ABN 40 119 031 864

ASX ANNOUNCEMENT 30 NOVEMBER 2023

Large, High Confidence Yin Ironstone Resource - Mangaroon (100%)

HIGHLIGHTS

- Large, independent JORC Code 2012 Mineral Resource ("Resource") at the Yin REE Ironstone Complex ("Yin") delivers a high confidence Resource 87% Measured & Indicated. The Resource now totals 29.98Mt
 I.04% TREO and has been delivered in only 18 months from discovery.
- The Resource contains significant neodymium and praseodymium ("Nd₂O₃+Pr₆O₁₁" or "Nd+Pr") at various cut-off grades (Table 1).

Table I: Yin Resource as adjusted for different cut-off grades.

Cut-Off (%TREO)	Resource (Mt)	(Mt) (%)		Contained TREO (t)	Contained NdPr (t)		
0.20	29.98	1.04	29%	311,800	89,900		
0.40	21.06	1.35	29%	284,300	82,100		
1.00	11.63	1.93	29%	224,400	66,300		

- The Resource only covers ~10% of the 43km long Yin strike.
- Importantly, an initial Measured Resource of 5.17Mt @ 1.34% TREO has been defined over just ~250m of strike where the thick, high-grade Resource occurs at surface. And the Indicated Resource has increased to 21.13Mt @ 1.02% TREO (see Figures 5-7 and Tables 4-7).
- This confirms the 100% owned Mangaroon project as a globally significant critical minerals complex with a combined, high confidence Resource at Yin and the Gifford Creek Carbonatite of 40.82Mt @ 1.03% TREO. This points to a long-life, strategically important, Tier I project in one of the world's top investment jurisdiction, Western Australia (Investment Attractiveness Index Fraser Institute, May 2023).

Dreadnought Resources Limited ("Dreadnought") is pleased to announce a significant Resource increase and upgrade at Yin, part of the 100% owned Mangaroon project, located in the Gascoyne Region of WA.

Dreadnought's Managing Director, Dean Tuck, commented: "Since drilling commenced in June 2022, Dreadnought has delivered another substantial increase in the initial Resource over just 4.6kms of the Yin Ironstone Complex.

upgraded independent Resource confirms Yin as a highgrade and high Resource intensity deposit. Both material factors in a economics. Yin project's continues to demonstrate one of the highest NdPr:TREO ratios in the world. We are proud of how much has been achieved in such a short space of time and are looking forward to continuing to build on the regions potential in 2024."

Figure 1: Photo of Dreadnought's Luke Blais, Frank Murphy, Matt Crowe and Sam Busetti with the discovery hole YINRC001 in June 2022.

SNAPSHOT - MANGAROON CRITICAL MINERALS

Mangaroon is 100% Owned

100% owned Mangaroon confirmed as a globally significant critical minerals complex with a combined Resource at Yin and the Gifford Creek Carbonatite of 40.82Mt @ 1.03% TREO.

Genuine Scale Potential Already at Yin

- Independent Yin Resource of 29.98Mt @ I.04% TREO (ASX 30 Nov 2023) covers only ~4.6km of ~43km of strike - 87% Measured and Indicated.
- Large | ORC Exploration Target for the top 150m of the Yin REE Ironstone Complex (ASX 13 Feb 2023) to be updated in 2024.
 - Cautionary Statement: The Exploration Target has been prepared and reported in accordance with the JORC Code 2012. The potential quality and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Resource for all target areas reported. It is uncertain if further exploration will result in the estimation of a Resource.

Significant, Step-Change, Growth Potential at the Gifford Creek Carbonatite

- The Gifford Creek Carbonatite is considered to be the regional source of REE.
- In less than 12 months from discovery of the Gifford Creek Carbonatite, a large, independent Resource of 10.84Mt @ 1.00% TREO was delivered (ASX 28 Aug 2023). The Resource contains a range of critical minerals including rare earths, niobium, phosphate, titanium and scandium.
- The initial Resource covers an area of only ~600m x 550m. With the Gifford Creek Carbonatite now expanding to >17kms x 1km under wide-spaced, first pass drilling, it is expected that the Resource will grow substantially with future drilling.

High-grade, Multi-Metal Potential Including REE (Neodymium, Praseodymium), Phosphate, Niobium, Titanium & Scandium

- The mineralisation at the Yin REE Ironstone Complex contains significantly higher NdPr as a fraction of the rare earth oxides ("NdPr:TREO" ratio) than most other REE deposits globally; over 50% higher than the global average.
- · Partially completed, first pass, wide-spaced drilling over the Gifford Creek Carbonatite has identified significant critical metal potential with REE, P, Nb, Ti and Sc.

Potentially Attractive Mining Proposition

At Yin, broad zones of flat to moderate dipping mineralisation with parallel lodes and Resource intensity of ~4.8Mt/km make for a potentially attractive mining proposition. This is further demonstrated by an initial Measured Resource of 5.17Mt @ 1.34% TREO over just ~250m of strike at Yin where the thick, high-grade Resource occurs at surface.

Positive Metallurgy Results

- Metallurgical test work from Yin has performed well, achieving recoveries ranging from 85.9% to 92.8% at a concentrate grade of 10.76% to 15.31% Nd₂O₃+Pr₆O₁₁.
- REE at Yin is predominantly hosted in monazite which is amenable to commercial processing.
- Significant metallurgical studies ongoing final results expected in March 2024 quarter.

Global Strategic Imperative Driving Rare Earth Growth & Prices

- Supply chain security and low carbon transition are imperatives against a backdrop of heightened geopolitical tension.
- Dreadnought is receiving increasing levels of interest from midstream and downstream industry participants in Mangaroon. While the current focus is on upstream options (mining, milling and concentrating) opportunities to collaborate with midstream and downstream industry participants may represent an opportunity.

2

ABN 40 119 031 864

Discussion

Outcropping REE mineralisation was first observed at Mangaroon in July 2021. Since then, ~43kms of REE bearing ironstones and the 17km long Gifford Creek Carbonatite have been identified.

To date, 688 RC holes and 42 diamond holes have been drilled along Yin and the Gifford Creek Carbonatite. The first two years of drilling have delivered:

- a Resource at Yin of 29.98Mt @ I.04% TREO over ~4.6kms 87% Measured & Indicated; and
- an initial Resource at the 17km long Gifford Creek Carbonatite of 10.84Mt @ 1.00% TREO as well as significant REE-Nb-Ti-P-Sc mineralisation; and
- a combined Resource at Mangaroon of 40.82Mt @ 1.03% TREO.

The Yin Resource of 29.98Mt @ 1.04% TREO covers ~4.6kms of the Yin REE Ironstone Complex and is based on 345 RC drill holes (38,904m) and 32 diamond drill holes (3,358.72m). Importantly, the Resource includes an initial Measured Resource of 5.17Mt @ 1.34% TREO and Indicated Resource of 21.13Mt @ 1.02% TREO (NdPr:TREO of 29%).

With a large, high-confidence Resource now defined, further site work on rare earths at Mangaroon will, in the short term, be limited to drilling a number of geophysical targets that are analogous to high-grade zones already identified. EIS co-funding is in place to conduct this work in 2024.

Figure 2: Photo of Dreadnought's Claudia Tomkins and Sam Busetti inspecting pXRF results from RC drill chips.

Material Information Summary - Resource Estimation

Pursuant to ASX listing rule 5.8.1 and complementing JORC Table I (attached), Dreadnought advises that the Resource was estimated by an independent consultant from Widenbar and Associates Pty Ltd ("Widenbar"). Widenbar worked in conjunction with Dreadnought's geologists and Payne Geological Services Pty Ltd. Commentary on the relevant input parameters for the Resource process is contained at the end of this announcement.

Location and Region

Mangaroon contains the Yin REE Ironstone Complex and is located ~250kms south-east of Exmouth, in the Gascoyne Region of Western Australia. The Yangibana REE Ironstone Project is Dreadnought's immediate neighbour and is located to the north of Yin on the northern side of the Lyons River Fault.

Rare earths at the Yangibana ironstones were first identified in 1981 and have similar metallurgical properties as the Yin ironstones to the south of the Lyons River Fault. However, rare earths to the south of the Lyons River Fault also vary significantly to those in the north including:

- a high Resource intensity of ~6.5Mt/km (~3.8Mt/km of oxide mineralisation), making for potentially low-cost Resource growth and a likely attractive mining proposition;
- the potential regional source of the rare earths in the Gifford Creek Carbonatite already at ~17kms x 1km;
- · a suite of critical minerals including light and heavy rare earths, phosphate, niobium, titanium and scandium.

The Resource of 29.98Mt @ 1.04% TREO only covers ~4.6km of the ~43km long Yin REE Ironstone Complex.

Geological Interpretation and Wireframing

Mangaroon occurs within the Gascoyne Province of the Capricorn Orogen, situated between the Archean Pilbara and Yilgarn cratons. The Gascoyne Province consists of a basement suite of Neoarchean to Palaeoproterozoic granite gneisses that are overlain by various Proterozoic rocks. These Proterozoic rocks include:

- the 1830–1780 Ma Moorarie Supersuite consisting of granitic rocks;
- the Durlacher Supersuite, a unit comprising granitic and minor gabbroic intrusions that are heavily deformed and believed to be largely synchronous with the 1680-1620 Ma Mangaroon Orogeny; and
- the c.1680 Ma Pooranoo Metamorphics comprising of pelitic gneiss and metamorphosed feldspathic sandstones.

REE-bearing ironstones and carbonatites form components of the ~1370 Ma Gifford Creek Carbonatite Complex ("GCCC"). GCCC is an area surrounding the Lyons River Fault, which is the major crustal structure formed during the suturing of the Neoarchean Glenburgh Terrane with the Archean Pilbara Craton during the 2215-2145 Ma Ophthalmian Orogeny.

The rocks of the GCCC include calcite carbonatite, dolomite carbonatite, ankerite-siderite carbonatite, magnetite-biotite dykes, fenites, glimmerites and REE-bearing ironstones and carbonatite plugs. The previously defined boundary of the GCCC has been significantly expanded due to drilling by Dreadnought (Figure 3). A large body of carbonatite plugs (Gifford Creek Carbonatite) form the central intrusions in the region while the highly fractionated ferrocarbonatite dykes form cone sheets around the intrusions and the radial/ring dykes splay off the intrusion (Figure 3).

ABN 40 119 031 864

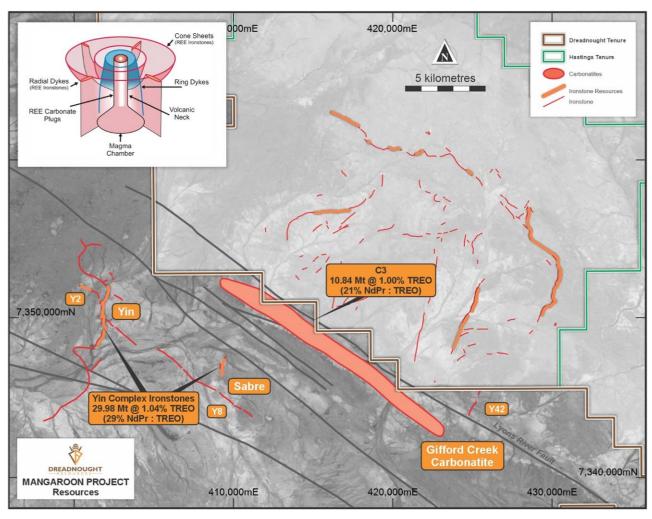


Figure 3: Local geological relationships between the Gifford Creek Carbonatite and the known ironstones across the Yin and the nearby Yangibana Projects. The ~4.6km long Yin Resource is highlighted.

Dreadnought supplied a detailed Digital Elevation Model for the whole of Mangaroon. This was subset into a smaller version to cover the Yin and Yin South deposits.

Dreadnought's drill hole database identified the Base of Complete Oxidation ("BOCO Depth") and the Top of Fresh material ("TOFR Depth"). The material between these two down hole depths is considered oxide. Based on increased experience, this Resource update includes a significant relogging and interpretation of the BOCO Depth and TOFR Depth which has resulted in refined oxide and fresh domaining.

The BOCO Depth is generally quite shallow, typically from 0 to 5m, whereas the TOFR Depth can typically be between 50-80m below surface. The position of these depths is used in conjunction with weathering logging in the lithology data to generate BOCO Depth and TOFR Depth. In turn, this data is used in conjunction with lithology logging in assigning density and also in differentiating between fresh and oxidised carbonatite (i.e. ironstone when not fresh).

In addition, the lithology has been simplified and re-coded, and a new geological model digitised and wireframed.

This model was provided to Widenbar in DXF format as two files containing the interpreted dykes and the fenite bodies.

The TOFR Depth was then used to split the single dyke into oxide (above) and fresh (below). In addition, the dyke and fenite wireframes were split into individually connected wireframes for Resource domaining.

ABN 40 119 031 864

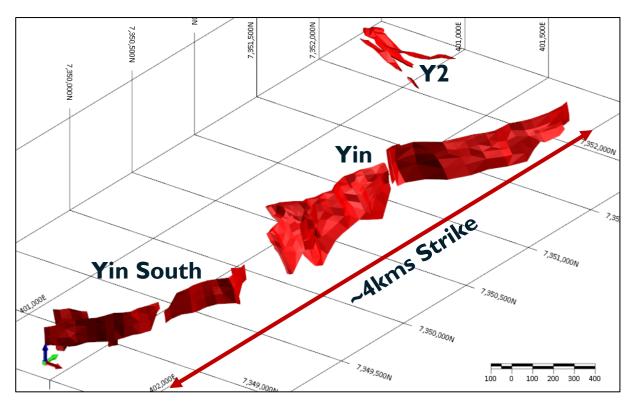


Figure 4: Geological wireframes for the Yin ironstone dyke (oxide and fresh) over ~4kms of strike.

Drilling Techniques

Dreadnought's drilling at Yin was conducted by Ausdrill Limited using reverse circulation ("RC") drilling and by Hagstrom using diamond ("DD") drilling techniques. In total, 345 RC holes have been drilled, sampled and assayed to estimate the Resource. In addition, 32 DD holes were drilled and sampled to produce samples for density measurements, ongoing metallurgical testing and additional QAQC analysis. The results of a twinned hole study between RC and DD holes found that all statistics and graphic logs support a reasonable correlation. The DD holes generally confirm the grade distribution and tenor in the RC holes and hence that the RC holes are suitable for further use in Resource estimation and classification.

All holes used in the Resource estimation have been previously announced with the necessary additional collar and assay details provided. These holes are also shown in Tables 11 and 12.

RC holes were drilled with a 5½-inch bit and face sampling hammer. RC holes are drilled with some water injection at the bit for dust suppression and with the use of booster/auxiliary air if ground water is encountered. A total of 688 RC holes (77,624m) have been drilled to date. The updated Resource is based on 345 RC drill holes (38,904m) drilled between June 2022 and September 2023.

DD holes were drilled as orientated HQ and NQ size with no RC pre-collars. A total of 42 DD holes (4,806.01m) have been drilled to date. The updated Resource includes the results of 32 DD holes (3,358.72m) drilled between June 2022 and September 2023.

The Yin Resource does not include drilling:

- Further north and south along the Yin trend and the Y8 ironstones; and
- · the Gifford Creek Carbonatite.

Collar positions were recorded using a Emlid Reach RS2 RTK GPS system (+/- 0.2m x/y, +/-0.5m z).

GDA94 Z50s is the grid format for all xyz data reported.

Azimuth and dip of each drill hole were recorded after the completion of the hole using a Reflex Sprint IQ Gyro. A reading was undertaken every 30th metre with an accuracy of +/- 1° azimuth and +/-0.3° dip.

ASX:DRE

+61 (08) 9473 8345 info@dreres.com.au Unit 1,4 Burgay Court Osborne Park WA 6017

ABN 40 119 031 864

Sampling and Subsampling Techniques

RC samples were collected using two techniques, Im splits directly from the rig sampling system and 3m composite sampling from spoil piles.

From every Im drilled, a 2-3kg sample (split) was sub-sampled into a calico bag via a Metzke cone splitter. All remaining spoil from the sampling system was collected in buckets and deposited in rows adjacent to the rig. An aluminium scoop was used to then sub-sample each spoil pile to create a 2-3kg 3m composite sample in a calico bag.

The rig geologist used preliminary pXRF analysis of pulverised and partially homogenised reject RC sample piles to define mineralised zones which were subsequently sampled in detail (the Im splits). Prior to February 2023, unmineralised zones were sampled by 3m composite, post February 2023 unmineralised material is not sampled.

All samples were then sent for full analysis at ALS laboratories in Perth and Brisbane. Only assays received from the laboratory were used for this Resource, no pXRF results have been used.

Industry standard QAQC measures were employed involving insertion of:

- appropriate CRM standards at regular intervals;
- field duplicates collected for both 1m splits and 3m composites at regular intervals; and
- additional field duplicates and blanks collected in mineralised intervals.

All samples were dried and pulverised at the laboratory prior to analysis.

Orientated DD core samples were collected with a diamond drill rig drilling HQ and NQ core. After geological logging and processing, the core was marked up for sampling at a typical minimal interval of 0.3m to ensure adequate sample weight and to a typical maximum interval of 1.0m. The selected sample intervals of drill core were cut in half or quartered along the length of the drill core. Specific Gravity, or density measurements, were taken for each geological domain within the Resource by Dreadnought geologists and the laboratory for QAQC.

Sample sizes for both RC and DD are considered appropriate for the style of mineralisation.

Assaying and QAQC

Samples were submitted to the Perth laboratory for preparation and analysis by ME-MS61. Pulverised samples were then transported to the Brisbane laboratory for analysis by Lithium Borate Fusion XRF (ALS Method "ME-XRF30").

The 2-3kg samples were submitted to the Perth laboratory, oven dried to 105°C and pulverised to 85% passing 75um to produce a 0.25g charge for determination of 48 multi-elements via 4 acid digestion with MS/ICP finish (ALS Code ME-MS61). The pulverised sample was then sent to the Brisbane laboratory where a 0.66g charge was used for the determination of TREO by ME-XRF30 analysis.

QAQC in the form of duplicates and CRM's (OREAS Standards) were inserted through the mineralised zones at a rate of 1:50 samples. Additionally, within mineralised zones, a duplicate sample was taken and a blank inserted directly after. All QAQC returned satisfactory results.

Standard laboratory QAQC is undertaken and monitored.

Further information regarding exploration results can be found in previous announcements:

DRE Announcement 28 July 2022: Assays Confirm Yin as a High-Grade Rare Earth Discovery

DRE Announcement 5 September 2022: Further Assays Confirm Yin as A Significant REE Discovery

DRE Announcement 12 October 2022: Broad, High-Grade Assays at Yin REE Discovery - Mangaroon

DRE Announcement 24 October 2022: Broad, High-Grade Assays at Yin REE Discovery – Mangaroon

DRE Announcement 21 November 2022: Broad, High-Grade Assays at Yin REE Discovery – Mangaroon

DRE Announcement 13 March 2023: Successful Yin Extensional Drilling Results – Mangaroon

DRE Announcement 29 March 2023: Yin Resource to Grow, Carbonatite Drilling Commenced

DRE Announcement 13 June 2023: Yin Extended by ~1km & ~2.5km of High-Grade NdPr Discoveries

DRE Announcement 7 August 2023: Rare Earth Ironstone and Carbonatite Drilling Update

DRE Announcement 17 August 2023: Thick, High-Grade Rare Earths Continue at Yin

DRE Announcement 13 September 2023: Highest Grades to date from Yin Infill Drilling DRE Announcement 16 October 2023: 100m Thick Rare Earth Intercepts from Yin

ABN 40 119 031 864

Estimation Methodology

Widenbar was retained to produce a Resource estimate for ~4.6km of the mineralized Yin ironstone. Validated drillhole data and geological interpretations were supplied by Dreadnought. Widenbar produced the Resource using standard processes and procedures including data selection, composting, variography and estimation by Ordinary Kriging prior to model validation.

Estimates were made and are reported for TREO, Nd₂O₃, Pr₆O₁₁ and Nd₂O₃+Pr₆O₁₁ as well as bulk density.

Statistical Analysis and Variography

The original RC assays are a mixture of Im and 3m samples, with mineralised intervals being identified using preliminary pXRF analysis and being re-assayed at Im intervals by an independent laboratory. DD sample intervals are variable, corresponding to breaks in lithology and weathering.

For data analysis and Resource estimation processes, all assay data has been composited to 1m intervals.

The wireframe solids and the weathering surfaces were used to apply lithological and weathering codes to the composite data. Summary statistics have been calculated for the major elements within each domain. There was a total of 24,136 composites available for use in Resource estimation.

Probability plots and histograms were used to confirm domaining produced consistent data sets.

Table 2: Final density values used in converting volumes to tonnes.

LITH	WEATHERING	DENSITY
Ironstone	OX/TR	2.80
Fenite	OX/TR	2.68
Country Rock	OX/TR	2.60
Calcrete	OX/TR	2.41
Ironstone	FR	3.30
Fenite	FR	2.94
Country Rock	FR	2.75

There are 613 density measurements from DD core in the final data set. These have been coded with the lithology wireframes and the weathering surfaces and histograms and statistics have been collated.

The mean, median and the histogram distributions for fresh and oxidised versions of each major lithology have been reviewed and a single value determined for each weathering/lithology combination.

Variograms have been calculated for the combined ironstone/carbonatite domain for Nd_2O_3 , Pr_6O_{11} and $Nd_2O_3+Pr_6O_{11}$ and used to control the Ordinary Kriging estimation process, which was carried out in Micromine 2023 software.

Block Model and Resource Estimation

An "empty" rock model was created using the topographic and weathering surfaces and the geological wireframe solids as constraints.

A process of "unfolding" is applied to the block model and the composite data to avoid issues related to the variable dip and strike of parts of the mineralised domains. This effectively makes a dynamic search ellipse and all searches become oriented in a simple north-south and vertical direction.

Interpolation is carried out using the Ordinary Kriging process in Micromine 2023. A two-pass search strategy was used, with the following parameters.

Table 3: Search parameters used in Ordinary Kriging.

Search	Sam	ples		Holes			Search		
Pass	Min	Max	Min	Min/Hole	Max/Hole	Along Strike	Down Dip	Across Dip	
I	8	16	2	2	4	120	60	5	
2	2	16	I	I	4	200	100	10	

Block model validation has been carried out as shown below and all methods produced good comparisons:

- Drill hole section comparison;
- · Comparison of means for model vs data; and
- · Swathe plots of model vs data.

ABN 40 119 031 864

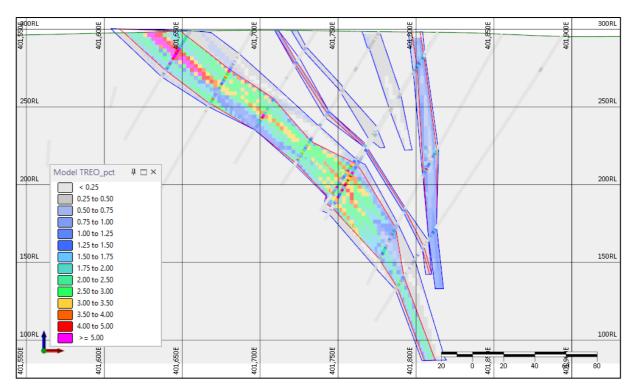


Figure 5: Section 7350200N showing the grade distribution within the Resource model.

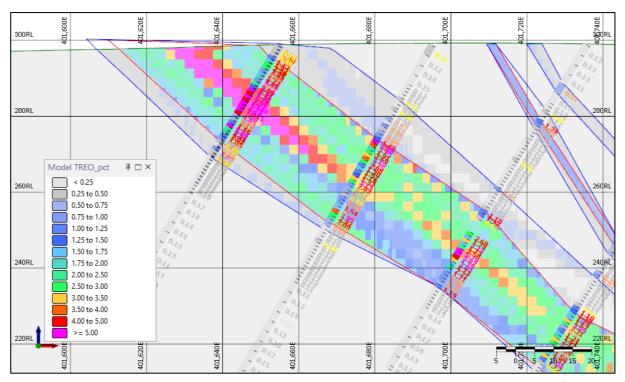


Figure 6: Detail of part of 7350200N showing high grades at surface.

Cut-off Grade

A series of TREO% cut-offs has been included in this announcement, with the lowest (0.20% TREO) used by or approximating the cut-off applied at the close-by and advanced-stage Yangibana REE Ironstone Project. A TREO grade of 0.20% represents the transition between consistently mineralised and unmineralised material.

ABN 40 119 031 864

Resource Classification

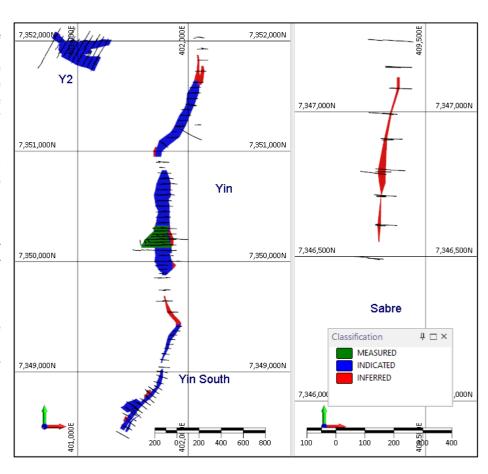
The Resource has been classified in the Measured, Indicated and Inferred categories, in accordance with the 2012 Australasian Code for Reporting of Mineral Resources and Ore Reserves (2012 JORC Code). A range of criteria has been considered in determining this classification including:

- Geological continuity;
- Data quality;
- · Drill hole spacing;
- · Modelling technique; and
- Estimation properties including search strategy, number of informing data and average distance of data from blocks.

The Resource classification methodology incorporated a number of parameters derived from the Ordinary Kriging algorithms in combination with drill hole spacing and continuity and size of mineralised domains.

Geological Continuity

Geological continuity is understood with reasonable confidence. The classification reflects this level of confidence.


Data Quality

Resource classification is based on information and data provided from Dreadnought's database. Descriptions of drilling techniques, survey, sampling/sample preparation, analytical techniques and database management/validation indicate that data collection and management is well within industry standards. Widenbar considers that the database represents an accurate record of the drilling undertaken.

Drilling Spacing

Drill hole location plots have been used to ensure that local drill spacing conforms to the minimum expected for the resource classification. The drilling at Yin and Y2 is mainly on 50m spaced northing section lines corresponding to Indicated classification, with an area of infill 25m drilling in the southern part of the main Yin deposit which is considered Measured. There are several small, isolated zones either informed by a single drill hole or where section spacing is still 100m, which have been classified in the Inferred category. Drilling at the Sabre deposit is nominally at 100m spacing and has been classified as Inferred.

Figure 7: Plan view image showing the drill hole spacing at Yin (left) and Sabre (right) – Measured classification highlighted in green.

ABN 40 119 031 864

Resource Estimate

A summary of the current Resource of 29.98Mt @ 1.04% TREO is shown below. A series of TREO% cut-offs has been used, with the lowest (0.20% TREO) used by or approximating the cut-off applied at the close-by and advanced-stage Yangibana Project. Numbers may not add up due to rounding.

Table 4: Summary of Yin Resources at 0.20% TREO Cut-off.

Resource Classification	Geology	Tonnes (Mt)	TREO (%)	NdPr:TREO Ratio (%)	Contained TREO (t)	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁ (t)
Measured	Oxide	2.47	1.61	29	39,700	11,400
Measured	Fresh	2.70	1.09	27	29,500	8,100
Measured	Subtotal	5.17	1.34	28	69,300	19,500
Indicated	Oxide	13.46	1.06	29	142,600	41,000
Indicated	Fresh	7.67	0.95	29	72,800	21,300
Indicated	Subtotal	21.13	1.02	29	215,400	62,300
Inferred	Oxide	1.51	0.75	25	11,200	2,800
Inferred	Fresh	2.17	0.75	28	16,300	4,500
Inferred	Subtotal	3.68	0.75	27	27,600	7,300
Total	Oxide	17.44	1.11	29	193,600	55,300
Total	Fresh	12.54	0.95	29	118,700	33,900
TOTA	TOTAL			29	312,300	89,300

Table 5: Summary of Yin Resources at 0.40% TREO% Cut-off.

Resource Classification	Geology	Tonnes (Mt)	TREO (%)	NdPr:TREO Ratio (%)	Contained TREO (t)	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁ (t)
Measured	Oxide	2.09	1.84	29	38,500	11,100
Measured	Fresh	2.22	1.27	28	28,100	7,800
Measured	Subtotal	4.31	1.55	28	66,600	18,900
Indicated	Oxide	9.16	1.41	29	129,200	37,900
Indicated	Fresh	5.18	1.25	30	64,800	19,200
Indicated	Subtotal	14.34	1.35	29	194,000	57,100
Inferred	Oxide	1.07	0.92	26	9,800	2,500
Inferred	Fresh	1.35	1.00	28	13,400	3,700
Inferred	Subtotal	2.42	0.96	27	23,200	6,300
Total	Oxide	12.32	1.44	29	177,500	51,500
Total	Fresh	8.74	1.22	29	106,300	30,700
TOTA	TOTAL			29	283,800	82,200

Table 6: Summary of Yin Resources at 1.00% TREO% Cut-off.

Resource Classification	Geology	Tonnes (Mt)	TREO (%)	NdPr:TREO Ratio (%)	Contained TREO (t)	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁ (t)
Measured	Oxide	1.60	2.22	29	35,600	10,400
Measured	Fresh	1.36	1.68	28	22,800	6,400
Measured	Subtotal	2.96	1.97	29	58,400	16,800
Indicated	Oxide	5.34	1.99	30	106,400	31,600
Indicated	Fresh	2.65	1.81	30	47,900	14,400
Indicated	Subtotal	7.99	1.93	30	154,300	46,000
Inferred	Oxide	0.26	1.67	28	4,300	1,200
Inferred	Fresh	0.42	1.72	29	7,300	2,100
Inferred	Subtotal	0.68	1.70	29	11,600	3,300
Total	Oxide	7.20	2.03	30	146,300	43,200
Total	Fresh	4.43	1.76	29	78,000	23,000
TOTA	AL	11.63	1.93	29	224,300	66,200

ABN 40 119 031 864

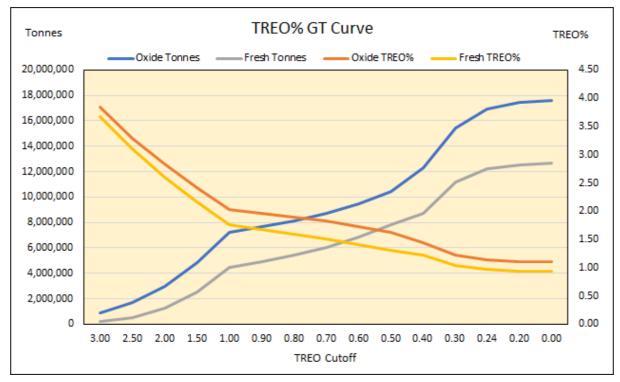


Figure 8: TREO% grade tonnage curve for oxide and fresh mineralisation.

Comparison with Previous Resource Estimates

Widenbar produced an initial Resource estimate for Yin in December 2022 and July 2023 as summarised below in comparison to the current Resource.

Overall, there has been an increase from 14.4Mt to 20Mt to 30Mt, with a slight decrease in grade from 1.13% TREO to 1.03% TREO to 1.04% TREO. This is due partly to an increase in the depth of the main part of the Yin deposit and the inclusion of a Resource at Yin South, Y2 and Sabre.

Significantly, there has been a classification of 5.17Mt to the Measured category and 21.13Mt to the Indicated category.

Table 7: Summary of December 2022 Yin Resources at 0.20% TREO Cut-off.

Resource Classification	Geology	Tonnes (Mt)	TREO (%)	$Nd_2O_3+Pr_6O_{11}$ (kg/t)	NdPr:TREO Ratio (%)	Contained TREO	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁
Inferred	Ironstone	4.80	1.67	5.1	31	80,100 t	24,500 t
Inferred	Carbonatite	4.09	1.54	4.7	31	63,000 t	19,300 t
Inferred	Fenite	5.47	0.36	0.8	23	19,700 t	4,400 t
TOT	TOTAL		1.13	3.4	30	162,800 t	48,200 t

Table 8: Summary of July 2023 Yin Resources at 0.20% TREO% Cut-off.

Resource Classification	Geology	Tonnes (Mt)	TREO (%)	Nd2O3+Pr6O11 (kg/t)	NdPr:TREO Ratio (%)	Contained TREO	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁
Indicated	Oxide	3.01	1.25	3.5	28	37,700 t	10,400 t
Indicated	Fresh	2.52	1.21	3.4	28	30,400 t	8,400 t
Indicated	Subtotal	5.52	1.23	3.4	28	68,100 t	18,800 t
Inferred	Oxide	11.35	0.91	2.5	28	102,900 t	28,900 t
Inferred	Fresh	3.18	1.09	3.3	31	34,900 t	10,600 t
Inferred	Subtotal	14.56	0.95	2.7	29	137,800 t	39,500 t
Total	Oxide	14.36	0.98	2.7	28	140,600 t	39,300 t
Total	Fresh	5.7	1.14	3.3	29	65,300 t	19,100 t
TOTA	TOTAL 20.		1.03	2.9	28	205,900 t	58,400 t

ABN 40 119 031 864

Metallurgy

Metallurgical test work has been undertaken independently at ALS Metallurgy and IMO Metallurgy. Oversight on the test work was conducted on behalf of Dreadnought by experienced consulting metallurgist, Damien Krebs from Primero Group.

Two rounds of metallurgical testing have been completed on the Yin ironstones and have resulted in the production of concentrates ranging from 31.22-41.70% TREO and 10.76%-15.31% $Nd_2O_3 + Pr_6O_{11}$ with TREO recoveries ranging from 85.9%-92.8% using material with head grades ranging from 1.60% - 2.36% TREO. This work indicates that a high-value monazite concentrate can be produced from the Yin ironstones using a standard flowsheet.

In July 2021, flotation test work conducted on a 30kg bulk surface sample from Yin produced a high-grade monazite concentrate with 92.8% recovery into 3.55% of the original mass. The concentrate grade was 15.31% Nd₂O₃+Pr₆O₁₁ and 41.70% TREO.

In May 2023, floatation test work conducted on a bulk composite of diamond drill samples from Yin also produced a high-grade concentrate with 85.9% TREO recovery into 6.7% of the original mass. The concentrate grade was 10.76% $Nd_2O_3+Pr_6O_{11}$ and 31.22% TREO.

Figure 9: Successful froth flotation test on the Yin bulk sample.

Metallurgical testing will be finalised in the March 2024 quarter as follows:

- Increased intensity of testing of Yin ironstones Resources across a range of head grades.
- Acid bake performance analysis by ANSTO of bulk concentrates for producing a mixed rare earth carbonate to optimise midstream processing options for the concentrate.
- Ongoing concentrate flowsheet optimisation.

Further information regarding metallurgical results can be found in previous announcements:

DRE Announcement 29 May 2023: Metallurgical Test Work Supports High-Value Concentrate

Reasonable Potential of Eventual Economic Extraction

The prospects for eventual economic extraction of rare earth oxides from the Yin, Yin South, Y2 and Sabre deposits has been considered by running preliminary pit optimisations. Mining and processing costs, metal prices and metallurgical recoveries are uncertain at this stage, but assumptions have been made based on publicly available information published on the advanced-stage, nearby Yangibana REE Ironstone Project. Depending on the assumptions, a theoretical breakeven cutoff grade is indicated between 0.18% and 0.25% TREO. A majority of the Resource lies within the optimal pits generated using these assumptions and, on this basis, and given the uncertainties at this early stage of the project, the Competent Person considers that it is reasonable to include all of the material that has been classified in the Measured, Indicated and Inferred categories.

Future Work

Subject to the outcome of ongoing metallurgical work, the Resource will form the basis of a planned Scoping Study regarding the potential to mine Yin. In parallel, there are ongoing project studies underway for statutory approvals.

Background on Mangaroon (E8/3178, E08/3274, E09/2384, E09/2433, E09/2473: FQM Earn-in) (E08/3275, E08/3439, E09/2290, E09/2359, E09/2405, E09/2370, E09/2448, E09/2449, E09/2450, E09/2467, E09/2478, E09/2531, E09/2535, E09/2616, E09/2620, M09/91, M09/146, M09/147, M09/174, M09/175: DRE 100%)

Mangaroon covers >5,200sq kms of the Mangaroon Zone in the Gascoyne Region of Western Australia, the world's top investment jurisdiction as per the Investment Attractiveness Index published in the Fraser Institute's Annual Survey of Mining Companies. Part of the project is targeting Ni-Cu-PGE and is subject to First Quantum Minerals Ltd ("FQM") earning up to 70%. The region is also host to high-grade gold mineralisation at the Bangemall/Cobra and Star of Mangaroon gold mining centres and the high NdPr:TREO ratio Yin and Yangibana REE deposits.

Dreadnought has located outcropping high-grade gold bearing quartz veins along the Star of Mangaroon Shear, Edmund and Minga Bar Faults, high-grade REE ironstones, REE- P_2O_5 -Nb $_2O_5$ -TiO $_2$ -Sc mineralised carbonatites and outcropping high tenor Ni-Cu-PGE blebby sulphides at the Money Intrusion.

Dreadnought has already successfully delivered:

- an independent JORC Inferred + Indicated + Measured Resource of 29.98Mt @ 1.04% TREO and an initial Measured Resource of 5.17Mt @ 1.34% TREO over 4.6kms of the 43kms of strike within the Yin REE Ironstone Complex; and
- an Exploration Target of 50-100Mt at 0.9-1.3% TREO (ASX 13 Feb 2023) estimated over 40 kms of strike within the Yin REE Ironstone Complex.

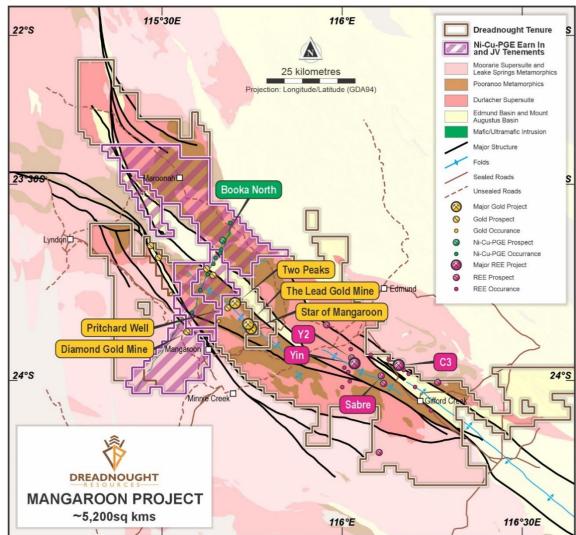


Figure 10: Plan view map of Mangaroon showing the location of gold, nickel and REE prospects in relation to major structures, geology and roads.

For further information please refer to previous ASX announcements:

16 June 2022 First Drilling at Yin Intersects High-Grade Rare Earths • 28 July 2022 Assays Confirm Yin as a High-Grade Rare Earth Discovery 5 September 2022 Further Assays Confirm Yin as Significant REE Discovery 5 September 2022 Thick Rare Earth Ironstones Confirmed at Sabre (Y3) Discovery 12 October 2022 Broad, High-Grade Assays at Yin REE Discovery 17 October 2022 Mineralised Carbonatites Discovered at C3 and C4 24 October 2022 Broad, High-Grade Assays at Yin REE Discovery 21 November 2022 Broad, High-Grade Assays at Yin REE Discovery • 23 November 2022 Multiple, Large Scale, REE-Nb-Ti-P Carbonatites 28 December 2022 Initial High-Grade, Independent Resource over 3kms at Yin 24 January 2023 Carbonatite Discovery Shaping up as Regional Rare Earth Source • 29 March 2023 Yin Resource to Grow, Carbonatite Drilling Commenced 3 April 2023 Carbonatites Deliver Thick, Near Surface REE Results 29 May 2023 Metallurgical Test Work Supports High-Value Concentrate • 13 June 2023 Yin Extended by 1km & 2.5km of High-Grade NdPr Discoveries • 5 July 2023 40% Increase in Resource Tonnage at Yin 10 July 2023 High Grade Rare Earth & Niobium Zones at C3 & C5 17 July 2023 High Grade Rare Earth & Niobium Zones at C3 & C5 7 August 2023 Rare Earth Ironstone and Carbonatite Drilling Update 17 August 2023 Thick, High-Grade Rare Earths Continue at Yin 28 August 2023 Initial, Independent REE-Nb-P-Ti-Sc Resource at C3 13 September 2023 Highest Grades to date from Yin Infill Drilling 2 October 2023 Mangaroon Carbonatite now > 17km - Higher Grade Zones Fingerprinted 16 October 2023 100m Thick Rare Earth Intercepts from Yin

UPCOMING NEWSFLOW

December: Final drilling results from completed drilling at Mangaroon REE (100%)

December: Assays from RC drilling at Tarraji-Yampi (80%, 100%)

December/January: Assay results from additional Au, Ni-Cu-Co-3PGE and REE drilling at Mangaroon.

December/January: Results from target generation and definition work at Bresnahan (100%)

January 2024: Quarterly Report

January/February 2024: Results of surface sampling from Central Yilgarn and Mangaroon LCT Pegmatites (100%)

February 2024: Half Year Financial Report

February 2024: Results from surface sampling and mapping of LCT targets at Mangaroon and Central Yilgarn

March 2024: Commencement of RC and diamond drilling at Mangaroon Ni-Cu-Co-3PGE (Earn-in)

March/April 2024: Commencement of EIS co-funded RC drilling at Mangaroon Rare Earths (100%)

~Ends~

For further information please contact:

Dean Tuck
Managing Director
Preadpought Resources Limit

Dreadnought Resources Limited

E: dtuck@dreres.com.au

Jessamyn Lyons

Company Secretary

Dreadnought Resources Limited

E: <u>ilyons@dreres.com.au</u>

This announcement is authorised for release to the ASX by the Board of Dreadnought.

ASX:DRE

+61 (08) 9473 8345 info@dreres.com.au Unit 1,4 Burgay Court Osborne Park WA 6017 ABN 40 119 031 864

Cautionary Statement

This announcement and information, opinions or conclusions expressed in the course of this announcement contains forecasts and forward-looking information. Such forecasts, projections and information are not a guarantee of future performance, involve unknown risks and uncertainties. Actual results and developments will almost certainly differ materially from those expressed or implied. There are a number of risks, both specific to Dreadnought, and of a general nature which may affect the future operating and financial performance of Dreadnought, and the value of an investment in Dreadnought including and not limited to title risk, renewal risk, economic conditions, stock market fluctuations, commodity demand and price movements, timing of access to infrastructure, timing of environmental approvals, regulatory risks, operational risks, reliance on key personnel, reserve estimations, native title risks, cultural heritage risks, foreign currency fluctuations, and mining development, construction and commissioning risk.

Competent Person's Statement - Mineral Resources

The information in this announcement that relates to Mineral Resources is based on information compiled by Mr. Lynn Widenbar, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Widenbar is a full-time employee of Widenbar and Associates Pty Ltd. Mr. Widenbar has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves'. Mr. Widenbar consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

Competent Person's Statement - Exploration Results

The information in this announcement that relates to geology, exploration results and planning, and exploration targets was compiled by Mr. Dean Tuck, who is a Member of the AIG, Managing Director, and shareholder of the Company. Mr. Tuck has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Tuck consents to the inclusion in the announcement of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the forma and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

RESOURCES SUMMARY

Yin Ironstone Complex - Yin, Yin South, Y2, Sabre Measured, Indicated and Inferred Resources

Table 9: Summary of Yin Resources at 0.20% TREO Cut-off.

i able 7: Sulfillia	ry of fill Kesoul	rces at 0.20%					
Resource Classification	Geology	Resource (Mt)	TREO (%)	Nd2O3+Pr6O11 (kg/t)	NdPr:TREO Ratio (%)	Contained TREO (t)	Contained Nd ₂ O ₃ +Pr ₆ O ₁₁ (t)
Measured	Oxide	2.47	1.61	4.6	29	39,700	11,400
Measured	Fresh	2.70	1.09	3.0	27	29,500	8,100
Measured	Subtotal	5.17	1.34	3.8	28	69,300	19,500
Indicated	Oxide	13.46	1.06	3.1	29	142,600	41,000
Indicated	Fresh	7.67	0.95	2.8	29	72,800	21,300
Indicated	Subtotal	21.13	1.02	3.0	29	215,400	62,300
Inferred	Oxide	1.51	0.75	1.9	25	11,200	2,800
Inferred	Fresh	2.17	0.75	2.1	28	16,300	4,500
Inferred	Subtotal	3.68	0.75	2.0	27	27,600	7,300
Total	Oxide	17.44	1.11	3.2	29	193,600	55,300
Total	Fresh	12.54	0.95	2.7	29	118,700	33,900
TOTAL		29.98	1.04	2.9	29	312,300	89,300

Gifford Creek Carbonatite - Inferred Resource

Table 10: Summary of the Gifford Creek Carbonatite Inferred Resource at various % TREO Cut-offs.

Cut-Off	Resource	TREO	NdPr:TREO	Nb2O5	P2O5	TiO2	Sc	Contained	Contained Nb2O5
(%TREO)	(Mt)	(%)	(%)	(%)	(%)	(%)	(ppm)	TREO (t)	(t)
0.90	5.73	1.18	21	0.25	3.8	5.4	92	67,500	14,500
0.70	10.84	1.00	21	0.22	3.5	4.9	85	108,000	23,700
0.50	20.55	0.80	21	0.15	3.0	3.9	68	164,600	31,100
0.30	45.87	0.58	21	0.10	2.7	3.0	52	265,300	44,800

ABN 40 119 031 864

INVESTMENT HIGHLIGHTS

Kimberley Ni-Cu-Au Project (80/100%)

The project is located only 85kms from Derby in the West Kimberley region of WA and was locked up as a Defence Reserve since 1978.

The project has outcropping mineralisation and historic workings which have seen no modern exploration.

Results to date indicate that there may be a related, large scale, Proterozoic Cu-Au-Ag-Bi-Sb-Co system at Tarraji-Yampi, similar to Cloncurry/Mt Isa and Tennant Creek.

Mangaroon Ni-Cu-Co-3PGE JV & Au/REE 100% Project

Mangaroon covers ~5,200 sq kms and is located 250kms south-east of Exmouth in the Gascoyne Region of WA. At the Money Ni-Cu-Co-3PGE has been identified and is subject to an earn-in by First Quantum Minerals (up to 70%). Dreadnought also has areas of outcropping high-grade gold including the historic Star of Mangaroon and Diamonds gold mines. In addition, Mangaroon has emerged as a globally significant, rapidly growing, potential source of critical minerals. Highlights include:

- An Exploration Target estimated for the top 150m of ~40km of the Yin REE Ironstone Complex (ASX 13 Feb 2023).
- An independent Resource for Yin Ironstones Complex of 29.98Mt @ 1.04% TREO over only ~4.6kms including a Measured and Indicated Resource of 26.3Mt @ 1.04% TREO (ASX 30 Nov 2023).
- Regional source of rare earths at the Gifford Creek Carbonatite totaling ~17kms x ~1km (ASX 7 Aug 2023).
- A large, independent initial Resource of 10.84Mt @ 1.00% TREO at the Gifford Creek Carbonatites, containing a range of critical minerals including rare earths, niobium, phosphate, titanium and scandium (ASX 28 Aug 2023).

Bresnahan HREE-Au-U Project (100%)

Bresnahan is located ~125km southwest of Newman in the Ashburton Basin. The project comprises ~3,700 sq kms covering over 200kms strike along the Bresnahan Basin / Wyloo Group unconformity. Bresnahan is prospective for unconformity related heavy rare earth ("HREE") deposits similar to Browns Range HREE deposits, unconformity uranium ("U") deposits and mesothermal lode gold similar to Paulsens Au-Ag-Sb deposits along strike.

Prior to consolidation by Dreadnought, the Bresnahan Basin had been successfully explored for unconformity uranium with limited exploration for mesothermal gold. Bresnahan is a first mover opportunity to explore for unconformity HREE.

Central Yilgarn Gold, Base Metals, Critical Minerals & Iron Ore Project (100%)

Central Yilgarn is located ~190km northwest of Kalgoorlie in the Yilgarn Craton. The project comprises ~1,400 sq kms covering ~150km of strike along the majority of the Illaara, Yerilgee, South Elvire and Evanston greenstone belts. Central Yilgarn is prospective for typical Archean mesothermal lode gold deposits, VMS base metals, komatiite hosted nickel sulphides and critical metals including Lithium-Cesium-Tantalum.

Prior to consolidation by Dreadnought, the Central Yilgarn was predominantly held by iron ore explorers and remains highly prospective for iron ore.

Table 11: Significant Intersections >0.3% TREO with >2% TREO highlighted.

Hole ID	From	То	Interval	TREO	Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	Prospect
	(m)	(m)	(m)	(%)	0.80	(%) 31	•
YINRC001	0	34	34	2.59 6.05	1.89	31	
incl	11	21	10	1.73	0.49	28	
YINRC002	24	55	31 7	3.47	1.06	31	
incl	29	36		0.99	0.25	25	
YINRC003 and	23 44	25 45	2 I	0.99	0.19	23	
and				2.01	0.62	31	
I	50 58	75 69	21	3.11	0.97	31	
incl YINRC004	60	65	5	0.55	0.12	22	
and	70	72	2	0.62	0.13	21	
and	80	99	19	1.57	0.46	29	
incl	85	93	8	2.01	0.60	30	
YINRC005	18	32	14	0.91	0.24	26	
and	88	90	2	1.12	0.31	28	
and	94	129	35	2.75	0.80	29	
incl	105	120	15	4.08	1.21	30	
YINRC006	85	104	19	1.00	0.30	30	
and	128	131	3	0.55	0.13	24	
and	139	165	26	1.00	0.25	25	
incl	157	164	7	1.91	0.45	24	
YINRC007	0	20	20	0.75	0.22	29	
incl	2	11	9	1.25	0.36	29	
and	33	39	6	0.25	0.07	28	
and	43	44	ı	0.23	0.04	17	
YINRC008	0	6	6	0.28	0.09	32	
and	16	41	26	1.31	0.38	29	
incl	28	36	8	2.55	0.76	30	Yin
and	47	48	ı	0.47	0.14	30	
YINRC009	5	7	2	0.34	0.02	6	
and	48	51	3	0.44	0.13	30	
and	55	79	24	0.83	0.24	29	
incl	70	77	7	2.04	0.63	31	
and	81	82	ı	0.63	0.11	17	
and	89	90	I	0.57	0.13	23	
YINRC011	106	123	17	1.14	0.35	31	
incl	110	120	10	1.54	0.49	32	
YINRC012	151	159	8	1.44	0.44	31	
incl	154	157	3	2.28	0.69	30	
YINRC014	0	8	8	1.39	0.44	32	
and	23	25	2	0.72	0.18	25	
YINRC018	0	5	5	0.28	0.02	7	
and	12	15	3	0.24	0.06	25	
and	36	37	I	0.22	0.07	32	
YINRC019	13	33	20	0.81	0.09	11	
incl	29	31	2	2.59	0.58	22	
and	36	37	I	0.38	0.09	24	
incl	39	40	I	0.41	0.12	29	
and	59	60	I	1.53	0.50	33	
YINRC020	18	24	6	0.49	0.07	14	
and	38	39	I	0.66	0.19	29	
and	50	53	3	0.44	0.12	27	
and	70	75	2	1.02	0.33	32	

ble II (continued): Si Hole ID	From	То	Interval	TREO	Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	Dyochast
Hole ID	(m)	(m)	(m)	(%)	(%)	(%)	Prospect
YINRC021	21	22	I	0.29	0.01	3	
and	51	54	3	0.32	0.10	31	
and	77	78	3	0.31	0.08	26	
and	82	83	I	0.45	0.13	29	
and	85	89	4	0.35	0.09	26	
YINRC022	98	103	5	0.75	0.21	28	
incl	100	101	I	2.02	0.59	29	
and	107	111	4	1.03	0.30	29	
and	118	120	2	0.27	0.06	22	
and	132	140	8	0.52	0.11	21	
incl	133	134	I	1.92	0.48	25	
YINRC023	0	17	17	0.75	0.24	32	
incl	8	Ш	3	2.24	0.75	33	
YINRC024	28	29	I	0.44	0.12	27	
and	32	33	1	0.20	0.04	20	
and	40	58	18	1.02	0.32	31	
incl	48	56	8	1.87	0.62	33	
incl	51	55	4	2.26	0.75	33	
and	67	70	3	0.37	0.10	27	
YINRC025	59	69	10	0.30	0.08	27	
and	83	102	19	1.00	0.33	33	
incl	90	92	2	3.15	1.06	34	
and	111	120	9	0.31	0.08	26	
YINRC026	25	39	14	1.05	0.34	32	
incl	26	30	4	2.11	0.73	35	
YINRC027	24	27	3	0.20	0.04	20	Yin
and	32	34	2	0.37	0.13	35	
and	52	71	19	1.15	0.40	35	
incl	61	69	8	2.33	0.83	36	
YINRC028	59	63	4	0.34	0.10	29	
and	72	122	50	0.72	0.23	32	
incl	98	103	5	2.81	0.85	30	
YINRC029	49	51	2	0.31	0.09	29 28	
YINRC030	107 155	108 156	l	0.25 0.34	0.07 0.09	26	
YINRC031 YINRC032	27	30	3	0.63	0.20	32	
YINRC033	59	67	8	1.07	0.36	34	
incl	61	65	4	1.58	0.54	34	
YINRC034	110	116	6	1.37	0.43	31	
incl	111	115	4	1.88	0.60	32	
YINRC035	13	21	8	1.90	0.67	35	
incl	15	20	5	2.80	0.99	35	
YINRC036	49	62	13	1.53	0.50	33	
incl	52	60	8	2.06	0.67	33	
YINRC037	93	104	II	1.32	0.44	33	
incl	94	100	6	2.07	0.69	33	
YINRC038	13	15	2	1.47	0.58	39	
YINRC039	61	63	2	0.39	0.13	33	
YINRC040	II	18	7	2.84	1.01	36	
incl	12	18	8	3.24	1.15	35	
					0.40	37	
YINRC041	60	68	8	1.09	U. 4 U	3/	

II (continued): Sig	From	То	Interval	TREO	Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	Prospect
	(m)	(m)	(m)	(%)	(%)	(%)	Trospect
YINRC042	101	112	11	1.51	0.56	37	
incl	102	108	6	2.43	0.92	38	
YINRC043	6	27	21	0.22	0.05	23	
YINRC044	43	44		0.26	0.06	23	
and	45	46	12	0.38	0.11	29 32	
and	48 5	61	13	0.38	0.12	40	
YINRC045	9	7 12	3	1.00	0.40 0.05	25	
and	78	81	3	0.20 1.10	0.03	30	
and	95	97	2	0.35	0.10	29	
and YINRC046	2	12	10	0.33	0.10	35	
YINRC046	53	62	9	0.32	0.18	33	
YINRC048	41	42	9	0.40	0.13	35	
and	59	60		0.43	0.13	41	
F	82	83		1.25	0.57	46	
and YINRC052	98	99		0.68	0.22	32	
YINRC053	35	37	2	0.30	0.10	33	
YINRC055	21	44	23	1.15	0.16	31	
incl	29	37	8	2.52	0.83	33	
and	52	53	0	0.82	0.20	24	
YINRC056	67	76	8	2.50	0.85	34	
-	69	75	6	3.19	1.10	34	
incl YINRC057	19	20	6	0.36	0.09	25	
and	42	43		0.36	0.09	31	
-	45	54	9	0.29	0.09	33	
and YINRC058	29	31	2	0.87	0.29	39	
and	62	93	31	1.64	0.50	30	Yin
incl	83	89	6	6.73	2.08	31	
YINRC059	58	66	8	0.73	0.13	33	
and	68	69	ı	0.22	0.06	27	
and	92	141	49	0.81	0.26	32	
incl	107	113	6	2.83	0.94	33	
YINRC060	3	14	II	1.12	0.39	35	
YINRC061	42	61	19	0.40	0.14	35	
YINRC062	113	121	8	0.35	0.12	34	
and	125	126	i	0.24	0.07	29	
YINRC063	6	10	4	0.40	0.12	30	
and	36	39	3	0.32	0.11	34	
YINRC064	82	87	5	1.13	0.34	30	
and	96	110	14	0.52	0.16	31	
YINRC065	135	146	11	0.70	0.23	33	
and	156	158	2	0.25	0.07	28	
and	165	170	5	0.31	0.10	32	
and	180	183	3	0.73	0.21	29	
YINRC066	26	43	17	1.59	0.42	26	
incl	32	40	8	2.49	0.66	27	
YINRC067	93	104	11	1.51	0.42	28	
YINRC068	9	15	6	0.42	0.12	29	
YINRC069	52	53	i	2.07	0.62	30	
and	86	87	i	0.59	0.17	29	
YINRC070	23	26	3	0.37	0.06	22	
111 411 (2070	33	34	I	1.67	0.42	25	

Table II (continued): Si							
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC066	26	43	17	1.59	0.42	26	
incl	32	40	8	2.49	0.66	27	
YINRC067	93	104	11	1.51	0.42	28	
YINRC068	9	15	6	0.42	0.12	29	
YINRC069	52	53	1	2.07	0.62	30	
and	86	87	I	0.59	0.17	29	
YINRC070	23	26	3	0.27	0.06	22	
and	33	34	I	1.67	0.42	25	
YINRC072	19	38	19	0.46	0.08	17	
YINRC073	87	89	2	1.01	0.33	33	
YINRC074	31	39	8	1.70	0.59	35	
incl	34	39	5	2.54	0.88	35	
YINRC075	54	59	5	2.73	0.91	33	
incl	55	58	3	4.14	1.39	34	
and	61	62	I	0.2	0.05	25	
YINRC076	82	94	12	1.65	0.56	34	
incl	96	97	I	0.25	0.07	28	
YINRC077	10	П	ı	0.33	0.10	30	
and	14	22	8	1.09	0.39	36	
YINRC078	51	55	4	1.07	0.36	34	
YINRC079	84	87	3	3.47	1.26	36	
YINRC080	37	40	3	2.52	0.84	33	
YINRC081	59	60	ı	0.33	0.10	30	
and	65	66	i	0.21	0.06	29	
and	67	84	17	0.61	0.20	33	
YINRC082	5	6	ı	1.03	0.38	37	
and	94	118	24	1.17	0.43	37	Yin
incl	95	99	4	4.11	1.59	39	
Incl	115	117	2	3.68	1.37	37	
YINRC083	0	24	24	2.57	0.73	28	
incl	8	19	- 11	4.50	1.27	28	
YINRC085	0	30	30	1.82	0.55	30	
incl	8	25	17	2.87	0.88	31	
and	39	42	3	0.24	0.07	29	
YINRC086	6	49	43	0.93	0.26	28	
incl	33	46	13	2.11	0.64	30	
and	52	54	2	0.65	0.22	34	
YINRC087	0	6	6	0.58	0.20	34	
and	30	31	i	0.73	0.19	26	
and	48	86	38	1.84	0.57	31	
incl	57	80	23	2.70	0.83	31	
YINRC088	64	68	4	0.72	0.14	19	
and	70	71	<u> </u>	0.38	0.10	26	
and	76	77	i	0.40	0.10	25	
and	92	120	28	1.00	0.28	28	
incl	104	111	7	2.09	0.59	28	
YINRC086MET	24	79	54	2.07	0.62	30	
incl	41	58	17	4.10	1.22	30	
YINRC089	114	115		0.21	0.04	19	
and	119	146	27	1.15	0.30	26	
YINRC090	184	193	9	2.22	0.66	30	
and	194	195	7	0.22	0.07	32	
allu	177	173	<u> </u>	0.22	0.07	J.L	

Table II (continued): Si	gnificant In	tersections >	>0.2% TREO		REO highlighted.		
Hole ID	From	То	Interval	TREO	Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	Prospect
	(m)	(m)	(m)	(%)	(%)	(%)	
YINRC091	148	195	47	0.61	0.17	28	
incl	188	192	4	2.27	0.70	31	
YINRC092	39	13 57	13	0.43	0.14	33	
and	40	50	18	1.33 2.15	0.32 0.51	24 24	
incl incl	45	49	10	3.07	0.71	23	
YINRC093	45	83	38	0.81	0.24	30	
incl	47	60	13	1.40	0.42	30	
YINRC094	3	10	7	0.56	0.10	18	
and	76	112	36	1.02	0.28	27	
incl	92	94	2	2.60	0.79	30	
and	106	109	3	2.65	0.55	21	
YINRC095	8	25	17	0.75	0.08	11	
and	93	135	42	1.00	0.26	26	
incl	117	124	7	1.97	0.51	26	
YINRC096	12	14	2	0.66	0.08	12	
and	87	89	2	1.02	0.22	22	
and	105	107	2	0.75	0.21	28	
and	132	152	20	1.53	0.45	29	
incl	142	146	4	2.64	0.73	28	
YINRC097	70	71	I	0.41	0.10	24	
and	99	101	2	0.53	0.14	26	
and	133	135	2	0.59	0.16	27	
and	142	143	I	0.55	0.12	22	
and	152	177	25	1.32	0.39	30	
incl	155	166	11	2.02	0.58	29	Yin
incl	155	158	3	3.45	0.99	29	TIN
YINRC098	179	193	14	2.15	0.67	31	
incl	184	190	6	3.31	1.05	32	
YINRC099	114	117	3	0.53	0.16	30	
YINRC100	31	38	7	0.37	0.06	16	
YINRC101	55	63	8	1.52	0.50	33	
incl	57	61	4	2.00	0.68	34	
YINRC102	52	53	I	1.59	0.57	36	
and	96	98	2	1.13	0.34	30	
YINRC103	114	120	6	0.60	0.16	27	
and	153	154		0.53	0.13	25	
and	187	204	17	1.23	0.38	31	
incl	193	195	2	2.07	0.7	34	
YINRC104	37	50	13	1.58	0.48	30	
incl	39	45	6	2.38	0.74	31	
YINRC105	77	88	11	1.13	0.29	26	
YINRC106	29	30 82	2	0.40 0.38	0.14	35 29	
and	80 88	98	10		0.11	32	
and and	91	93	2	0.66 1.48	0.46	31	
and	108	110	2	0.47	0.14	30	
YINRC108	144	154	10	0.47	0.14	33	
YINRC109	124	126	2	0.42	0.14	35	
and	163	166	3	0.86	0.26	30	
YINRC113	53	55	2	0.29	0.1	34	
YINRC114	69	72	3	2.64	0.91	34	

Table II (continued): Si							
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRCI 15	21	23	2	0.32	0.11	34	
YINRC116	78	81	3	1.04	0.42	40	
YINRCI 17	151	153	2	0.21	0.07	33	
YINRCI 18	9	24	15	0.50	0.08	16	
incl	12	15	3	1.50	0.23	15	
and	36	42	6	0.39	0.08	21	
YINRC121	136	148	12	1.25	0.37	30	
incl	139	144	5	2.03	0.62	31	
and	155	158	3	1.26	0.29	23	
YINRC122	69	74	5	0.41	0.12	30	
and	99	109	10	1.74	0.58	33	
Incl.	100	106	6	2.52	0.85	34	
Incl.	103	106	3	3.48	1.20	34	
YINRC123	69	77	8	0.90	0.30	33	
and	115	138	23	1.28	0.40	31	
incl	120	131	- 11	2.28	0.73	32	
incl	121	126	5	3.54	1.14	32	
YINRC124	126	173	47	0.70	0.22	31	
incl	126	142	16	1.19	0.39	33	
YINRC125	115	121	6	2.78	0.86	31	
and	116	120	4	3.42	1.06	31	
YINRC126	120	127	7	1.43	0.50	35	
incl	121	124	3	2.11	0.75	36	
YINRC127	108	113	5	1.61	0.53	33	
incl	108	110	2	2.04	0.76	37	
YINRC128	122	129	7	2.43	0.88	36	
incl	125	129	4	3.92	1.43	36	Yin
YINRC129	23	24	ı	0.48	0.19	40	
and	141	146	5	1.31	0.46	35	
incl	142	144	2	2.15	0.77	36	
YINRC131	30	43	13	0.58	0.155	27	
incl	30	32	2	1.53	0.4575	30	
and	38	39	I	1.05	0.3	28	
and	54	71	17	1.32	0.309	23	
incl	62	66	4	3.72	0.94	25	
YINRC132	107	118	- 11	1.16	0.292	25	
incl	108	110	2	2.11	0.57	27	
YINRC133	151	158	7	0.35	0.061	18	
YINRC134	19	57	38	0.48	0.12	25	
incl	44	45	ı	1.13	0.29	26	
and	50	53	3	1.17	0.31	27	
YINRC135	68	73	5	0.35	0.10	28	
YINRC136	39	42	3	0.34	0.08	25	
YINRC137	36	45	9	2.15	0.57	26	
incl	37	40	3	5.80	1.56	27	
YINRC138	79	85	6	0.67	0.16	23	
incl	82	83	ı	1.46	0.37	25	
YINRC139	17	24	7	0.35	0.03	7	
and	26	34	8	0.64	0.14	21	
incl	29	33	4	1.00	0.24	24	
YINRC140	97	105	8	1.07	0.24	22	
incl	99	103	4	1.63	0.39	24	
inci	• •		<u>'</u>	1.00	0.57		

Table II (continued): Si							
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC141	67	87	20	2.15	0.49	23	
incl	68	76	8	4.85	1.15	24	
YINRC142	124	132	8	0.55	0.12	22	
incl	128	129	I	1.76	0.46	26	
YINRC143	109	112	3	0.35	0.08	24	
YINRC144	129	135	6	0.53	0.14	25	
YINRC147	181	182	I	0.66	0.23	35	
YINRC150	67	68	I	0.46	0.14	31	
YINRC152	20	37	17	0.85	0.34	40	
Incl.	34	36	2	3.12	1.34	43	
And	58	63	5	1.35	0.60	45	
Incl.	60	62	2	2.40	1.10	46	
YINRC153	27	29	2	0.64	0.24	37	
YINRC154	16	21	5	0.32	0.05	16	Yin
YINRC155	19	24	5	0.34	0.06	17	
YINRC156	28	30	2	0.31	0.04	13	
And	46	48	2	0.32	0.03	9	
YINRC157	46	55	9	0.30	0.04	14	
YINRC159	54	61	7	0.33	0.08	24	
YINRC162	53	63	10	0.35	0.10	30	
And	67	76	9	0.44	0.14	32	
YINRC163	121	125	4	0.33	0.10	30	
YINRC165	35	41	6	0.31	0.06	19	
And	96	98	2	0.34	0.12	34	
YINRC166	52	54	2	0.74	0.29	38	
YINRC168	86	93 90	7	0.70	0.27	39 42	
Incl.	89		1	1.24	0.52		
YINRC169	144	148 39	4	0.36	0.12	32 33	
YINRC170 YINRC171	36 0	15	3 15	0.35 1.61	0.12	30	
	7	13	6	3.26	0.48 0.97	30	
Incl. YINRC172	0	22	22	2.01	0.77	38	
	6	18	12	3.10	1.20	39	Y2
Incl. YINRC173	45	54	9	0.44	0.14	31	
And	6l	76	15	1.31	0.45	34	
Incl.	68	75	7	2.23	0.78	35	
YINRC174	44	57	13	0.60	0.13	21	
incl	44	47	3	1.30	0.29	23	
YINRC175	103	108	5	1.06	0.26	24	
incl	103	104	I	4.10	1.06	26	
and	129	219	90	0.56	0.14	24	
incl	162	182	20	1.10	0.29	27	
and	195	202	7	0.92	0.24	26	
YINRC176	82	93	Ш	0.42	0.08	20	
YINRC177	80	95	15	0.50	0.10	20	Yin
incl	88	89	I	1.41	0.34	24	
and	117	118	I	1.30	0.36	28	
and	134	138	4	0.26	0.05	19	
YINRC178	74	105	31	1.01	0.17	17	
incl	73	78	5	2.47	0.30	12	
incl	74	76	2	5.25	0.65	12	
and	87	90	3	1.79	0.40	22	
and	103	105	2	2.34	0.47	20	

II (continued): Signature Hole ID	From	То	Interval	TREO	Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	Prospect
	(m)	(m)	(m)	(%)	(%)	(%)	rrospect
YINRC179	119	129	10	1.33	0.32	24	
incl	120	124	4	2.15	0.52	24	
and	140	166	26	1.22	0.27	22	
incl	140	148	8	2.10	0.47	23	
and	183	184	1	1.31	0.29	22	
YINRC180	52	72	20	0.6	0.13	22	
incl	67	69	2	2.01	0.55	27	
and	82	90	<u>8</u> 5	0.44	0.10	23 15	
YINRC195	119	124		0.27	0.04	17	
YINRC196	55 76	84 80	29	0.71 3.16	0.12 0.58	18	
incl			4				
and	102	104	2	0.38	0.07	18	
YINRC197	19	21	2	0.36	0.07	19	
YINRC198	22	25	3	0.24	0.03	13	
and	31	35 45	4 2	0.24	0.03	13	
and	43			0.77	0.17		
YINRC201	57	68	11	0.96	0.18	19	
incl	62	66	4	1.88	0.36	17	
and	82	86	4	0.24	0.04	17	
YINRC202	29	48	19 7	0.44	0.06	14	
YINRC213	129	136		0.65	0.13	20	
YINRC214	173	174	1	0.31	0.05	16	
and	178	182	4	0.85	0.16	19	
YINRC216	94	98	4	0.87	0.16	18	
and	117	118		0.30	0.05	17	
YINRC217	68	69		0.62	0.12	19 17	Yin
YINRC218	68	69	1	0.30	0.05		
and YINRC219	139	141	2 I	0.91	0.19 0.07	21 22	
-	117	101		0.32	0.06	19	
and	122	118	7	0.32	0.06	18	
and YINRC220	55	56	1	0.37	0.06	18	
F	55 58	60			0.20	17	
and YINRC221		80	2	1.15 0.48	0.10	21	
and	103	104	1	0.46	0.10	21	
and	117	122	5	0.86	0.08	19	
YINRC222	93	97	4	1.24	0.21	17	
and	105	107	2	0.76	0.13	16	
and	110	111	1	0.70	0.06	15	
YINRC224	127	129	2	1.62	0.26	16	
and	134	138	4	1.16	0.20	17	
YINRC226	28	31	3	0.55	0.09	16	
YINRC228	67	70	3	2.80	0.49	18	
YINRC230	91	95	4	1.63	0.25	16	
YINRC231	139	141	2	1.01	0.17	17	
and	151	153	2	0.43	0.08	18	
YINRC232	35	36	I	1.15	0.08	19	
YINRC234		77	2	0.78	0.29	37	
and	8I	83	2	1.07	0.23	21	
DIID			1	0.38	0.06	16	
YINIRC234	91	9,					
YINRC236 and	91 95	92 96	I	0.38	0.05	16	

Table II (continued): Si							
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC244	68	74	6	1.45	0.25	17	
incl	68	70	2	3.60	0.64	18	
YINRC246	112	115	3	1.73	0.28	16	
YINRC248	155	156	J	0.31	0.28	13	
YINRC250	59	62	3	1.38	0.23	17	
YINRC252	96	101	5	1.38	0.24	19	
incl	96	98	2	2.12	0.40	19	
YINRC254	64	65	1	0.66	0.16	24	
and	138	139	i	1.54	0.25	16	
YINRC258	111	112	i	0.32	0.06	19	
YINRC258	111	112	i	0.32	0.06	19	
YINRC260	154	158	4	1.64	0.29	18	
incl	155	156	1	2.71	0.49	18	
YINRC262	81	86	5	0.67	0.14	20	
and	106	130	24	1.14	0.23	20	
incl	106	111	5	2.06	0.42	21	
and	140	142	2	0.69	0.16	23	
and	147	148	Ī	0.60	0.11	18	
YINRC264	97	98	i	0.71	0.14	20	
and	120	132	12	0.53	0.10	19	
YINRC265	120	123	3	1.02	0.21	21	
incl	121	122	- 1	2.11	0.46	22	
YINRC266	148	155	7	0.38	0.06	16	
YINRC267	148	151	3	0.59	0.12	20	
incl	148	149	I	1.17	0.26	22	
and	173	184	11	0.72	0.11	15	
incl	174	177	3	1.48	0.24	16	Yin
YINRC270	85	89	4	1.08	0.23	21	
incl	87	88	I	3.56	0.76	21	
YINRC271	131	149	18	0.45	0.07	16	
incl	132	133	I	1.31	0.23	18	
YINRC272	44	56	12	1.25	0.17	14	
incl	50	54	4	3.08	0.38	12	
YINRC273	102	106	4	0.61	0.12	20	
incl	102	103	I	1.38	0.28	20	
and	112	118	6	0.44	0.08	18	
incl	113	114	l	1.23	0.26	21	
YINRC274	151	154	3	1.19	0.23	19	
incl	151	152	- 1	2.23	0.43	19	
YINRC278	65	67	2	0.23	0.05	22	
YINRC279	48	53	5	0.27	0.04	14	
and	69	71	2	0.22	0.03	14	
YINRC280	101	106	5	0.9	0.34	38	
incl	103	105	2	1.45	0.56	39	
YINRC281	90	92	2	0.31	0.06	19	
YINRC283	25	30	5	0.63	0.11	18	
incl	25	27	2	1.28	0.24	19	
YINRC286	41	46	5	0.31	0.10	31	
YINRC288	6	12	6	0.32	0.11	34	
YINRC289	3	39	36	2.75	0.84	31	
incl	15	27	12	6.00	1.88	31	
YINRC290	71	81	10	0.9	0.36	40	
incl	79	81	2	3.00	1.25	42	

Table II (continued): Si	gnificant In				REO highlighted.		
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC291	7	13	6	0.65	0.15	23	
incl	Ш	12	I	2.83	0.62	22	V.
and	22	59	37	1.17	0.34	29	Yin
incl	26	36	10	2.01	0.59	29	
YINRC292	8	38	30	1.19	0.41	34	
incl	12	18	6	3.18	1.15	36	V2
and	43	49	6	0.70	0.22	31	Y2
incl	45	46	1	1.09	0.35	32	
YINRC293	23	26	3	0.45	0.12	27	
and	36	39	3	0.40	0.09	23	
and	42	47	5	0.34	0.08	24	Yin
and	51	92	41	1.52	0.40	26	
incl	60	82	22	2.04	0.53	26	
YINRC294	8	13	5	1.07	0.38	36	
and	53	77	24	0.99	0.33	33	Y2
incl	57	59	2	1.94	0.72	37	
YINRC295	0	4	4	0.42	0.11	26	
and	10	38	28	2.60	0.81	31	Yin
incl	18	30	12	4.73	1.48	31	
YINRC296	91	107	16	0.55	0.18	33	Y2
incl	102	103	I	1.77	0.64	36	12
YINRC297	23	25	2	0.50	0.12	24	
and	30	49	19	3.37	1.02	30	
incl	36	46	10	4.79	1.48	31	Yin
incl	36	42	6	6.05	1.88	31	• • • • • • • • • • • • • • • • • • • •
and	62	75	13	0.62	0.18	29	
incl	69	70	l	1.20	0.36	30	
YINRC298	123	136	13	0.55	0.18	33	Y2
incl	128	129	<u> </u>	1.26	0.45	36	
YINRC299	15	22	7	0.74	0.22	30	
incl	15	18	3	1.32	0.42	32	
and	31	33	2	0.71	0.15	21	Yin
and	48	79	31	1.63	0.47	29	
incl	58	68	10	3.04	0.90	30	
YINRC300	3	6	3	0.80	0.31	39	
incl	3	4		1.11	0.44	40	
and	49	50	1	0.78	0.27	35	V2
and	67	69	2	0.52	0.17	33	Y2
and	71	82 7 5	11	1.09	0.38	35	
incl	74 86	75 87	1	2.18	0.78 0.78	36 29	
and YINRC301	0	29	29	2.72	0.78	31	
incl	9	24	15	2.70	0.83	31	Yin
YINRC302	15	16	15	0.60	0.83	37	
	36	37		0.56	0.21	38	Y2
and and	97	103	6	0.36	0.14	32	1 4
YINRC303	0	5	5	0.23	0.08	35	
and	9	12	3	0.23	0.07	20	
and	21	23	2	0.53	0.13	24	Yin
and	27	75	48	1.50	0.13	29	1111
incl	47	59	12	2.82	0.86	30	
YINRC304	87	94	7	0.51	0.20	39	
and	92	93	1	1.11	0.43	39	Y2
ailu	12	/3	ı	1.11	0.13	37	

ABN 40 119 031 864

DREADNOUGHT
RESOURCES

Table II (continued): Si	0			with >2% TR	0 0		
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC305	46	ÌIÍ	65	1.85	0.47	25	
incl	49	54	5	2.85	0.60	21	V:
and	74	90	16	4.06	1.06	26	Yin
and	75	83	8	5.00	1.24	25	
YINRC306	14	17	3	0.63	0.25	39	V2
incl	15	16	I	1.18	0.48	41	Y2
YINRC307	1	11	10	1.27	0.38	30	
incl	8	10	2	2.49	0.74	30	Yin
and	16	19	3	0.48	0.13	27	
YINRC308	64	68	4	0.48	0.16	33	Y2
YINRC309	30	37	7	1.10	0.31	28	
incl	31	32		2.18	0.69	32	
and	41	51	10	1.90	0.59	31	
incl	42	48	6	2.47	0.76	31	
YINRC311	69	102	33	1.00	0.28	28	Yin
incl	77	81	4	2.06	0.60	29	
YINRC313	0	2	2	0.45	0.13	29	
and	26	30	4	0.358	0.09	24	
YINRC314	28	32	4	0.38	0.12	32	Y2
YINRC315	16	33	17	2.34	0.75	32	
incl	21	27	6	5.31	1.75	33	Yin
YINRC316	77	82	5	0.30	0.11	37	Y2
YINRC317	54	66	12	2.24	0.74	33	
incl	57	60	3	6.53	2.18	33	Yin
YINRC318	87	89	2	0.33	0.10	29	
and	109	111	2	0.24	0.08	34	Y2
YINRC319	31	35	4	1.32	0.44	33	
incl	31	33	2	2.40	0.82	34	Yin
YINRC321	55	57	2	0.60	0.16	27	
and	69	84	15	1.66	0.54	33	Yin
incl	76	81	5	3.30	1.12	34	
YINRC322	4	8	4	0.64	0.19	30	
incl	4	5	i	1.38	0.45	33	Y2
and	71	74	3	0.34	0.11	32	12
YINRC323	103	122	19	1.11	0.36	32	
incl	109	112	3	4.81	1.6	33	Yin
YINRC324	95	98	3	0.26	0.06	23	
and	105	106	ı	0.28	0.19	36	Y2
YINRC325	111	123	12	0.33	0.19	22	
and	135	163	28	1.80	0.57	32	Yin
incl	135	146	11	3.12	0.99	32	1111
YINRC326	58	62	4	0.38	0.08	21	
_	116	118	2	0.38	0.08	31	Y2
and	91						
YINRC327		103 99	3	1.11	0.39	35	Yin
incl YINRC328	96		J	1.80	0.87	48	
	40	41	17	0.86	0.34	40	Y2
and	163	180	17	0.82	0.26	32	1 2
incl	167	168	1	2.83	0.98	35	
YINRC329	138	141	3	1.98	0.53	27	V· ·
and	147	165	18	1.15	0.38	33	Yin
incl	147	154	7	1.92	0.65	34	
YINRC330	5	6	1	0.66	0.22	33	Y2
and	47	49	2	0.88	0.29	33	

Table II (continued): S	0			with >2% TR			
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC331	1	6	5	0.72	0.21	29%	
and	18	33	15	4.22	1.42	34%	Yin
incl	22	31	9	6.59	2.24	34%	1 111
incl	23	25	2	19.75	6.83	35%	
YINRC332	20	22	2	0.57	0.2	35%	
and	31	42	11	0.51	0.16	31%	
incl	31	34	3	0.66	0.22	33%	Y2
incl	41	42	I	1.44	0.55	38%	
and	58	62	4	0.42	0.13	31%	
YINRC333	43	69	26	2.16	0.69	32%	
incl	55	66	11	4.11	1.33	32%	Yin
incl	55	60	5	5.82	1.94	33%	
YINRC334	11	12	I	0.64	0.25	39%	
and	59	68	9	0.55	0.18	33%	Y2
incl	60	62	2	1.09	0.38	35%	
YINRC335	129	142	13	0.86	0.25	29%	
incl	129	133	4	1.58	0.48	30%	
and	159	190	31	1.97	0.63	32%	Yin
incl	172	176	4	5.20	1.69	33%	
YINRC336	3	4	i	0.66	0.23	35%	
and	34	36	2	0.41	0.16	39%	
and	52	54	2	1.32	0.41	31%	Y2
and	97	99	2	1.32	0.39	30%	12
and	116	129	13	0.58	0.20	34%	
YINRC337	82	149	67	0.95	0.29	31%	
	82	94	12	2.50		32%	
incl incl	86	93	7	3.82	0.81 1.25	33%	
			3				
and YINRC338	1 02 23	1 05 37	14	3.26	0.88 0.62	27% 44%	
	30		3				
incl		33		3.22	1.46	45%	
YINRC339	4	10 7	6	0.56	0.14	25%	
incl	6		1	1.22	0.34	28%	
and	17	19	2	0.70	0.18	25%	
incl	17	18	ı	1.02	0.27	26%	
YINRC340	26	32	6	0.74	0.31	42%	
incl	27	29	2	1.46	0.63	43%	
YINRC341	30	40	10	1.00	0.30	30%	
incl	36	40	4	1.70	0.47	28%	Yin
YINRC343	71	79	8	1.12	0.35	31%	
incl	71	72		5.30	1.77	33%	
and	85	90	5	1.05	0.30	29%	
incl	87	88	1	2.20	0.67	30%	
YINRC345	127	148	21	0.82	0.26	32%	
incl	127	129	2	1.81	0.61	34%	
and	143	145	2	1.86	0.61	33%	
YINRC347	126	154	28	1.66	0.51	31%	
incl	128	138	10	3.21	0.99	31%	
YINRC349	206	225	19	1.78	0.60	34%	
incl	208	213	5	3.11	1.08	35%	
YINRC350	52	59	7	0.36	0.12	33%	
YINRC351	29	31	2	0.51	0.17	33%	
YINRC353	62	66	4	0.69	0.21	30%	

Table II (continued): S				with >2% TR			
Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC355	6	20	14	2.62	0.91	35	
incl	7	17	10	3.56	1.24	35	
incl	11	15	4	5.51	1.92	35	
YINRC356	48	52	4	0.90	0.27	30	
incl	49	50	ı	2.02	0.6	30	
YINRC357	37	49	12	1.67	0.57	34	
incl	38	47	9	2.04	0.70	34	
YINRC359	20	28	8	2.06	0.71	35	
incl	21	25	4	3.66	1.29	35	
incl	23	25	2	4.98	1.76	35	
YINRC361	58	68	10	1.22	0.40	33	
incl	64	66	2	3.21	1.06	33	Yin
YINRC363	100	106	6	1.06	0.36	34	
incl	103	105	2	2.05	0.68	32	
YINRC364	45	53	8	0.55	0.11	20	
YINRC365	8	13	5	0.64	0.05	8	
and	75	102	27	1.55	0.47	30	
incl	80	91	11	2.45	0.74	30	
incl	80	84	4	4.12	1.27	31	
YINRC367	92	99	7	0.83	0.24	29%	
incl	92	96	4	1.13	0.34	30%	
and	105	130	25	1.54	0.43	28%	
incl	113	122	9	2.12	0.61	29%	
YINRC368	43	45	2	1.53	0.66	43%	Yin North
and	60	61	I	1.75	0.76	43%	Till North
YINRC369	23	35	12	1.08	0.29	27%	
incl	31	33	2	3.23	0.94	29%	
and	84	85	I	1.30	0.32	25%	Yin
and	112	115	3	1.09	0.28	26%	1 111
and	123	156	33	2.01	0.57	28%	
incl	129	139	10	3.18	0.90	28%	
YINRC370	79	84	5	0.40	0.15	38%	
and	99	100	I	1.50	0.53	35%	
and	108	112	4	1.50	0.60	40%	Y2
incl	108	110	2	2.30	0.91	40%	1 4
and	126	135	9	0.43	0.17	40%	
and	140	146	6	0.46	0.17	37%	
YINRC371	0	13	13	0.82	0.36	44%	
incl	0	7	7	1.16	0.49	42%	
incl	5	6	- 1	2.73	1.82	67%	Yin
and	69	106	37	2.67	0.80	30%	
incl	78	102	24	3.29	0.99	30%	
YINRC372	175	186	- 11	0.54	0.19	35%	Y2
and	184	185	l	1.19	0.54	45%	· -
YINRC373	91	101	10	0.69	0.20	29%	
incl	97	99	2	1.18	0.27	23%	
and	129	139	10	1.12	0.33	29%	
YINRC375	122	131	9	0.77	0.24	31%	
incl	125	128	3	1.03	0.33	32%	Yin
and	135	166	31	0.63	0.17	27%	
incl	146	150	4	1.40	0.40	29%	
and	197	207	10	0.72	0.21	29%	
incl	201	203	2	1.91	0.56	29%	

Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospec
YINRC377	121	129	8	0.82	0.25	30%	
incl	123	125	2	1.42	0.42	30%	
YINRC379	5	12	7	2.91	1.08	37%	Yin
incl	7	11	4	4.42	1.67	38%	
incl	7	9	2	6.79	2.58	38%	
YINRC380	16	18	2	0.90	0.33	37%	\/2
and	22	24	2	0.58	0.24	41%	Y2
YINRC381	34	38	4	1.43	0.53	37%	
incl	34	36	2	2.45	0.91	37%	Yin
YINRC383	71	73	2	0.62	0.22	35%	
YINRC384	16	22	6	0.90	0.36	40%	
incl	19	21	2	1.61	0.63	39%	
and	44	53	9	0.53	0.21	40%	Y2
incl	46	47	i	1.30	0.47	36%	
YINRC385	27	33	6	1.26	0.47	37%	
incl	31	33	2	2.62	0.97	37%	Yin
YINRC386	11	13	2	1.16	0.45	39%	
and	26	45	19	0.99	0.35	35%	
incl	27	28	17	3.01	0.92	31%	Y2
incl	37	44	7	1.61	0.56	35%	
YINRC387	76	80	4	0.69	0.27	39%	Yin
YINRC388	23	24	1	1.16	0.27	29%	11111
			1				Va
and	40	43	3	0.65	0.24	37%	Y2
and	47	53	6	0.34	0.13	38%	
YINRC389	117	123	6	2.02	0.75	37%	Yin
incl	117	119	2	3.46	1.29	37%	\(\(\)
YINRC390	52	54	2	0.58	0.25	43%	Y2
YINRC391	51	61	10	1.07	0.33	31%	V:
incl	58	60	2	3.58	1.09	30%	Yin
and	68	71	3	1.20	0.47	39%	
YINRC392	85	88	3	1.04	0.43	41%	Y2
YINRC393	97	102	5	0.74	0.22	30%	
incl	98	100	2	1.25	0.35	28%	Yin
and	114	124	10	0.60	0.21	35%	
incl	119	121	2	1.20	0.40	33%	
YINRC394	25	28	3	1.76	0.52	30%	
incl	25	27	2	2.53	0.75	30%	
and	38	51	13	4.07	1.49	37%	Y2
incl	40	46	6	6.01	2.17	36%	
and	59	73	14	1.03	0.37	36%	
incl	62	65	3	2.18	0.78	36%	
YINRC395	59	62	3	0.81	0.17	21%	
and	140	161	21	1.08	0.31	29%	Yin
incl	158	161	3	3.25	0.99	30%	
YINRC396	50	52	2	0.61	0.23	38%	V2
and	66	75	9	0.42	0.17	40%	Y2
YINRC397	43	96	53	1.62	0.39	24%	V.
incl	46	50	4	6.51	1.53	24%	Yin
YINRC398	55	58	3	0.63	0.21	33%	\/2
and	82	87	5	0.40	0.14	35%	Y2
YINRC399	36	49	13	1.88	0.56	30%	
	40	46	6	3.51	1.05	30%	Yin

Table II (continued): Si	ignificant In From	To	>0.2% TREC Interval		Nd ₂ O ₃ +Pr ₆ O ₁₁	NdPr:TREO	D
Hole ID	(m)	(m)	(m)	TREO (%)	(%)	(%)	Prospect
YINRC400	33	37	4	0.39	0.13	33%	Y2
and	113	132	19	0.44	0.16	36%	12
YINRC401	90	103	13	1.39	0.38	27%	
and	93	99	6	2.31	0.65	28%	
YINRC402	49	50	1	0.79	0.24	30%	
and	73	75	2	0.48	0.13	27%	
and	79	243	164	1.08	0.29	27%	
incl	83	112	29	2.00	0.54	27%	
YINRC405	59	64	5	0.50	0.12	24%	
incl	62	63	1	1.27	0.27	21%	
and	81	83	2	0.58	0.18	31%	
YINRC406	63	65	2	1.68	0.30	18%	
YINRC407	12	22	10	2.05	0.54	26%	
incl	15	18	3	3.61	0.94	26%	
YINRC408	76	104	28	0.65	0.13	20%	
incl	78	94	16	1.01	0.20	20%	
incl	81	84	3	2.04	0.40	20%	
YINRC409	64	73	9	2.36	0.61	26%	
incl	68	69	3	4.40	1.16	26%	
YINRC410	141	153	12	0.59	0.11	19%	
and	178	183	5	0.29	0.05	17%	
YINRC412	40	45	5	0.39	0.07	19%	
YINRC413	111	114	3	0.78	0.17	22%	
incl	113	114	1	1.29	0.26	20%	
YINRC414	60	69	9	1.34	0.29	22%	
incl	64	68	4	2.13	0.46	22%	
and	76	78	2	1.25	0.23	18%	Yin
YINRC415	24	38	14	1.01	0.24	24%	
incl	30	33	3	2.25	0.54	24%	
YINRC416	124	213	89	0.58	0.11	19%	
incl	125	142	17	1.07	0.22	20%	
YINRC418	12	24	12	0.78	0.30	39%	
YINRC419	12	38	26	0.55	0.13	24%	
incl	32	36	4	1.78	0.38	21%	
and	65	68	3	0.56	0.11	20%	
incl	66	67	<u> </u>	1.03	0.20	19%	
YINRC421	70	90	20	0.44	0.12	27%	
incl	86	88	2	1.34	0.33	25%	
YINRC422	66	70	4	0.66	0.13	19%	
YINRC423	20	45	25	1.03	0.22	21%	
incl	23	27	4	4.37	0.93	21%	
YINRC424	45	55	10	1.20	0.21	17%	
incl	49	52	3	2.91	0.47	16%	
and	102	109	7	1.63	0.35	22%	
incl	103	105	2	4.40	0.95	22%	
YINRC425	78	84	6	0.91	0.21	23%	
incl	79	83	<u>4</u> 7	1.19	0.27	23%	
YINRC426	59	66		0.21	0.03	15%	
and	135	240 (EOH)	105	2.89	0.55	19%	
Incl	138	238	100	3.01	0.57	19%	
incl	138	163	25	4.40	0.84	19%	

ABN 40 119 031 864

Table 11 (continued): Significant Intersections >0.2% TREO with >2% TREO highlighted.

Hole ID	From (m)	To (m)	Interval (m)	TREO (%)	Nd ₂ O ₃ +Pr ₆ O ₁₁ (%)	NdPr:TREO (%)	Prospect
YINRC427	60	70	10	0.81	0.14	17%	
and	87	108	21	0.52	0.11	21%	
and	111	124	13	0.49	0.12	25%	Yin
YINRC428	107	112	5	0.46	0.13	28%	
and	131	139	8	0.56	0.13	23%	
YINRC430	5	8	3	0.69	0.24	35%	
and	44	56	12	0.53	0.16	29%	
YINRC431	5	8	3	1.47	0.45	31%	
and	38	49	11	0.48	0.16	33%	
YINRC433	32	34	2	0.54	0.16	29%	
and	77	120	43	0.93	0.33	36%	
incl	81	94	13	2.07	0.77	37%	Y2
YINRC434	7	9	2	0.89	0.25	28%	
and	65	76	11	0.32	0.09	29%	
and	92	108	16	0.78	0.23	29%	
YINRC435	25	27	2	0.43	0.12	28%	
and	54	56	2	1.06	0.42	40%	
and	73	82	9	0.76	0.25	32%	

		Table 12: D	rill Collar D	ata (GDA9	4 MGAz50)			
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINRC001	401655	7350201	298	-59	269	81	RC	
YINRC002	401695	7350201	299	-59	275	123	RC	
YINRC003	401736	7350201	299	-58	269	100	RC	
YINRC004	401776	7350202	298	-58	273	117	RC	
YINRC005	401815	7350202	298	-58	275	141	RC	
YINRC006	401855	7350201	297	-59	270	183	RC	
YINRC007	401701	7350303	300	-58	270	51	RC	
YINRC008	401738	7350301	299	-58	274	75	RC	
YINRC009	401779	7350301	299	-57	273	99	RC	
YINRC010	401536	7350100	296	-59	277	81	RC	
YINRC011	401823	7350302	298	-58	277	135	RC	
YINRC012	401860	7350300	297	-59	268	177	RC	
YINRC013	401576	7350100	297	-59	269	81	RC	
YINRC014	401722	7350401	299	-58	268	33	RC	
YINRC015	401615	7350102	297	-59	274	81	RC	
YINRC016	401657	7350103	298	-59	276	81	RC	
YINRC017	401695	7350101	298	-59	273	81	RC	
YINRC018	401734	7350101	298	-57	273	81	RC	
YINRC019	401773	7350100	297	-57	273	84	RC	
YINRC020	401815	7350101	296	-58	270	81	RC	
YINRC021	401855	7350101	295	-57	271	Ш	RC	
YINRC022	401894	7350103	295	-58	265	153	RC	
YINRC023	401720	7350503	301	-58	271	39	RC	
YINRC024	401759	7350501	300	-59	272	87	RC	
YINRC025	401799	7350502	300	-58	272	123	RC	
YINRC026	401754	7350703	303	-58	270	51	RC	
YINRC027	401793	7350701	302	-58	271	87	RC	Yin
YINRC028	401833	7350702	301	-58	276	123	RC	
YINRC029	401748	7350899	304	-58	273	81	RC	
YINRC030	401788	7350899	303	-58	275	129	RC	
YINRC031	401829	7350900	303	-59	273	177	RC	
YINRC032	401751	7351080	299	-59	308	45	RC	
YINRC033	401784	7351058	299	-59	311	87	RC	
YINRC034	401819	7351032	300	-59	310	129	RC	
YINRC035	401893	7351224	300	-58	273	39	RC	
YINRC036	401933	7351224	300	-59	272	81	RC	
YINRC037	401973	7351224	300	-59	270	123	RC	
YINRC038	402076	7351238	300	-58	270	33	RC	
YINRC039	402117	7351239	300	-59	269	69	RC	
YINRC040	401993	7351425	299	-58	277	39	RC	
YINRC041	402035	7351425	298	-59	274	87	RC	
YINRC042	402074	7351413	298	-58	274	123	RC	
YINRC043	402036	7351578	300	-59	266	45	RC	
YINRC044	402074	7351578	301	-58	268	87	RC	
YINRC045	402116	7351580	301	-58	270	123	RC	
YINRC046	402085	7351725	302	-58	271	45	RC	
YINRC047	402125	7351726	303	-58	269	81	RC	
YINRC048	402165	7351727	303	-58	269	129	RC	
YINRC049	402100	7351925	300	-57	270	39	RC	
YINRC050	402140	7351926	300	-60	267	87	RC	
YINRC051	402180	7351926	301	-58	270	129	RC	
YINRC052	401861	7350002	295	-59	260	123	RC	
YINRC053	401902	7350001	294	-59	272	153	RC	
YINRC054	401943	7350001	294	-59	273	93	RC	

Tab

ble 12: Drill Collar D	ata (GDA94	MGAz50)						
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINRC055	401759	7350401	299	-60	271	63	RC	
YINRC056	401799	7350402	298	-58	268	93	RC	
YINRC057	401741	7350603	302	-57	274	69	RC	
YINRC058	401777	7350602	301	-58	271	105	RC	
YINRC059	401817	7350602	301	-58	271	141	RC	
YINRC060	401766	7350802	304	-57	275	81	RC	
YINRC061	401807	7350802	303	-58	269	75	RC	
YINRC062	401846	7350802	303	-58	272	135	RC	
YINRC063	401709	7351000	300	-59	272	57	RC	
YINRC064	401748	7351000	300	-59	268	117	RC	
YINRC065	401788	7350999	301	-59	271	195	RC	
YINRC066	401826	7349249	296	-58	264	57	RC	
YINRC067	401867	7349251	296	-59	263	117	RC	
YINRC068	401902	7349410	299	-58	273	33	RC	
YINRC069	401944	7349412	298	-59	272	93	RC	
YINRC070	402591	7349478	296	-58	208	51	RC	
YINRC071	402613	7349513	297	-59	206	129	RC	
YINRC072	402743	7349367	294	-59	212	69	RC	
YINRC073	402762	7349402	294	-58	214	99	RC	
YINRC074	401830	7351124	299	-59	273	51	RC	
YINRC075	401865	7351124	300	-59	271	81	RC	
YINRC076	401907	7351124	300	-59	269	105	RC	
YINRC077	401943	7351125	300	-59	272	33	RC	
YINRC077	401982	7351325	300	-58	271	87	RC	
	402023	7351325	300	-58	271	105	RC	
YINRC079 YINRC080	402023	7351526	299	-58	273	60	RC	Yin
YINRC081			300	-59	271	105	RC	
	402065	7351527	300	-58	273	135	RC	
YINRC082 YINRC083	402104 401617	7351528 7350168	298	-57	331	57	RC	
					1	99		
YINRC084	401572	7350148	296 299	-60	344 274	45	RC	
YINRC085	401697	7350249		-58			RC	
YINRC086	401736	7350249	299	-58	272	69	RC	
YINRC086MET	401737	7350247	299	-90	0	80	RC	
YINRC087	401776	7350248	299	-57	276	93	RC	
YINRC088	401815	7350247	298	-58	274	129	RC	
YINRC089	401854	7350249	297	-57	268	159	RC	
YINRC090	401893	7350250	296	-58	272	207	RC	
YINRC091	401894	7350202	295	-58	270	219	RC	
YINRC092	401648	7350147	298	-58	271	75	RC	
YINRC093	401694	7350149	298	-59	273	93	RC	
YINRC094	401734	7350149	298	-58	266	141	RC	
YINRC095	401776	7350150	297	-58	270	183	RC	
YINRC096	401816	7350150	296	-58	270	183	RC	
YINRC097	401855	7350150	296	-58	272	183	RC	
YINRC098	401898	7350298	296	-59	271	207	RC	
YINRC099	401840	7350402	298	-58	270	135	RC	
YINRC100	401741	7350000	296	-58	272	75	RC	
YINRC101	401779	7350001	295	-58	273	81	RC	
YINRC102	401822	7350000	295	-59	272	117	RC	
YINRC103	401894	7350150	295	-58	271	219	RC	
YINRC104	401865	7349332	297	-59	272	63	RC	
YINRC105	401902	7349333	297	-59	270	105	RC	
YINRC106	401871	7349540	300	-59	271	117	RC	
YINRC107	401821	7349640	296	-58	272	111	RC	

35

Tal

ble I2: Drill Collar D	ata (GDA94							
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINRC108	401911	7349541	299	-59	272	183	RC	
YINRC109	401860	7349642	296	-59	270	177	RC	
YINRC110	401799	7349738	294	-59	270	63	RC	
YINRCIII	401839	7349742	294	-58	272	117	RC	
YINRC112	402060	7351624	301	-57	273	39	RC	
YINRC113	402098	7351625	302	-58	271	81	RC	
YINRC114	402138	7351625	302	-58	272	123	RC	
YINRC115	402101	7351824	302	-58	270	39	RC	
YINRC116	402140	7351825	301	-59	270	93	RC	
YINRC117	402180	7351825	301	-58	269	165	RC	
YINRC118	402069	7352025	298	-59	270	45	RC	
YINRC119	402114	7352034	298	-59	270	99	RC	
YINRC120	402148	7352026	299	-60	278	129	RC	
YINRC121	401842	7350403	298	-75	272	165	RC	
YINRC122	401800	7350504	301	-77	273	141	RC	
YINRC123	401818	7350604	301	-76	275	153	RC	
YINRC124	401838	7350704	301	-75	270	177	RC	
YINRC125	401911	7351127	301	-82	272	135	RC	
YINRC126	401975	7351227	301	-76	276	147	RC	
YINRC127	402026	7351327	300	-79	271	129	RC	
YINRC128	402077	7351414	299	-73	281	153	RC	
YINRC129	402113	7351529	300	-76	263	165	RC	
YINRC130	401792	7349041	294	-58	274	117	RC	
YINRC131	401776	7348950	295	-59	282	93	RC	
YINRC132	401814	7348939	294	-58	285	153	RC	
YINRC133	401834	7349038	294	-54	274	183	RC	
YINRC134	401778	7349928	295	-58	268	81	RC	
YINRC135	401813	7349930	295	-59	269	138	RC	Yin
YINRC136	401781	7349639	296	-58	270	141	RC	
YINRC137	401798	7349160	294	-58	277	81	RC	
YINRC138	401830	7349158	294	-58	275	123	RC	
YINRC139	401731	734885 I	296	-58	301	93	RC	
YINRC140	401765	7348834	296	-58	301	165	RC	
YINRC141	401630	7348719	297	-58	305	123	RC	
YINRC142	401662	7348696	297	-58	301	195	RC	
YINRC143	401434	7348415	296	-58	300	177	RC	
YINRC144	401468	7348396	296	-56	299	165	RC	
YINRC145	401812	7349852	294	-57	270	153	RC	
YINRC146	401841	7349854	294	-69	272	117	RC	
YINRC147	401781	7349853	294	-59	270	189	RC	
YINRC148	406219	7352555	309	-90	0	90	RC	
YINRC149	406067	7352656	309	-90	0	90	RC	
YINRC150	401593	7352484	297	-59	209	117	RC	
YINRC151	401614	7352516	298	-59	212	183	RC	
YINRC152	401250	7352686	299	-59	214	93	RC	
YINRC153	401271	7352717	300	-59	215	153	RC	
YINRC154	401074	7352787	299	-57	208	123	RC	
YINRC155	401089	7352819	299	-58	207	189	RC	
YINRC156	400722	7352990	301	-58	214	183	RC	
YINRC157	400698	7352957	301	-58	212	183	RC	
YINRC158	400423	7353214	305	-58	244	183	RC	
YINRC159	400459	7353232	305	-59	244	96	RC	
YINRC160	400367	7353627	306	-58	271	183	RC	
YINRC161	400405	7353624	306	-59	267	87	RC	
				·				

Table 12: Drill Colla

ole 12: Drill Collar Da Hole ID	Easting	Northing	RL	Dip	Azimuth	ЕОН	Туре	Prospect
YINRC162	400420	7353990	307	-59	307	153	RC	Позресс
YINRC163	400420	7353967	307	-60	307	138	RC	
					295	135	1	
YINRC164	400682	7354296	308	-60	1		RC	
YINRC165	400718	7354277	308	-60	296	165	RC	Yin
YINRC166	400908	7354593	308	-58	340	123	RC	
YINRC167	400922	7354557	308	-58	340	159	RC	
YINRC168	401290	7354655	308	-59	l	135	RC	
YINRC169	401289	7354640	308	-59	359	183	RC	
YINRC170	400992	7351884	286	-59	213	Ш	RC	
YINRC171	400854	7351916	290	-60	211	75	RC	Y2
YINRC172	400875	7351948	289	-60	213	163	RC	
YINRC173	401012	7351921	287	-59	210	117	RC	
YINRC174	401678	7348786	296	-61	306	183	RC	
YINRC175	401711	7348763	297	-61	300	225	RC	
YINRC176	401456	7348485	297	-61	301	141	RC	
YINRC177	401493	7348471	297	-61	301	153	RC	
YINRC178	401558	7348651	297	-61	303	159	RC	
YINRC179	401587	7348628	298	-61	302	189	RC	
YINRC180	401497	7348572	298	-61	301	141	RC	
YINRC181	401532	7348554	298	-59	302	153	RC	
YINRC182	401051	7351989	284	-60	209	153	RC	
YINRC183	400972	7351851	287	-59	208	111	RC	
YINRC184	400895	7351984	288	-60	212	75	RC	
YINRC185	400832	7351878	289	-59	209	75	RC	
YINRC186	400740	7351922	289	-60	209	81	RC	
YINRC187	400760	7351959	288	-60	212	88	RC	
YINRC188	400780	7351996	288	-60	211	81	RC	Yin
YINRC189	400798	7352030	286	-59	213	87	RC	• • • • • • • • • • • • • • • • • • • •
YINRC190	400662	7351783	289	-60	216	81	RC	
YINRC191	400683	7351763	289	-59	208	81	RC	
YINRC192	400702	7351817	290	-59	210	81	RC	
YINRC192	400702	7351889	289	-60	211	75	RC	
YINRC193				-59				
	401036	7351963	286		205	132	RC	
YINRC195	401468	7348590	298	-59	301	135	RC RC	
YINRC196	401534	7348672	296	-60	299			
YINRC197	401602	7348737	296	-59	302	87	RC	
YINRC198	401657	7348797	296	-60	301	93	RC	
YINRC199	401743	7348964	294	-60	284	69	RC	
YINRC200	401773	7349738	294	-59	271	81	RC	
YINRC201	401510	7348681	296	-60	303	105	RC	
YINRC202	401476	7348711	295	-60	301	81	RC	
YINRC203	398591	7348987	294	-60	271	81	RC	
YINRC204	398627	7348990	294	-60	272	81	RC	
YINRC205	398671	7348987	294	-60	275	81	RC	
YINRC206	398709	7348989	294	-61	268	81	RC	
YINRC207	398752	7348990	295	-60	267	81	RC	Wildcat
YINRC208	398791	7348990	294	-61	267	81	RC	* * IIUCat
YINRC209	399062	7349143	296	-60	270	81	RC	
YINRC210	399105	7349146	296	-60	269	81	RC	
YINRC211	399458	7349225	297	-60	220	81	RC	_
YINRC212	399484	7349258	297	-60	230	81	RC	
YINRC213	400480	7347487	290	-60	228	165	RC	
	400504	7347515	290	-60	223	189	RC	Yin
YINRC214	400304	/34/313	2/0	-00	443	107	I/C	1 1111

: Drill Collar D Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospec
YINRC216	400239	7347768	294	-60	225	183	RC	
YINRC217	399965	7348006	293	-60	263	105	RC	
YINRC218	400006	7348014	293	-60	262	171	RC	
YINRC219	400253	7348193	294	-59	344	159	RC	
YINRC220	398168	7343605	291	-58	341	99	RC	
YINRC221	400260	7348151	294	-60	348	166	RC	
YINRC222	398176	7343575	291	-59	342	141	RC	
			292		15			
YINRC223	400632	7348230		-60	1	81	RC	
YINRC224	398187	7343539	291	-60	344	171	RC	
YINRC225	400624	7348186	292	-59	13	81	RC	
YINRC226	398339	7343678	291	-58	338	81	RC	
YINRC227	400620	7348149	292	-59	10	88	RC	
YINRC228	398353	7343645	291	-59	338	105	RC	
YINRC229	400614	7348110	292	-60	11	153	RC	
YINRC230	398366	7343618	291	-57	344	135	RC	
YINRC231	400242	7348226	294	-60	351	153	RC	Yin
YINRC232	398705	7343845	290	-58	329	87	RC	
YINRC233	400235	7348265	294	-59	350	123	RC	
YINRC234	398719	7343815	290	-58	330	117	RC	
YINRC235	399929	7348001	293	-60	264	147	RC	
YINRC236	398743	7343782	290	-58	328	153	RC	
YINRC237	399890	7348001	293	-60	268	123	RC	
YINRC238	398967	7344147	289	-58	314	87	RC	
YINRC239	400183	7347713	294	-60	228	129	RC	
YINRC240	398993	7344123	289	-58	316	81	RC	
YINRC241	400155	7347689	293	-60	225	129	RC	
YINRC242	399024	7344096	289	-58	314	153	RC	
YINRC243	400450	7347462	290	-60	221	153	RC	
YINRC244	399219	7344452	288	-58	331	111	RC	
YINRC245	400420	7347429	290	-60	228	123	RC	
YINRC246	399234	7344422	288	-58	332	147	RC	V2
YINRC247	400856	7351921	288	-60	34	63	RC	Y2
YINRC248	399256	7344387	288	-59	331	183	RC	Yin
YINRC249	418751	7343901	316	-60	44	81	RC	C7
YINRC250	399572	7344648	289	-58	333	93	RC	Yin
YINRC251	418724	7343860	315	-60	45	81	RC	C7
YINRC252	399583	7344623	289	-58	335	129	RC	Yin
YINRC253	418700	7343837	316	-60	50	99	RC	C7
YINRC254	399606	7344588	288	-58	334	171	RC	
YINRC255	400803	7345637	288	-59	294	183	RC	
YINRC256	399915	734485 I	289	-59	332	165	RC	
YINRC257	400834	7345626	288	-58	292	129	RC	
YINRC258	399931	7344818	289	-57	332	147	RC	
YINRC259	400860	7345615	288	-58	293	129	RC	
YINRC260	399950	7344786	289	-58	336	189	RC	
	400932	7346024	290	-59	275	111	RC	
YINRC261	+	7345074	290	-58	320	156	RC	Yin
YINRC261 YINRC262	400250	7313071	270	-58	277	159	RC	
YINRC262	400250	7346028	290			13/	111	
YINRC262 YINRC263	400970	7346028 7345047	290		1			
YINRC262 YINRC263 YINRC264	400970 400271	7345047	290	-58	321	183	RC	
YINRC262 YINRC263 YINRC264 YINRC265	400970 400271 400543	7345047 7345338	290 290	-58 -58	321 318	183 153	RC RC	
YINRC262 YINRC263 YINRC264 YINRC265 YINRC266	400970 400271 400543 400573	7345047 7345338 7345306	290 290 290	-58 -58 -57	321 318 320	183 153 171	RC RC RC	
YINRC262 YINRC263 YINRC264 YINRC265	400970 400271 400543	7345047 7345338	290 290	-58 -58	321 318	183 153	RC RC	

Table 12: Drill Collar Data (GDA94 MGA750)

ble 12: Drill Collar D	e I2: Drill Collar Data (GDA94 MGAz50)							
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINRC270	400959	7346441	290	-58	260	123	RC	
YINRC271	400996	7346446	290	-59	260	165	RC	
YINRC272	400843	7346688	289	-57	250	129	RC	
YINRC273	400882	7346701	289	-58	251	147	RC	
YINRC274	400912	7346711	290	-58	248	183	RC	
YINRC275	400892	7346024	300	-57	273	111	RC	
YINRC276	400445	7345425	289	-58	317	87	RC	
YINRC277	400485	7345400	289	-59	317	93	RC	
YINRC278	400440	7354908	308	-59	239	99	RC	
			289	-58	311	117	RC	
YINRC279	400192	7345137						
YINRC280	400471	7354934	309	-61	233	141	RC	Yin
YINRC281	400225	7345106	289	-57	316	153	RC	
YINRC282	400501	7354964	308	-60	234	183	RC	
YINRC283	399554	7344675	289	-58	332	63	RC	
YINRC284	400536	7354739	308	-60	234	81	RC	
YINRC285	399198	7344487	288	-58	332	51	RC	
YINRC286	400569	7354771	308	-60	234	81	RC	
YINRC287	400509	7345370	289	-57	313	129	RC	
YINRC288	402368	7352742	298	-60	221	81	RC	
YINRC289	401649	7350179	299	-59	316	45	RC	
YINRC290	402400	7352769	298	-60	228	129	RC	
YINRC291	401675	7350175	299	-58	272	69	RC	
YINRC292	401061	7351807	284	-59	208	81	RC	Y2
YINRC293	401716	7350174	299	-58	271	99	RC	Yin
YINRC294	401083	7351844	285	-60	212	120	RC	Y2
YINRC295	401687	7350225	299	-60	270	45	RC	Yin
YINRC296	401099	7351879	284	-60	207	144	RC	Y2
YINRC297	401717	7350227	300	-58	272	75	RC	Yin
							1	
YINRC298	401131	7351908	284	-60	211	153	RC	Y2
YINRC299	401756	7350226	299	-58	269	87	RC	Yin
YINRC300	401162	7351991	285	-60	212	147	RC	Y2
YINRC301	401716	7350274	300	-59	270	45	RC	Yin
YINRC302	401180	7352026	285	-58	211	135	RC	Y2
YINRC303	401755	7350275	300	-58	272	75	RC	Yin
YINRC304	401203	7352064	285	-60	209	153	RC	Y2
YINRC305	401794	7350276	299	-59	271	111	RC	Yin
YINRC306	400918	7352023	288	-59	211	99	RC	Y2
YINRC307	401719	7350349	300	-59	270	33	RC	Yin
YINRC308	400935	7352053	288	-59	210	99	RC	Y2
YINRC309	401758	7350350	300	-58	270	63	RC	Yin
YINRC310	400958	7352092	286	-59	211	81	RC	Y2
YINRC311	401797	7350349	299	-58	270	105	RC	Yin
YINRC312	400979	7352122	286	-60	209	81	RC	Y2
YINRC313	401729	7350449	300	-58	272	39	RC	Yin
YINRC314	400814	7352060	286	-60	210	99	RC	Y2
YINRC315	401759	7350449	300	-58	272	63	RC	Yin
YINRC316	400833	7352095	287	-60	213	111	RC	Y2
YINRC317	401798	7350449	299	-59	270	99	RC	Yin
YINRC318	400847	7352118	286	-60	210	153	RC	Y2
							1	
YINRC319	401728	7350548	302	-58	272	45	RC	Yin
YINRC320	401139	7351762	283	-59	208	81	RC	Y2
YINRC321	401770	7350549	302	-58	270	93	RC	Yin
YINRC322	401157	7351801	284	-60	207	129	RC	Y2
YINRC323	401807	7350550	301	-59	272	135	RC	Yin

Table 12: Drill Collar Data (GDA94 MGAz50)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prosp
YINRC324	401174	7351844	284	-59	204	141	RC	Y2
YINRC325	401851	7350551	300	-59	272	177	RC	Yin
YINRC326	401197	7351876	284	-60	207	153	RC	Y2
YINRC327	401840	7350450	299	-58	272	147	RC	Yin
YINRC328	401219	7351916	284	-61	214	195	RC	Y2
YINRC329	401864	7350501	299	-65	269	165	RC	Yin
YINRC330	401239	7351951	283	-60	209	81	RC	Y2
YINRC331	401738	7350650	302	-59	274	51	RC	Yin
YINRC332	401260	7351986	284	-60	210	93	RC	Y2
YINRC333	401776	7350650	302	-57	270	81	RC	Yin
YINRC334	401278	7352021	284	-60	208	102	RC	Y2
YINRC335	401880	7350602	300	-65	276	201	RC	Yin
YINRC336	401139	7351955	285	-59	216	192	RC	Y2
YINRC337	401816	7350650	301	-59	270	153	RC	
YINRC338	401333	7352642	300	-59	213	72	RC	
YINRC339	401751	7350750	303	-58	270	33	RC	
YINRC340	401354	7352677	300	-60	212	150	RC	
YINRC341	401788	7350751	303	-58	274	75	RC	
YINRC342	401184	7352744	298	-60	210	96	RC	
YINRC343	401829	7350751	302	-58	274	129	RC	
YINRC344	401202	7352773	299	-59	213	114	RC	
YINRC345	401868	7350751	302	-59	273	183	RC	
YINRC346	400344	7353918	306	-60	316	84	RC	
YINRC347	401858	7350649	301	-59	270	171	RC	
YINRC348	400371	7353894	307	-60	317	153	RC	
YINRC349	401902	7350702	301	-67	273	225	RC	
YINRC350	400408	7354026	307	-59	314	102	RC	
YINRC351	401764	7350853	304	-58	272	51	RC	
YINRC352	400473	7354074	307	-59	319	84	RC	
YINRC353	401793	7350851	304	-58	273	87	RC	Yin
YINRC354	400506	7354046	307	-60	321	150	RC	
YINRC355	401864	7351176	300	-59	272	45	RC	
YINRC356	400778	7354521	316	-60	319	90	RC	
YINRC357	401900	7351177	301	-58	270	81	RC	
YINRC358	400806	7354491	384	-59	317	96	RC	
YINRC359	401924	7351277	301	-59	270	33	RC	
YINRC360	401190	7354683	318	-60	3	84	RC	
YINRC361	401963	7351003	301	-59	273	81	RC	
YINRC362	401191	7354644	305	-60	2	153	RC	
YINRC363	402003	7351011	301	-58	273	123	RC	
YINRC364	401290	7354687	302	-61	2	87	RC	
YINRC365	401755	7350175	298	-59	271	120	RC	
YINRC366	401401	7354655	309	-60	357	87	RC	
YINRC367	401798	7350175	298	-58	271	153	RC	
YINRC368	401399	7354614	312	-60	4	128	RC	
YINRC369	401836	7354014	297	-58	272	183	RC	
YINRC370	401073	7352024	284	-60	211	177	RC	Y2
YINRC371	401793	7350227	299	-59	269	123	RC	Yin
YINRC371	401090	7352052	277	-60	211	195	RC	Y2
YINRC373	401030	7350228	298	-59	274	159	RC	Yin
YINRC373	401113	7352091	285	-60	211	117	RC	Y2
YINRC374 YINRC375	401113	7350278	298	-59	272	219	RC	Yin
YINRC376	400809	7351937	289	-60	213	39	RC	Y2
YINRC376	401837	7350353	298	-58	273	147	RC	Yin

Table 12: Drill Collar Data (GDA94 MGA750)

Hole ID	ble 12: Drill Collar D	ata (GDA94	MGAz50)						
YINNEC390	Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINKC380	YINRC378	400832	7351971	284	-59	208	81	RC	Y2
YINRC381	YINRC379	401967	7351375	300	-58	273	57	RC	Yin
YINRC381	YINRC380	400853	7352009	285	-59	209	51	RC	Y2
YINRC382		401997		300	-59	272	69	RC	Yin
YINRC383					-59		81		
YINRC384									
YINRC385								1	
YINRC386		•							
YINRC387		+							
YINRC388 400936 7351966 286 -59 211 141 RC Y2 YINRC389 402089 7351477 299 -59 269 129 RC Yin YINRC390 400796 7352003 287 -60 210 111 RC Y2 YINRC391 401786 7350051 297 -58 275 105 RC Yin YINRC392 400979 7350055 296 -59 271 129 RC Yin YINRC393 401825 7350055 296 -59 271 129 RC Yin YINRC395 401866 7350053 296 -59 272 171 RC Yin YINRC395 401866 7350053 296 -59 210 111 RC Yin YINRC397 40170 7349969 295 -59 2269 99 RC Yin YINRC399 40173 286 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
YINRC389									
YINRC390 400956 7352003 287 -60 210 1111 RC Y2 YINRC391 401786 7350051 297 -58 275 105 RC Yin YINRC392 400979 7350043 284 -60 216 153 RC Y2 YINRC393 401825 7350055 296 -59 271 129 RC Yin YINRC395 401866 7350053 296 -59 272 171 RC Yin YINRC395 401866 7350053 296 -59 210 117 RC Yin YINRC396 400978 7351944 286 -59 210 117 RC Y2 YINRC397 401780 7349299 295 -59 269 99 RC Yin YINRC398 400993 7351973 286 -59 212 117 RC Y2 YINRC400 401843 734929		•							
YINRC391 401786 7350051 297 -58 275 105 RC Yin YINRC392 400979 7352043 284 -60 216 153 RC Y2 YINRC393 401825 7350055 296 -59 271 129 RC Yin YINRC394 400955 7351908 285 -60 211 99 RC Yin YINRC395 401866 7350053 296 -59 272 171 RC Yin YINRC396 400978 7351944 286 -59 210 117 RC Yin YINRC397 401780 7349969 295 -59 269 99 RC Yin YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401884 7349291 284 -59 275 111 RC Y2 YINRC401 401884 7349291									
YINRC392 400979 7352043 284 -60 216 153 RC Y2 YINRC393 401825 7350055 296 -59 271 129 RC Yin YINRC394 400955 7351908 285 -60 211 99 RC Y2 YINRC395 401866 7350053 296 -59 272 171 RC Y2 YINRC396 400780 7349969 295 -59 269 99 RC Yin YINRC397 401843 7349993 286 -59 212 1117 RC Y2 YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401840 7349291 284 -59 275 111 RC Y2 YINRC401 401820 7349737 284 -57 271 57 RC YINRC403 401884 7349217 286 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>								1	
YINRC393 401825 7350055 296 -59 271 129 RC Yin YINRC394 400955 7351908 285 -60 211 99 RC Y2 YINRC395 401866 7350033 296 -59 272 171 RC Yin YINRC396 400978 7351944 286 -59 210 117 RC Yin YINRC397 401780 7349969 295 -59 212 117 RC Y2 YINRC398 400993 7351973 286 -59 212 117 RC Y2 YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC401 401884 7349291 284 -59 270 243 RC Yin YINRC402 401820 7349971 284 -59 270 243 RC YINRC403 401888 7349371 286									
YINRC394 400955 7351908 285 -60 211 99 RC Y2 YINRC395 401866 7350053 296 -59 270 117 RC Yin YINRC396 400978 7351944 286 -59 210 117 RC Yin YINRC397 401780 7349969 295 -59 269 99 RC Yin YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 273 57 RC Yin YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7349371 286 -59 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
YINRC395 401866 7350053 296 -59 272 171 RC Yin YINRC396 400978 7351944 286 -59 210 117 RC Y2 YINRC397 401780 7349969 295 -59 269 99 RC Yin YINRC398 400993 7351973 286 -59 212 117 RC Y2 YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC Yin YINRC402 401820 7349967 300 -59 270 243 RC Yin YINRC402 401820 7349371 284 -57 271 57 RC YINRC403 401888 7349371 286 -59 270 93 RC YINRC405 401930 7349211 281 -58<									
YINRC396 400978 7351944 286 -59 210 117 RC Y2 YINRC397 401780 7349969 295 -59 269 99 RC Yin YINRC398 400993 7351973 286 -59 212 117 RC Yin YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC Y2 YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401880 7349212 226 -60 306 81 RC YINRC404 401530 7348703 304 -60 303 117 RC YINRC405 401930 7349712 281 -58 275<									
YINRC397 401780 7349969 295 -59 269 99 RC Yin YINRC398 400993 7351973 286 -59 212 117 RC Y2 YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401815 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC Y2 YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 286 -57 271 57 RC YINRC404 401530 7349271 226 -60 306 81 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401590 7348677 300 -60 307 147 <td>YINRC395</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>171</td> <td></td> <td></td>	YINRC395						171		
YINRC398 400993 7351973 286 -59 212 117 RC Y2 YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7348771 286 -59 270 93 RC YINRC405 401930 7348773 304 -60 303 117 RC YINRC406 401807 7349717 286 -59 270 93 RC YINRC407 401807 734873 304 -60 303 117 RC	YINRC396		7351944	286	-59		117	RC	Y2
YINRC399 401843 7349293 284 -59 273 57 RC Yin YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401930 7349371 286 -59 270 93 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC409 401807 7348719 300 -60 307 147 RC YINRC410	YINRC397	401780		295	-59	269	99	RC	Yin
YINRC400 401015 7352020 298 -60 207 147 RC Y2 YINRC401 401884 7349291 284 -59 275 111 RC YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7348727 226 -60 306 81 RC YINRC405 401930 7348731 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401560 7348677 300 -60 307 147 RC YINRC410 401630 7348575 253 -60 305 69 RC YINRC411 40	YINRC398	400993	7351973	286	-59	212	117	RC	Y2
YINRC401 401884 7349291 284 -59 275 111 RC YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7348772 226 -60 306 81 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348703 304 -60 307 147 RC YINRC407 401807 7349212 281 -58 275 105 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 <	YINRC399	401843	7349293	284	-59	273	57	RC	Yin
YINRC402 401820 7349967 300 -59 270 243 RC YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7348727 226 -60 306 81 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348769 237 -60 305 69 RC YINRC411 401625 7348769 237 -60 305 69 RC YINRC412 401625 <td< td=""><td>YINRC400</td><td>401015</td><td>7352020</td><td>298</td><td>-60</td><td>207</td><td>147</td><td>RC</td><td>Y2</td></td<>	YINRC400	401015	7352020	298	-60	207	147	RC	Y2
YINRC403 401888 7349371 284 -57 271 57 RC YINRC404 401530 7348727 226 -60 306 81 RC YINRC405 401930 7349371 226 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC412 401625 7348747 305 -60 305 117 RC YINRC414 401657 <td< td=""><td>YINRC401</td><td>401884</td><td>7349291</td><td>284</td><td>-59</td><td>275</td><td>111</td><td>RC</td><td></td></td<>	YINRC401	401884	7349291	284	-59	275	111	RC	
YINRC404 401530 7348727 226 -60 306 81 RC YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC413 401657 7348747 305 -60 305 117 RC YINRC416 401772 <	YINRC402	401820	7349967	300	-59	270	243	RC	
YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348747 305 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC413 401625 7348747 305 -60 305 117 RC YINRC415 401772 <	YINRC403	401888	7349371	284	-57	271	57	RC	
YINRC405 401930 7349371 286 -59 270 93 RC YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348747 305 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC413 401625 7348747 305 -60 305 117 RC YINRC415 401772 <	YINRC404	401530	7348727	226	-60	306	81	RC	
YINRC406 401560 7348703 304 -60 303 117 RC YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC413 401657 7348747 305 -60 305 117 RC YINRC414 401657 7348719 300 -60 305 225 RC YINRC416 401815				286					
YINRC407 401807 7349212 281 -58 275 51 RC YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401815		•		304		303			
YINRC408 401596 7348677 300 -60 307 147 RC YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348799 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC418 401777									
YINRC409 401846 7349211 282 -58 275 105 RC YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7348899 301 -59 282 105 RC YINRC420 401818									
YINRC410 401630 7348655 253 -60 305 195 RC YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401722 7348799 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818		•							
YINRC411 401786 7349107 280 -58 281 81 RC YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401770									
YINRC412 401625 7348769 237 -60 305 69 RC YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 87 RC YINRC421 401777 7348899 301 -59 282 105 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701									
YINRC413 401824 7349104 283 -58 277 135 RC YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348899 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701									
YINRC414 401657 7348747 305 -60 305 117 RC YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348891 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505						t			
YINRC415 401772 7348999 310 -58 279 111 RC YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7348995 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348691 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738									
YINRC416 401692 7348719 300 -60 305 225 RC YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348603 300 -60 305 240 RC YINRC426 401539		•							V:
YINRC417 401815 7348991 307 -58 283 147 RC YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348624 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348603 300 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485									1111
YINRC418 401777 7349895 305 -60 270 87 RC YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348603 300 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348506 298 -60 307 165 RC YINRC429 401530									
YINRC419 401742 7348899 301 -59 282 105 RC YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 305 31 RC YINRC430 400937									
YINRC420 401818 7349890 300 -60 270 108 RC YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937									
YINRC421 401777 7348890 303 -60 285 99 RC YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC									
YINRC422 401470 7348651 308 -60 270 90 RC YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC									
YINRC423 401701 7348824 300 -59 303 153 RC YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC									
YINRC424 401505 7348626 306 -60 305 132 RC YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC									
YINRC425 401738 7348800 306 -60 303 225 RC YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC									
YINRC426 401539 7348603 300 -60 305 240 RC YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC							132	RC	
YINRC427 401485 7348533 298 -60 310 147 RC YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC	YINRC425		7348800	306	-60				
YINRC428 401522 7348506 298 -60 307 165 RC YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC	YINRC426	401539	7348603	300	-60	305	240	RC	
YINRC429 401530 7348553 298 -60 305 31 RC YINRC430 400937 7351868 318 -60 214 75 RC	YINRC427	401485	7348533	298	-60	310	147	RC	
YINRC430 400937 7351868 318 -60 214 75 RC Y2	YINRC428	401522	7348506	298	-60	307	165	RC	
YINRC430 400937 7351868 318 -60 214 75 RC Y2	YINRC429	401530		298	-60	305	31	RC	
									V2
									12

Table 12: Drill Colla

YINRC432	ble I2: Drill Collar I	Data (GDA94	MGAz50)						
YINRC433	Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
YINRC434	YINRC432	401041	7351868	292	-60	214	99	RC	
YINRC435	YINRC433	401064	7351909	303	-60	215	135	RC	
YINRC436	YINRC434	401081	7351939	300	-58	209	159	RC	
YINRC427	YINRC435	401098	7351982	309	-59	213	153	RC	
YINRC428	YINRC436	401118	7352017	309	-59	214	193	RC	
YINRC437	YINRC427	401484.9	7348533	298	-60	310	147	RC	
YINRC418	YINRC428	401521.7	7348506	298	-60	307	165	RC	
YINRC419	YINRC437	401140	7352050	311	-59	212	183	RC	
YINRC440	YINRC438	401098	7351786	300	-59	208	57	RC	
YINRC441	YINRC439	401122	7351825	305	-59	212	99	RC	
YINRC437	YINRC440	401144	7351864	304	-61	207	123	RC	Y2
YINRC438 401098 7351786 300 -59 208 57 RC YINRC439 401122 7351825 305 -59 212 99 RC YINRC440 401144 7351825 304 -61 207 123 RC YINRC441 401163 7351906 304 -60 207 165 RC YINRC442 401179 7351937 296 -60 212 87 RC YINRC443 401217 7352008 296 -61 203 99 RC YINRC444 401217 7352008 296 -61 203 99 RC YINRC445 401237 7352041 296 -61 207 99 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -57 278 26.7 DD YINDD003 401738 <td< td=""><td>YINRC441</td><td>401163</td><td>7351906</td><td>304</td><td>-60</td><td>207</td><td>165</td><td>RC</td><td></td></td<>	YINRC441	401163	7351906	304	-60	207	165	RC	
YINRC439 401122 7351825 305 -59 212 99 RC YINRC440 401144 7351864 304 -61 207 165 RC YINRC441 401179 7351937 296 -60 205 81 RC YINRC442 401179 7351937 296 -60 205 81 RC YINRC443 401199 7351937 296 -60 205 81 RC YINRC444 401217 7352008 296 -61 203 99 RC YINRC445 401237 7352041 296 -61 207 99 RC YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 278 267 45 DD YINDD003 401655 7350203 299 -57 278 267 DD YINDD004 401	YINRC437	401140	7352050	311	-59	212	183	RC	
YINRC440 401144 7351864 304 -61 207 123 RC YINRC441 401163 7351906 304 -60 207 165 RC YINRC442 401198 7351974 296 -60 205 81 RC YINRC443 401198 7351974 296 -60 212 87 RC YINRC444 401217 7352008 296 -61 203 99 RC YINRC445 401237 7352041 296 -61 207 99 RC YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD003 401615 7350168 298 -57 278 26.7 DD YINDD003 401933 7351244 299 -57 278 26.7 DD YINDD006 401814	YINRC438	401098	7351786	300	-59	208	57	RC	
YINRC441 401163 7351906 304 -60 207 165 RC YINRC442 401179 7351937 296 -60 205 81 RC YINRC443 401198 7351974 296 -60 212 87 RC YINRC444 401237 7352008 296 -61 203 99 RC YINRC445 401237 7352081 296 -61 207 99 RC YINRC446 401578 7348882 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -57 278 26.7 DD YINDD003 401993 7351424 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 <	YINRC439	401122	7351825	305	-59	212	99	RC	
YINRC441 401163 7351906 304 -60 207 165 RC YINRC442 401179 7351937 296 -60 205 81 RC YINRC443 401198 7351974 296 -60 212 87 RC YINRC444 401237 7352008 296 -61 203 99 RC YINRC445 401237 7352081 296 -61 207 99 RC YINRC446 401578 7348882 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -57 278 26.7 DD YINDD003 401993 7351424 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 <	YINRC440	401144	7351864	304	-61	207	123	RC	
YINRC443 401198 7351974 296 -60 212 87 RC YINRC444 401217 7352008 296 -61 203 99 RC YINRC445 401237 73520041 296 -61 207 99 RC YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD003 401655 7350168 298 -57 329 36 DD YINDD003 401655 7350203 299 -57 278 26.7 DD YINDD003 401738 7350300 299 -57 273 46.7 DD YINDD004 401738 7350300 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 213.7 DD YINDD007 402074	YINRC441	401163		304	-60	207	165	RC	
YINRC444 401217 7352008 296 -61 203 99 RC YINRC445 401237 7352041 296 -61 207 99 RC YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350168 298 -57 329 36 DD YINDD003 401758 7350203 299 -58 267 45 DD YINDD003 401765 7350800 304 -57 273 46.7 DD YINDD006 401765 7350800 304 -57 274 21 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351526 300 -59 273 93 DD YINDD010 401943 <	YINRC442	401179	7351937	296	-60	205	81	RC	
YINRC445 401237 7352041 296 -61 207 99 RC YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -58 267 45 DD YINDD003 401993 7351424 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 278 26.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351526 300 -59 273 93 DD YINDD010 401943	YINRC443	401198	7351974	296	-60	212	87	RC	
YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -58 267 45 DD YINDD003 401933 7351424 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351811 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD010 401933 7351526 300 -59 271 75 DD YINDD011 401935	YINRC444	401217	7352008	296	-61	203	99	RC	
YINRC446 401578 7348582 304 -59 314 249 RC YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -58 267 45 DD YINDD003 401933 7351424 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 21 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD010 401933 7351526 300 -59 271 75 DD YINDD011 401935	YINRC445	401237	7352041	296	-61	207	99	RC	
YINDD001 401615 7350168 298 -57 329 36 DD YINDD002 401655 7350203 299 -58 267 45 DD YINDD003 401993 7351242 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 271 75 DD YINDD011 401933 7351222 300 -59 271 75 DD YINDD013 401786						314	249	RC	
YINDD002 401655 7350203 299 -58 267 45 DD YINDD003 401993 7351424 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD010 401943 7351526 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401966	YINDD001	401615	7350168	298	-57	329	36	DD	
YINDD003 401993 7351424 299 -57 278 26.7 DD YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD010 401943 7351324 300 -59 273 93 DD YINDD011 401933 7351224 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401733	YINDD002			299			45	DD	
YINDD004 401738 7350302 299 -57 273 46.7 DD YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD009 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 735122 300 -59 271 75 DD YINDD013 401966 7351057 300 -60 314 74.4 DD YINDD014 401703 7350503 301 -58 272 110 DD YINDD015 401800	YINDD003							DD	
YINDD005 401765 7350800 304 -57 274 21 DD YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD009 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 271 75 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800	YINDD004							DD	
YINDD006 401814 7350200 298 -58 274 137.4 DD YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD009 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350013 300 -57 115 65.9 DD YINDD015 401800 7350503 301 -58 273 81 DD YINDD014 401857								DD	
YINDD007 402074 7351411 298 -57 273 120.0 DD YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD019 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401778 7350503 301 -58 273 81 DD YINDD018 401857								DD	
YINDD008 402104 7351527 300 -58 272 124.7 DD YINDD009 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD018 401857 7350152 296 -58 271 180.6 DD YINDD018 40187								DD	
YINDD009 402065 7351526 300 -59 273 93 DD YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350508 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD016 401857 7350503 301 -58 271 180.6 DD YINDD018 401878 7350152 296 -58 271 180.6 DD YINDD019 401817								DD	
YINDD010 401943 7351324 300 -59 275 30 DD YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350102 299 -57 269 96.3 DD YINDD021 401817 7350100 297 -58 270 65.9 DD YINDD021 401693								DD	
YINDD011 401935 7351222 300 -59 271 75 DD YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 73501052 296 -58 271 180.6 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693								DD	
YINDD012 401907 7351124 300 -59 271 105 DD YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350152 296 -58 271 180.6 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD025 401631 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DD</td> <td></td>								DD	
YINDD013 401786 7351057 300 -60 314 74.4 DD YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350247 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 <td></td> <td></td> <td></td> <td>300</td> <td></td> <td>271</td> <td></td> <td>DD</td> <td></td>				300		271		DD	
YINDD014 401703 7350248 300 -57 115 65.9 DD YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350247 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7349253 298 -60 260 57 DD YINDD020 401896								DD	
YINDD015 401800 7350501 300 -58 272 110 DD YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350102 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD021 401693	YINDD014			300		115	65.9	DD	
YINDD016 401759 7350503 301 -58 273 81 DD YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350127 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693	YINDD015	401800		300	-58	272	110	DD	
YINDD017 401857 7350152 296 -58 271 180.6 DD YINDD018 401778 7350247 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD021 401693 7350101 295 -59 266 147 DD YINDD024 401589 <td></td> <td></td> <td></td> <td>301</td> <td></td> <td></td> <td></td> <td>DD</td> <td>Yın</td>				301				DD	Yın
YINDD018 401778 7350247 299 -57 269 96.3 DD YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD025 401631 <td></td> <td></td> <td></td> <td>296</td> <td></td> <td>271</td> <td>180.6</td> <td>DD</td> <td></td>				296		271	180.6	DD	
YINDD019 401817 7350100 297 -58 270 65.9 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 <td></td> <td></td> <td></td> <td>299</td> <td></td> <td></td> <td></td> <td>DD</td> <td></td>				299				DD	
YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 <td></td> <td></td> <td></td> <td>297</td> <td></td> <td></td> <td></td> <td>DD</td> <td></td>				297				DD	
YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD				295				DD	
YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD								DD	
YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD	YINDD024			298		301		DD	
YINDD027 401829 7349253 298 -60 260 57 DD YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD						1		DD	
YINDD028 401865 7349336 307 -60 271 60.6 DD YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD						1		DD	
YINDD020 401896 7350101 295 -59 266 147 DD YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD						1		DD	
YINDD021 401693 7350197 299 -59 90 150.6 DD YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD									
YINDD024 401589 7348627 298 -57 301 171.5 DD YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD									
YINDD025 401631 7348718 297 -59 304 99.5 DD YINDD027 401829 7349253 298 -60 260 57 DD									
YINDD027 401829 7349253 298 -60 260 57 DD									
						1			
	YINDD028	401865	7349336	307	-60	271	60.6	DD	

Table 12: Drill Collar Data (GDA94 MGA750)

Hole ID	Facting	MGAz50) Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
	Easting							Prospect
Y3RC001	410603	7344281	311	-59	214	105	RC	
Y3RC002	409300	7346158	302	-58	99	63	RC	
Y3RC003	409300	7346182	303	-58	94	105	RC	
Y3RC004	409201	7346168	302	-57	97	177	RC	
Y3RC005	409249	7346171	302	-58	93	105	RC	
Y3RC006	409345	7346180	302	-58	270	75	RC	
Y3RC007	409603	7346177	305	-58	97	105	RC	
Y3RC008	409549	7346175	305	-58	92	105	RC	
Y3RC009	409355	7346998	304	-58	92	105	RC	
Y3RC010	409302	7346994	304	-58	93	183	RC	
Y3RC011	409253	7347001	304	-58	94	105	RC	
Y3RC012	409203	7346999	304	-57	91	105	RC	
Y3RC013	409152	7346998	303	-57	94	105	RC	
Y3RC014	409406	7347244	303	-59	91	105	RC	
Y3RC015	409353	7347249	303	-59	92	105	RC	
Y3RC016	409300	7347252	303	-58	94	105	RC	
Y3RC017	409379	7346796	306	-58	91	104	RC	
Y3RC018	409327	7346793	305	-57	91	105	RC	
Y3RC019	409275	7346800	305	-58	100	171	RC	
Y3RC020	409229	7346797	304	-58	92	105	RC	Sabre
Y3RC021	409175	7346800	304	-58	94	105	RC	
			305	-58	92	105	RC	
Y3RC022	409351	7346495		1	1			
Y3RC023	409298	7346495	305	-58	89	105	RC	
Y3RC024	409252	7346501	304	-54	94	165	RC	
Y3RC025	409206	7346502	304	-57	89	105	RC	
Y3RC026	409659	7346398	306	-58	85	105	RC	
Y3RC027	409606	7346402	306	-58	90	105	RC	
Y3RC028	409425	7346401	305	-58	92	105	RC	
Y3RC029	409368	7346401	305	-57	92	183	RC	
Y3RC030	409507	7346178	304	-59	88	105	RC	
Y3RC031	409379	7346800	306	-58	272	105	RC	
Y3RC032	409199	7347003	304	-58	275	105	RC	
Y3RC033	409253	7347003	304	-58	271	105	RC	
Y3RC034	409674	7344859	307	-58	228	81	RC	
Y3RC035	409708	7344888	307	-59	227	93	RC	
Y3RC036	409739	7344918	307	-59	227	177	RC	
Y3RC037	410627	7344331	312	-58	208	111	RC	
Y3RC038	410566	7344678	312	-58	132	38	RC	
Y3RC039	410126	7344498	308	-59	228	123	RC	
Y3RC040	410155	7344531	308	-60	228	93	RC	
Y3RC041	410183	7344555	308	-60	226	165	RC	
Y3RC042	409991	7344642	307	-60	226	63	RC	
Y3RC043	410020	7344667	307	-60	228	123	RC	
Y3RC044	409836	7344773	308	-60	227	75	RC	Y8
Y3RC045	409869	7344803	307	-60	225	177	RC	
Y3RC046	409442	7345044	307	-60	216	135	RC	
Y3RC047	409468	7345073	307	-60	226	105	RC	
Y3RC048	409493		307	-59	227	183	RC	
		7345101						
Y3RC049	409304	7345996	301	-60	270	81	RC	
Y3RC050	409346	7345995	302	-60	274	87	RC	
Y3RC051	409507	7347458	303	-60	273	81	RC	Sabre
Y3RC052	409543	7347460	303	-60	275	123	RC	
Y3RC053	409587	7347460	303	-61	280	153	RC	
Y3RC054	409363	7346605	309	-71	274	102	RC	

ABN 40 119 031 864

Table 12: Drill Collar Data (GDA94 MGAz50)

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
Y3RC055	409362	7346606	310	-52	274	60	RC	
Y3RC056	409402	7346607	310	-60	274	153	RC	
Y3RC057	409363	7346708	309	-71	270	99	RC	
Y3RC058	409365	7346706	309	-5 I	270	57	RC	
Y3RC059	409400	7346708	309	-60	272	159	RC	
Y3RC060	409391	7346904	308	-71	271	99	RC	
Y3RC061	409389	7346903	308	-50	268	63	RC	Sabre
Y3RC062	409421	7346906	306	-60	270	153	RC	Sabre
Y3RC063	409413	7347082	308	-71	271	93	RC	
Y3RC064	409412	7347082	308	-5 I	272	51	RC	
Y3RC065	409454	7347080	307	-60	269	153	RC	
Y3RC066	409415	7347153	309	-66	271	135	RC	
Y3RC067	409414	7347153	308	-51	272	81	RC	
Y3RC068	409454	7347154	308	-60	270	201	RC	

JORC Code, 2012 Edition – Table I report template Section I Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard	Reverse Circulation (RC) and Diamond (DD) drilling was undertaken to produce samples for assaying.
	measurement tools appropriate to the minerals under	Laboratory Analysis
	 investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	Two sampling techniques were utilised for the RC program, Im metre splits directly from the rig sampling system for each metre and 3m composite sampling from spoil piles. Samples submitted to the laboratory were determined by the site geologist. Im Splits
	Aspects of the determination of mineralisation that are Material to the Public Report.	From every metre drilled a 2-3kg sample (split) was sub- sampled into a calico bag via a Metzke cone splitter from each metre of drilling.
	 In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling 	3m Composites
	was used to obtain I m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling	All remaining spoil from the sampling system was collected in buckets from the sampling system and neatly deposited in rows adjacent to the rig. An aluminium scoop was used to then sub-sample each spoil pile to create a 2-3kg 3m composite sample in a calico bag.
	problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	A pXRF is used on site to determine mineralised samples. Mineralised intervals have the 1m split collected, while unmineralised samples have 3m composites collected.
		All samples are submitted to ALS Laboratories in Perth for determination of Rare Earth Oxides by Lithium Borate Fusion XRF (ALS Method ME-XRF30).
		All Im samples are also submitted for 48 multi-elements via 4 acid digestion with MS/ICP finish (ALS Code ME-MS61) to assist with lithological interpretation.
		Core is orientated for structural and geotechnical logging where possible. In orientated core, half core is submitted to the lab for analysis in intervals ranging from 20cm to 1m depending on the geological context. If core is orientated, then the half core is cut so as to preserve the orientation line with the same side of the core submitted down the hole.
		QAQC samples consisting of duplicates, blanks and CRM's (OREAS Standards) will be inserted through the program at a rate of 1:50 samples. Duplicate samples are submitted as quarter core.
		All samples are submitted to ALS Laboratories in Perth for determination of Rare Earth Oxides by Lithium Borate Fusion XRF (ALS Method MEXRF30). Select samples are also

Criteria	JORC Code explanation	Commentary
		submitted for 48 multielements via 4 acid digestion with MS/ICP finish (ALS Code ME-MS61) to assist with lithological interpretation.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer,	RC Drilling
	rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Ausdrill undertook the program utilising a Drill Rigs Australia truck mounted Schramm T685WS drill rig with additional air from an auxiliary compressor and booster. Bit size was 53/4".
		Diamond Drilling
		Diamond drilling was undertaken by Hagstrom Drilling with a truck-mounted low impact diamond drill rig. Drilling is either HQ to end of hole or initially HQ and dropping to NQ once the hole is cased off for deeper drill holes.
		Core is orientated using a Reflex Sprint gyro and True Core Orientation Tool.
Drill sample recovery	Method of recording and assessing core and chip sample	RC Drilling
	 recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Drilling was undertaken using a 'best practice' approach to achieve maximum sample recovery and quality through the mineralised zones.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Best practice sampling procedure included: suitable usage of dust suppression, suitable shroud, lifting off bottom between each metre, cleaning of sampling equipment, ensuring a dry sample and suitable supervision by the supervising geologist to ensure good sample quality.
		Diamond Drilling
		HQ and NQ drilling has been undertaken. All core recoveries are measured and recorded by the drill crew for each run and remeasured and checked by Dreadnought personnel.
		Core recovery to date has been very high.
		At this stage, no known bias occurs between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. 	RC Drilling RC chips were logged by a qualified geologist with sufficient experience in this geological terrane and relevant styles of mineralisation using an industry standard logging system which could eventually be utilised within a Mineral Resource Estimation.
	Core (or costean, channel, etc.) photography. The total length and percentage of the relevant	Lithology, mineralisation, alteration, veining, weathering and structure were all recorded digitally.
	intersections logged.	Chips were washed each metre and stored in chip trays for preservation and future reference.
		RC pulp material is also analysed on the rig by pXRF, scintillometer and magnetic susceptibility meter to assist with logging and the identification of mineralisation.
		Logging is qualitative, quantitative or semi-quantitative in nature.
		Diamond Drilling Diamond core is logged under supervision of a Senior Geologist with sufficient experience in this geological terrane and relevant styles of mineralisation using an industry standard logging system which could eventually be utilised within a Mineral Resource Estimation.
		Lithology, mineralisation, alteration, veining, weathering and structure are recorded digitally.
		DD Logging is qualitative, quantitative or semi-quantitative in nature.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or	RC Drilling
techniques and sample preparation	all core taken. If non-core, whether riffled, tube sampled, rotary split, etc.	From every metre drilled, a 2-3kg sample (split) was subsampled into a calico bag via a Metzke cone splitter.
	 and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	QAQC in the form of duplicates and CRM's (OREAS Standards) were inserted through the ore zones at a rate of 1:50 samples. Additionally, within mineralised zones, a

Criteria	JORC Code explanation	Commentary
Of Iteria.	Quality control procedures adopted for all sub-sampling	duplicate sample was taken and a blank inserted directly
	stages to maximise representivity of samples.	after.
	 Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	2-3kg samples are submitted to ALS laboratories (Perth), oven dried to 105°C and pulverised to 85% passing 75um to produce a 0.66g charge for determination of Rare Earth Oxides by Lithium Borate Fusion XRF (ALS Method MEXRF30) and to produce a 0.25g charge for determination of 48 multi-elements via 4 acid digestion with MS/ICP finish (ALS Code ME-MS61).
		Standard laboratory QAQC is undertaken and monitored.
		Diamond Drilling
		20cm – Im quarter core samples are sawn and submitted to the lab for analysis. If core is orientated, then the core is cut so as to preserve the orientation line with the same side of the core submitted down the hole.
		For the purposes of metallurgical testing, half core was submitted where possible to make the required bulk composite mass required for ongoing testwork. In some instances, this required full core to be used.
		QAQC in the form of duplicates, blanks and CRM's (OREAS Standards) are inserted through the mineralised zones at a rate of 1:50 samples. Additionally, within each mineralised zone, a duplicate sample is taken and a blank inserted directly after.
		Samples are submitted to ALS laboratories (Perth), oven dried to 105°C and pulverised to 85% passing 75um to produce a 0.66g charge for determination of Rare Earth Oxides by Lithium Borate Fusion XRF (ALS Method MEXRF30) and to produce a 0.25g charge for determination of 48 multi-elements via 4 acid digestion with MS/ICP finish (ALS Code ME-MS61).
		Standard laboratory QAQC is undertaken and monitored.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias)	Laboratory Analysis Lithium borate fusion is considered a total digest and Method ME-XRF30 is appropriate for REE determination. Standard laboratory QAQC is undertaken and monitored by the laboratory and by the company upon assay result receival. Lithium borate fusion is considered a total digest and Method ME-XRF30 is appropriate for REE determination.
	and precision have been established.	
Verification of sampling	The verification of significant intersections by either	Logging and Sampling
and assaying	 independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) 	Logging and sampling were recorded directly into a digital logging system, verified and eventually stored in an offsite database. Significant intersections are inspected by senior company
	protocols.	personnel.
	Discuss any adjustment to assay data.	19 pairs of twinned RC and DD holes have been drilled at this time and compared to validate the RC drilling.
		No adjustments to any assay data have been undertaken.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings	Collar position was recorded using a Emlid Reach RS2 RTK GPS system (+/- 0.2m x/y, +/-0.5m z).
	and other locations used in Mineral Resource estimation.	GDA94 Z50s is the grid format for all xyz data reported.
	 Specification of the grid system used. Quality and adequacy of topographic control. 	Azimuth and dip of the drill hole was recorded after the completion of the hole using a Reflex Sprint IQ Gyro. A reading was undertaken every 30 th metre with an accuracy of +/- I° azimuth and +/-0.3° dip.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill hole location plots have been used to ensure that local

ABN 40 119 031 864

Criteria	JORC Code explanation	Commentary
distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	drill spacing conforms to the minimum expected for the resource classification. At Yin and Y2, most sections are drilled at 50m (North) by 25 to 50m (Down Dip) with an infill drilling area of seven 25m spaced northing sections in the southern, thicker part of the main Yin deposit. The Sabre deposit has drilling on 100m section lines.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling was undertaken at a near perpendicular angle to the interpreted strike and dip of the ironstone outcrops and modelled magnetic data. No sample bias is known at this time.
Sample security	The measures taken to ensure sample security.	All geochemical samples were collected, bagged, and sealed by Dreadnought staff and delivered directly to ALS Laboratories Perth by Jarrabah Contracting.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The program is continuously reviewed by senior company personnel.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

	(Criteria in this section apply to al	I succeeding sections.)
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Mangaroon Project consists of 19 granted Exploration License (E08/3178, E08/3274, E08/3275, E08/3439, E09/2290, E09/2359, E09/2370, E09/2384, E09/2405, E09/2433, E09/2448, E09/2449, E09/2450, E09/2467, E09/2473, E09/2478, E09/2531, E09/2535, E09/2616) and 5 granted Mining Licenses (M09/91, M09/146, M09/147, M09/174, M09/175). All tenements are 100% owned by Dreadnought Resources. E08/3178, E08/3274, E09/2384, E09/2433, E09/2473 are subject to an option agreement with First Quantum Minerals over the base metal rights. E08/3178, E09/2370, E09/2384 and E09/2433 are subject to a 2% Gross Revenue Royalty held by Beau Resources. E08/3274, E08/3275, E09/2433, E09/2448, E09/2449, E09/2450 are subject to a 1% Gross Revenue Royalty held by Beau Resources. E09/2359 is subject to a 1% Gross Revenue Royalty held by Prager Pty Ltd. E09/2290, M09/146 and M09/147 are subject to a 1% Gross Revenue Royalty held by STEHN, Anthony Paterson and BROWN, Michael John Barry.2 M09/174 is subject to a 0.5% Gross Revenue Royalty held by STEHN, Anthony Paterson. M09/175 is subject to a 0.5% Gross Revenue Royalty held by STEHN, Anthony Paterson and BROWN, Michael John Barry. M09/91 is subject to a 1% Gross Royalty held by DOREY, Robert Lionel. The Mangaroon Project covers 4 Native Title Determinations including the Budina (WAD131/2004), Thudgari (WAD6212/1998), Gnulli (WAD22/2019) and the Combined Thiin-Mah, Warriyangka, Tharrkari and Jiwarli (WAD464/2016). The Mangaroon Project is located over Lyndon, Mangaroon, Gifford Creek, Maroonah, Minnie Creek, Edmund, Williambury and Towera Stations.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration of a sufficiently high standard was carried out by a few parties which have been outlined and

Criteria	IOPC Code explanation	Commontary
Criteria	JORC Code explanation	detailed in this ASX announcement including:
		Regional Resources 1986-1988s: WAMEX Reports A23715, 23713
		Peter Cullen 1986: WAMEX Report A36494
		Carpentaria Exploration Company 1980: WAMEX Report A9332
		Newmont 1991: WAMEX Report A32886
		Hallmark Gold 1996: WAMEX Report A49576
		Rodney Drage 2011: WAMEX Report A94155
		Sandfire Resources 2005-2012: WAMEX Report 94826
Geology	Deposit type, geological setting and style of mineralisation.	The Mangaroon Project is located within Mangaroon Zone of the Gascoyne Province.
		The Mangaroon Project is prospective for orogenic gold, magmatic Ni-Cu-PGE mineralisation and carbonatite hosted REEs.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level — elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does	An overview of the drilling program is given within the text and tables within this document.
	that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. 	Exploration Results have previously been reporting all results greater than 0.2% TREO. Significant intercepts are length weight averaged for all samples with TREO values >0.2% TREO with up to 3m of
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	internal dilution (<0.2% TREO). No metal equivalents are reported.
Relationship between	These relationships are particularly important in the	Drilling is undertaken close to perpendicular to the dip and
mineralisation widths and intercept lengths	reporting of Exploration Results. • If the geometry of the mineralisation with respect to the	strike of the mineralisation.
	 drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures within this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to figures and tables within this report.

ABN 40 119 031 864

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive exploration data are being reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Metallurgical test work Scoping Study

Section 3 Estimation and Reporting of Mineral Resources

	Section 3 Estimation and Reporting of Mineral Resources		
Criteria	JORC Code explanation	Commentary	
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Mangaroon Project has historically been entered into Microsoft Excel logging sheets and transferred to a Datashed database weekly. More recently due to an ongoing transition between database service providers from MRG to Plexer, logging through Plexer software on tablets began around April 2023. Data exports for the most recent resource model were conducted via the Plexer database.	
		Data in the form of CSV files were imported into Micromine 2024 for validation and processing. No errors were found.	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is 	The Competent Person made a site visit on 12 th and 13 th September 2022 and viewed RC and DD logging activities and drilling.	
	the case.	The CP also reviewed diamond drill core and RC chips on site.	
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	There is reasonable confidence in the geological logging and interpretation.	
	 Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	Two major lithologies (ironstone/carbonatite and fenite) have been geologically modelled and are used to control the data used in estimation and the orientation of search ellipses.	
		The geological interpretation is consistent.	
		There has been an alternative interpretation generated via automated geological modelling processes in Micromine 2023 software. It produced similar shapes to the DRE manual interpretation, but because of wide drill spacing in places did not provide adequate continuity between sections. It did however provide very similar interpretations directly on drill sections.	
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Yin mineralisation extends approximately 3.8 km in length, is from 1m to 30m thick and extends from surface (approximately 300m RL) to a maximum depth of 200m. Y2 is 500m along strike by 300m across strike and extends from surface to approximately 120m below topo.	
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.	The model has been domained using the interpreted ironstone, carbonatite and fenite geological wireframes. Only data within each domain are used to estimate blocks in that domain. Statistical analysis of the distribution of key variables has been carried out; no top cuts (capping) have been applied. Variography has been carried out on Nd ₂ O ₃ and Pr ₆ O ₁₁ to define the parameters required for Ordinary Kriging. Ordinary Kriging using the functions within Micromine 2024 have been used to interpolate block values.	

Criteria	JC	ORC Code explanation	Commentary
Orrectia	•	The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade	A parent block size of 5m x 10m x 5m is used with subcells to 0.5m to follow geological and weathering boundaries.
	•	variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in	Search orientations are dynamically variable using unfolding surfaces to control search ellipses and simplify the major variations in strike along the mineralisation.
		relation to the average sample spacing and the search employed.	First pass search ellipse is 120m along strike, 60m down dip and 5m across dip.
	•	Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables.	Second pass search ellipse is 200m along strike, 120m down dip and 10m across dip.
	•	Description of how the geological interpretation was used to control the resource estimates.	No assumptions have been made regarding selective mining units.
	•	Discussion of basis for using or not using grade cutting or capping.	Validation has been carried out using the following methods:
	•	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of	Visual comparison of drill hole and block grades in section, plan and 3D.
		reconciliation data if available.	Comparison of declustered mean drill holes against block model grades.
			Generation of swathe plots.
			All validation methods produced acceptable results.
Moisture	•	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination	Tonnages are estimated on a dry basis.
Cut-off parameters	•	of the moisture content. The basis of the adopted cut-off grade(s) or quality parameters applied.	A cutoff 0.2% TREO has been adopted for summary reports; this corresponds to the cutoff used at the close-by and advance-stage Yangibana Project. Other higher-grade cutoffs are also reported to understand the nature of the higher-grade parts of the deposit.
Mining factors or	•	Assumptions made regarding possible mining methods,	Mining is expected to be by conventional open pit
assumptions		minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	methods. No assumptions have been made at this stage regarding the scale of mining or selective mining unit; no dilution has been applied to the resource model. Conventional ore loss and dilution were taken into account during pit optimisation to assess whether there are "Reasonable prospects of eventual economic extraction" for the Mineral Resource. More rigorous modifying factors for pit optimisation, mine planning work and Reserve estimation will be completed during future studies.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Metallurgical test work has been conducted on a composite of drill samples from three diamond holes drilled at Yin, and produced a concentrate containing 31.22% TREO and 10.76 % Nd ₂ O ₃ +Pr ₆ O ₁₁ (NdPr:TREO ratio of 35%) at an 85.9% TREO recovery (ASX announcement 29 May 2023). Further metallurgical work is ongoing. In July 2021 flotation test work was conducted on a 30kg	
		with an explanation of the basis of the metallurgical	bulk surface sample and produced a high-grade monazite concentrate with a 92.8% recovery into 3.55% of the original mass. The approximate head grade was 12.3% Nd- $_2O_3$ and \sim 38% TREO.
			These and other metallurgical factors have been considered against the significant work completed at the more advanced Yangibana Project next door which has similar geology and mineralogy to the Yin Ironstones.
Environmental factors or assumptions	٠	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of	Environmental studies have been carried out on site with Level I and Level 2 Flora and Fauna surveys completed. No declared rare species or threatened ecological communities have been identified. Subterranean fauna studies have commenced as part of
	potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions	assessing any impact on the Gifford Creek Calcrete PEC. These and other environmental factors have been considered against the more advanced Yangibana Project next door which has received full state and federal government approvals.	

ABN 40 119 031 864

Criteria	JORC Code explanation	Commentary	
Griceria	made.	Commencery	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void 	There are 613 density measurements taken on DD core from throughout the deposit Density has been assigned on the basis of a combination of weathering and lithology domains, as summarised below. LITH WEATHERING DENSITY	
	 spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Ironstone	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Yin, Y2 and Sabre Mineral Resources have been classified in the Measured, Indicated and Inferred categories. A number of factors have been considered in arriving at this classification, including: Geological continuity; Data quality; Drill hole spacing; Modelling technique; Estimation properties including search strategy, number of informing data and average distance of data from blocks. Measure material at Yin is informed by 25m section spacing. Most of the rest of the drilling at Yin and Y2 is on 50m section lines and is classified as Indicated. Several smaller parts of Yin and also Sabre have 100m spaced section lines are classified as Inferred. The classification reflects the CP's view of the deposit.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	There have been no reviews or audits of the Mineral Resource Estimate.	
Discussion of relative accuracyl confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	The relative accuracy is reflected in the JORC resource categories. Indicated resources are considered local in nature, Inferred resources are considered global in nature. No production data is available as the deposit has not yet been mined.	

https://investorhub.dreadnoughtresources.com. au/link/4r8g Me