-60	270	No Sign	ificant Results	NR	NR
YE Area 10	23GSYEAC0136	AC	72	639,007	7,719,970	24	-60	270	No Sign	ificant Results	NR	NR
YE Area 10	23GSYEAC0137	AC	69	639,087	7,719,979	32	-60	270	No Sign	ificant Results	NR	NR
YE Area 10	23GSYEAC0138	AC	96	639,323	7,719,971	32	-60	270	No Sign	ificant Results	NR	NR
YE Area 10	23GSYEAC0139	AC	95	639,487	7,719,975	32	-60	270	No Sign	ificant Results	NR	NR
YE Area 7	23GSYEAC0140	AC	107	634,901	7,725,643	28	-90	0	No Sign	ificant Results	NR	NR
YE Area 7	23GSYEAC0141	AC	92	635,217	7,725,644	25	-90	0	No Sign	ificant Results	NR	NR
YE Area 7	23GSYEAC0142	AC	147	635,059	7,725,639	25	-90	0	No Sign	ificant Results	NR	NR
YE Area 7	23GSYEAC0143	AC	147	636,955	7,723,926	25	-60	90	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0144	AC	66	638,541	7,724,586	25	-60	90	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0145	AC	127	638,624	7,724,596	28	-60	90	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0146	AC	147	638,702	7,724,591	28	-60	90	No Sign	ificant Results	NR	NR
YE Area 8	23GSYEAC0147	AC	147	638,866	7,724,603	30	-60	90	No Sign	ificant Results	NR	NR

Prospect	HOLE_ID	TYPE	DEPTH	Easting (m)	Northing (m)	RL (m)	Dip	Azimuth	From Interval (m) (m) Au_ppb	Cu_ppm	As_ppm
YE Area 2	23GSYEAC0148	AC	147	637,351	7,732,038	24	-60	270	No Significant Results	NR	NR
YE Area 2	23GSYEAC0149	AC	147	637,193	7,732,038	24	-60	270	No Significant Results	NR	NR
YE Area 2	23GSYEAC0150	AC	117	637,509	7,732,042	26	-60	270	No Significant Results	NR	NR
YE Area 2	23GSYEAC0151	AC	98	637,811	7,732,041	25	-60	270	No Significant Results	NR	NR
YE Area 2	23GSYEAC0152	AC	130	638,134	7,732,034	28	-60	270	No Significant Results	NR	NR
YE Area 3	23GSYEAC0153	AC	130	637,547	7,729,618	26	-60	270	No Significant Results	NR	NR
YE Area 3	23GSYEAC0154	AC	135	637,870	7,729,628	26	-60	270	No Significant Results	NR	NR
YE Area 3	23GSYEAC0155	AC	147	638,192	7,729,621	26	-60	270	No Significant Results	NR	NR

• Significant gold results are gold assays \geq 50 ppb

• Significant copper results are copper assays \geq 500 ppm

• Orange texts are end of hole anomalies

• An accurate dip and strike and the controls on mineralisation are only interpreted and the true width of mineralisation is unknown at this time.

In AC drilling, composite six metre samples were collected in cover, four metre samples were collected in bedrock with smaller composites (1-3metres) at/near end of hole.

• All gold samples are analysed by with aqua regia finish (25g charge with 0.5 ppb lower detection limit by Labwest (Perth) and 40g charge with 1ppb lower detection limit by Bureau Veritas (Perth)

All multi-element assays are analysed by multi-acid digest (Microwave digest, HF/multi-acid:62 elements Inc. Rees (ICP-MS/OES) by Labwest (Perth) and multi-acid:27 elements ICP-MS by Bureau Veritas (Perth)

• Ppm (parts per million), ppb (parts per billion), LD = below detection limit

• Type: AC = Aircore

• Coordinates are in GDA94, MGA Z50

JORC CODE, 2012 Edition - Table 1 Report - Yule East - AC Drilling

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code Explanation	Comments
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The drill sampling reported in this release has been completed Aircore (AC) drilling at the Yule East prospect of the Yule Project, near Port Hedland, Western Australia. The AC program consisted of 63 holes for 7,835m. Hole depth ranged from 63-147m. Program work utilised sampling procedures and QAQC protocols in line with industry best practice. Aircore (AC) drill chips were collected as composite samples (ranging from 2-6m samples) or single metre samples using a handheld PVC spear or scoop from 1 metre piles placed on the ground. Samples were collected in such a manner as to ensure portions of the whole sample pile were represented. This is standard industry practice for this type of early phase drilling. Mineralisation determined qualitatively by geological logging and quantitatively through assaying.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 AC drilling was completed by a Drillboss 300 rig Mounted on a Mercedes MAN LE-280B 4 X 4 by Bostech Drilling (Bellevue, Perth) using a face sampling blade or where AC hammer method used, a face sampling hammer bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill samples were generally good quality, with negligible contamination and >97% dry. Diligent drilling and ROP (Rate of Penetration) provided very good sample recovery. Sample recovery data and sample condition (dry, wet, moist) was recorded at time of drilling. Drilling with care (e.g. clearing hole at start of rod, regular cyclone cleaning) to reduce incidence of wet/moist samples. Insufficient sample population to determine whether relationship exists between sample recovery and grade. The quality of the sample (wet, dry, low recovery) was recorded during logging.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Detailed logging of, regolith, lithology, structure, veining, alteration, mineralisation and recoveries recorded in each hole by qualified geologist. Logging carried out by dry/wet sieving 1m sample cuttings, washing and archival samples collected in plastic chip trays for future reference.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• Every hole was logged for the entire length.

Criteria	JORC Code Explanation	Comments
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No Core Composite (2-6m) and 1m samples were collected by PVC spear and sampling of 1m intervals directly off sample piles into pre-numbered calico bags. Sample weight 2 – 3 kg. Collected samples bags placed in labelled and numbered plastic and/or polyweave bags for despatch to assay laboratory. The sample preparation of the AC samples follows industry best practice, involving oven drying and pulverising to produce a homogenous sub sample for analysis. Field duplicate samples collected as part of QA/QC procedure which also involved the use of certified STANDARD and BLANK samples (supplied by GEOSTATS Pty Ltd, Perth). Standards and blanks were inserted (approximately every 25 samples) and were included in the laboratory analysis. Standards were certified reference material prepared by Geostats Pty Ltd. Duplicate samples were collected at intervals of interest.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 1,000 samples were collected for gold and multi-element analysis (including lithium) using an aqua regia 25g charge for gold (lab code WAR-25) and a four-acid digest with ICPMS finish for 62 elements (Lab code MMA-04) at Labwest (Perth). Another 1,124 samples were collected for gold and multi-element analysis (including lithium) using an aqua regia 40g charge (lab code AR001) for gold analysis and a multi-acid digest with ICPMS finish for 27 elements (Lab code ICP102) by Bureau Veritas (Perth). These techniques are an industry standard for gold and base metals and considered appropriate. A Delta Premium portable XRF was used to record field readings at selected intervals down the hole. Reading duration was set at 30 seconds per beam for a total of 60 seconds and no calibration factors were applied. A Delta Premium portable XRF was used to record field readings at selected intervals down the hole. Reading duration was set at 30 seconds per beam for a total of 60 seconds and no calibration factors were applied. A Delta Premium portable XRF was used to record field readings at selected intervals down the hole. Reading duration was set at 30 seconds per beam for a total of 60 seconds and no calibration factors were applied. Quality control process and internal laboratory checks demonstrate acceptable levels of accuracy. At the laboratory, regular assay repeats, lab standards, checks and blanks were analysed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The results have been reviewed and verified by qualified and experienced company personnel. No holes were twinned. Capture of field logging is electronic using a Toughbook. Logged data is then exported as excel spreadsheets to the Company's database manager which is then loaded to the Company's database and validation checks completed to ensure data accuracy. Assay files (csv, pdf) are received electronically from the laboratory. There has been no adjustment to the assay data. The primary gold (Au) field reported by the laboratory is the priority value used for plotting, interrogating, and reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole positions were surveyed using a hand- held Garmin GPS64s with a horizontal (Easting/ Northing) accuracy of +-5m. Drill location is managed by the supervising geologist. Grid System - MGA94 Zone 50. Topographic elevation captured by using reading from Garmin handheld GPS with an accuracy of+-5m and considered suitable for the flat terrain of the project area.

Criteria	JORC Code Explanation	Comments
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Hole spacing on selective drill lines (selective grid orientations - refer Hole Collar table) to follow up anomalous gold results from AC drilling RC sample batch included both 1m split samples and composite samples (Range 2-6m). No assay compositing has been applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The selective drill-hole orientations considered effective for follow up drilling to assess interpreted structures or targets. The orientation of structures is not known with certainty, but drilling was conducted using appropriate orientations for interpreted structures. Bias introduced by drill orientation with respect to structures is not known.
Sample security	• The measures taken to ensure sample security.	 Samples were bagged up in labelled and numbered polyweave bags and trucked to the laboratory in Perth by a reputable freight company. Samples were then sorted and checked for inconsistencies against lodged Submission sheet by laboratory staff. Following analysis, the sample pulps and residues are retained by the laboratory in a secure storage yard.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• All sampling and analytical results of the drill program were reviewed by the Exploration Manager and technical director. Anomalous gold intersections were checked against library chip trays to correlate with geology. No specific audits or reviews have been conducted.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code Explanation	Comments
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Yule Project is located approximately 45km south-west of Port Hedland, Western Australia and consists of six granted exploration licences and two license applications (E47/3503, 3507, 3508, 4343, 4391, ELA47/ 4586 & 4587 and E45/5570 and E45/2692 covering approximately 766.6 square kilometres). The tenement holder is Crown Mining Pty Ltd., a wholly owned subsidiary of Golden State Mining Ltd with the exception of E45/2692 which is held by Bradford John Young with an exploration rights agreement (refer to ASX announcement dated 24 May 2023) The tenements are granted and in good standing
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• For details of relevant previous exploration completed by other parties at the Yule Project, refer to the Independent Geologists Report ('IGR') included in the Golden State Mining Ltd prospectus (2018).
Geology	• Deposit type, geological setting and style of mineralisation.	• As drillhole exploration on the project is in its infancy, deposit style is unknown at this stage and style of mineralisation is not well understood. Geological setting is Archaean sedimentary basin packages intruded by granitoid

Criteria	JORC Code Explanation	Comments
Drill hole Informαtion	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	• See Appendix 1 for drillhole details and significant intercepts
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top-cuts have been applied when reporting results. First assay from the interval in question is reported (i.e. Au1). No Aggregate sample assays are reported. Significant grade intervals based on intercepts > 50ppb gold, >100 ppm Li. No metal equivalent values have been used for reporting of results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• Mineralisation orientations have not been determined.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate summary diagrams are included in the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• All drillhole locations are reported and a table of significant intervals is provided in Appendix 1.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Other exploration data considered relevant for the Yule South Project has been included in the Golden State Mining prospectus (2018).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Collection of 1m sample intervals within anomalous 4m composite samples and review of results thereafter to plan follow up exploration work.