

Market Announcement

1 December 2023

Coolgardie Gold Project Mineral Resource Updates

Highlights:

- Infill drilling of the Greenfields open pit design delivers final pre-mining Mineral Resource update
- RC drilling at CNX has improved definition of mineralisation and delivered a grade increase within the design pit
- Total Big Blow Mineral Resources after depletion and infill drilling have increased by 62.5%
- JORC 2004 Undaunted and Lady Charlotte Mineral Resources updated to JORC 2012 with overall 15% increase in ounces
- Grade control drilling of selected low-grade stockpiles and tails delivers 194 Kt @ 0.8 g/t for 5,000 oz Indicated category Mineral Resource

West Australia's newest gold producer Focus Minerals (**ASX: FML**) (**Focus** or the **Company**) is pleased to announce a compilation of Mineral Resources updates at the Coolgardie Gold Project (**CGP**).

The CGP covers 121km^2 of highly prospective tenements on the outskirts of the Coolgardie township in the Goldfields. Focus Minerals has recently recommissioned its Three Mile Hill plant (**TMH**) in the central part of the CGP.

Significant work has been conducted to support return to production at Coolgardie including a number of Mineral Resource updates. The following Mineral Resource updates are documented as a combined Mineral Resource announcement:

- **Greenfields Open Pit** which is currently being mined. This pit is located a few hundred meters from TMH.
- **CNX** Mineral Resource has been updated following a limited program of RC drilling. The additional drilling refined the modelling of flat and moderate dipping mineralised structures at CNX. This has enabled the Mineral Resource to be re-estimated using Ordinary Kriging to provide a higher resolution block model.
- Depleted **Big Blow** Mineral Resource following reconciled toll milling production in the December Quarter 2022. The 2022 Big Blow toll milling pit was designed at A\$2,200/oz and used a cut-off grade of 0.8 g/t Au. Mining at the pit was not completed leaving a portion of blasted stock now categorised as Measured Resources category. It is likely that mining will resume at Big Blow in the December Quarter 2023 for processing at TMH.

- The historic Big Blow low grade stockpile Mineral Resource was assessed for mining as part of the toll milling campaign but remains in place as a standby option for processing at TMH.
- The **Empress** Open Pit Mineral Resource has been updated from JORC 2004 to JORC 2012 reported, taking into account new drilling and pit reconnaissance. Additional historic low-grade materials and part of ROM pads that overly the **Alicia** Deposit have also been estimated for the first time.
- The JORC 2004 **Undaunted** and adjacent **Lady Charlotte** Mineral Resources have been updated to JORC 2012 delivering 15% growth in total Mineral Resource ounces.
- Three low-grade stockpiles and six tails deposits have been drilled by RC resulting in a new JORC 2012 Indicated Mineral Resource estimate totalling 194 Kt @ 0.8 g/t for 5 Koz. These stockpiles will be metallurgically assessed as additional optional feed for the TMH.

Following the Mineral Resource updates of the Company's total Measured, Indicated and Inferred Mineral Resources at Coolgardie now comprises:

Classification	Tonnage (Mt)	Au Grade (g/t)	Au Contained Moz
Total Measured	3.5	1.6	0.2
Total Indicated	26.5	1.8	1.5
Total Inferred	16.2	2.0	1.0
Total Mineral Resource	46.2	1.8	2.7

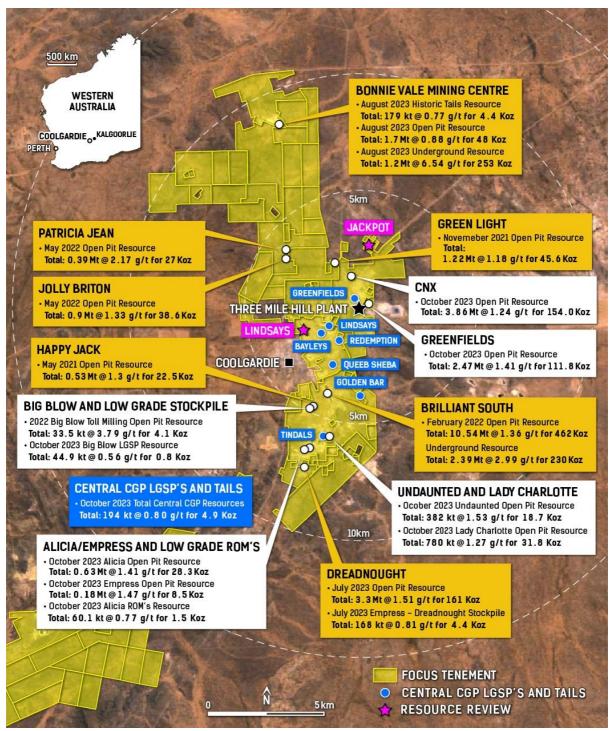


Figure 1: Key Coolgardie project deposits with recent Mineral Resource Estimates.

Greenfields Mineral Resource Update

			2022					2023					Diffe	rence	
		Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off
GreenFields Open Pit Mineral Resource Inferred	Measured		1,391.70	1.62	72.66	5		1,418.60	1.52	69.33		26.90	-0.10	-3.33	
	Indicated	JORC 2012	1,146.7	1.38	50.71	0.6 g/t	JORC 2012	1,049.00	1.26	42.51	0.6 g/t	-97.7	-0.1	-8.2	0.0 g/t
	Inferred	JORC 2012	-	- 18	4	5	2	226		2			<u></u>	20	
Total Greenfields Open Pit					a).				÷						
Mineral Reource		JORC 2012	2,538.4	1.51	123.37	0.6 g/t	JORC 2012	2,467.6	1.41	111.84	0.6 g/t	-70.8	-0.10	-11.53	0.0 g/t

CNX Mineral Resource Update

			2021 LUC					2	023 OK				Diffe	rence	
	2	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off
CNX Open Pit Mineral Resource Indicated	Measured		2,132.10	1.06	76.68			1,770.60	1.31	74.36		-361.5	0.25	-2.3	
	Indicated	JORC 2012	1,660.3	1.03	54.94	0.8 g/t	JORC 2012	1,630.50	1.11	57.93	0.5 g/t	-29.8	0.08	3.0	-0.3 g/t
	Inferred		817.4	1.00	26.18		_	464.5	1.46	21.74		-352.9	0.46	-4.4	2
Total CNX Open Pit		JORC 2012	4,609.8	1.06	157.80	0.8 g/t	JORC 2012	3,865.6	1.24	154.03	0.5 g/t	744.2	0.17	-3.77	-0.3 g/t

Big Blow Depleted Mineral Resource and Big Blow Historic Low Grade Stockpile Mineral Resource

		2021				2023 Depleted Mineral Resource					8	Diffe	rence	
		Tonnes	Grade	Ounces	3	b	Tonnes	Grade	Ounces		Tonnes	Grade	Ounces	8
	Category	Kt	g/t	Koz	Cut Off	Category	Kt	g/t	Koz	Cut Off	Kt	g/t	Koz	Cut Off
Measured				13			10.1	3.85	1.25		10.1	3.85	1.25	
Indicated	JORC 2012	321.0	2.60	26.50	0.7 g/t	JORC 2012	857.6	2.54	44.55	0.6 g/t	536.6	-0.06	18.05	-0.1 g/t
Inferred	178.0	178.0	1.00	5.50			144.7	1.16	5.39		-33.3	0.16	-0.1	2
	JORC 2012	499.0	1.99	32.00	0.7 g/t	JORC 2012	1,012.4	1.57	51.19	0.6 g/t	513.4	-0.42	19.19	-0.1 g/t
	Indicated	Measured Indicated Inferred	Category Tonnes Measured	Tonnes Grade Measured K1 g/t Indicated JORC 2012 321.0 2.60 Inferred 1.78.0 1.00	TonnesGradeOuncesCategoryKtg/tKozMeasuredIndicatedJORC 2012321.02.6026.50Inferred1005.501005.50	Tonnes Grade Ounces Category Kt g/t Koz Cut Off Measured	TonnesGradeOuncesCut OffCategoryMeasured	TonnesGradeOuncesReasuredTonnesTonnesMeasuredAGradeKcKcKcKcKcIndicatedJORC 2012321.02.6026.500.7 g/rJORC 2012857.6Inferred178.01.005.505.50111	TonnesGradeOuncesCut OffCategoryTonnesGradeMeasuredAGradeKtg/tKozCut OffCategoryKtg/tMeasuredAAGradeAAAAAAIndicatedJORC 2012321.02.6026.500.7 g/tJORC 2012857.62.54InferredAAAAAAAA	Tonnes CategoryTonnes KtGrade g/tOunces KozCut Off Cut OffTonnes CategoryGrade 	Measured Matrix Scale Grade Ounces Rate Tonnes Grade Ounces Rate Mark Bark Mark Grade Ounces Rate Mark Bark Bar	Measured Matrix Category Tonnes Grade of the strength of the streng	Image: Problem stateTownesTownesGradeOuncesTownesGradeOuncesTownesTownesGradeOuncesTownesTownesGradeOuncesTownesTownesGradeTownes <td>Image: Problem stateTownesTownesGradeOuncesTownesGradeOuncesTownesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesGradeOuncesGradeOuncesTownesGradeOuncesGradeGradeGradeOuncesGrade<!--</td--></td>	Image: Problem stateTownesTownesGradeOuncesTownesGradeOuncesTownesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesTownesGradeOuncesGradeOuncesGradeOuncesTownesGradeOuncesGradeGradeGradeOuncesGrade </td

		NA						2023				Diffe	rence	
	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off
Big Blow Historic Low Grade				1 3			876	17				3		
Indicated				-		JORC 2012	44.9	0.56	0.81	NA	44.9	0.56	0.81	NA
Inferred			5	1			3.7.3	17			15			2
		0.0	0.00	0.00		JORC 2012	44.9	0.56	0.81	NA	44.9	0.56	0.81	NA
	Measured Indicated		Measured - Indicated - Inferred -	Category Tonnes Kt Grade g/t Measured - - Indicated - - Inferred - -	Category Tonnes Kt Grade g/t Ounces Koz Measured - - - - Indicated - - - - Inferred - - - -	Image: Category Tonnes Kt Grade g/t Dunces Koz Dut Off Measured -	Image: Constraint of the sector of	Indicated Image: Constant of the system of the	Image: constraint of the state of	Image: constraint of the system of	Image: series with the series withe series with the series with the series with the ser	Image: constraint con	Image: border	Image: height base in the state in the s

Empress, & Alicia OP and Alicia ROM Mineral Resource Updates

				2011					2023				Diffe	rence	
		Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Of
Francis On an Dit Minard	Measured				23	0		1970	14	<u>.</u>			- 2		
Empress Open Pit Mineral	Indicated	JORC 2004	128.0	2.00	8.00	1.0 g/t	JORC 2012	144.8	1.57	7.29	0.7 g/t	16.8	-0.4	-0.7	-0.3 g/
Resource	Inferred		12.0	2.30	1.00			35.2	1.09	1.23		23.2	-1.21	0.2	
Total Empress		JORC 2004	140.0	2.00	9.00	1.0 g/t	JORC 2012	180.0	1.47	8.52	0.7 g/t	40.0	-0.53	-0.48	-0.3 g/
				2021					2023				Diffe	rence	
	2	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Of
	Measured		-	22	23			6275	12	2			- 2	22	
Alicia Open Pit Mineral Resource	Indicated	JORC 2012	505.0	1.57	25.50	0.8 g/t	JORC 2012	625.2	1.41	28.27	0.7 g/t	120.2	-0.2	2.8	-0.1 g
	Inferred		-					1.9	1.12	0.07	2 20	1.9	1.12	0.1	
Total Alicia		JORC 2012	505.0	1.57	25.50	0.8 g/t	JORC 2012	627.1	1.41	28.34	0.7 g/t	122.1	-0.16	2.84	-0.1 g
									2023				Diffe	rence	
		Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt		Ounces Koz	Cut Of
	Measured				23	0		(27)	14	2		12	- N	2	
Alicia ROM Mineral Resource	Indicated	NA	2	<u></u>	- 20	NA	JORC 2012	60.1	0.77	1.49	NA	60.1	0.77	1.49	NA
	Inferred		-					120		-			2		
Total Alicia ROM		NA	0.0	0.00	0.00	NA	JORC 2012	60.1	0.77	1.49	NA	60.1	0.77	1.49	NA

Undaunted and Lady Charlotte Mineral Resource Updates

			2012					2023					Diffe	rence	
		Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off
Undaunted Open Pit Mineral Resource Indicated Inferred		ā		13			376	8.7	5		5	3	12		
	Indicated	JORC 2004	187.0	1.97	12.00	1.0 g/t	JORC 2012	273	1.7		0.5 g/t	-187.0	-2.0	-12.0	-0.5 g/t
	Inferred		126.0	1.93	8.00			381.8	1.53	18.74		255.8	-0.40	10.7	
Total Undaunted		JORC 2004	313.0	1.50	20.00	1.0 g/t	JORC 2012	381.8	1.53	18.74	0.5 g/t	68.8	0.03	-1.26	-0.5 g/t

Resource	Indicated Inferred	JORC 2004	137.0 346.0	1.64 1.51	7.00 17.00	1.0 g/t	JORC 2012	- 780.3	- 1.27	- 31.85	0.5 g/t	-137.0 434.3	-1.97 -0.24	-7.0 14.9	-0.5 g/t
Total Lady Charlotte		JORC 2004	483.0	1.95	24.00	1.0 g/t	JORC 2012	780.3	1.27	31.85	0.5 g/t	297.3	-0.68	7.85	-0.5 g/t

Central CGP Indicated Mineral Resources for Selected Stockpiles and Tails

			NA						2023				Diffe	rence	25
		Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Category	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off	Tonnes Kt	Grade g/t	Ounces Koz	Cut Off
TMH Greenfields Low Grade															
Stockpile	Indicated					2		39.3	0.69	0.87		39.3	0.69	0.87	
Tindals East Low Grade Stockpile	Indicated							30.7	0.56	0.55		30.7	0.56	0.55	
Lyndsays Tails vats 4 & 5	Indicated						JORC 2012	18.0	0.63	0.36	NA	18.0	0.63	0.36	NA
Baylays tails vats 1, 2 & 3	Indicated						JORC 2012	77.7	0.91	2.28	NA	77.7	0.91	2.28	NA
Redemprion Tails Vat	Indicated					2		6.6	0.67	0.14		6.6	0.67	0.14	
Queen of Sheba tails vat	Indicated							1.1	0.67	0.03		1.1	0.67	0.03	
Golden Bar tails Vat	Indicated							20.3	1.11	0.73		20.3	1.11	0.73	
Total Central CGP Stockpiles and												1.5	<i>6</i> 20		
Tails					0		JORC 2012	193.7	0.80	4.96	NA	193.7	0.80	4.96	NA

Table 1 Summary of Combined Mineral Resources updates and changes versus previously reported Mineral Resources

Greenfields Open Pit Mineral Resource

Highlights:

- Forty RC holes for 4,471m have been completed within and adjacent to the Greenfields open pit.
- Total Measured Resource category (within the pit design) gold reported using 0.6 g/t cut off compares well with the previous Mineral Resource estimate (refer announcement dated 5 August 2022).
- Greenfields is now being mined and producing first ore.

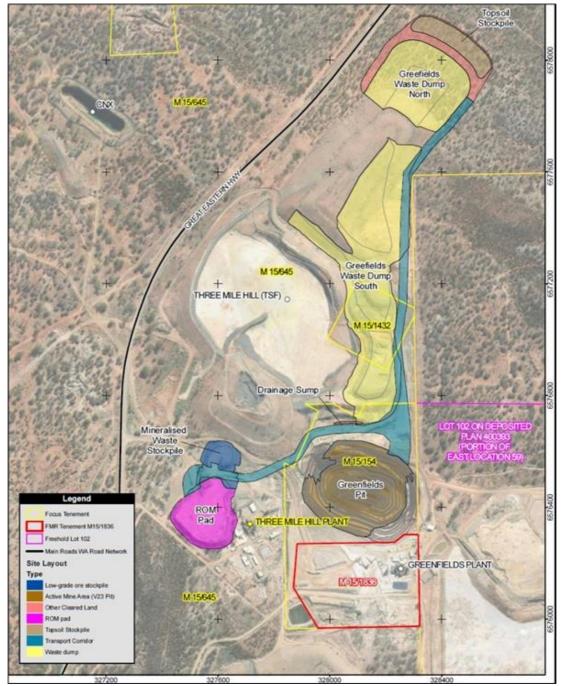


Figure 2: Greenfields 2022 open pit site layout with surrounding tenements and infrastructure

Greenfields Summary Geology and Structure

The existing pit is located mostly on 100% Focus Minerals owned tenement M15/154 (Figure 2). The mineralisation at Greenfields averages 50m width and varies between 25 and +60m width. The mineralisation is primarily hosted by coarsely granophyric G2 gabbro near the contact with footwall Black Flag Group volcaniclastics (Figures 3 and 4). Like CNX and Three Mile Hill, gold at Greenfields is hosted by a well-developed stockwork of 1cm to +20cm wide quartz>>chlorite>pyrrhotite>carbonate veins with trace amounts of chalcopyrite and arsenopyrite.

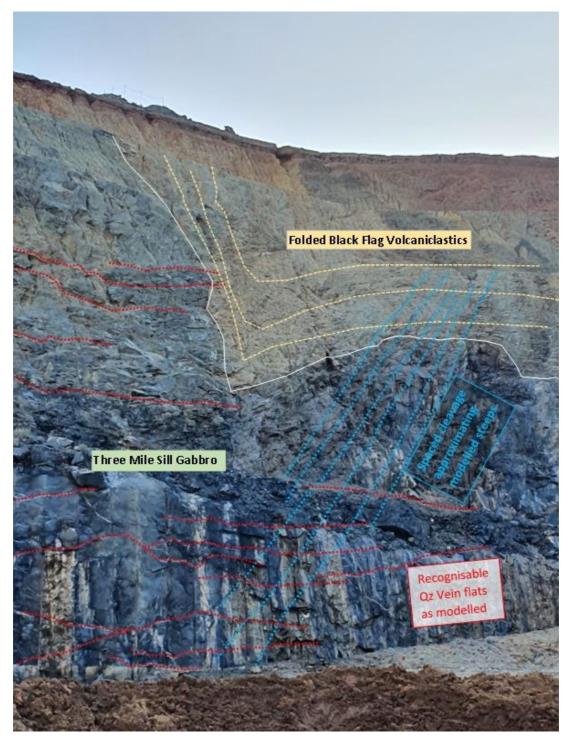


Figure 3: View northwest of the Greenfield open pit north west wall with: simplified labelled geology, red poly lines highlighting flat dipping vein sets and blue polylines highlighting steep fabric.

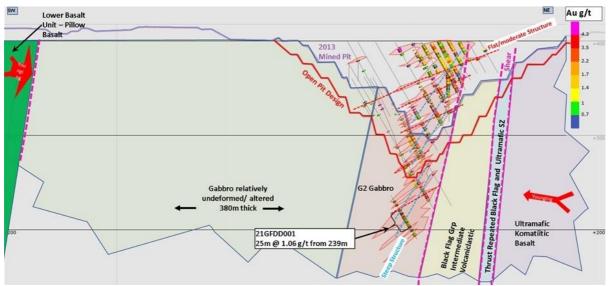


Figure 4: Sectional view north-west of interpreted cross section in the central part of the Greenfields Open Pit. The sub-vertical reddish-orange polygon shows the location of the modelled G2 gabbro that hosts the majority of the Greenfields mineralisation. Red polygons show the location of the stockworks that host Greenfields mineralisation.

Greenfields Resource Development and Grade Control Drilling

The updated Greenfields Mineral Resource now includes 40 RC infill drill holes at a general 12 – 15m spacing and locally at 10m spacing. The new drilling includes a selection of twin holes (Figure 5) replacing several 1995 RC holes which have been identified as having compromised sampling. The affected 1995 holes were located at the margins of the open pit design and mostly affected Indicated Mineral Resources outside the design. The twin hole drilling has confirmed that several of this series of holes contained intervals of grade smearing (probable wet samples/poor sample recovery).

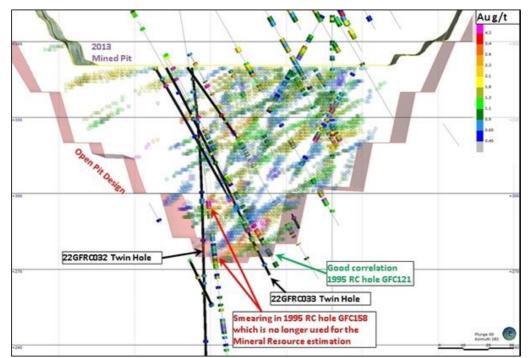


Figure 5: Sectional view towards the NW at Greenfields open pit with drill assays and 2023 block model centroids cut at 0.6 g/t and coloured as per inset legend. Grade control holes have thick black hole traces. Labels have been added for twin holes showing examples on 1995 RC holes with good and poor correlation.

Greenfields Mineral Resource Estimation and Comparison

The updated Mineral Resource for Greenfields is reported on a dry tonnage basis using 0.6 g/t cut off to 230mRL. An Ordinary Kriging (OK) estimation technique was selected and variograms were modelled in Supervisor. Each domain was modelled using its own variogram and applicable top cut. At Greenfields there are two orientations of mineralisation comprising:

- flat southwest dipping and,
- steep southwest dipping.

The percent change in the updated Greenfields Mineral Resource is reported versus the pre grade control drilling Mineral Resource (refer to ASX Announcement dated 5 August 2022) as shown below.

Classification	Tonnes (Mt)	Change (t)	Au Grade (g/t)	Change (g/t)	Au Contained (Oz)	Change Oz
Measured	1.42	1.9%	1.52	-6 .4%	69,500	-4.6%
Indicated	1.05	-8.5%	1.26	-8.4%	42,500	-16.2%
Total Greenfields Mineral Resource	2.54	-2.8%	1.51	-6.7%	112,000	-9.3%

Big Blow Updated and Depleted Open Pit Mineral Resource and Historic Big Blow Low Grade Stockpile Mineral Resources

Highlights:

- Measured category blasted stock reported at 0.8 g/t cut off comprises 7.76Kt @ 4.91 g/t for 1,225oz. Material will be mined in the December Quarter 2023
- 18 RC holes for 150m completed on the Big Blow LG stockpile for Mineral Resource estimation comprising 44.9Kt @ 0.56g/t for 810oz
- 9 RC resource infill holes for 462m targeting Happy Jack with infill indicating some upside for the deposit

Big Blow – Happy Jack Location and Production

Big Blow and Happy Jack are located 2km south southeast of Coolgardie and 900m southwest of the Brilliant South Open Pit. The two deposits strike north northeast dipping steeply east southeast. Big Blow is located on the west side of Tindals Haul Road and Happy Jack is located adjacent and east of the Tindals Haul Road (Figure 6).

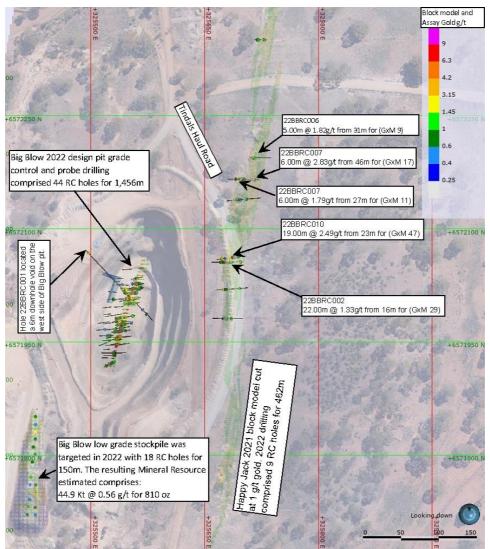


Figure 6: Map showing location of 2022 Big Blow and Happy Jack RC drilling

The Big Blow and Happy Jack structures were originally mined by small-scale underground means in the early 1900s with stoping mainly at the south end of the Big Blow open pit.

Big Blow was previously mined by Focus, as an incomplete pit including remnant blasted stocks between January 2012 and July 2013. The pit produced 163 Kt @ 1.29 g/t for 6,804 oz. During the second half of 2022 Focus designed, permitted and mined a small-scale open pit within the footprint of the 2013 incomplete Big Blow pit. The new pit was designed using A\$2,200/oz gold price and employed a steeper ramp in order to efficiently recover material exceeding 0.8 g/t cut off for toll milling.

Prior to finalising the pit design the optimised pit was grade controlled using RC so that the Mineral Resource could be confirmed, and final design adjustment completed. The small-scale pit was mined using contractors with material processed via toll milling agreement.

Low grade material mined and stockpiled during 2022 has been toll milled in the June quarter 2023 confirming the grade at 0.81 g/t.

The remaining blasted stock comprising 7.76 kt @ 4.91 g/t for 1,225 oz (0.8 g/t cut off) within the 2022 Big Blow toll milling design is expected to be mined and processed during the December quarter 2023 at TMH.

Big Blow – Happy Jack Geology and Structure Summary

The Big Blow mineralisation is predominantly hosted by a sub-vertical to steeply east-dipping 10-20m wide fault zone and associated breccia within the Burbanks Basalt. Both the Big Blow and Happy Jack structures have been intruded by north trending feldspar-hornblende porphyries of similar style to those associated with Brilliant. Happy Jack is sub-parallel to Big Blow and hosts lower grade though structurally analogous mineralisation also within the Burbanks Basalt.

Big Blow – Happy Jack Resource Development Drilling

Focus drilled 71 RC holes in the Big Blow Happy Jack area. Sixty-two of the RC holes provided grade control on material from Big Blow subject to economic evaluation as a small-scale mining project with toll milling.

18 RC grade control holes for 150m were located on low grade stockpile material left over from mining in 2012/13 for Mineral Resource Estimation purposes. 9 RC holes for 462m were also completed at Happy jack to recover samples for material classification and targeted resource infill.

Big Blow Mineral Resource Estimation

After grade control infill of the designed toll milling Big Blow Open Pit the Mineral Resource was upgraded to Measured category. The updated toll milling open pit Mineral Resource reported on a dry tonnage basis using 0.8 g/t cut off comprises:

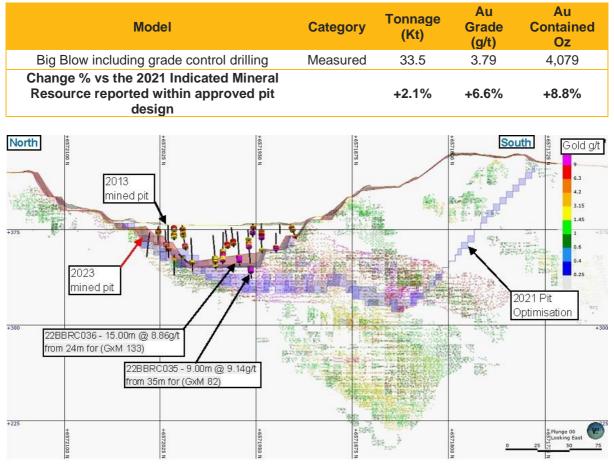


Figure 7: View East 11m wide long section following the main shoot at Big Blow. The Indicated category mineralisation Block model centroids cut at 0.8 g/t outside the 2022 toll milling pit are coloured as per inset legend. Grade control holes and assays cut at 0.8 g/t are also shown with selected labels.

The 2013 Big Blow Low Grade Stockpile was drilled at approximately 10m x 10m spacing for Inverse Distance Squared (IDS) Mineral Resource estimation. The Mineral Resource is reported on a dry tonnage basis without cut off as stockpiles are not mined to a cut off. Bulk density of 1.6 t/m^3 has been applied and is based on recent toll milling reconciliation with processed Empress-Dreadnought low grade stockpile. The Empress – Dreadnought stockpile comprises similar material and a toll milling campaign of more than 100,000t reconciled at $1.67t/\text{ m}^3$.

Model	Category	Tonnage (Kt)	Au Grade (g/t)	Au Contained Oz
Big Blow Low Grade Stockpile after grade control drilling	Measured	44.9	0.56	811

The Big Blow Low Grade Stockpile reported a grade below cut off for toll milling and it has not been used for recent campaigns. The material can be utilised to support production at Coolgardie if required.

Overall Mineral Resources after depletion at Big Blow including the historic low-grade stockpile have increased by 20 Koz or 62.5%.

CNX Mineral Resource Update

Highlights:

• Measured Mineral Resource within optimised pit design improved with 18% increase in grade and 5% increase in overall ounces

CNX Location and Production

CNX is located on the north-west extension of the Three Mile Hill Open Pit which had historic production of 4.2 Mt @ 2.4 g/t Au for 324Koz. The strike of the Mineral Resource being reported is 700m and reported to a vertical depth of 230m from surface. The south-east extension of the mineralisation is cut off using an exclusion zone 97m north of the Great Eastern Highway centreline. CNX is located only 1.25 km north north-west of the Three Mile Hill ROM pad.

The CNX deposit was last mined as a 30m deep trial pit in 1991. Archives indicate the following premining Open Pit Mineral Resource estimate and post-mining reconciliation:

Classification	Tonnes	Au Grade (g/t)	Au Contained Oz
1991 Trial Pit Mineral Resource estimate 1 g/t cut off	120,00	2.1	8,000
1991 Trial Pit Estimated 20% dilution @ 0.3 g/t	24,000	0.3	200
1991 Trial Pit Estimated Recovered Diluted Mineral Resource 1 g/t cut off	143,000	1.8	8,200
Reconciled Trial Pit Recovered Mineral Resource at 1 g/t cut off	196,000	1.9	11,700
1991 Recovered low grade stockpile	9,000	1.0	300
Total Recovered 1991 CNX	205,000	1.82	12,000
1991 CNX Mineral Resource vs Reconciliation %	+43.4%	+5.9%	+46.3%

CNX Geology and Structure Summary

The main control on the bulk-style tabular mineralisation at CNX is the G2 Gabbro (Figures 8 and 9). Within the G2 Gabbro, 0.5cm to +5cm quartz-chlorite-sulphide veins form a series of stacked, shallow south-west dipping stockworks. Higher-grade mineralisation dips south-east within the G2 Gabbro and is characterised by sets of 5cm to 30cm-thick quartz-chlorite-sulphide veins.

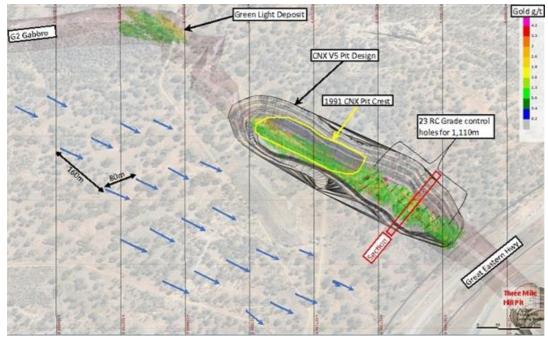


Figure 8: View to north and down showing the location of CNX along strike from the Three Mile Hill deposit. CNX Measured category block model centroids cut at 0.6 g/t are coloured as per inset legend. The CNX V5 pit design is show with black triangulation strings. Section location is also shown. RC grade control holes are marked with black hole traces and significant intersections coloured as per inset legend. The location of sterilisation holes is shown with blue arrow hole traces. The location of section box for Figure 12 (red box) is also shown.

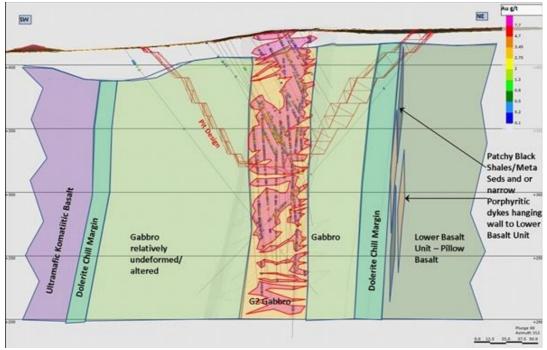


Figure 9: Sectional view towards the north-west of the interpreted cross section for 20CNDD004. The sub-vertical yellow polygon shows the location of the modelled G2 Gabbro that hosts the majority of the CNX mineralisation. Red polygons show the location of the bulk-style CNX mineralisation.

CNX Resource Development Drilling

First round of drilling includes 23 RC holes for 1,110m, targeting the southeastern half of CNX between 35m and 45m vertical depth. The holes were drilled on a general 15m x 20m pattern. The new holes infill the drill spacing in the southeastern half of CNX to a general 15m x 10m spacing to about 35m vertical depth. This infill drilling program was completed in order to better define the grade and to improve modelling of the main mineralised structural sets. As a result of this infill, it has now been possible to remodel the CNX deposit and estimate the Mineral Resource using Ordinary Kriging (OK) thereby the mineralisation spatial accuracy and precision of grade.

CNX Mineral Resource Estimation

The previous Mineral Resource for CNX was compiled in 2021 (Refer to ASX announcement dated 24 November 2021).

The detailed infill RC drilling at CNX defined the relationship of flat and moderately dipping mineralisation. Furthermore, it resulted in confirmation that the moderate dip structures control the majority of the Mineral Resource ounces and provide priority for areas where flats and moderate structures intersect. The higher resolution OK Mineral Resource enables higher levels of mining selectivity assessment and staging of pit development.

The OK CNX Mineral Resource has now been used for advanced mine design ahead of permitting, and to update the boundary of Measured Mineral Resources. On a dry tonnage basis using a cut off of 0.5 g/t Au the OK Mineral Resource is reported/compared with the previous LUC Mineral Resources:

Classification	Tonnage (Mt)	Change Tonnes	Au Grade (g/t)	Change Grade	OK Au Koz	Chang e oz
Measured	1.77	-17%	1.31	+23%	74,400	-3%
Indicated	1.63	-2%	1.11	+7%	57,900	+5%
Inferred	0.46	-43%	1.46	+46%	21,700	-17%
Total Mineral Resource	4.6	-16%	1.06	+17%	157,900	-2%

Alicia - Empress Area Mineral Resources Update

Highlights:

- Mineral Resource for Empress Pit updated to JORC 2012 following review targeted RC drilling between Alicia and Empress
- ROM pads of low-grade material overlying Alicia deposit estimated for the first time

Alicia - Empress Location and Past Production

The Alicia-Empress deposit is located approximately 3.5km due south of the Coolgardie townsite and 6.5km south southeast from TMH.

Alicia is a previously unmined, near-surface gold deposit with minor historic shafts in the vicinity of the mineralisation. Alicia is located to the east of Empress and runs parallel to the Empress open pit. Empress was subject to historical underground mining and a minor trial pit. The main stage of Empress

open pit mining was completed by Focus Minerals between 2011-2012 and produced 192,241 tonnes at 2.11 g/t for 13,052 oz. Empress was also mined underground by Focus as part of the greater Tindals Underground development.

The area to the northeast and east of the Empress Open Pit were utilised as a ROM/stockpile. Parts of these ROM/stockpiles overly the Alicia deposit. The historic Tindals Open Pit waste dumps partly onlap the eastern side of the Alicia deposit.

Alicia – Empress Summary Geology and Structure

The two deposits, Empress and Alicia, are interpreted as being the two distinct limbs of an antiform with the fold hinge forming a structurally complex deposit (Figure 10). Local geology consists of a quartz bearing intrusive diorite between a mafic basalt hanging wall and komatiite footwall that displays distinctive spinifex texture. The majority of the gold mineralisation is hosted by the diorite intrusions and associated mm-cm scale quartz veins.

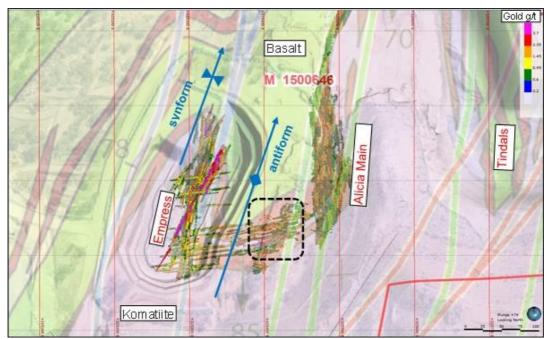


Figure 10: View to the north and down of geology map for the Alicia-Empress area. The updated Alicia and Empress Resource model block centroids cut at 0.6 g/t are coloured for gold g/t as per inset legend. Dashed box shows fold hinge area between Alicia and Empress where steeply north northwest dipping mineralisation was targeted by shallow RC grade control drilling.

Figure 11: View northeast towards the southeast wall of the Empress Open Pit with car parked at Alicia in background to help illustrate scale of the pit. Steeply north northeast dipping mineralised structures from the southern part of Alicia and across the southern part of the Empress pit (marked with red dashed lines). In the southeast wall of Empress Open Pit, the cross faults can be seen as intervals of foliation fabric with preferential weathering. The structures may be related to the axial planar fabric of a large regional syncline located ~3km east northeast of Alicia near the Boundary Open Pit.

The Alicia deposit consists of 5 main lodes that dip steeply to the west and cover a strike length of up to 300m (open at depth).

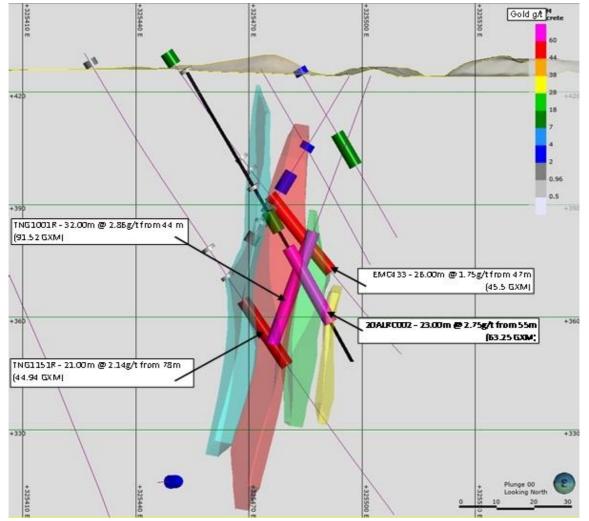


Figure 12: Cross-section view looking north of the Alicia main lodes representative section, including 2020 drill hole 20ALRC002 and interpreted mineralisation wireframes. Significant intersections are calculated using a 0.5 g/t cut-off and up to 3m internal dilution.

The fold hinge between Alicia and Empress is characterised by low grade shallow north dipping lodes crosscut by narrow high grade steeply north north-west dipping lodes (Figure 13).

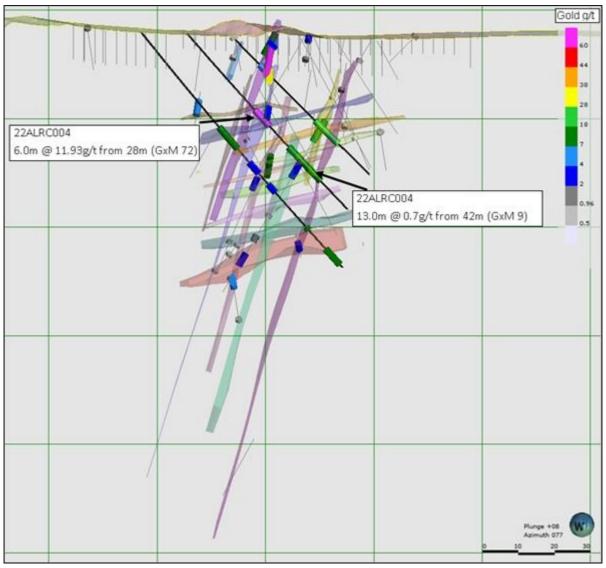


Figure 13: Cross-section view looking east of the Alicia-Empress fold nose representative section (Figure 10), including drill holes (thick black holes traces) and interpreted mineralisation wireframes. Significant intersections are calculated using a 0.5g/t cut-off and up to 3m internal dilution.

The Empress deposit consists of subvertical north and north northeast striking lodes cross cut by the same north northwest dipping features seen at the fold hinge (Figure 13).

Following recognition of this important mineralised structural orientation the Empress deposit was remodelled including where appropriate north northwest dipping mineralisation (Figure 13).

Alicia - Empress Resource Development

Twenty RC holes for 1,595m were completed at Alicia to mainly target shallow mineralisation that was optimizing to the west of Alicia. Within the optimised Alicia pit seventeen RC holes 1,038m were completed on a 12m x 20m pattern. The targeted area had previously been drilled by RAB and RC including multiple orientations of RC. Drill orientation was optimised based on 2021 diamond core data.

Alicia – Empress Mineral Resource Estimation

The updated open pit Mineral Resources for the adjacent Alicia and Empress deposits were completed via comprehensive review and incorporation of new RC drilling.

The main zone mineralisation at Alicia and Empress is open to extension along strike to the north and at depth. Currently 350m of strike at Alicia and 240m of strike at Empress are included in the Mineral Resource.

Updated Empress and Alicia Mineral Resource estimates are reported on a dry tonnage basis using 0.7 g/t cut off and depth limited to 300m RL (120m below surface).

Deposit	Classificati on	Tonnage	Change T	Au Grade (g/t)	Change g/t	Au Contained Oz	Change % Oz
ALICIA	Indicated	625,250	+24%	1.41	-10%	28,270	+11%
ALICIA	Inferred	1,900	+100%	1.15	+100%	70	+100%
Alicia 1	Alicia Total		+24%	1.41	-10%	28,340	+11%
EMPRESS	Indicated	144,800	+13%	1.57	-21%	7,290	-9%
EIWIF RE33	Inferred	35,200	+193%	1.09	-26%	1,230	-5%
Empress	Total	180,000	+29%	1.47	-26%	8,852	-5%
Grand total updated open pit Mineral Resources		807,150	+25%	1.42	-15%	36,860	+7%

New ROM/stockpile Mineral Resource at Alicia is reported on a dry tonnage basis and without cut off for the entire ROM/stockpile volume.

Deposit	Classification	Tonnage	Au Grade (g/t)	Au Contained Oz
ROM NORTH	Indicated	45,390	0.79	1,150
ROM SOUTH	Indicated	14,740	0.71	335
Grand Total RC	M/Stockpile	60,130	0.77	1,490

In total the updated Mineral Resources comprise 874,790t @ 1.37 g/t for 38,540 oz.

Depth confirmation of reinterpreted Undaunted-Lady Charlotte Mineral Resource model

Highlights:

• Undaunted – Lady Charlotte Mineral Resource ounces increase 15%

Undaunted – Lady Charlotte Location and past production

Undaunted and Lady Charlotte are located just 300m north and northeast of the Tindals Mines Complex and 900m south of Brilliant Open Pit. The site is accessed by mine roads extending to the main ramp of the Tindals-Cyanide Open Pit and linking west back to the Tindals Haul Road.

Undaunted – Lady Charlotte Summary Geology and Structure

Undaunted and Lady Charlotte lie within an area of complexly folded and faulted Brilliant Ultramafic, and underlying Lindsays Basalt (lower basalt equivalent). The felsic intrusives of the Bayleys Porphyry Suite have intruded the folded and faulted contacts.

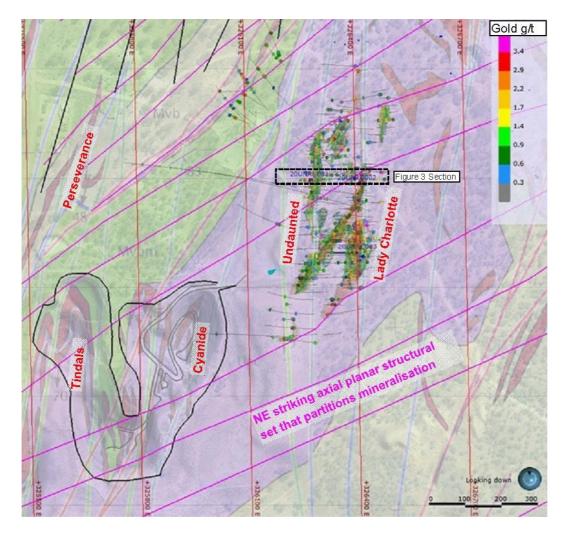


Figure 14" View north and down for the updated Undaunted – Lady Charlotte Mineral Resource estimation with block model centroids cut at 0.6 g/t and coloured for gold grade g/t as per inset legend. Mapped/interpreted geology is also shown draped on topography. The outline and ramp for the Tindals – Cyanide Open Pit and Underground is also shown.

Undaunted (west side) and Lady Charlotte (east side) are subparallel NNE striking shears and diorite dyke-controlled lodes that dip steeply to the ESE. The two main lodes are linked by several curvilinear (S fabric) sub-vertical to steeply southeast dipping mineralised shears.

Undaunted and Lady Charlotte are typical of Tindals style mineralisation associated with diorite intrusions within the Brilliant Ultramafic unit.

The mineralisation domains have been interpreted over 570m strike length and 100m vertical depth, with mineralisation continuing along strike north and south and down dip.

Undaunted – Lady Charlotte Resource Development

A small program of reverse circulation (RC) drilling was completed at Undaunted and Lady Charlotte. This drilling tested the quality of historic drilling to confirm the tenor of interpreted and under drilled shoots which host higher grade and thickness of gold mineralisation (refer ASX announcement dated 26 April 2021).

This drilling successfully confirmed that higher grade shoots are present in these deposits from shallow levels. These high value shoots can be targeted for follow up resource development.

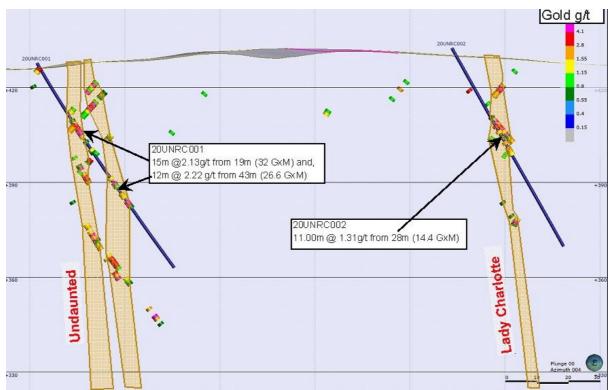


Figure 15: View north of Undaunted and Lady Charlotte 2020 RC infill drilling (thicker drill traces) targeting mineralised shoots. Gold grade g/t is coloured as per inset legend and 2020 significant intersections calculated using 0.5 g/t cut off and up to 3m dilution have been labelled.

Undaunted – Lady Charlotte Mineral Resource Estimation

This Mineral Resource update for Undaunted and Lady Charlotte deposits now comply with JORC 2012 reporting. Only Inferred Category Mineral Resources are reported for the updated Mineral Resource estimates. This change in classification reflects results of data review including:

- Identification of older drilling with incomplete sampling and or documentation
- Removal of some holes from the database
- Modelling less strike of mineralisation and in particular areas targeted by older holes.

The updated Mineral Resource estimation is reported on a dry tonnage basis to a depth of 90m (340mRL) and using a 0.5 g/t cut-off:

Classification	Tonnage (Kt)	Tonnes Change %	Au Grade (g/t)	Grade Change %	Au Contained Oz	Au Ounces Change %
Indicated	0	-100%	0	-100%	0	-100%
Inferred	382	203%	1.53	-20.9%	18,750	134.3%
Total	382	22%	1.53	-21.9%	18,750	-6.3%

Undaunted updated Mineral Resource compared with 2012 Mineral Resource estimate:

Lady Charlotte update Mineral Resource compared with 2012 Mineral Resource estimate:

Classification	Tonnage (Kt)	Tonnes Change %	Au Grade (g/t)	Grade Change %	Au Contained Oz	Au Ounces Change %
Indicated	0	-100%	0	-100%	0	-100%

Infer	red 780	125.5%	1.27	-15.9%	31,850	87.4%
Tot	al 780	61.6%	1.27	-17.9%	31,850	32.7%

The total updated Undaunted and Lady Charlotte Mineral Resources compared with 2012 Mineral Resource estimate:

Classification	Tonnage (Kt)	Tonnes Change %	Au Grade (g/t)	Grade Change %	Au Contained Oz	Au Ounces Change %
Indicated	0	-100%	0	-100%	0	-100%
Inferred	1,162	146.2%	1.35	-17.8	50,600	102.4%
Total	1,162	46%	1.35	-21.2%	50,600	15%

Central Coolgardie Low Grade Stockpiles and Tails Mineral Resources

Highlights:

- 375 RC holes completed at 15m x 15m spacing for 1,134m targeting 3 historic low-grade stockpiles and 6 historic tails
- Seven of the nine targeted areas drilled have returned material suitable for processing at TMH
- In total an additional Indicated Mineral Resource of 194 Kt @ 0.8 g/t for 5,000 oz has been added

Central Coolgardie Gold Project Stockpiles and Tails Location

The Coolgardie Gold Project hosts numerous historic mines with remnant low grade stockpiles and historic gold treatment areas including leach vats. Nine deposits of potential free dig mill feed were identified in the central part of the CGP for infill drilling and Mineral Resource estimation. The Dreadnought – Empress Low Grade Stockpile was targeted with 10 – 15m spaced RC drilling leading to IDS Mineral Resource estimation. Follow up campaigns of toll milling confirmed a very close reconciliation of mill production to the reported Mineral Resource.

The low-grade stockpiles comprise transitional and fresh rock material sourced from historic mining at Greenfields Open Pit and Tindals Underground. The tails vats comprise crushed/ground ore veins from a variety of sources including: Bayleys, Lindsays, Redemption, Queen of Sheba and Golden Bar.

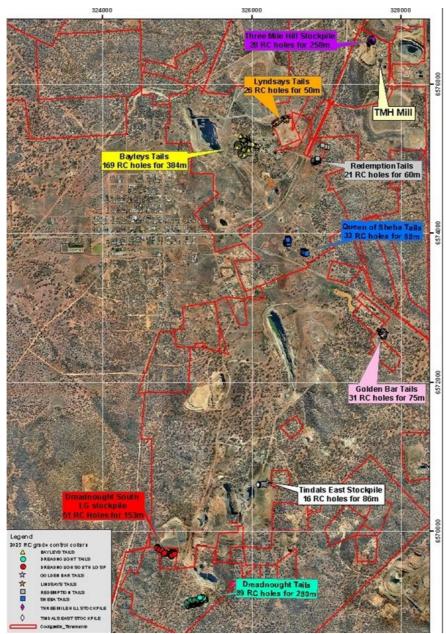


Figure 15: Plan view central Coolgardie Gold Project (CGP) with historic low-grade stockpiles and tails targeted by Stage 1 RC infill drilling in the first half of 2023.

Central CGP Stockpiles and Tails Resource Development

RC drilling at 15m x 15m spacing has been completed over stage 1 Central CGP low grade targets. In total 375 RC holes for 1,134m were drilled. The drill sampling was completed using a track mounted RC rig with onboard cone splitter. All holes were drilled dry with 1m split samples submitted for fire assay gold analysis. Regular QAQC protocols were used including inserting a range of standards into the sample sequence. The sampling provides a consistent database for modelling and Mineral Resource estimation with a high level of integrity and QAQC. Detailed collar pick up and surveys have been conducted to provide accurate digital terrain models (DTM) for the estimation.

Central CGP Stockpiles/Tails Mineral Resource Estimation

The data has been interpreted in Leapfrog to determine areas that are consistently mineralised and have sufficient gold mineralisation including any internal waste. These modelled solids are considered

recoverable using mechanised load and haul with processing at TMH. Furthermore, where appropriate HG and LG domains have been modelled to facilitate mining selectivity.

The resulting models have been estimated using Datamine and application of regular Mineral Resource Estimation protocols. The Mineral Resource estimation has been completed using Inverse Distance Squared (ID²). Dry bulk density has been assigned to the stockpiles and tails at 1.6 T/m³. This is slightly lower than the 1.67 T/m³ that has been consistently achieved from the Dreadnought – Empress low grade stockpile. Indicated Mineral Resources are reported for recoverable portions of the stockpiles/tails only. It is noted that all reported Mineral Resources exceed the 0.4 g/t cut off.

		Recoverable Material			RC Grade Control		RC Drill	Average
Stockpile/Tails Name	Material Type	Tonnes	Gold g/t	Gold Oz	Average Drill Spacing	Holes	Metres	Depth
TMH Hist Greenfield	a second s	39,271	0.69	872	15m x 15m	28	258	9.2
Tindals East	Low Grade	30,710	0.56	551	15m x 15m	16	86	5.4
Dreadnought South	Stockpile	-			15m x 15m	51	153	3.0
Lyndsays	Tails	17,980	0.63	363	15m x 15m	26	50	1.9
Bayleys Historic	Tails & Stockpile	77,700	0.91	2,283	15m x 15m	169	384	2.3
Redemption Historic	Tails	6,605	0.67	142	15m x 15m	21	60	2.9
Queen of Sheba	Tails	1,150	0.67	25	15m x 15m	33	68	2.1
Golden Bar	Tails	20,290	1.11	726	15m x 15m	31	75	2.4
Historic Dreadnought Processing	Tails	-			15m x 15m	89	280	3.1
Total Recoverable	0	193,706	0.80	4,962	15m x 15m	375	1,134	3.0

The release of this ASX announcement was authorised by Mr Wanghong Yang, Executive Chairman of Focus Minerals Ltd.

For further information please contact:

Alex Aaltonen

General Manager Exploration Focus Minerals Ltd. Phone: +61 8 9215 7888 Email: info@focusminerals.com.au For media and investor enquiries please contact:

Nicholas Ong

Company Secretary Focus Minerals Ltd. Phone: +61 8 9215 7888 Email: info@focusminerals.com.au

About Focus Minerals Limited (ASX: FML)

Focus Minerals is Western Australia's newest gold producer and focused on delivering shareholder value from its 100%-owned Coolgardie Gold Operation and Laverton Gold Project, in Western Australia's Goldfields.

Focus is committed to delivering shareholder value from the Coolgardie Gold Operation, a 121km² tenement holding that includes a 1.2Mtpa processing plant at Three Mile Hill, with commencement of mining activities in mid-2023. A new Life of Mine plan with 7-year production for 402,000oz of gold was announced to the ASX on 24 October 2022.

The Laverton Gold Project covers 384km² area of highly prospective ground that includes the historic Lancefield and Chatterbox Trend mines. Focus' priority target is to confirm sufficient gold mineralisation to support production restart at Laverton.

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Alex Aaltonen, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Aaltonen is an employee of Focus Minerals Limited. Mr Aaltonen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

The Mineral Resource estimates were undertaken by Ms Hannah Kosovich, an employee of Focus Minerals. Ms Hannah Kosovich is a member of Australian Institute of Geoscientists and has sufficient experience to qualify as a Competent Person as defined in the 2012 Edition of *the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.*

Mr Aaltonen and Ms Hannah Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 Greenfields Deposit

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	This report relates to results from Reverse Circulation (RC) drilling and
	diamond core (DD) drilling.
	• Focus Minerals Ltd (FML) RC percussion drill chips were collected at 1m intervals
	via a riffle splitter or through a cyclone and cone splitter to achieve a sample
	weight of approximately 3kg. Historically 2m composite samples were collected by
	spear sampling the bulk 1m sample. Where results returned greater than
	0.2g/t Au, the 1m samples were submitted.
	• For FML diamond core, sample intervals are either cut on metre intervals or with intervals selected to geological boundaries down to 10cm. Core is cut in half by diamond bladed saw with half sent to the laboratory and half retained in the core tray on site. Some of the diamond core has been 1/4 core sampled, this is only in
	the minority of cases.
	Coolgardie Gold NL (CGNL) collected 1m samples or 2m composites for RC
	holes, however, do not state their sub-sampling techniques.
	 CGNL diamond core was drilled at NQ size with an RC pre-collar. Half-core samples were selectively taken over 1m intervals.
	Gold Mines of Coolgardie (GMC) collected 1m RC samples from surface.
	 MPI collected 1m RC cuttings and were then passed through a trailer mounted cyclone and stand-alone riffle splitter to provide a 4-6kg sample.
	 Diamond core was drilled at NQ2 size and after orienting and logging, was ½ core sampled over the entire length of alteration zones up to a maximum of 1.5m length.
	 The Redemption JV (RJV) established between companies Goldfan Ltd, Croesus Mining NL, Matador Mining and Focus Minerals collected 1m RC samples from a
	trailer mounted cyclone and riffle splitter to achieve a sample weight of 4-6kg.
	 Diamond core was NQ2 sized and ½ core sampled from 0.3m to a maximum of 1.5m.
Drilling techniques	All FML drilling was completed using an RC face sampling hammer or NQ size
	diamond core. Diamond core was orientated by the drilling contractor using an
	Ezy-mark system. Most holes were surveyed upon completion of the drilling have either been surveyed by single-shot camera, electronic multi-shot (EMS) or
	Gyroscopic methods.
	 Historic RC holes were drilled using a face sampling hammer or NQ sized diamond core. Holes were surveyed by either EMS or single shot surveys. Diamond core was orientated using the Ezy-Mark system.
Drill sample recovery	FML Sample recovery was recorded by a visual estimate during the logging
	process.
	All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.
	 Diamond core recovery is recorded as core-loss however there were no core-loss
	• Diamond core recovery is recorded as core-ross nowever linere were no core-ross issues at Greenfields.
	 Sample recovery has been recorded in the drill hole logs for the diamond holes drilled by CGNL with no recovery issues. Historic RC drilling recovery is not recorded.
Logging	FML drill holes were logged for the entire length of the hole.
	• All diamond core samples were orientated, marked into metre intervals and compared to the depth measurements on the core blocks. Any core loss was noted and recorded in the database. All core was logged for structure and geology
	using the same system as RC. The core was photographed wet and dry one tray

	at a time uping a standardias dishata successivilia
	 at a time using a standardised photography jig. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. Logging was qualitative; however, the geologists often record quantitative mineral percentage ranges. Historic RC and Diamond holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. Original drill logs have been viewed and used to validate data stored in acQuire for a majority of the pre-Focus drilling.
Sub-sampling techniques and sample preparation	 FML diamond core samples were taken from half core or quarter core cut using an Almonte automatic core saw. The remainder of the core was retained in core trays. RC samples were riffle or cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. FML samples have been assayed by various laboratories, the 2021 and 2022 drill samples were sent to Jinnings Laboratory in Kalgoorlie for a 40g Fire Assay method with an AAS or ICP-OES finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Analytical methods for gold analysis for much of the historical drilling are 25g – 50g Fire Assay method and 50g Aqua Regia completed at various laboratories in Kalgoorlie and Perth.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. Earlier FML QAQC checks involved inserting a standard or blank every 20 samples in RC or diamond drilling and taking a field duplicate every 20 samples in RC. Field duplicates were collected from the cone splitter on the rig. Diamond core field duplicates were not taken, a minimum of 3 standards were inserted for every sample batch submitted. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. An umpire sampling program was carried out on a selection of samples from the 2022 RC drill program. Pulps from the primary Jinnings Laboratory analysis were sent to ALS Laboratory for check analysis. From the 321 check analyses, the correlation was generally very good, however did highlight the presence of nuggety gold at Greenfields. Very little in the way of quality control data is available from sampling of the historical drilling that currently defines the resource. In 2002 MPI resampled some of the CGNL diamond core with repeats showing high degree of grade variability with a slight upgrade in mean grade. RJV inserted a certified standard and a field blank every 20 samples, whilst the

	ALS Chemex laboratory in Kalgoorlie inserted a blank or certified standard every 20 samples and a duplicate every 10 samples. Drilling by Focus aimed to confirm the geometry of the ore envelope and grade tenor encountered in historical drilling.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. Historic holes were validated against paper copies and WAMEX reports where possible. The 2022 drill program highlighted inconsistences within a series of historic holes drilled by CGNL/GMC in 1995. From the results of further drilling and umpire assay results, 8 historic "GFC" series holes drilled by CGNL/GMC in 1995 were removed from the MRE. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data points	 All co-ordinates and bearings use the MGA94 Zone 51 grid system. FML drill collars were surveyed by DGPS base station instruments. Most of the RC and diamond holes have down hole surveys by either Eastman single shot camera, Electronic Multi-shot or Gyroscopic methods. CGNL used Surtron to carry out the downhole surveying.
Data spacing and distribution	 Drilling has been conducted on 20m by 10 – 15m spaced grid on sections orientated across strike of the ore zone at an azimuth of either 020° or 200° and at various dips. After mining commenced FML conducted RC Grade control drilling on a 10m x 10m staggered grid at different pit floor levels across the mineralisation, averaging 40m depth. Wider spaced drilling exists at depth up to as wide as 40m by 80m.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Drill holes were orientated at right angles to the strike of the deposit, with dip optimised for drill capabilities and dip of the mineralisation.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. Historic sample security is not recorded.
Audits or reviews	 Significant data validation was completed by consultants Hellmann and Schofield who completed a resource estimate in 2005. A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

(Criteria listed in the pre	ceding	g section al	so apply t	o this sect	tion)				
Criteria	Explanation								
Mineral tenement and land tenure status	Ltd	Ltd. and Focus Operations Pty Ltd of Perth, Western Australia and which is current until April 2027.							
	the	The Malinyu Ghoorlie 2017 and Maduwongga 2017 Claims cover the majority of the Coolgardie tenure. At this stage no Coolgardie claims have progressed to determined status.							
Exploration done by other parties	 Greenfields is a site of numerous historic workings including small pits a shafts, however no production figures are available for these workings. exploration by Coolgardie Gold NL includes trenching and multiple drill campaigns including RAB, RC and Diamond drilling. Gold Mines of Coc Pty Ltd (GMC), MPI Gold Pty Ltd and FML have also run drilling campa RC and Diamond at Greenfields. Mining at Greenfields OP has been completed in a number of campaigns: 								
		Company	From	То	Tonnes	Grade	Ounces		
		CGNL	Jul-86	May-88	435,000	1.6	22,377	1	
		Herald	Mar-90	Oct-96	367,000	1.86	21,947		
		MPI	Dec-03	Feb-05	633,431	1.68	34,214		
		FML	Oct-12	Jul-13	93,072	1.14	3,397		
			TOTAL		1,528,503	1.67	81,935		
Geology	unia Fro Na Zo L S UI A N h T fa Gold Min britt S Gold Min britt S C Ve Ve	t of the Three m footwall to on mineralise ne. Iltramafic von Structurally re olcaniclastic Sheared Blac nits from the Syncline de IW and SE s osted minera The majority of otwall sheau Mile Sill equiv ntrusion is do ub-units inclu I Mineralisation is the-ductile fra flat dipping to teep dipping e structural s cenopyrite su ins display c	e Mile Sill. hangingwa d units com lcanics peated seq s, k Flag volca hangingwal fined by fold ides of the open r zone. The valent differed olerite. The uding signifi- fon s hosted by to the south to the south sets host Bu ulphides and rack seal te.	Il the geolo oprising the uence of sh aniclastics. I to the foot ded Black F open pit. Th ough the ce pit is situate entiated laye central part cantly mine a quartz ve e structural west and, hwest cky quartz v sometimes xtures and a	in the Greenfi gy of the Gree steeply south heared ultrama wall shear zor lag Volcanicla his syncline pr ntral parts of te ad on the hang all is compose ered intrusion. t of the intrusion ralised G2 Ga in stockwork to sets are domi veins have ac s visible gold is are commonly v bleached over	enfields ope west dippir afics and o ne: stics is not resumably the now mi gingwall of d predomin The chill on compris abbro unit. hat exploits nantly: cessory py s observed weakly we	en pit compr ng footwall s verlying Blac ted at the up overlaid gab ned open pit the unminer nantly of Thi margin of th es variable g s a conjugate s a conjugate rrhotite and l	rises: hear ck Flag oper obro t. ralized ree e gabbro e set of e set of	

		Explanation										
Drill hole Information	reports. Not a However, cro database. Mo	 Historic drilling information has been validated against publicly available WAMEX reports. Not all drill holes can be found referenced in the WAMEX reports. However, cross-checking of original drill surveys was verified against the database. Most of these holes were drilled in the excavated pit area and has been depleted from the reported resource. 										
	Company	Drill Hole Number	WAMEX Report A- Number	WAMEX Report Date								
	Coolgardie	GFC002, GFC003, GFC005, GFC006, GFC007, GFC009, GFC010, GFC011, GFC013, GFC014, GFC015, GFC017, GFC018, GFC019, GFC021, GFC022, GFC023, GFC025, GFC026, GFC027, GFC028, GFC030, GFC031, GFC033, GFC034, GFC036, GFC037, GFC039, GFC040, GFC042, GFC043, GFC044, GFC048, GFC050, GFC051, GFC052, GFC054, GFC061, GFC062, GFC065, GFC073, GFC075, GFC076, GFC077, GFC079	17821	Apr-86								
	Gold NL	GFD093, GFD094, GFD095, GFD096, GFD097, GFD098, GFD099, GFD100, GFD101, GFD102, GFD103, GFD104, GFD105, GFD106, GFD107, GFD108, GFD109, GFD110, GFD111, GFD112, GFD113, GFD114, GFD115,	27478	01-Apr-89								
		GFW119, GFW120	30743	01-May-90								
		GFC119, GFC120, GFC122,GFC124, GFC126, GFC127, GFC128, GFC129, GFC130, GFC131, GFC132, GFC133, GFC134, GFC135, GFC136, GFC143, GFC144, GFC145, GFC146	44537	01-May-95								
	GMC	8GFC147, GFC148, GFC150, GFC151, GFC155, GFC156, GFC157, GFC158, GFC159	48019	01-May-96								
		GFC160, GFC161, GFC162, GFC164, GFC165, GFC166, GFC167, GFC168	52248	01-Sep-97								
	MPI	GFD432, GFD433	66091	01-Feb-03								
		GFR429, GFR430, GFR431, GFR434	66091	01-Feb-03								
	Redemption JV	GFDD30160-1, GFDD30220-1, GFDD30300- 1, GFDD30340-1	74513	28-Feb-07								
		GFRC29990-1, GFRC30060-1, GFRC30100-1, GFRC30120-1, GFRC30340-2, GFRC30340-3	74513	28-Feb-07								
	Focus Minerals Ltd	TMHCD0009, TMHCD0011, TMHCD0017, TMHCD0018 TMHDD0019, TMHDD0020, TMHDD0021, TMHDD0022, TMHDD0023	92766	09-Feb-11								

Criteria						Exp	lana	tion			
	 Previ 	ously re	portea	l dri	lling	informati	ion N	OT ava	ilable on W	AMEX re	eports:
			Dri	ll Ho	le ID				ASX Relea	se Title	Date
	GRC350-0	001, GRC	350-00)2, G	RC35	55-008, G	RC35	5-013,	Measu	ired	6-Aug-22
	GRC355-0								Resources	Growth	
	GRC355-0	,						,	at Green	fields	
	GRC355-0										
	GRC355-0										
	GRC355-0 GRC360-0	,		'		,		,			
	GRC360-0										
	GRC360-0										
	GRC360-0							,			
	GRC360-0							,			
	GRC360-0										
	GRC360-0)31, GRC	360-03	82, G	RC36	50-033 <i>,</i> G	RC36	D-034,			
	GRC360-0)35 <i>,</i> GRC	360-03	86, G	RC36	60-038 <i>,</i> G	RC36	D-039,			
	GRC360-0										
	GRC360-0										
	GRC360-0	,		,		,		,			
	GRC370-0										
	GRC370-0							,			
	GRC370-0 GRC370-0										
	GRC370-0										
	GRC370-0							,			
	GRC370-0										
	GRC370-0										
	GRC370-0	,						,			
	GRC370-0	041, GRC	370-04	12, G	RC37	70-047, G	RC37	0-049,			
	GRC370-0)50 <i>,</i> GRC	370-05	51, G	RC36	50-021, G	RC36)-022,			
	GRC360-0										
	GRC360-0										
	GRC355-0							,			
	GRC350-0 GRC350-0										
	GRC355-0										
	GRC355-0										
	GT355-00										
	GT355-00							,			
	GFD032,	GFD035,	GFD03	38 <i>,</i> G	iFD04	41, GFD04	19, GF	D053,			
	GFD055,	GFD057,	GFD06	64, G	iFD06	56, GFD06	58, GF	D069,			
	GFD078,	,									
	GFD086,	GFD087,	GFD08	38 <i>,</i> G	iFD08	89, GFD09	90, GF	D091,			
	GFD092										
	• 2022	FML hol	les not	t pul	blicly	' availabl	e on	WAME.	X:		
	Hole ID E	asting No			Dip	Azimuth	EOH		Inte	rsection	
	Greenfields	(MGA 94			ficant	(MGA94)	(m)	culated -	at 0 5c /+ A	t off an un	to 3m internal
	Greenneids	ne grade	control	signi	ncan		ons ca ilutior		at 0.5g/t Au Cu	t on an up	to 3m internal
	22GFRC001 3	28197 6	576424	358	-60	19.0		Abandone	d collar collapsing		
									2 - 1.00m @ 0.57 2 - 5.00m @ 0.86	-	
	22GFRC002 3	28187 6	576386	355	-52.4	29.9	102		12 - 5.00m @ 0.86 12 - 1.00m @ 0.83		
								22GFRC00	12 - 6.00m @ 0.7g	/t from 42m f	or (GxM 4)
	-						I	22GFRC00	12 - 10.00m @ 1.4	5g/t from 71	n tor (GxM 15)

Criteria						Exp	lana	tion
	Hole ID	= -	Northing 94Zone 5		Dip	Azimuth (MGA 94)	EOH (m)	Intersection
	Greenfiel	ds RC gra	de control	sign	ifican			lculated at 0.5g/t Au cut off an up to 3m internal
	22 GFR COD3	328160	6576394	354	-51.6	d	ilution 108	22GFRC003 - 1.00m @ 0.98g/t from 7m for (GxM 1) 22GFRC003 - 5.00m @ 1.55g/t from 13m for (GxM 8) 22GFRC003 - 1.00m @ 6.32g/t from 30m for (GxM 6) 22GFRC003 - 1.00m @ 1.82g/t from 30m for (GxM 2) 22GFRC003 - 5.00m @ 0.58g/t from 40m for (GxM 3) 22GFRC003 - 2.00m @ 1.92g/t from 58m for (GxM 3) 22GFRC003 - 2.00m @ 0.71g/t from 69m for (GxM 1) 22GFRC003 - 2.00m @ 1.91g/t from 75m for (GxM 4)
	22GFRC004	328158	6576383	355	-62.9	20.5	132	22GFRC003 - 23.00m @ 1.02g/t from 81m for (GxM 23) 22GFRC004 - 1.00m @ 1.74g/t from 6m for (GxM 2) 22GFRC004 - 1.00m @ 0.59g/t from 12m for (GxM 1) 22GFRC004 - 6.00m @ 0.57g/t from 28m for (GxM 1) 22GFRC004 - 1.00m @ 0.57g/t from 28m for (GxM 1) 22GFRC004 - 1.00m @ 0.54g/t from 39m for (GxM 1) 22GFRC004 - 1.00m @ 1.31g/t from 39m for (GxM 1) 22GFRC004 - 1.00m @ 1.31g/t from 53m for (GxM 2) 22GFRC004 - 2.00m @ 1.04g/t from 78m for (GxM 2) 22GFRC004 - 2.00m @ 1.52g/t from 78m for (GxM 1) 22GFRC004 - 8.00m @ 3.26g/t from 86m for (GxM 2) 22GFRC004 - 6.00m @ 1.21g/t from 98m for (GxM 1) 22GFRC004 - 6.00m @ 1.21g/t from 113m for (GxM 1) 22GFRC004 - 8.00m @ 1.63g/t from 1124m for (GxM 1)
	22 GFR COD5	328122	6576404	351	-66.0	17.8	126	22GFRC005 - 2.00m @ 0.91g/t from 8m for (GxM 2) 22GFRC005 - 1.00m @ 1.16g/t from 16m for (GxM 1) 22GFRC005 - 1.00m @ 0.93g/t from 26m for (GxM 1) 22GFRC005 - 1.00m @ 0.61g/t from 71m for (GxM 1) 22GFRC005 - 1.00m @ 0.52g/t from 87m for (GxM 1) 22GFRC005 - 6.00m @ 0.55g/t from 96m for (GxM 3) 22GFRC005 - 12.00m @ 0.78g/t from 106m for (GxM 9) 22GFRC005 - 5.00m @ 0.56g/t from 120m for (GxM 5) 22GFRC005 - 1.00m @ 3.57g/t from 48m for (GxM 4)
	22 GFR C 006	328099	6576411	350	-59.8	18.0	114	22GFRC006 - 8.00m @ 0.59g/t from 60m for (GXM 5) 22GFRC006 - 8.00m @ 0.59g/t from 60m for (GXM 5) 22GFRC006 - 8.00m @ 0.64g/t from 87m for (GXM 5) 22GFRC006 - 7.00m @ 2.42g/t from 107m for (GXM 17)
	22 GFR COD7	328080	6576422	350	-61.2	16.7	114	22GFRC007 - 1.00m @ 0.84g/t from 13m for (GxM 1) 22GFRC007 - 4.00m @ 0.75g/t from 35m for (GxM 3) 22GFRC007 - 1.00m @ 0.84g/t from 43m for (GxM 1) 22GFRC007 - 2.00m @ 1.75g/t from 57m for (GxM 4) 22GFRC007 - 5.00m @ 1.8g/t from 74m for (GxM 9) 22GFRC007 - 5.00m @ 3.23g/t from 95m for (GxM 16) 22GFRC007 - 11.00m @ 1.05g/t from 103m for (GxM 12)
	22 GFR C 008	328041	6576445	349	-57.4	23.6	108	22GFRC008 - 3.00m @ 12.3g/t from 0m for (GxM 37) 22GFRC008 - 1.00m @ 0.94g/t from 13m for (GxM 1) 22GFRC008 - 1.00m @ 0.68g/t from 30m for (GxM 1) 22GFRC008 - 1.00m @ 0.67g/t from 40m for (GxM 1) 22GFRC008 - 5.00m @ 1.44g/t from 48m for (GxM 7) 22GFRC008 - 2.00m @ 1.49g/t from 57m for (GxM 3) 22GFRC008 - 13.00m @ 0.78g/t from 66m for (GxM 10) 22GFRC008 - 23.00m @ 0.8g/t from 85m for (GxM 18)
	22GFRC009	328028	6576463	350	-53.9	25.0	90	22GFRC009 - 1.00m @ 0.52g/t from 10m for (GxM 1) 22GFRC009 - 16.00m @ 2.93g/t from 23m for (GxM 47) 22GFRC009 - 13.00m @ 0.8g/t from 44m for (GxM 10) 22GFRC009 - 9.00m @ 0.73g/t from 62m for (GxM 7) 22GFRC009 - 7.00m @ 0.58g/t from 76m for (GxM 4)
	22GFRC010	328012	6576477	349	-61.3	27.3	72	22GFRC010 - 25.00m @ 0.92g/t from 2m for (GxM 23) 22GFRC010 - 1.00m @ 0.5g/t from 33m for (GxM 1) 22GFRC010 - 4.00m @ 1.37g/t from 64m for (GxM 5)
	22GFRC011	328004	6576498	349	-60.1	20.3	60	22GFRC011 - 3.00m @ 1.68g/t from 1m for (GxM 5) 22GFRC011 - 7.00m @ 1.22g/t from 14m for (GxM 9) 22GFRC011 - 1.00m @ 1.62g/t from 25m for (GxM 2) 22GFRC011 - 1.00m @ 1.43g/t from 34m for (GxM 1) 22GFRC011 - 7.00m @ 0.54g/t from 46m for (GxM 4)
	22GFRC012	327998	6576485	350	-61.0	16.1	66	22GFRC012 - 1.00m @ 0.74g/t from 5m for (GxM 1) 22GFRC012 - 3.00m @ 2.89g/t from 10m for (GxM 9) 22GFRC012 - 12.00m @ 0.8g/t from 17m for (GxM 10) 22GFRC012 - 2.00m @ 0.82g/t from 36m for (GxM 2)
	22GFRC013	328041	6576434	349	-60.8	24.8	120	22GFRC013 - 1.00m @ 1.96g/t from 5m for (GxM 2) 22GFRC013 - 1.00m @ 0.52g/t from 53m for (GxM 1) 22GFRC013 - 1.00m @ 0.52g/t from 72m for (GxM 1) 22GFRC013 - 39.00m @ 1.46g/t from 81m for (GxM 57)

Hole ID		Northing	•	Dip	Azimuth	EOH	Intersection
Greenfield		94 Zone 5	_	ifican	(MGA94) t Intersectio	(m)	culated at 0.5g/t Au cut off an up to 3m internal
Greennen	us ne gia	ue control	SIGII	incan		ilution	
			1		u	liution	22GFRC014 - 1.00m @ 1.71g/t from 0m for (GxM 2)
							22GFRC014 - 4.00m @ 1.84g/t from 5m for (GxM 7)
							22GFRC014 - 1.00m @ 0.6g/t from 31m for (GxM 1)
22GFRC014	220020	6576450	250	50.4	10.0	114	22GFRC014 - 1.00m @ 0.82g/t from 39m for (GxM 1)
220FRC014	526020	03/0430	350	-59.4	18.6	114	22GFRC014 - 12.00m @ 2.15g/t from 58m for (GxM 26)
							22GFRC014 - 13.00m @ 1.59g/t from 74m for (GxM 21)
							22GFRC014 - 1.00m @ 0.8g/t from 91m for (GxM 1)
							22GFRC014 - 5.00m @ 2.72g/t from 96m for (GxM 14)
							22GFRC015 - 9.00m @ 1.02g/t from 6m for (GxM 9)
					10.0		22GFRC015 - 1.00m @ 2.6g/t from 55m for (GxM 3)
22GFRC015	328115	6576409	350	-60.1	19.6	114	22GFRC015 - 1.00m @ 3.95g/t from 61m for (GxM 4)
							22GFRC015 - 15.00m @ 0.99g/t from 67m for (GxM 15) 22GFRC015 - 27.00m @ 1.03g/t from 87m for (GxM 28)
							22GFRC016 - 2.00m @ 6.62g/t from 21m for (GXM 28)
							22GFRC016 - 16.00m @ 9.21g/t from 38m for (GxM 13)
22GFRC016	328176	6576390	355	-51.5	19.1	102	22GFRC016 - 5.00m @ 1.25g/t from 59m for (GxM 6)
							22GFRC016 - 13.00m @ 4.84g/t from 70m for (GxM 63)
							22GFRC016 - 1.00m @ 13.09g/t from 87m for (GxM 13)
							22GFRC017 - 1.00m @ 0.97g/t from 11m for (GxM 1)
							22GFRC017 - 2.00m @ 0.83g/t from 23m for (GxM 2)
							22GFRC017 - 1.00m @ 1.96g/t from 47m for (GxM 2)
22GFRC017	328172	6576389	355	-60.4	18.3	120	22GFRC017 - 1.00m @ 1.66g/t from 62m for (GxM 2)
							22GFRC017 - 20.00m @ 1.51g/t from 68m for (GxM 30)
							22GFRC017 - 1.00m @ 0.59g/t from 94m for (GxM 1)
							22GFRC017 - 10.00m @ 1.42g/t from 99m for (GxM 14)
							22GFRC018 - 1.00m @ 1.36g/t from 7m for (GxM 1)
22GFRC018	328188	6576418	358	-60.3	13.9	78	22GFRC018 - 7.00m @ 1.28g/t from 17m for (GxM 9)
							22GFRC018 - 1.00m @ 1.47g/t from 28m for (GxM 1)
							22GFRC018 - 23.00m @ 1.98g/t from 38m for (GxM 46)
							22GFRC019 - 1.00m @ 0.63g/t from 2m for (GxM 1)
		6576452	350	505			22GFRC019 - 1.00m @ 1.44g/t from 20m for (GxM 1)
22GFRC019	328034			-50.5	.5 28.7	102	22GFRC019 - 1.00m @ 3.87g/t from 27m for (GxM 4)
							22GFRC019 - 1.00m @ 1.17g/t from 40m for (GxM 1)
							22GFRC019 - 44.00m @ 0.94g/t from 54m for (GxM 41)
							22GFRC020 - 1.00m @ 57.36g/t from 36m for (GxM 57)
22GFRC020	328057	6576433	349	-63.7	18.1	120	22GFRC020 - 1.00m @ 0.9g/t from 58m for (GxM 1)
			1				22GFRC020 - 34.00m @ 1.46g/t from 68m for (GxM 50)
22GFRC021	328062	6576429	240	-52.0	12.0	12	22GFRC020 - 11.00m @ 0.7g/t from 107m for (GxM 8)
ZZGFRCUZI	328002	0370429	549	-52.0	12.0	12	22GFRC021 - 1.00m @ 2.82g/t from 5m for (GxM 3) 22GFRC022 - 4.00m @ 18.86g/t from 4m for (GxM 75)
							22GFRC022 - 4.00m @ 18.80g/t from 13m for (GxM 4)
22GFRC022	328064	6576429	349	-51.0	28.5	114	22GFRC022 - 2.00m @ 0.9g/t from 55m for (GxM 2)
2201110022	520004		545	-51.0	20.5	114	22GFRC022 - 1.00m @ 1.16g/t from 62m for (GxM 1)
							22GFRC022 - 33.00m @ 1.68g/t from 75m for (GxM 55)
							22GFRC023 - 1.00m @ 1.5g/t from 80m for (GxM 2)
							22GFRC023 - 1.00m @ 1.13g/t from 97m for (GxM 1)
22GFRC023	328069	6576415	350	-51.0	323.1	120	22GFRC023 - 1.00m @ 2.02g/t from 105m for (GxM 2)
							22GFRC023 - 1.00m @ 0.5g/t from 110m for (GxM 1)
							22GFRC023 - 1.00m @ 0.77g/t from 119m for (GxM 1)
							22GFRC024 - 1.00m @ 1.43g/t from 3m for (GxM 1)
							22GFRC024 - 1.00m @ 0.94g/t from 21m for (GxM 1)
							22GFRC024 - 1.00m @ 2.21g/t from 27m for (GxM 2)
							22GFRC024 - 5.00m @ 0.89g/t from 53m for (GxM 4)
22GFRC024	328097	6576409	350	-51.4	320.4	120	22GFRC024 - 2.00m @ 1.6g/t from 62m for (GxM 3)
							22GFRC024 - 1.00m @ 2.21g/t from 81m for (GxM 2)
							22GFRC024 - 1.00m @ 0.62g/t from 94m for (GxM 1)
							22GFRC024 - 3.00m @ 1.19g/t from 101m for (GxM 4) 22GFRC024 - 5.00m @ 0.8g/t from 115m for (GxM 4)
							22GFRC025 - 5.00m @ 0.52g/t from 21m for (GxM 3)
							22GFRC025 - 1.00m @ 0.65g/t from 37m for (GxM 1) 22GFRC025 - 1.00m @ 1.3g/t from 48m for (GxM 1)
							22GFRC025 - 1.00m @ 1.3g/t from 48m for (GXM 1) 22GFRC025 - 1.00m @ 0.51g/t from 56m for (GXM 1)
							22GFRC025 - 1.00m @ 0.51g/t from 56m for (GXM 1) 22GFRC025 - 2.00m @ 2.03g/t from 78m for (GXM 4)
22GFRC025	328114	6576403	350	-52.2	322.7	150	22GFRC025 - 2.00m @ 2.05g/t from 98m for (GxM 1)
220110023	220114	0570405	1	55.5	522.1	100	22GFRC025 - 1.00m @ 0.5g/t from 100m for (GxM 1)
							22GFRC025 - 10.00m @ 1.04g/t from 109m for (GxM 1)
							22GFRC025 - 4.00m @ 0.77g/t from 123m for (GxM 3)
							22GFRC025 - 1.00m @ 2.12g/t from 137m for (GxM 2)
							22GFRC025 - 7.00m @ 0.66g/t from 143m for (GXM 5)
			-				22GFRC025 - 7.00m @ 0.00g/t from 145m lot (GXM 5)
							22GFRC026 - 1.00m @ 0.51g/t from 27m for (GxM 1)
							22GFRC026 - 1.00m @ 0.67g/t from 32m for (GxM 1)
							22GFRC026 - 1.00m @ 0.52g/t from 44m for (GXM 1)
22GFRC026	328126	6576400	351	-58.4	30.2	120	22GFRC026 - 1.00m @ 18.02g/t from 51m for (GxM 18)
			1	I			
							27(3FR(.076 - 71.00m @ 0.67g/t trom ×3m tor (390/1-20
							22GFRC026 - 21.00m @ 0.67g/t from 83m for (GxM 14) 22GFRC026 - 2.00m @ 1.36g/t from 111m for (GxM 3)
							22GFRC026 - 21.00m @ 0.67g/t from 83m for (GXM 14) 22GFRC026 - 2.00m @ 1.36g/t from 111m for (GXM 3) 22GFRC026 - 1.00m @ 0.59g/t from 118m for (GXM 1)

Hole ID		Northing	-	Dip			Intersection
Currential		94 Zone 5	_	: 6 :	(MGA94)	(m)	
Greenfield	ds RC gra	de control	sign	ifican			culated at 0.5g/t Au cut off an up to 3m interr
	1		<u> </u>	1	a	ilution	22GFRC027 - 1.00m @ 1.39g/t from 10m for (GxM 1)
							22GFRC027 - 1.00m @ 0.65g/t from 22m for (GxM 1)
						450	22GFRC027 - 1.00m @ 0.91g/t from 43m for (GxM 1)
22GFRC027	328164	6576375	355	-52.7	323.4	156	22GFRC027 - 1.00m @ 5.14g/t from 98m for (GxM 5)
							22GFRC027 - 1.00m @ 0.52g/t from 117m for (GxM 1)
							22GFRC027 - 12.00m @ 2.28g/t from 144m for (GxM 27
							22GFRC028 - 6.00m @ 0.69g/t from 18m for (GxM 4)
							22GFRC028 - 1.00m @ 0.81g/t from 39m for (GxM 1)
22GFRC028	328145	6576384	354	-51.3	325.0	156	22GFRC028 - 1.00m @ 0.73g/t from 42m for (GxM 1)
							22GFRC028 - 2.00m @ 1.48g/t from 71m for (GxM 3)
							22GFRC028 - 18.00m @ 3.26g/t from 131m for (GxM 59
							22GFRC029 - 1.00m @ 0.96g/t from 16m for (GxM 1)
							22GFRC029 - 1.00m @ 0.54g/t from 46m for (GxM 1)
							22GFRC029 - 1.00m @ 0.66g/t from 53m for (GxM 1)
							22GFRC029 - 1.00m @ 0.69g/t from 77m for (GxM 1)
22GFRC029	328186	6576368	356	-52.3	323.6	156	22GFRC029 - 1.00m @ 0.82g/t from 82m for (GxM 1)
							22GFRC029 - 2.00m @ 0.66g/t from 91m for (GxM 1)
							22GFRC029 - 1.00m @ 0.68g/t from 109m for (GxM 1)
							22GFRC029 - 1.00m @ 1.36g/t from 129m for (GxM 1)
			-			-	22GFRC029 - 9.00m @ 1.09g/t from 142m for (GxM 10)
							22GFRC030 - 2.00m @ 0.63g/t from 13m for (GxM 1)
							22GFRC030 - 4.00m @ 2.15g/t from 16m for (GxM 9)
							22GFRC030 - 1.00m @ 0.92g/t from 51m for (GxM 1)
							22GFRC030 - 1.00m @ 1.43g/t from 59m for (GxM 1)
							22GFRC030 - 1.00m @ 0.94g/t from 74m for (GxM 1)
22GFRC030	378100	6576368	356	-57.1	327.5	156	22GFRC030 - 1.00m @ 0.58g/t from 80m for (GxM 1) 22GFRC030 - 1.00m @ 0.95g/t from 87m for (GxM 1)
220FRC030	526190	6576368	356	-37.1	527.5	120	22GFRC030 - 1.00m @ 0.5g/t from 105m for (GXM 1)
							22GFRC030 - 1.00m @ 0.56g/t from 105m for (GXM 1)
							22GFRC030 - 1.00m @ 0.92g/t from 128m for (GxM 1)
							22GFRC030 - 1.00m @ 0.52g/t from 122m for (GxM 1)
							22GFRC030 - 1.00m @ 0.71g/t from 136m for (GxM 1)
							22GFRC030 - 8.00m @ 0.88g/t from 148m for (GxM 7)
							22GFRC031 - 1.00m @ 1.65g/t from 14m for (GxM 2)
							22GFRC031 - 5.00m @ 0.57g/t from 33m for (GxM 3)
							22GFRC031 - 1.00m @ 0.61g/t from 44m for (GxM 1)
							22GFRC031 - 2.00m @ 0.64g/t from 63m for (GxM 1)
22GFRC031	328192	6576367	356	-59.6	339.5	133	22GFRC031 - 1.00m @ 0.85g/t from 82m for (GxM 1)
							22GFRC031 - 1.00m @ 0.55g/t from 93m for (GxM 1)
							22GFRC031 - 7.00m @ 0.75g/t from 97m for (GxM 5)
							22GFRC031 - 1.00m @ 1.67g/t from 118m for (GxM 2)
							22GFRC031 - 5.00m @ 0.62g/t from 126m for (GxM 3)
							22GFRC032 - 2.00m @ 0.75g/t from 3m for (GxM 2)
							22GFRC032 - 1.00m @ 1.31g/t from 31m for (GxM 1)
							22GFRC032 - 5.00m @ 0.53g/t from 49m for (GxM 3)
							22GFRC032 - 1.00m @ 0.59g/t from 65m for (GxM 1)
22GFRC032	328020	6576466	350	- 83 0	28.3	150	22GFRC032 - 1.00m @ 0.62g/t from 68m for (GxM 1) 22GFRC032 - 4.00m @ 0.58g/t from 82m for (GxM 2)
2201 100002	520020	0570400	550	05.0	20.5	100	22GFRC032 - 4.00m @ 0.38g/t from 82m for (GXM 2)
							22GFRC032 - 1.00m @ 1.51g/t from 99m for (GXM 1)
							22GFRC032 - 1.00m @ 0.65g/t from 108m for (GxM 1)
							22GFRC032 - 5.00m @ 1.64g/t from 123m for (GxM 8)
			L	L			22GFRC032 - 4.00m @ 0.92g/t from 133m for (GxM 4)
							22GFRC033 - 1.00m @ 0.59g/t from 4m for (GxM 1)
							22GFRC033 - 1.00m @ 1.85g/t from 21m for (GxM 2)
22GFRC033	220027	6576454	250	60.0	0.2	92	22GFRC033 - 5.00m @ 0.83g/t from 38m for (GxM 4)
∠∠GFRCU33	528027	03/0454	350	-60.6	0.3	92	22GFRC033 - 2.00m @ 0.91g/t from 61m for (GxM 2)
							22GFRC033 - 13.00m @ 1.58g/t from 68m for (GxM 21)
							22GFRC033 - 1.00m @ 0.85g/t from 87m for (GxM 1)
							22GFRC034 - 4.00m @ 0.58g/t from 60m for (GxM 2)
							22GFRC034 - 4.00m @ 1.07g/t from 68m for (GxM 4)
22GFRC034	328034	6576446	350	-67.4	22.8	132	22GFRC034 - 1.00m @ 1.07g/t from 87m for (GxM 1)
							22GFRC034 - 12.00m @ 0.72g/t from 93m for (GxM 9)
				I			22GFRC034 - 20.00m @ 0.82g/t from 112m for (GxM 16
22GFRC035	328056	6576439	349	-59.2	23.6	114	22GFRC035 - 2.00m @ 1.37g/t from 44m for (GxM 3)
				<u> </u>			22GFRC035 - 49.00m @ 2.3g/t from 65m for (GxM 113)
							22GFRC036 - 1.00m @ 1.44g/t from 13m for (GxM 1)
							22GFRC036 - 3.00m @ 1.98g/t from 26m for (GxM 6)
							22GFRC036 - 2.00m @ 1.16g/t from 35m for (GxM 2)
							22GFRC036 - 1.00m @ 2.16g/t from 67m for (GxM 2)
22GFRC036	328071	6576425	350	-65.5	21.4	138	22GFRC036 - 3.00m @ 0.82g/t from 75m for (GxM 2)
							22GFRC036 - 2.00m @ 0.74g/t from 81m for (GxM 1)
							22GFRC036 - 1.00m @ 0.54g/t from 85m for (GxM 1)
							22GFRC036 - 1.00m @ 1.15g/t from 88m for (GxM 1)
			L				22GFRC036 - 25.00m @ 1.31g/t from 94m for (GxM 33) 22GFRC036 - 10.00m @ 1.04g/t from 128m for (GxM 10
							22GENCUSD - 10.00111 (# 1.048/L 110111 128111 101 (GXIVI J

Criteria	Explanation												
	Hole ID		Northing		Dip	Azimuth	EOH	Intersection					
			94 Zone 5			(MGA94)	(m)						
	Greenfields RC grade control significant Intersections calculated at 0.5g/t Au cut off an up to 3m internal dilution												
		Г	1	1		a	liutior	22GFRC037 - 1.00m @ 0.52g/t from 9m for (GxM 1)					
	220500027	220107	6576445	250	co 7	22.2		22GFRC037 - 1.00m @ 1.27g/t from 12m for (GxM 1)					
	22GFRC037	328107	6576415	350	-60.7	23.3	98	22GFRC037 - 1.00m @ 1.98g/t from 17m for (GxM 2)					
								22GFRC037 - 38.00m @ 0.66g/t from 60m for (GxM 25)					
								22GFRC038 - 1.00m @ 1.31g/t from 10m for (GxM 1)					
								22GFRC038 - 1.00m @ 4.88g/t from 19m for (GxM 5)					
	22GFRC038	328105	6576409	350	-68.0	24.2	126	22GFRC038 - 1.00m @ 0.56g/t from 80m for (GxM 1)					
	2201110030	520105	0570405	550	-00.0	24.2	120	22GFRC038 - 1.00m @ 0.63g/t from 109m for (GxM 1)					
								22GFRC038 - 2.00m @ 3.44g/t from 114m for (GxM 7)					
								22GFRC038 - 6.00m @ 0.67g/t from 120m for (GxM 4)					
								22GFRC039 - 11.00m @ 0.6g/t from 14m for (GxM 7)					
								22GFRC039 - 1.00m @ 0.78g/t from 33m for (GxM 1)					
	22GFRC039	328185	6576385	355	-64.2	27.9	104						
								22GFRC039 - 25.00m @ 1.65g/t from 70m for (GxM 41)					
				-				22GFRC039 - 4.00m @ 0.62g/t from 97m for (GxM 2)					
								22GFRC040 - 1.00m @ 0.59g/t from 29m for (GxM 1) 22GFRC040 - 5.00m @ 0.59g/t from 34m for (GxM 3)					
	22GFRC040	328178	8 6576370	255	-63.2	19.0	148						
		526176		333	-05.2		140	22GFRC040 - 1.00m @ 0.52g/t from 71m of (GxM 1) 22GFRC040 - 20.00m @ 0.53g/t from 89m for (GxM 11)					
								22GFRC040 - 23.00m @ 1.22g/t from 113m for (GxM 11)					
Data aggregation methods		orting v				•		a 0.5g/t Au cut-off with a minimum .2m for diamond holes, composited to					
Relationship between				o utla			a rali						
•								sation as much as possible, however the					
mineralisation widths and					veen	intercep	t widi	th and true width cannot be estimated					
intercept lengths	exa	ctly in a	all cases										
		-											
Diagrams	 Refe 	er to Fig	gures and	d Ta	bles	in body	of the	e release.					
Balanced reporting	• All d	rill assa	av results	: 115	ed in	this esti	matic	on are published in previous news					
Dalahood roporting	relea		ly roound	, ao	00 ///		maine						
	reiea	ises.											
	 Hist 	oric dri	ll hole re	sult	s ava	ailable or	n WA	MEX.					
	• Ther	re is no	other ma	ater	ial ex	coloration	n data	a to report at this time.					
Other substantive			2										
Other substantive exploration data Further work		aration	s to resu	ıme	ope	n pit mini	ing ai	t Greenfields in June 2023 are					
exploration data	• Prep	aration erway		ıme	ope	n pit mini	ing a	t Greenfields in June 2023 are					

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Explanation
Database integrity	 Data was geologically logged electronically; collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields. The historical Greenfields drill data was validated by the Focus data management team and the Project Geologist. This involved collaborating all collar, downhole survey, geology and assay data with existing hardcopy material as well as displaying the holes in three dimensions in Surpac to determine any unusual or unlikely trends in the data so that it could be rectified before loading into the Focus site database. This process was thorough and took a couple of months for the team to complete.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and last visited site in February 2014.
Geological interpretation	 Minor changes were made to the geological interpretation from the August 2022 Mineral Resource release. All available drill hole, mining data and pit mapping was used to guide the geological interpretation of the mineralisation. The mineralised geological interpretation was generated in Seequent Leapfrog Geo implicit modelling software. An approximate 0.5ppm Au cut-off was implemented. The primary mineralisation is hosted in a set of 25 stacked lodes moderately dipping ~ 30° towards 200°. A secondary interpretation of seven stacked steep lodes that dip 50° towards 190° that terminate at the footwall contact of the dolerite-black flag volcanic unit (dipping 75° towards 201°) in the northern part of the pit. Minor deviation of the lode geometry was modelled between drill holes down dip and along strike.
Dimensions	The Mineral Resource extends over a NW strike length of over 480m and includes the ~150m interval from the base of the final mined surface down to the

	150mRL, some 250m below surface. The thickness of the seven steeper lodes
	vary from average thickness of 20m near surface pinching to an average thickness of 3m at depth. The 25 flatter lying lodes vary from 1m to 8m wide have an average thickness of 3m.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run using Datamine software, following the process below: Drill hole samples were selected within the mineralised lodes and composited to 'm downhole intervals, the dominant sample interval from historic drilling. Residual samples that did not meet the minimum length criteria (less than 0.2m) of the compositing process were appended to the adjacent sample so that all material within the wireframe was included. Where the steeper lodes intersected the shallow dipping lodes near surface 10m soft boundaries were used. Meaning within the steep lodes the grade at the intersection points of the flat is used in the estimate within a 10m radius. The composited data was imported into Supervisor software for statistical and geostatistical analysis. After a review of the individual lode statistics, higher Au samples that were outliers to the main population were "top-capped" to a selected value for each lode. An average of 10ppm Au was used with a maximum of 22ppm Au. Variography was performed on the individual lodes with larger sample numbers - 150 samples. Lodes without variography shared the structure from a nearby lode. Thirty variograms were modelled. The back-transformed variogram models had moderate to high nugget effects (20 to 60% of total sill), with a range from 20m to 200m for the lodes. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 10 mE x 5 mN x 5 mRL – this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. No rotation was applied to the samples within the steep lodes. Meaning data was shared between the intersecting lodes up to a 10m radius. Outside this 10m search distance only samples within the steep lodes. Meaning at was shared between the intersecting lodes up to a 10m radius. Outside this 10m search distan
	estimate was honouring the trends of the data. Also, a review of the output

	parameters from the estimation process like kriging variance, negative
	weights, search distances and sample numbers.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	• The Resources for Greenfields have been reported above a 0.6g/t cut-off for the V23 open pit design.
Mining factors or assumptions	 An existing open pit exists at Greenfields, mining would continue by cut-back and open cut extraction. The V23 Greenfields open pit design is considered the ultimate open pit design for Greenfields and represents the maximum amount of open pit extraction possible within the area available for open pit mining.
Metallurgical factors or assumptions	 Metallurgical testwork has been conducted on Greenfields samples: Historical recoveries in a variety of tests (N=13) average more than 95%gold recovery. Recent testwork to simulate processing at TMH on composite representative samples (n=2) from Greenfields delivered very high gravity gold recovery averaging 70.5% and overall average gold recovery exceeding 93.5% MPI who mined Greenfields from Dec 2003 to Jan 2005 had an overall reconciliation of ~96.9% of tonnes, 100.7% of grade and 101% of ounces milled compared to mined.
Environmental factors or assumptions	 Greenfields deposit occurs in an area of previous disturbance with an open cut pit and associated waste dump. The Three Mile Hill Processing Plant is currently undergoing a refurbishment in preparation for the re-commencement of mining activities by FML in June 2023.
Bulk density	 Bulk density test work was carried out on diamond core samples using a water immersion method for these determinations. Average bulk densities were applied to modelled weathering profiles. Bulk densities of 2.07, 2.43 and 2.87 t/m³ were applied to Oxide, Transitional and Fresh resources, respectively.
Classification	 Mineral Resources have been classified as either Measured or Indicated based mainly on geological confidence in the geometry and continuity of the lodes. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Measured resources have been reported inside the V23 2022 open pit design. Indicated resources have been reported outside the V23 2022 open pit design using the 0.6g/t Au open pit cut off and above 230mRL.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of relative accuracy/ confidence	 The Mineral Resource relates to global tonnage and grade estimates.

JORC Code, 2012 Edition – Table 1 Big Blow and Big Blow Low Grade Stockpile

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 This report relates to results from Reverse Circulation (RC) drilling and diamond core (DD) drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis. Diamond core was sampled across identified zones of mineralisation by site geologists, the sample widths varied between a minimum of 0.3m and a maximum of 1m. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. 4m composite samples were taken by spear sampling the green spoils bag. Where results returned greater than 0.2g/t Au, the 1m samples were submitted. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. The core was cut in half using an Almonte automatic core saw. Goldfan collected 2kg samples as either 4m composites or as 1m samples through mineralised ground or interesting geology. Samples were run through a cyclone. Where the 4m composite samples returned greater than 0.2g/t Au, 1m samples were submitted. MPI collected drill cuttings at one metre intervals which were passed through a trailer mounted cyclone and stand-alone riffle splitter to provide a 4-6kg split sample and a bulk residue for logging. All samples were dry. Initially samples were spear-sampled to form up to 5m composites and submitted for analysis. Any results above 0.5g/t Au resulted in the 1m samples then being submitted for analysis up to 1.5m in length.<
Drilling techniques	 1m samples submitted in areas of known mineralisation. All FML drilling was completed using an RC face sampling hammer or HQ size diamond core. Where achievable, all drill core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling initially using an electronic multi-shot (EMS) camera. Goldfan used RC face sampling hammer, holes were downhole surveyed by Eastman single shot camera and later by Eastman multiple shot camera. MPI used RC drilling methods or NQ2 diamond core size and downhole surveys by Eastman single shot camera.

Drill sample	• FML Sample recovery was recorded by a visual estimate during the logging
recovery	 process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.
	 Goldfan states a consistent sample recovery in the range of 80-90%
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure, and geologically logged using the same system as that for RC. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed one core tray at a time using a standardised photography jig. The entire length of all holes are logged. Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. MPI logged diamond core to lithological boundaries, core was photographed.
Sub-sampling techniques and sample preparation	 The information of sub-sampling and sample preparation below applies to the drill holes drilled by FML only. Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. RC samples were cone split to a nominal 3 - 5kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was initially by 40g aqua regia for the composite samples then 30g Fire Assay for individual samples with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Earlier FML QAQC checks involved inserting a standard or blank every 20 samples in RC or diamond drilling and taking a field duplicate every 20 samples in RC. Field duplicates were collected from the cone splitter on the rig. Diamond core field duplicates were not taken, a minimum of 1 standard was inserted for every sample batch submitted. Sampling was carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes are considered to be appropriate for the type, style and
	consistency of mineralisation encountered during this phase of exploration.

	Coldfan originally submitted its samples to Australian Laboratorias Crown
	 Goldfan originally submitted its samples to Australian Laboratories Group Kalgoorlie. The 2kg samples were oven dried, then crushed to a nominal 6mm and split once through a Jones riffle splitter. A 1kg sub-sample was fine pulverised in a Keegor Pulveriser to a nominal 100 microns. This sample was homogenised and 400-500g split as the assay pulp for analysis. Assaying was by a classical fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Diamond core and later RC drilled by Goldfan was submitted to Minlab Kalgoorlie where the whole of the sample is pulverised in a ring mill before 300g sample is split as the assay pulp. Assaying was by fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Goldfan conducted inter-laboratory check sampling over approx. 10% of holes over the whole program with results found to be within acceptable limits. Laboratory repeat checks were also run on the assay data. MPI submitted their samples to Analabs in Perth or to Aminya Laboratories in Perth for analysis for gold by 50g fire assay for a 0.01g/t detection limit. Some samples were submitted to Analabs Perth for screen fire assay. Laboratory repeat checks were also run, it appears minimum 3 analysis checks run for most of the drill holes.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used.
	• The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. All drill core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling. An electronic multi-shot camera was used, holes were surveyed open hole. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. Goldfan holes were laid out and picked up by the Three Mile Hill Survey Department. Down hole surveying was conducted by Down Hole Surveys using Eastman multiple shot cameras. MPI collar survey methods are unknown, down hole surveys were by Eastman single shot camera.
Data spacing and distribution	• Drill spacing along the Big Blow trend is 10m x 10m Happy Jack trend quite narrow with drilling spacing approximately 10m x 20m along strike.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation.

	• Drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded.
Audits or reviews	No external audits of the mineral resource have been conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commenta	ry						
Mineral tenement and land tenure status	Limited or good stand	tion was conducted on tenements 100% owned by Focus Minerals its subsidiary companies Focus Operations Pty Ltd. All tenements are in ding. currently no registered Native Title claims over the project areas.						
Exploration done by other parties	 minor stop Various co In Octobel surface (4 was place surface to 	 minor stoping. Various companies have explored for gold at Big Blow and Happy Jack. In October 2011 Focus commenced open pit mining at Big Blow from the natural surface (430mRL). Mining ceased in July 2013 when the Coolgardie Operation was placed in care and maintenance, with the main pit excavated 50m below surface to the 380mRL and a small southern pit mined 32.5m below surface to the 397.5mRL. Mining by Focus produced 163Kt @1.29 g/t Au for 6,804 contained 						
Geology	Greenstor been over Mapping a hosted in horizon. T high-Mg b	The deposits lie on the western margin of the Archaean Norseman – Menzies Greenstone Belt and sit within a sequence of mafic rocks striking 20° that has been overprinted by the Big Blow Fault and cores the Big Blow Anticline. Field Mapping at Big Blow by a consultant geologist identified the mineralisation is nosted in a breccia and silicified zone within a discontinuous interflow sedimentary porizon. To the east is a basalt with large feldspar phenocrysts and to the west, a high-Mg basalt, followed by different basalt units, another continuous interflow rediment unit and finally another basalt.						
Drill hole Information	Historic dr reports.	illing information has been validated against p	ublicly availa	ble WAMEX				
	Company	Drill Hole Number	WAMEX Report A- Number	WAMEX Report Date				
	TNG0416R, TNG0417R, TNG0418R, TNG0419R, TNG0420R, TNG0421R, TNG0422R, TNG0423R, TNG0424R, TNG0425R, TNG0426R, TNG0427R, Goldfan TNG0428R, TNG0429R							
		TNG0446R, TNG1048R, TNG0449R, TNG0450R	47168	31-Mar- 96				
		TNG1516R, TNG1517R, TNG1518R, TNG1519R, TNG1520R, TNG1521R	55321	1-Jun-98				
MPI BB015R, BB016R, BB017R, BB018R, BB019R, BB020R, BB005R, BB006R, BB007R, BB008R, BB009R, BB010R, BB011R, BB012R, BB013R, TNG1747R,								

· · ·				
		TNG1748R, TNG1749R, TNG1750R, BB014RD		
		BB021R, BB023R, BB024R, BB025R, BB026R, BB027R, BB028R, BB029R, BB030R, BB031R, BB032R, BB033R, BB034R, BB035R, BB036R, BB037R, BB038R, BB039R, BB040R, BB041R, BB042R, BB043R, BB044R, BB045R, BB046R, BB047R, BB048R, BB049R, BB022RD	68648	May-04
		BB052R, BB051R, BB052R, BB053R, BB054R, BB055R, BB056R, BB058R, BB059R, BB060R, BB061R, BB062R, BB063R, BB064R	70515	Jan-05
Rec	demptio	05BBC001, 05BBC003, 05BBC004, 05HJC001, 05HJC002	72821	1-Dec-05
r	n JV	06HJC004, 06BBD001, 06BBD002, 06BBD003	74513	28-Feb- 07
		TNDD0001, TNDD0002, TNDC0066, TNDC0067, TNDC0069, TNDC0070, TNDC0072, TNDC0074, TNDC0161, TNDC0162, TNDCD0068, TNDCD0128, TNDD0001, TNDD0002	85889	23-Feb- 10
		TNDC0193, TNDC0202, TNDC0303, TNDC0304, TNDC0305, TNDC0307, TNDC0307A, TNDC0308, TNDC0310, TNDC0311, TNDC0312, TNDC0313, TNDC0314, TNDC0315, TNDC0316, TNDC0317, TNDC0318, TNDC0320, TNDC0322, TNDC0323, TNDC0325, TNDC0326, TNDC0328, TNDC0329, TNDC0331, TNDC0333, TNDC0341, TNDC0342, TNDC0343, TNDC0344, TNDC00127, TNDCD0129, TNDCD0130A, TNDCD0131, TNDCD0132, TNDCD0133, TNDCD0134, TNDCD0135A	89322	23-Feb- 11
F	ōocus	BGC128, BGC129, BGC130, BGC131, BGC132, BGC133, BGC134, BGC135, BGC136, BGC137, BGC138, BGC139, BGC140, BGC141, BGC143, BGC144, BGC146, BGC147, BGC148, BGC151, BGC164, BGC165, BGC176, BGC177, HJC004, HJC005, HJC006, HJC007, HJC012, HJC013, HJC014, HJC015, HJC021, HJC022, HJC024, HJC027, HJC028, HJC032, HJC033, HJC037, HJC038, HJC039, HJC040, HJC041, HJC043, HJC044, HJC046, HJC047, HJC048, HJC052, HJC053, HJC054, HJC055, HJC056, HJC057, HJC058, HJC059, HJC060, HJC061, HJC062, HJC063, HJC064, HJC070, HJC071, HJC072, HJC073, HJC074, HJC075, HJC088, HJC089, HJC090, HJC093, HJC094, HJC095, HJC096, HJC101, HJC113, HJC114, HJC115, HJC116, HJC117, HJC128, HJC129, HJC130, TNDC0330, TNDC0332, TNDC0335, TNDC0336, TNDC0338, TNDC0399, TNDC0400, TNDC0401A, TNDC0402, TNDC0433, TNDC0434, TNDC0435, TNDC0436, TNDC0437, TNDC0438,	92766	9-Feb-12

BGC179, BGC180, BGC186, BGC187, BGC188, BGC193, BGC194, BGC198, BGC199, BGC200, BGC201, BGC202, BGC204, BGC205, BGC206, BGC207, BGC208, BGC210, BGC211, BGC212, BGC214, BGC215, BGC227, BGC218, BGC220, BGC221, BGC223, BGC224, BGC228, BGC229, BGC230, BGC235, BGC238, BGC242, BGC243, BGC244, BGC245, BGC246, BGC247, BGC248, BGC249, BGC250, BGC251, BGC252, BGC253, BGC254, BGC255, BGC256, BGC257, BGC258, BGC259, BGC260, BGC261, BGC262, BGC263, BGC264, BGC265, BGC267, BGC270, BGC271, BGC272, BGC273, BGC274, BGC275, BGC276, BGC277, BGC278, BGC279, BGC276, BGC277, BGC278, BGC279, BGC276, BGC277, BGC28, BGC291, BGC280, BGC281, BGC282, BGC283, BGC284, BGC285, BGC286, BGC287, BGC280, BGC281, BGC280, BGC291, BGC280, BGC281, BGC280, BGC291, BGC280, BGC281, BGC280, BGC291, BGC280, BGC281, BGC280, BGC291, BGC284, BGC285, BGC286, BGC287, BGC284, BGC285, BGC286, BGC287, BGC284, BGC285, BGC286, BGC287, BGC284, BGC285, BGC286, BGC287, BGC280, BGC281, BGC280, BGC291, BGC280, BGC281, BGC280, BGC291, BGC280, BGC281, BGC280, BGC291, BGC284, BGC285, BGC286, BGC287, BGC284, BGC285, BGC286, BGC287, BGC284, BGC285, BGC286, BGC291, BGC292, BGC293, HJC118, HJC119, HJC120, HJC121, HJC122, HJC123, HJC124, HJC125, HJC126, HJC127	BGC188, BGC193, BGC194, BGC198, BGC199, BGC200, BGC201, BGC202, BGC204, BGC205, BGC206, BGC207, BGC208, BGC210, BGC211, BGC212, BGC214, BGC215, BGC217, BGC218, BGC220, BGC221, BGC222, BGC223, BGC224, BGC228, BGC229, BGC230, BGC235, BGC238, BGC242, BGC243, BGC244, BGC245, BGC246, BGC247, BGC252, BGC253, BGC250, BGC251, BGC252, BGC253, BGC254, BGC255, BGC256, BGC257, BGC258, BGC259, BGC260, BGC261, BGC262, BGC263, BGC264, BGC265, BGC266, BGC267, BGC268, BGC269, BGC270, BGC271, BGC272, BGC273, BGC274, BGC275, BGC276, BGC277, BGC278, BGC279, BGC280, BGC281, BGC282, BGC283, BGC284, BGC285, BGC286, BGC287, BGC280, BGC281, BGC282, BGC283, BGC284, BGC285, BGC286, BGC287, BGC280, BGC281, BGC280, BGC291, BGC280, BGC283, BGC280, BGC291, BGC280, BGC283, HJC118, HJC119, HJC120, HJC121, HJC122, HJC123, 27-Feb-
1100124, 1100123, 1100120, 1100127	The details of 131 Focus drilled RC holes not previously reported are tabulated below: HOLEID EAST NORTH RL DEPTH AZIMUTH DIP
	BGC006 325569.73 6572013.1 422.13 48 271.05 -60.5
HOLEID EAST NORTH RL DEPTH AZIMUTH DIP	

HOLEID	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP
BGC006	325569.73	6572013.1	422.13	48	271.05	-60.5
BGC007	325559.77	6572012.3	422.36	48	260.05	-60
BGC008	325550.31	6572010.3	422.68	48	264.05	-60
BGC011	325569.7	6571999.8	422.05	48	270.05	-61
BGC012	325557.2	6572000	422.6	48	270.05	-61
BGC013	325548.13	6571999.9	423.1	42	274.05	-63
BGC016	325564.79	6571989.8	422.08	48	280.05	-60
BGC017	325554.12	6571990.7	422.69	48	270.05	-60
BGC018	325542.69	6571990.3	423.24	36	275.05	-60
BGC019	325534.98	6571990	423.96	30	272.05	-60
BGC021	325594.61	6571979.9	421.61	48	279.05	-60
BGC023	325534.22	6571980.2	423.78	24	278.05	-45

BCC025 32556.46 6571970.1 422.46 48 270.05 599 BCC026 325553.4 6571970.1 422.74 48 266.05 600 BCC028 32554.43 6571959.3 423.38 48 262.05 6.1 BCC020 32554.43 6571960.1 423.39 30 265.05 5.5 BCC031 32552.97 6571960.2 423.81 48 270.05 6.0 BCC032 32554.8 6571949.9 423.89 48 260.05 5.8 BCC034 325539.31 6571949.2 424.01 48 261.05 5.8 BCC035 32554.45 6571949.1 424.84 48 263.05 6.0 BC036 32554.47 6571929.6 425.69 44 270.05 6.5 BC040 32553.74 6571929.6 425.69 44 230.5 5.0 BC040 32553.74 6571929.7 425.78 24 255.0 455	1							
BCC027 325544.9 6571969.8 422.94 48 266.05 -60 BCC028 325533.86 6571970.1 423.28 36 770.05 -52 BCC029 325544.38 6571950.2 423.38 48 262.05 -61 BCC031 32529.97 6571960.2 423.85 18 270.05 -50 BCC032 325549.62 6571949.9 423.89 48 265.05 -58 BCC033 325549.62 6571949.9 423.89 48 263.05 -58 BCC036 325549.42 6571940.1 424.64 48 263.05 -54 BCC037 325549.45 6571929.6 425.59 48 263.05 -54 BCC041 325539.31 657190.2 425.78 24 255.04 -50 BCC041 32559.71 657190.1 427.62 36 275.05 -55 BCC042 32554.92 657190.1 427.62 36 275.05 -50 <	BGC025	325564.64	6571970.1	422.46	48	270.05	-59	
BGC028 325533.84 6571970.1 423.28 36 270.05 5.2 BGC029 325544.36 6571950.3 423.38 48 262.05 6.1 BGC030 325529.97 6571960.2 423.65 18 270.05 -60 BGC031 32559.81 6571949.9 423.89 48 270.05 -55 BGC034 32559.81 6571949.9 423.89 48 265.05 -58 BGC035 32554.4 6571940.1 424.84 48 263.05 -55 BGC036 32554.4 657192.7 424.06 24 277.05 -55 BGC036 32554.4 657192.6 425.69 48 263.05 -50 BGC040 32559.76 657192.0 425.78 24 275.06 -45 BGC041 32559.27 657192.0 427.02 36 275.06 -45 BGC043 32559.78 657191.0 427.62 36 275.05 -45	BGC026	325555.3	6571970.1	422.72	48	261.05	-60	
B6C029 325544.38 6571959.3 423.38 448 262.05 -61 BC030 325534.8 6571960.1 423.39 30 265.05 -56 BC031 325529.97 6571960.2 423.65 18 270.05 -60 BC033 325549.6 6571949.9 424.01 48 261.05 -58 BC034 325539.31 6571949.9 424.01 448 263.05 -58 BC035 325549.6 6571940.1 424.64 48 263.05 -60 BC037 325549.5 6571920.4 425.69 48 263.05 -55 BC031 325549.5 6571920.4 425.60 48 263.05 -50 BC041 325539.41 6571920.7 425.60 48 263.05 -50 BC042 325549.5 6571920.1 427.82 36 275.05 -46 BC043 32553.78 6571910.1 427.82 36 275.05 -45	BGC027	325544.9	6571969.8	422.94	48	266.05	-60	
B6C030 325534.8 6571960.2 423.39 30 265.05 -56 BC031 325529.97 6571960.2 423.65 1.8 270.05 -60 BC032 32559.81 6571949.9 423.89 448 261.05 -58 BC033 325549.62 6571949.9 423.89 448 265.05 -58 BGC033 325543.31 6571949.9 423.89 448 265.05 -55 BGC035 325544.7 6571940.1 424.84 48 263.05 -60 BGC037 325539.41 6571930.2 425.69 448 263.05 -50 BGC041 325529.77 6571920.6 425.60 48 263.05 -50 BGC042 32553.78 6571910.1 427.82 36 255.04 -60 BGC043 32553.78 6571910.1 427.82 36 255.04 -50 BGC043 325529.78 657190.1 428.77 30 276.05 -50	BGC028	325533.84	6571970.1	423.28	36	270.05	-52	
B6C031 325529 97 6571960.2 423.65 1.8 270.05 -50 B6C032 325559.81 6571949.9 423.89 48 261.05 -58 B6C033 32559.81 6571949.9 423.89 48 265.05 -58 B6C036 32552.84 6571925.7 424.00 24 277.05 -55 B6C037 32553.84 6571929.5 424.03 42 270.05 -60 B6C037 32553.94 6571929.6 425.69 48 263.05 -54 B6C040 32552.97 6571929.6 425.69 48 270.05 -50 B6C041 32552.97 6571929.6 426.01 30 258.05 -50 B6C041 32552.97 6571920.1 427.82 36 275.05 -45 B6C042 32553.09 657190.1 422.46 48 282.05 -50 B6C043 32553.66 6571910.1 422.46 48 270.05 -50 <tr< td=""><td>BGC029</td><td>325544.38</td><td>6571959.3</td><td>423.38</td><td>48</td><td>262.05</td><td>-61</td><td></td></tr<>	BGC029	325544.38	6571959.3	423.38	48	262.05	-61	
BGC032 325559.81 6571949.9 423.89 48 270.05 6-0 BGC033 325549.62 6571949.9 424.01 48 261.05 -58 BGC034 325539.31 6571949.9 422.89 48 265.05 -58 BGC035 325547.6 6571940.1 424.84 48 263.05 -60 BGC037 325549.5 6571929.6 425.69 48 263.05 -54 BGC040 325529.77 6571929.6 425.78 24 255.04 -56 BGC041 325529.77 6571929.6 426.01 30 258.04 -56 BGC042 32553.78 657191.01 427.62 36 275.05 -56 BGC043 32553.78 657191.01 428.77 30 274.05 -50 BGC044 32552.55 657191.01 428.77 30 274.05 -51 BGC043 32552.55 657180.01 432.72 42 278.05 -54	BGC030	325534.8	6571960.1	423.39	30	265.05	-56	
BGC033 325549.62 6571949.9 424.01 48 261.05 -58 BGC034 325533.31 6571940.9 423.89 48 265.05 -55 BGC035 325544.7 6571940.1 424.48 48 263.05 -60 BGC037 325533.94 6571920.6 422.69 48 263.05 -54 BGC040 325544.7 6571920.6 422.69 48 263.05 -50 BGC031 325539.41 6571920.6 426.01 30 258.05 -50 BGC041 325537.6 6571920.1 427.62 36 275.05 -45 BGC043 325530.7 6571910.1 427.62 36 275.05 -45 BGC044 325530.7 6571910.1 428.61 48 220.05 -55 BGC044 32553.7.8 6571910.2 428.77 30 274.05 -50 BGC044 32553.7.8 6571910.2 428.77 30 274.05 -57	BGC031	325529.97	6571960.2	423.65	18	270.05	-50	
BGC034325539.316571949.9423.8948265.055.58BGC035325544.86571952.7424.0624277.05-55BGC036325534.46571940.1424.8448263.05-60BGC037325534.346571920.6425.6948263.05-55BGC041325539.416571920.6425.0946270.05-55BGC041325539.77657192.96425.0130228.04-50BGC04232553.78657191.94427.8236255.04-50BGC04332553.78657191.01427.6236275.05-45BGC04432553.07657190.1428.7730274.05-50BGC04432554.526571910.1429.4648270.05-50BGC046325536.696571910.1429.4648270.05-50BGC04732552.556571800.3432.7242278.05-48BGC05032552.86571800.4433.6342281.05-54BGC05432551.96571800433.1544269.05-54BGC05432551.96571800433.1548270.04-60BGC05432551.96571800433.1642240.05-58BGC05632551.96571800433.1648270.04-60BGC05732552.96571800431.1648270.04-60BGC05632551.9 <td>BGC032</td> <td>325559.81</td> <td>6571949.9</td> <td>423.89</td> <td>48</td> <td>270.05</td> <td>-60</td> <td></td>	BGC032	325559.81	6571949.9	423.89	48	270.05	-60	
BGC035 325524.8 6571952.7 424.06 24 277.05 5.55 BGC036 325544.7 6571940.1 424.84 448 263.05 -60 BGC037 325533.94 6571929.6 425.69 44 263.05 -54 BGC040 325539.41 6571929.6 425.69 46 270.05 -55 BGC041 325539.77 6571929.6 426.01 30 258.05 -50 BGC042 32553.78 6571929.7 425.78 24 25.04 -46 BGC043 32553.78 6571910.1 427.62 36 275.05 -45 BGC044 32553.97 6571910.1 429.46 48 220.05 -50 BGC047 325525.95 6571910.2 428.77 30 274.05 -50 BGC048 325529.78 6571800 430.78 42 263.05 -41 BGC050 325529.5 6571800 433.63 42 281.05 -57 <tr< td=""><td>BGC033</td><td>325549.62</td><td>6571949.9</td><td>424.01</td><td>48</td><td>261.05</td><td>-58</td><td></td></tr<>	BGC033	325549.62	6571949.9	424.01	48	261.05	-58	
BCC036 325544.7 6571940.1 424.84 48 263.05 -60 BCC037 325533.94 6571929.6 425.69 48 263.05 -54 BCC040 325539.41 6571929.6 426.01 30 225.04 -56 BCC041 325529.77 6571929.7 425.79 446 270.05 -55 BCC042 325527.77 6571929.7 425.78 24 225.04 -46 BCC043 32553.78 6571920.1 427.82 36 275.05 -45 BCC044 32553.78 6571910.1 427.42 36 275.05 -56 BCC044 32553.78 6571910.1 429.46 48 270.05 -50 BCC046 32552.95 6571801.1 429.46 48 270.05 -57 BCC047 32552.95 6571801.2 428.77 30 274.05 -50 BCC049 32551.95 657180.1 432.82 42 281.05 -41 <	BGC034	325539.31	6571949.9	423.89	48	265.05	-58	
BGC037 325533.94 6571940.1 424.63 42 270.05 -60 BGC039 325549.5 6571929.6 425.69 48 263.05 -54 BGC040 325539.41 6571930.2 425.99 46 270.05 -55 BGC041 325529.77 6571929.7 425.78 24 225.04 -46 BGC043 325530.77 6571920.1 427.62 36 275.05 -45 BGC044 325530.77 6571920.1 427.62 36 275.05 -45 BGC046 32553.78 6571910.2 428.77 30 274.05 -50 BGC047 32552.95 6571910.1 429.46 48 270.05 -57 BGC0504 32553.34 6571890.3 432.86 48 270.05 -57 BGC0505 32551.95 657180.3 432.82 42 281.05 -47 BGC052 32552.8.6 657180.1 432.52 48 270.04 -60	BGC035	325524.8	6571952.7	424.06	24	277.05	-55	
BGC039 325549.5 6571929.6 425.69 48 263.05 -54 BGC040 325539.41 6571930.2 425.99 46 270.05 55 BGC041 325529.77 6571929.6 426.01 30 258.05 -50 BGC042 325533.78 6571929.7 425.78 24 255.04 -66 BGC043 325530.97 6571920.1 427.62 36 275.05 445 BGC044 325530.97 657190.1 422.64 48 282.05 -55 BGC044 325529.55 657191.01 422.64 48 270.05 -60 BGC043 325529.55 657190.1 428.77 30 274.05 -50 BGC044 325529.78 657190.1 430.78 42 263.05 -41 BGC050 325531.05 657180.1 432.72 42 278.05 -48 BGC051 325529.5 657180.1 432.72 48 270.04 -60 <t< td=""><td>BGC036</td><td>325544.7</td><td>6571940.1</td><td>424.84</td><td>48</td><td>263.05</td><td>-60</td><td></td></t<>	BGC036	325544.7	6571940.1	424.84	48	263.05	-60	
BGC040 325539.41 6571930.2 425.99 46 270.05 -55 BGC041 325529.77 6571929.6 426.01 30 258.05 -50 BGC042 325533.78 6571929.7 425.78 24 255.04 -46 BGC043 325530.97 6571920.1 427.62 36 275.05 -45 BGC044 325530.97 657190.1 427.62 36 275.05 -45 BGC045 325545.92 657190.1 429.46 48 220.05 -55 BGC046 325536.69 6571910.1 429.46 48 270.05 -57 BGC048 325525.95 6571800.3 432.72 42 278.05 -47 BGC050 325533.46 6571890.3 432.72 42 278.05 -57 BGC051 325529.5 6571870 433.15 44 269.05 -43 BGC053 325529.5 6571870 433.15 44 269.05 -54 <t< td=""><td>BGC037</td><td>325533.94</td><td>6571940.1</td><td>424.63</td><td>42</td><td>270.05</td><td>-60</td><td></td></t<>	BGC037	325533.94	6571940.1	424.63	42	270.05	-60	
BGC041 325529.77 6571929.6 426.01 30 258.05 -50 BGC042 325531.78 6571929.7 425.78 24 255.04 -46 BGC043 325533.78 6571919.4 427.82 36 275.05 -45 BGC044 325530.97 6571920.1 427.62 36 275.05 -45 BGC045 325545.92 6571901.7 428.61 48 282.05 -55 BGC046 325529.78 6571901.429.46 48 270.05 -60 BGC048 325529.78 6571901 430.78 42 263.05 -41 BGC050 325531.05 6571890.3 432.86 48 270.05 -57 BGC050 325531.05 6571890.4 433.63 42 281.05 -47 BGC053 325529.5 6571870 433.15 44 269.05 -54 BGC054 325519.4 657180.1 432.25 48 220.05 -54 BGC056 325519.8 657180.1 432.25 48 220.05 -58 </td <td>BGC039</td> <td>325549.5</td> <td>6571929.6</td> <td>425.69</td> <td>48</td> <td>263.05</td> <td>-54</td> <td></td>	BGC039	325549.5	6571929.6	425.69	48	263.05	-54	
BGC042325524.136571929.7425.7824255.04-46BGC043325533.786571919.4427.8236255.04-50BGC044325530.976571920.1427.6236275.05-45BGC045325545.926571909.7428.6148282.05-55BGC046325536.696571910.1429.4648270.05-60BGC047325525.956571901430.7842263.05-41BGC04832559.786571901430.7842263.05-41BGC05032553.346571890.3432.8648270.05-57BGC050325529.56571870433.6342281.05-47BGC052325529.56571870433.1544269.05-54BGC054325519.46571860.1432.2548325.05-58BGC056325519.86571860432.2548320.05-60BGC0573255296571860431.648320.05-58BGC057A325513657185043148320.05-58BGC0583255136571850431.326320.05-58BGC059A325519.86571842431.3948270.04-60BGC059A325519.86571842431.3948270.04-60BGC059A325519.66571842431.3948270.04-60BGC059A325519.66571	BGC040	325539.41	6571930.2	425.99	46	270.05	-55	
BGC043325533.786571919.4427.8236255.04-50BGC044325530.976571920.1427.6236275.05-45BGC045325545.926571909.7428.6148282.05-55BGC046325536.696571910.1429.4648270.05-60BGC047325525.956571901.2428.7730274.05-50BGC048325529.786571901.3432.8648270.05-57BGC050325531.056571890.5432.7242278.05-48BGC052325529.56571870433.1544269.05-54BGC053325529.56571870433.1544269.05-54BGC054325519.46571860.1432.2548270.04-60BGC056325519.426571860.1432.2348264.44-59.3BGC0573255296571850431.8326320.55-58BGC057A325519.426571850431.832620.05-58BGC057A3255136571850431.832620.05-58BGC059325519.366571850431.832620.05-59BGC057A325519.666571830431.832620.05-58BGC059325519.366571842431.3937270.04-60BGC059325519.866571830431.832620.05-59BGC059A325519.	BGC041	325529.77	6571929.6	426.01	30	258.05	-50	
BGC044325530.976571920.1427.6236275.05-45BGC045325545.926571909.7428.6148282.05-55BGC04632553.696571910.1429.4648270.05-60BGC047325525.956571910.2428.7730274.05-50BGC048325529.786571901430.7842263.05-41BGC04932553.346571890.3432.8648270.05-57BGC05032551.056571870.5432.7242278.05-48BGC052325528.66571870433.1544269.05-54BGC053325519.46571871432.5618286.05-48BGC054325519.46571860.1432.2548325.05-58BGC056325519.426571860.1432.2348264.44-59.3BGC057325529657185043148320.05-60BGC058325513.36571850431.8326320.05-58BGC058325519.426571842431.3948270.04-60BGC05932550.66571830431.48270.04-60BGC059325519.866571830431.642270.04-60BGC059325519.866571830431.642270.04-60BGC060325509.66571830431.642270.04-60BGC061325519.866571830 <td>BGC042</td> <td>325524.13</td> <td>6571929.7</td> <td>425.78</td> <td>24</td> <td>255.04</td> <td>-46</td> <td></td>	BGC042	325524.13	6571929.7	425.78	24	255.04	-46	
BGC045325545.926571909.7428.6148282.05-55BGC046325536.696571910.1429.4648270.05-60BGC047325525.956571910.2428.7730274.05-50BGC048325529.786571901430.7842263.05-41BGC050325531.056571890.3432.8648270.05-57BGC050325531.056571890.5432.7242278.05-48BGC052325528.86571870433.1544269.05-54BGC053325529.56571870433.1544269.05-54BGC054325519.46571860.1432.5248270.04-60BGC056325519.86571860432.2548325.05-58BGC057A325529657185043148270.04-60BGC058325513657185043148270.04-60BGC05932550.36571850431.8326320.05-58BGC059A3255136571842431.3937270.04-60BGC05932550.36571842431.3948320.05-59BGC059A325519.86571830431.48270.04-60BGC061325519.86571830431.642270.04-60BGC062325509.66571830431.642270.04-60BGC061325519.86571830431.6 <td>BGC043</td> <td>325533.78</td> <td>6571919.4</td> <td>427.82</td> <td>36</td> <td>255.04</td> <td>-50</td> <td></td>	BGC043	325533.78	6571919.4	427.82	36	255.04	-50	
BGC046325536.696571910.1429.4648270.05-60BGC047325525.956571910.2428.7730274.05-50BGC048325535.346571890.3432.8648270.05-57BGC050325531.056571890.5432.7242278.05-44BGC052325528.86571870433.1544269.05-54BGC053325529.56571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.2548270.04-60BGC056325519.426571860.1432.2348264.44-59.3BGC056325519.826571860.1432.2348264.44-59.3BGC0573255296571860.1432.2348200.05-58BGC057A3255136571850431.648320.05-60BGC0583255136571850431.8326320.05-58BGC05932550.36571842431.3948320.05-59BGC059325519.866571842431.3937270.04-60BGC059325519.866571830431.642270.04-60BGC059325519.866571830431.642270.04-60BGC059325519.866571830431.642270.04-60BGC061325519.86	BGC044	325530.97	6571920.1	427.62	36	275.05	-45	
BGC047325525.956571910.2428.7730274.05-50BGC048325529.786571901430.7842263.05-41BGC049325535.346571890.3432.8648270.05-57BGC050325531.056571890.5432.7242278.05-48BGC052325528.86571870433.6342281.05-47BGC053325529.56571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.2548270.04-60BGC056325519.86571860.1432.2348264.44-59.3BGC0573255296571850431.648320.05-60BGC0583255136571850431.8326320.05-58BGC0583255136571850431.8326320.05-58BGC059325520.36571842431.3948320.05-59BGC059325513.86571830432.248270.04-60BGC059325519.966571830431.7848270.04-60BGC061325519.86571830431.642270.04-60BGC062325509.66571830431.642270.04-60BGC063325499.086571830431.642270.04-60BGC063325499.86571830 <td>BGC045</td> <td>325545.92</td> <td>6571909.7</td> <td>428.61</td> <td>48</td> <td>282.05</td> <td>-55</td> <td></td>	BGC045	325545.92	6571909.7	428.61	48	282.05	-55	
BGC048325529.786571901430.78422263.05-41BGC049325535.346571890.3432.8648270.05-57BGC050325531.056571890.5432.7242278.05-48BGC052325528.86571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC056325519.86571860.1432.2548270.04-60BGC056325519.86571860.1432.2348264.44-59.3BGC057325529657185043148320.05-60BGC0583255136571850431.8326320.05-58BGC0583255136571840431.8326320.05-59BGC059325520.36571840431.8326320.05-59BGC059325519.966571842431.3948320.05-59BGC059325519.86571842431.3937270.04-60BGC060325509.66571830431.642270.04-60BGC061325519.86571830431.642270.04-60BGC062325509.66571830431.642270.04-60BGC063325499.086571830431.642270.04-60BGC063325499.086571830431.642270.04-60BGC063325499.086571830 <t< td=""><td>BGC046</td><td>325536.69</td><td>6571910.1</td><td>429.46</td><td>48</td><td>270.05</td><td>-60</td><td></td></t<>	BGC046	325536.69	6571910.1	429.46	48	270.05	-60	
BGC049325533.346571890.3432.8648270.05.57BGC050325531.056571890.5432.7242278.05.48BGC052325528.86571880.4433.6342281.05.47BGC053325529.56571870433.1544269.05.54BGC054325519.46571870432.2618286.05.48BGC056325519.86571860.1432.2548325.05.58BGC056325519.86571860.1432.2348264.44.59.3BGC057325529657185043148320.05.60BGC0573255136571850431.8326320.05.58BGC057325513657185043148270.04.60BGC058325513657185043148270.04.60BGC05932550.36571842431.3937270.04.60BGC061325519.86571830430.8448271.04.60BGC061325519.86571830431.642270.04.60BGC061325519.86571830431.642270.04.60BGC062325519.86571830431.642270.04.60BGC061325519.86571830431.642270.04.60BGC063325499.086571830431.642270.04.60BGC064325519.266571820.3430.59<	BGC047	325525.95	6571910.2	428.77	30	274.05	-50	
BGC050325531.056571890.5432.7242278.05-48BGC052325528.8657180.4433.6342281.05-47BGC053325529.56571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.5248270.04-60BGC056325519.86571860.1432.2348264.44-59.3BGC0573255296571840431.648320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC059325520.36571842431.3948320.05-59BGC059325519.866571842431.3948320.05-59BGC059325519.666571830431.7848270.04-60BGC061325519.866571830431.642270.04-60BGC061325519.866571831430.8448271.04-60BGC063325519.266571831431.5548270.04-61BGC063325519.266571831430.5948270.04-61BGC063325519.266571831430.5948270.04-60BGC067325519.266571830.4431.5548270.04-60BGC068325519.26657182	BGC048	325529.78	6571901	430.78	42	263.05	-41	
BGC052325528.86571880.4433.6342281.05-47BGC053325529.56571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.2548270.04-60BGC056325519.86571860432.2548325.05-58BGC0576325519.426571860.1432.2348264.44-59.3BGC057325529657185043148320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC05943255136571850431.8326320.05-59BGC060325509.66571842.1431.3937270.04-60BGC061325519.866571830431.7848271.04-60BGC062325509.66571830431.6642270.04-61BGC063325509.66571830431.6642270.04-61BGC063325519.266571830431.6642270.04-61BGC063325519.266571830431.6642270.04-61BGC063325519.266571820.3430.5948270.04-60BGC063325519.266571820.3430.5948270.04-60BGC063325519.266571820	BGC049	325535.34	6571890.3	432.86	48	270.05	-57	
BGC053325529.56571870433.1544269.05-54BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.5248270.04-60BGC056325519.86571860432.2548325.05-58BGC056A325519.426571860.1432.2348264.44-59.3BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325519.866571830431.642270.04-61BGC063325519.866571830431.642270.04-61BGC063325519.266571830431.642270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.3430.5948270.04-60BGC068325510.636571820.3430.5948270.04-60	BGC050	325531.05	6571890.5	432.72	42	278.05	-48	
BGC054325519.46571871432.5618286.05-48BGC055325528.656571860.1432.5248270.04-60BGC056325519.86571860432.2548325.05-58BGC056A325519.426571860.1432.2348264.44-59.3BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC059A325513657185043248270.04-60BGC06032550.66571842431.3948320.05-59BGC061325519.966571830431.7848270.04-60BGC062325509.66571830431.642270.04-60BGC063325519.866571830431.642270.04-60BGC063325519.866571830431.642270.04-60BGC063325519.866571830431.642270.04-60BGC067325519.266571820.3430.5948270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325519.636571820.3430.5948270.04-60BGC068325519.666571820.3430.5948270.04-60BGC068325519.636571820.4<	BGC052	325528.8	6571880.4	433.63	42	281.05	-47	
BGC055325528.656571860.1432.5248270.04-60BGC056325519.86571860432.2548325.05-58BGC056A325519.426571860.1432.2348264.44-59.3BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC059A325513657185043248270.04-60BGC060325519.966571842431.3948320.05-59BGC061325519.86571830431.7848270.04-60BGC062325509.66571830430.8448271.04-60BGC063325519.86571830431.642270.04-61BGC063325519.266571831.1432.5248270.04-60BGC063325519.266571820.3430.5948270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60BGC068325510.636571820.4431.5548270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC053	325529.5	6571870	433.15	44	269.05	-54	
BGC056325519.86571860432.2548325.05-58BGC056A325519.426571860.1432.2348264.44-59.3BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC058A3255136571850431.8326320.05-58BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571830.3430.5948270.04-60BGC068325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC054	325519.4	6571871	432.56	18	286.05	-48	
BGC056A325519.426571860.1432.2348264.44-59.3BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325519.266571820.4431.5548270.04-60	BGC055	325528.65	6571860.1	432.52	48	270.04	-60	
BGC0573255296571849431.648320.05-60BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571830430.8448271.04-60BGC061325519.86571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325519.266571820.3430.5948270.04-60	BGC056	325519.8	6571860	432.25	48	325.05	-58	
BGC057A325530657185043148270.04-60BGC0583255136571850431.8326320.05-58BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC063325499.086571830431.642270.04-60BGC068325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC056A	325519.42	6571860.1	432.23	48	264.44	-59.3	
BGC0583255136571850431.8326320.05-58BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571839431.7848271.05-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC057	325529	6571849	431.6	48	320.05	-60	
BGC058A325513657185043248270.04-60BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571839431.7848270.05-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC057A	325530	6571850	431	48	270.04	-60	
BGC059325520.36571842431.3948320.05-59BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571839431.7848270.05-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC058	325513	6571850	431.83	26	320.05	-58	
BGC059A325519.966571842.1431.3937270.04-60BGC060325509.66571839431.7848270.05-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC058A	325513	6571850	432	48	270.04	-60	
BGC060325509.66571839431.7848270.05-60BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC059	325520.3	6571842	431.39	48	320.05	-59	
BGC061325519.86571830430.8448271.04-60BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC059A	325519.96	6571842.1	431.39	37	270.04	-60	
BGC062325509.46571830431.642270.04-61BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC060	325509.6	6571839	431.78	48	270.05	-60	
BGC063325499.086571831.1432.5248270.04-60BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC061	325519.8	6571830	430.84	48	271.04	-60	
BGC067325519.266571820.3430.5948270.04-60BGC068325510.636571820.4431.5548270.04-60	BGC062	325509.4	6571830	431.6	42	270.04	-61	
BGC068 325510.63 6571820.4 431.55 48 270.04 -60	BGC063	325499.08	6571831.1	432.52	48	270.04	-60	
	BGC067	325519.26	6571820.3	430.59	48	270.04	-60	
BGC069 325501.25 6571819.6 432.69 48 269.04 -57	BGC068	325510.63	6571820.4	431.55	48	270.04	-60	
	BGC069	325501.25	6571819.6	432.69	48	269.04	-57	

BGC072	325519.67	6571810.7	430.45	48	275.04	-60
BGC073	325510.43	6571810.4	431.56	48	272.04	-63
BGC074	325500.57	6571811.3	432.58	48	270.04	-60
BGC075	325489.97	6571809.9	433.71	48	270.04	-60
BGC078	325510.36	6571799.7	431.14	48	270.04	-60
BGC079	325499.78	6571800	432.32	48	256.04	-64
BGC081	325510.08	6571789.5	430.52	48	257.04	-60
BGC082	325500.37	6571790.7	432.52	48	266.04	-60
BGC084	325505.5	6571779.7	430.29	48	270.04	-60
BGC085	325495	6571780	431.97	48	283.04	-56
BGC089	325510.36	6571769.7	428.77	48	275.04	-58
BGC090	325501.1	6571770	430.02	36	268.04	-57
BGC091	325489.61	6571769.8	431.76	48	270.04	-60
BGC095	325510.28	6571760	427.75	48	266.04	-57
BGC096	325510.35	6571750.3	426.71	48	271.04	-62
BGC097	325500.43	6571749.4	427.59	48	282.34	-60.4
BGC098	325509.42	6571739.8	425.8	48	270.04	-60
BGC099	325500.61	6571741.1	426.49	48	301.04	-66
BGC100	325510.1	6571729.8	425.08	48	281.04	-59
BGC101	325500.03	6571730	425.61	48	270.04	-60
BGC102	325509.52	6571718.7	424.32	48	267.04	-57
BGC103	325499.88	6571719.8	425.04	36	235.04	-58
BGC103A	325500.06	6571718.1	424.92	48	276.04	-59
BGC104	325509.44	6571709.9	424.09	48	273.04	-58
BGC105	325499.62	6571710.2	424.62	48	273.04	-61
BGC106	325489.8	6571710.1	425.11	48	275.04	-59
BGC116	325513.57	6571932.1	424.86	30	270.04	-45
BGC119	325501.14	6571901.2	427.51	48	88.74	-44.6
BGC120	325492.09	6571891.7	428.09	48	90.04	-45
BGC121	325498.74	6571881.4	429.3	48	90.04	-50
BGC122	325509.08	6571869.1	432.24	24	270.04	-50
HJC001	325729.77	6572389.7	415.13	48	274.05	-61
HJC002	325739.67	6572390.1	414.82	48	274.05	-58
НЈСООЗ	325749.91	6572390	414.81	48	270.55	-59.5
HJC008	325729.67	6572350	415.68	48	276.05	-60
НЈСОО9	325738.09	6572349.9	415.79	48	273.05	-61
HJC010	325749.6	6572350.1	415.73	48	266.05	-61
HJC011	325759.37	6572350.1	415.58	48	272.05	-60
HJC016	325720.23	6572310.1	416.78	48	270.05	-60
HJC017	325729.14	6572309.8	416.95	48	274.05	-60
HJC018	325740.48	6572311.1	416.73	48	272.05	-65
HJC019	325750.22	6572311.3	416.92	48	272.05	-61
	325740	6572270	418.86	48	270.05	-60
HJC025	323740	0372270	410.00		270.05	00 1

HJC030	325733.77	6572229.9	420.65	48	269.05	-65	
HJC031	325743	6572230	420.96	48	270.05	-60	
HJC034	325719.97	6572183.4	421.09	48	267.35	-61.9	
HJC035	325729.63	6572190.2	421.86	48	270.05	-60	
HJC036	325739.45	6572190.2	422.51	48	270.05	-60	
HJC045	325719.42	6572149.3	419.48	48	279.94	-62	
HJC049	325689.26	6572109.7	418.4	48	270.05	-60	
HJC050	325700.15	6572110.2	418.2	48	271.45	-64.5	
HJC065	325679.6	6572009.9	419.4	48	264.45	-59.1	
HJC066	325689.82	6572010.1	419.32	48	264.45	-65.8	
HJC067	325700.11	6572010.3	419.26	48	266.05	-64.8	
HJC068	325710.53	6572009.9	419.39	48	270.25	-59.7	
HJC069	325680.77	6571990	419.872	48	263.25	-60.5	
HJC076	325701.9	6571950	420.97	48	264.05	-61	
HJC077	325690.02	6571930	421.095	48	270.04	-60	
HJC078	325699.5	6571929.8	421.255	48	270.04	-60	
HJC079	325679.61	6571909.5	421.28	48	265.64	-59	
HJC080	325690.04	6571910.1	421.2	48	266.85	-60.7	
HJC082	325689.75	6571890.3	421.309	48	270.04	-60	
HJC083	325699.89	6571890.1	421.27	48	270.04	-60	
HJC084	325689.88	6571870	421.16	45	268.35	-61.3	
HJC085	325699.93	6571869.9	421.1	48	270.44	-60.8	
HJC086	325710.76	6571869.8	421.13	48	268.75	-60.6	
HJC087	325689.52	6571849.6	420.971	48	270.04	-60	
HJC091	325700.83	6571829.9	420.34	37	266.64	-59.8	
HJC092	325710.27	6571830	420.36	48	272.35	-59.6	
HJC097	325680.18	6571770.9	420.11	45	272.05	-59	
HJC098	325690.65	6571770	419.86	48	269.35	-62	
HJC099	325700.08	6571770.5	419.55	36	271.05	-60.8	
HJC106	325680.15	6571710	419.33	48	267.44	-59.7	
HJC107	325691.04	6571708.3	419.01	48	274.85	-58.9	

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection calculated using
		GA 94 Zone 51	-		(MGA94)	(m)	0.5 g/t cut off and up to 3m internal dilution
22BBRC001	325493	6572071	422	-44	137	160	22BBRC001 - 1.00m @ 2.54g/t from 6m for (GxM 3) 22BBRC001 - 1.00m @ 2.44g/t from 91m for (GxM 2) 22BBRC001 - 2.00m @ 0.81g/t from 94m for (GxM 2) 22BBRC001 - 1.00m @ 0.61g/t from 105m for (GxM 1) 22BBRC001 - 3.00m @ 1.48g/t from 111m for (GxM 4) 22BBRC001 - 1.00m @ 0.53g/t from 137m for (GxM 1) 22BBRC001 - 2.00m @ 0.53g/t from 137m for (GxM 1)
22BBRC002	325660	6572055	419	-49	90	60	22BBRC001 - 2.00m @ 0.56g/t from 146m for (GxM 1) 22BBRC002 - 22.00m @ 1.33g/t from 16m for (GxM 29) 22BBRC002 - 3.00m @ 1.03g/t from 53m for (GxM 3)
22BBRC003	325660	6571981	420	-50	91	60	22BBRC003 - 1.00m @ 0.72g/t from 21m for (GxM 1) 22BBRC003 - 1.00m @ 0.72g/t from 21m for (GxM 1) 22BBRC003 - 1.00m @ 0.71g/t from 25m for (GxM 1) 22BBRC003 - 1.00m @ 0.54g/t from 29m for (GxM 1) 22BBRC003 - 1.00m @ 1.22g/t from 37m for (GxM 1)
22BBRC004	325750	6572438	414	-50	270	30	NSI
22BBRC005	325731	6572350	416	-50	270	24	22BBRC005 - 3.00m @ 5.99g/t from 3m for (GxM 18) 22BBRC005 - 4.00m @ 0.67g/t from 15m for (GxM 3)
22BBRC006	325737	6572194	423	-50	270	42	22BBRC006 - 5.00m @ 1.82g/t from 31m for (GxM 9)
22BBRC007	325681	6572165	419	-50	89	60	22BBRC007 - 1.00m @ 0.66g/t from 15m for (GxM 1) 22BBRC007 - 1.00m @ 1.53g/t from 22m for (GxM 2) 22BBRC007 - 6.00m @ 1.79g/t from 27m for (GxM 11) 22BBRC007 - 6.00m @ 2.83g/t from 46m for (GxM 17)
22BBRC008	325724	6572140	419	-50	265	66	22BBRC008 - 2.00m @ 0.65g/t from 27m for (GxM 1) 22BBRC008 - 1.00m @ 0.5g/t from 39m for (GxM 1) 22BBRC008 - 4.00m @ 0.6g/t from 44m for (GxM 2)
22BBRC009	325707	6572021	419	-50	265	60	22BBRC009 - 1.00m @ 1.29g/t from 15m for (GxM 1) 22BBRC009 - 6.00m @ 1.04g/t from 41m for (GxM 6)
22BBRC010	325704	6572063	418	-50	264	60	22BBRC010 - 1.00m @ 0.62g/t from 15m for (GxM 1) 22BBRC010 - 1.00m @ 0.51g/t from 19m for (GxM 1) 22BBRC010 - 19.00m @ 2.49g/t from 23m for (GxM 47) 22BBRC010 - 2.00m @ 1.76g/t from 48m for (GxM 4)
22BBRC011	325427	6571720	438	-90	0	14	22BBRC011 - 4.00m @ 1.25g/t from 0m for (GxM 5) 22BBRC011 - 1.00m @ 0.94g/t from 9m for (GxM 1)
22BBRC012	325427	6571730	438	-90	0	12	22BBRC012 - 8.00m @ 4.14g/t from 1m for (GxM 33)
22BBRC013	325427	6571750	437	-90	0	8	22BBRC013 - 5.00m @ 1.29g/t from 2m for (GxM 6)
22BBRC014	325427	6571760	437	-90	0	8	22BBRC014 - 3.00m @ 0.75g/t from 0m for (GxM 2)
22BBRC015	325427	6571779	436	-90	0	8	NSI
22BBRC016	325416	6571720	438	-90	0	14	22BBRC016 - 5.00m @ 0.53g/t from 2m for (GxM 3) 22BBRC016 - 2.00m @ 0.57g/t from 9m for (GxM 1)
22BBRC017	325418	6571731	438	-90	0	12	22BBRC017 - 8.00m @ 0.73g/t from 1m for (GxM 6)
22BBRC018	325419	6571740	438	-90	0	10	22BBRC018 - 9.00m @ 0.5g/t from 0m for (GxM 5)
22BBRC019	325420	6571760	437	-90	0	8	22BBRC019 - 1.00m @ 0.6g/t from 5m for (GxM 1)
22BBRC020	325421	6571770	436	-90	0	8	22BBRC020 - 4.00m @ 0.97g/t from 1m for (GxM 4)
22BBRC021	325423	6571790	435	-90	0	6	22BBRC021 - 5.00m @ 0.88g/t from 0m for (GxM 4)
22BBRC022	325427	6571800	434	-90	0	6	22BBRC022 - 1.00m @ 0.86g/t from 3m for (GxM 1)
22BBRC023	325424	6571810	433	-90	0	6	22BBRC023 - 4.00m @ 0.87g/t from 0m for (GxM 3)
22BBRC024	325427	6571820	432	-90	0	6	22BBRC024 - 2.00m @ 0.74g/t from 0m for (GxM 1)
22BBRC025	325426	6571830	431	-90	0	6	22BBRC025 - 2.00m @ 1.68g/t from 0m for (GxM 3)
22BBRC026	325427	6571840	430	-90	0	6	22BBRC026 - 1.00m @ 0.55g/t from 0m for (GxM 1)
22BBRC027	325427	6571850	429	-90	0	6	22BBRC027 - 1.00m @ 0.83g/t from 0m for (GxM 1)
22BBRC028	325429	6571860	429	-90	0	6	NSI
22BBRC029	325531	6571923	378	-50	242	24	22BBRC029 - 12.00m @ 1.83g/t from 0m for (GxM 22) 22BBRC029 - 1.00m @ 0.88g/t from 18m for (GxM 1)

) Easti		Northing 94 Zone 51	RL)	Dip	Azimuth (MGA94)	EOH (m)	Intersection calculated using
22BBRO	30 3255	_	94 Zone 51 6571932	.) 379	-50	(MGA94) 268	(m) 24	0.5 g/t cut off and up to 3m internal dilution 22BBRC030 - 3.00m @ 1.09g/t from 1m for (GxM 3)
22BBR0			6571935	379	-50	268	48	22BBR0031 - 4.00m @ 10.75g/t from 22m for (GxM 43)
22BBR0			6571947	380	-50	264	48	22BBR0032 - 4.00m @ 1.85g/t from 24m for (GxM 7)
22BBR0			6571953	379	-50	266	36	22BBR0033 - 5.00m @ 1.71g/t from 3m for (GxM 9)
2200110	33 3233	,35 (0371933	575	-50	200	50	22BBR0034 - 9.00m @ 4.3g/t from 15m for (GxM 39)
22BBRO	34 3255	i50 e	6571957	379	-50	266	45	22BBR0034 - 9.00m @ 4.3g/t from 13m for (GxM 39) 22BBR0034 - 1.00m @ 1.19g/t from 43m for (GxM 1)
	_							22BBR 0035 - 9.00m @ 9.14g/t from 35m for (GxM 82)
22BBRO	35 3255	i53 e	6571957	379	-66	260	54	22BBR 0035 - 1.00m @ 1.57g/t from 50m for (GxM 2)
	_							22BBR0036 - 1.00m @ 0.93g/t from 14m for (GxM 2)
22BBRC	36 3255	52 4	6571965	378	-64	260	51	22BBR0036 - 15.00m @ 8.86g/t from 24m for (GxM 133)
2266RQ	30 3233	,52 0	0371903	370	-04	200	31	
								22BBR0036 - 1.00m @ 0.65g/t from 44m for (GxM 1) 22BBR0037 - 4.00m @ 3.83g/t from 13m for (GxM 15)
2200.000	07 0055		CE 71 0 70	378	-50	262	45	
22BBRC	3255	,52 0	6571970	570	-30	262	43	22BBR0037 - 2.00m @ 2.99g/t from 18m for (GxM 6)
0000000			65.74.07.6	070	50	0.00		22BBR 0037 - 1.00m @ 0.78g/t from 28m for (GxM 1)
22BBRO	38 3255	039 E	6571976	378	-50	262	33	22BBR0038 - 2.00m @ 1.71g/t from 1m for (GxM 3)
								22BBR 0039 - 1.00m @ 0.51g/t from 1m for (GxM 1)
22BBRC	39 3255	55 6	6571974	378	-50	263	33	22BBR0039 - 11.00m @ 3.11g/t from 14m for (GxM 34)
	—							22BBR0039 - 1.00m @ 0.77g/t from 29m for (GxM 1)
22BBRO	40 3255	540 e	6571987	378	-50	260	33	NSI
								22BBRC041 - 3.00m @ 0.66g/t from 5m for (GxM 2)
22BBRO	41 3255	i58 e	6571984	378	-65	261	54	22BBR0041 - 18.00m @ 1.46g/t from 27m for (GxM 26)
								22BBRC041 - 5.00m @ 2.6g/t from 49m for (GxM 13)
22BBRC	42 3255	642 6	6571996	378	-50	266	18	NSI
22BBRO			6572007	378	-50	265	24	22BBR0043 - 2.00m @ 3.23g/t from 22m for (GxM 6)
		<u> </u>						22BBR0044 - 7.00m @ 0.67g/t from 14m for (GxM 5)
22BBRC	44 3255	65 4	6572002	378	-65	263	45	22BBR(044 - 7.00m @ 0.87g(110m 14m101 (GxM 3) 22BBR(044 - 4.00m @ 1.96g/t from 29m for (GxM 8)
220080	-7 3235	~~ [`	3372002	370	-03	203	43	22BBR0044 - 4.00m @ 1.35g/t from 29m for (GxM 8) 22BBR0044 - 1.00m @ 1.35g/t from 44m for (GxM 1)
0000000	AE 0000		CE 70.000	270		264		
22BBRO	45 3255	106 6	6572008	378	-50	264	33	22BBR0045 - 12.00m @ 2.28g/t from 2m for (GxM 27)
								22BBR0046 - 1.00m @ 1.02g/t from 4m for (GxM 1)
22BBRO	46 3255	i65 6	6572008	378	-50	258	42	22BBR0046 - 3.00m @ 4.42g/t from 9m for (GxM 13)
								22BBR0046 - 7.00m @ 4.15g/t from 17m for (GxM 29)
								22BBRC046 - 1.00m @ 0.57g/t from 28m for (GxM 1)
22BBRC	47 3255	i50 e	6572024	379	-49	2 75	24	22BBR0047 - 1.00m @ 0.57g/t from 13m for (GxM 1)
			65 70 04 0	070		0.67	40	22BBR0048 - 9.00m @ 0.67g/t from 3m for (GxM 6)
22BBRC	48 3255	65 6	6572019	378	-65	267	42	22BBR0048 - 4.00m @ 3.52g/t from 20m for (GxM 14)
								22BBR0049 - 18.00m @ 1.33g/t from 5m for (GxM 24)
22BBRO	149 3255	570 E	6572021	379	-49	267	45	22BBR0049 - 1.00m @ 1.46g/t from 34m for (GxM 1)
22BBRO	150 3255	i54 f	6572032	379	-60	78	30	22BBR0050 - 3.00m @ 0.84g/t from 12m for (GxM 3)
								22BBR0051 - 1.00m @ 0.86g/t from 7m for (GxM 1)
22BBRC	51 3255	43 6	6572014	378	-70	89	42	22BBR0051 - 6.00m @ 1.2g/t from 17m for (GxM 7)
2200110	51 5255	45 1	0372014	570	-70	0,5	42	22BBR0051 - 15.00m @ 1.1g/t from 27m for (GxM 17)
22BBRO	152 3255		6571928	378	-50	269	12	NSI
22BBRO			6571940	378	-50	267	12	NSI
22BBRO			6571950	378	-50	247	24	NSI
22BBRO	155 3255	623 6	6571958	378	-50	265	18	NSI
22BBRC	56 3255	i31 6	6571958	378	-49	266	30	22BBR0056 - 1.00m @ 0.79g/t from 8m for (GxM 1)
		_						22BBR0056 - 1.00m @ 0.58g/t from 13m for (GxM 1)
22BBRO			6571966	378	-50	264	24	22BBR:0057 - 1.00m @ 0.58g/t from 5m for (GxM 1)
22BBRO	158 3255	i25 e	6571976	378	-49	261	24	NSI
22BBRC	159 3255	i27 E	6571996	378	-50	261	18	NSI
22BBRO	160 3255	i34 e	6572015	378	-50	274	18	NSI
22BBRO	61 3255	i 40 e	6572025	378	-50	268	18	NSI
22BBRO			6572033	379	-50	274	15	NSI
22BBR0			6572046	380	-49	266	21	NSI
22BBR0			6571986	378	-49	268	15	NSI
22BBRQ			6572006	378	-50	268	15	22BBR0065 - 2.00m @ 0.94g/t from 0m for (GxM 2)
22BBR0			6572006 6572029	378	-50	268	15	228BR(065 - 2.00m @ 0.94g)(from 0m for (Gxivi 2) NSI
2286RU	00 3205	, 30 t	0372029	513	-50	270	12	
			CE 71 0 7 C	070		0.70		22BBR C0 67 - 14.00m @ 4.83g/t from 20m for (GxM 68)
0000000	167 3255	133 6	6571976	378	-64	272	54	22BBR C067 - 1.00m @ 1.61g/t from 38m for (GxM 2)
22BBRO		_						22BBR0067 - 1.00m @ 0.74g/t from 45m for (GxM 1)
		. n つ 🚺 🖌	6571946	379	-50	269	24	22BBR0068 - 8.00m @ 3.39g/t from 7m for (GxM 27)
22BBRO				379	-50	2 70	21	22BBR:069 - 5.00m @ 4.78g/t from 7m for (GxM 24)
			6571953					
22BBRO 22BBRO	169 3255	i 42 e			-49	270	24	22BBRC070 - 12.00m @ 6.08g/t from 1m for (GxM 73)
22BBRO	169 3255	i 42 e	6571953 6572014	378	-49	270	24	22BBR 00 70 - 1.00m @ 1.07g/t from 22m for (GxM 1)
22BBRO 22BBRO	169 3255	i 42 e			-49	270	24	
22BBRO 22BBRO	169 3255 170 3255	i42 6			-49 -50	270 89	24 24	22BBRC070 -1.00m @1.07g/t from 22m for (GxM 1) 22BBRC071 -1.00m @ 0.54g/t from 0m for (GxM 1) 22BBRC071 -8.00m @1.98g/t from 6m for (GxM 16)
2288R0 2288R0 2288R0	169 3255 170 3255	i42 6	6572014	378				22BBR0070 - 1.00m @ 1.07g/t from 22m for (GxM 1) 22BBR0071 - 1.00m @ 0.54g/t from 0m for (GxM 1)
2288R0 2288R0 2288R0 2288R0 2288R0	 ineralis 	642 (6 662 (6 555 (6 eed in	65 72 01 4 65 72 02 6 tersect	378 379 tions a	-50	⁸⁹ eported a	²⁴ at a 0	22BBRC070 -1.00m @ 1.07g/t from 22m for (GxM 1) 22BBRC071 -1.00m @ 0.54g/t from 0m for (GxM 1) 22BBRC071 -8.00m @ 1.98g/t from 6m for (GxM 16)
22BBRC 22BBRC 22BBRC 22BBRC 22BBRC 22BBRC 22BBRC 11 hip • H	69 3255 170 3255 171 3255 ineralis porting n. Dles we	eed in width	6572014 6572026 Itersect h of 1n rilled or	378 379 tions a n for R	-50 are re 2C ho	89 eported a ples and o minera	24 at a 0 0.3m	228BR:0070 - 1.00m @ 1.07g/t from 22m for (GxM 1) 228BR:0071 - 1.00m @ 0.54g/t from 0m for (GxM 1) 228BR:0071 - 8.00m @ 1.98g/t from 6m for (GxM 16) 228BR:0071 - 1.00m @ 1.39g/t from 16m for (GxM 1) 5.5g/t Au cut-off with a minimum of or diamond holes, composited to on as much as possible, however the
gregation nip • H • H • H	69 3255 170 3255 171 3255 ineralis porting n. Dles we	eed in width	6572014 6572026 htersect h of 1n rilled or ship be	378 379 tions a n for R	-50 are re 2C ho	89 eported a ples and o minera	24 at a 0 0.3m	22BBR:0070 - 1.00m @ 1.07g/t from 22m for (GxM 1) 22BBR:0071 - 1.00m @ 0.54g/t from 0m for (GxM 1) 22BBR:0071 - 8.00m @ 1.98g/t from 6m for (GxM 16) 22BBR:0071 - 1.00m @ 1.39g/t from 16m for (GxM 1) 5.5g/t Au cut-off with a minimum for diamond holes, composited to

widths and intercept lengths	
Diagrams	Refer to Figures and Tables in body of the release.
Balanced reporting	Historic drill hole results available on WAMEX.
Other substantive exploration data	There is no other material exploration data to report at this time.
Further work	Complete Geotechnical, Hydrogeological and material classification assessments. Follow up pit design, incorporation into mine schedule and economic assessment

Section 3 Estimation and Reporting of Mineral Resources

	tion 1, and where relevant in section 2, also apply to this section)
Criteria	Commentary
Database integrity	 FML data was geologically logged electronically, collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys o Checks for character data in numeric fields Data extracted from the database were validated visually in GEOVIA Surpac software and ARANZ Geo Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted. Historic data has been validated against WAMEX reports where possible.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and last visited site in February 2014.
Geological interpretation	 All available drill hole and mining data was used to guide the geological interpretation of the mineralisation. The mineralised geological interpretation was constructed in Seequent Leapfrog Geo software. Big Blow and Happy Jack are modelled as separate deposits but combined into one block model due to the proximity to one another with Happy Jack sitting ~ 150m to the East of Big Blow.

	 have a flatter dip to the main and footwall lodes. Happy Jack consists of four discontinuous thin stacked lodes steeply dipping to the East.
Dimensions	 The Big Blow deposit strikes NNE over an approximate 800m strike length. The main lode and continuous footwall lode dip sub-vertically to the east and have been modelled to approximately 280m below surface. The discrete high-grade core within the main lode has been modelled over a 490m strike and is entire enclosed within the main lode. Two smaller hanging wall lodes are flatter dipping to the east. The average thickness of the main lode and it's high-grade core varies from 1m to up to 12m thick. The minor lodes average 3m thick. Happy Jack deposit strikes NNE over approximately 900m strike length. The thin discontinuous stacked lodes dip sub-vertically to the east and have been interpreted approximately 200m below surface. The lodes have an average thickness of 4m.
Estimation and modelling techniques	 The drill hole samples were composited to 1m within each domain. This is the dominant sampling interval. All domain boundaries were considered "hard" boundaries and no drill hole information was used by another domain in the estimation including the high-grade core and surrounding lower grade main lode halo. Composited assay values of each domain were exported to a text file (.csv) and imported into Snowden Supervisor for geostatistical analysis. A review of histograms, probability plots and mean/variance plots for each domain revealed some outlier sample values. Top capping of higher Au values within each domain was carried out with Au values above the cut-off grade reset to the cut-off grade. For the main Big Blow and Happy Jack domain, a top-cut of 20g/t Au was selected, with the high-grade core capped at 30g/t. The different smaller domains had different top-cuts as required. Variograms were modelled in Supervisor on the domains that had greater than 100 samples, which was all but one domain. The one domain without its own variogram model shared the variogram of an adjacent lode. Due to the skewed nature of the dataset a Normal Scores transformation was applied to obtain better variograms. A back-transformation was then applied before being exported. The high-grade core and surrounding main lode were modelled as one. GEOVIA Surpac Software was used for the estimation and modelling process. The model was created in GDA 94 grid co-ordinates. Block sizes for the model were 10m in Y, 5m in X and 5m in Z direction, Sub celling of the parent blocks was permitted to 0.625m in the Y direction. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. A rotation of 10° around the Y axis was applied to the orientation of the blocks to best fit the NINE strike of the lodes. Block size is approximately ¼ of the average drill hole spacing. An Ordinary Kriging (OK) estimation technique was

	 Three search passes were run in order to fill the block model with estimated Au values. The search distances were doubled between the first and second search pass and doubled again between the second and third search pass. A grade dependent search limit was applied, restricting gold values greater than 10ppm to be used in estimating blocks greater than 30m away from the sample location. This technique helps minimise the "smearing" of high-grade values in areas of less drill density. The estimate was validated by a number of methods. An initial visual review was done by comparing estimated blocks and raw drill holes. Tonnage weighted mean grades were compared for all lodes with the raw and top-
	 capped drill hole values. There were no major differences. Swath plots of drill hole values and estimated Au grades by northing, easting and RL were generated for all domains in Supervisor software and showed that the estimated grades honoured the trend of the drilling data.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	• The Resources for Big Blow and Happy Jack have been reported above a 0.7g/t cut-off for open pit above 270mRL, this is based on an inhouse pit optimisation.
Mining factors or assumptions	Big Blow and Happy Jack would be mined by open-cut mining methods.
Metallurgical factors or assumptions	Big Blow has been previously mined by Focus with recoveries from milling reconciliations around 97%
Environmental factors or assumptions	 The Big Blow deposit has been previously excavated and nearby Happy Jack sit within an area of previous ground disturbance including haul roads and waste dumps. There are no unforeseen environmental considerations that would prevent open pit mining from re-commencing in the area.
Bulk density	• Density values were assigned based on weathering profile using SG test work on FML diamond core samples and historic figures used in the region. An average density of 1.8 for oxidised t/m ³ , 2.4 t/m ³ for transitional and 2.7 t/m ³ for fresh rock were applied to the model.
Classification	 Resources have been classified as either Indicated or Inferred based mainly on geological confidence in the geometry and continuity of the lodes. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Above the 270mRL significant drilling exists mostly pattern drilled to 10m x 20m, along with mining of resources from the pit over a number of years; therefore, blocks that estimated in the first search pass were classified as Indicated. Estimated blocks in the second search pass above the 270mRL were classified as Inferred. Remaining estimated blocks were assigned a 'not classified' code and are not included in the reported mineral resource estimate.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of relative accuracy/ confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates.

JORC Code, 2012 Edition – Table 1 CNX Deposit

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 Focus Minerals Ltd (FML) RC percussion drill chips were collected through a cyclone and riffle splitter. Samples were collected on a 1m basis. The spoils were either bagged per metre in appropriately sized plastic bags or placed on the ground and left in neat rows at 1m intervals with an accompanying cone split 1m calico sample Diamond core was collected into standard plastic core trays. Down hole depths were marked onto wooden core blocks and stored in the trays. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. Whenever possible the cutline was drawn parallel to and close to the down hole core orientation line to ensure the cut-line was consistent over the hole. The core was cut in half using an automatic core saw, with half-core samples submitted for analysis. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. The diamond core was orientated and marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. The core was cut in half using an Almonte automatic core saw. Goldfan collected 2kg samples as either 4m composites or as 1m samples through mineralised ground or interesting geology. Samples were run through a cyclone and then put through a riffle splitter. Where the 4m composite samples by unknown methods and submitted them for assay. Information on the seven Diamond holes drilled by Northland Minerals Ltd is limited and only referred to as an internal report on WAMEX. However, four of these holes were targeted within the current CNX pit. Samples were taken as predominantly 1m inter
Drilling techniques	 Years 2020 onward FML RC drilling was conducted using a 5 3/8inch face sampling hammer for RC drilling. At hole completion, downhole surveys for RC holes were completed at a 10m interval by using True North Seeking Gyro tool. Otherwise, a single shot Eastman camera downhole survey was used either "in-rod" or "open hole". Years 2020 onward FML diamond drilling core was drilled at NQ2/HQ3/PQ size. All drill core was oriented where competent by the drilling contractor using electronic digital, accelerometer-based system. At hole completion diamond holes were open hole surveyed using an EMS single shot tool at a range of intervals between 20m and 50m, averaging 30m 2014 FML drilling was completed using an RC face sampling hammer or NQ2/HQ3 size diamond core. Where achievable, all drill core was oriented by the drilling

Drill sample recovery	 contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling using an electronic multi-shot (EMS) camera open hole. Goldfan used RC face sampling hammer. Holes were downhole surveyed by Eastman single shot camera and later by Eastman multiple shot camera. Cord RC holes were completed using RC roller and hammer. Clackline drilled RC pre-collars followed by NQ diamond core tails. Holes were downhole surveyed by Eastman single shot camera single shot camera. FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. FML DD sample recovery was measured and calculated (core loss) during the logging process. DD core had generally excellent recovery. Goldfan states a consistent sample recovery in the range of 80-90%. Cord, Clackline and Northland sample recovery is unknown.
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure, and geologically logged using the same system as that for RC. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed one core tray at a time using a standardised photography jig. RC chip trays are wet and dry photographed on a hole-by-hole basis The entire length of all holes is logged. Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
Sub-sampling techniques and sample preparation	 FML Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. Samples were submitted to ALS Kalgoorlie for analysis. FML RC samples were riffle split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. 2014 FML The samples were submitted to ALS or Kal Assay for analysis. 2020 onward FML samples were submitted to Jinning lab in Kalgoorlie with gold analysed by fire assay Where possible all RC samples were drilled dry to maximise recovery. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were cullected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was primarily a 40g Fire Assay for individual samples with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of

	 mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. FML QAQC checks involved inserting a standard or blank alternating every 20 samples in RC. Diamond core field duplicates were not taken, a minimum of 1 standard was inserted for every sample batch submitted. The sample sizes are considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Goldfan originally submitted its samples to Australian Laboratories Group Kalgoorlie. The 2kg samples were oven dried, then crushed to a nominal 6mm and split once through a Jones riffle splitter. A 1kg sub-sample was fine pulverised in a Keegor Pulveriser to a nominal 100 microns. This sample was homogenised and 400-500g split as the assay pulp for analysis. Assaying was by a classical fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Later RC drilled by Goldfan was submitted to Minlab Kalgoorlie where the whole of the sample is pulverised in a ring mill before 300g sample is split as the assay pulp. Assaying was by fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Goldfan conducted inter-laboratory check sampling over approx. 10% of holes over the whole program with results found to be within acceptable limits. Laboratory repeat checks were also run on the assay data. Cord submitted 1m samples to Kalgoorlie Assay Laboratory.
	 Clackline submitted 1m RC samples or 1m ½ core diamond samples to Australian Assay Laboratories for fire assay on a 50g charge.
Quality of assay data and laboratory tests Verification of sampling and assaying	 Assay Laboratories for fire assay on a 50g charge. The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource
Location of data	estimations.All 2020 onwards FML drill core was oriented by the drilling electronic accelerator
points	 system. Most holes were surveyed upon completion of drilling. All 2020 onwards FML RC holes were down hole surveyed using a north seeking gyro. All 2020 onwards FML diamond holes were single shot open hole surveyed using a reflex system All 2014 FML holes were surveyed using an EMS system. After completion, the drill hole locations were picked up by DGPS with accuracy of +/-20cm. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. Detailed drone topography and imagery has also bee acquired over the project area to provide additional topographic detail and spatial accuracy

	 Goldfan holes were laid out and picked up by the Three Mile Hill Survey Department. Down hole surveying was conducted by Down Hole Surveys using Eastman multiple shot cameras. Clackline used Eastman single shot cameras for down hole surveying and state collars were surveyed with respect to local grids that existed at the time.
Data spacing and distribution	• Drill spacing along CNX is approximately 10m x 10m to 20m x 10m through the main lode horizon, increasing to 40m x 20m at the far south-eastern extension of the mineralisation as it nears the Highway. The average depth of the RC drilling is 80m, with a maximum depth of 149m and the average depth of the diamond drilling was 100m with a maximum depth of 131.05m.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. The vast majority of holes are oriented at right angles to the strike of the host G2 Gabbro intrusion, with dip optimised for drill capabilities and the dip of the ore body. During 2020 and 2021 significant additional structural data was acquired from Geotechnical drilling. Based on this data 8 RC/DD holes were drilled with dips to the NW in order to facilitate the best possible orientation of drilling to test the CNX stockwork and convert significant parts of the resource to indicated status
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded.
Audits or reviews	• A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 CNX is located within Mining Lease M15/645, registered to Focus Minerals Ltd. and Focus Operations Pty Ltd of Perth, Western Australia and which is current until March 2035. The Malinyu Ghoorlie 2017 and Maduwongga 2017 Claims cover the majority of the Coolgardie tenure. At this stage no Coolgardie claims have progressed to determined status.
Exploration done by other parties	 CNX and the adjacent Three Mile Hill deposits have been explored by numerous parties over the years. A 1986 Cord WAMEX report references the lease mentioned in 1947 Department of Mines Annual Reports. They also indicate earlier prospecting activity was evident by: two shallow shafts
	 several shallow pits sunk within the mineralised dolerite belt. large scale alluvial/elluvial surface mining by previous holders
	• More modern exploration of the deposit has involved various drilling campaigns by various drilling methods such as RAB, RC and Diamond since the mid 1960's.
	 Geological Mapping, Ground Magnetics, Aeromagnetics and soil sampling have also been routinely carried out by other parties since the mid 1980's.

	new resour	figures for the CNX OP are not available h ce within the old pit can be calculated and 7g/t for 18Koz (Figures rounded). Further	reports at 0.7 g/	/t cut off as
	strike of the production	e host G2 Gabbro is the Three Mile Hill OP of 4.2Mt at a grade of 2.4g/t Au for 324,110	. TMH OP has i	-
Geology	CNX Main			
	northwest s layered sill hornblende	eposit mineralisation is located within stee triking Three Mile Hill meta gabbro. The T which includes a differentiated coarse grai granodiorite unit locally called "G2 Gabbro	hree Mile Hill G ned granophyric o".	abbro is a ; quartz –
	The vast n within the C	najority of the quartz stockwork hosted min	eralisation is de	veloped
	Bulk style s	tockwork mineralisation is hosted by netwo general very shallow dips to the southwest.		n quartz
		le generally 5 to +30cm laminated quartz v		ately to the
	style tabula extends un	e two orientations of quartz vein stockwork r ore body at CNX main within the G2 Gab der Great Eastern Highway and has been with the Three Mile Lill OB 100m to the or	bro. This miner	alisation
	• The main p	with the Three Mile Hill OP 190m to the so art of the CNX deposit averages 35 to 45n bcrops over more than 700m strike		
	• Infill and ex mineralisat drill holes b	tensional drilling conducted since late 2020 ion at CNX main to be remarkably consiste eneath the indicated parts of the resource urce expansion	ent and predictat	ole with new
	CNX Gap zone	/Princess Midas		
	extending a	ing north of CNX OP has confirmed the loc 1 further 190m to the NW before folding and 2 west – southwest.		
		have been intersected between the north	end of CNX ma	in and the
		ver 190m strike. However, the tenor and w this area and it is now termed the "Gap zo		
	zone is cro	sscut by several faults resulting in some bl		•
	 stratigraphy Several sha 	r. allow workings and a single significantly lar	aer shaft are loo	cated at the
	north end o	f the Gap zone. These working have histo	rically been call	ed "Princess
	also, the ea	workings have targeted some of the Gap z ostern margin of the fold hinge where the m and extends west- southwest.		-
Drill hole Information	Historic dril reports.	ling information has been validated agains	t publicly availat	ble WAMEX
			WAMEX	WAMEX
	Company	Drill Hole Number	Report A-	Report

CLACKLINE	TMH004R, TMH011R, TMH013R, TMH014R, TMH016R, TMH018R, TMH019R, TMH021R, TMH022R, TMH023R, TMH024R, TMH031R, TMH032R, TMH033R, TMH034R, TMH035R, TMH036R, TMH037R, TMH038R, TMH039R, TMH040R, TMH041R, TMH042R	20750	Jan-86
	ECN001RD, ECN002RD	20750	Jan-86
	ECN003RD, ECN004RD	20344	1986
CORD-PAL	RC1, RC10, RC11, RC12, RC13, RC14, RC15, RC16, RC17, RC18, RC19, RC2, RC20, RC21, RC22, RC23, RC24, RC3, RC4, RC5, RC6, RC7, RC8	19363	Jun-86
	TMH001RD, TMH012RD, TMH072RD, TMH098RD, TMH099RD, TMH102RD, TMH015RD, TMH071RD, TMH353RD, TMH354RD, TMH355RD	25383	Oct-88
	TMH185R, TMH186R, TMH188R, TMH189R, TMH190R, TMH191R, TMH192R, TMH193R, TMH194R, TMH205R, TMH192R, TMH193R, TMH196R, TMH205R, TMH180R, TMH199R, TMH200R, TMH201R, TMH202R, TMH203R, TMH204R, TMH206R, TMH207R, TMH209R, TMH210R, TMH211R, TMH212R, TMH164RD, TMH165RD, TMH166RD, TMH167RD, TMH168RD, TMH169RD, TMH170RD, TMH171RD, TMH172RD, TMH173RD, TMH176RD, TMH177RD, TMH179RD, TMH182RD, TMH183RD, TMH174RD, TMH175RD, TMH178RD, TMH208RD	33456	Jun-91
GOLDFAN	TMH222R, TMH223R, TMH224R, TMH225R, TMH226R, TMH227R, TMH228R, TMH229R, TMH230R, TMH231R, TMH232R, TMH242R, TMH243R, TMH244R, TMH245R, TMH246R, TMH247R, TMH248R, TMH249R, TMH250R, TMH251R	43021	Dec-94
	TMH255R, TMH256R, TMH258R, TMH259R, TMH260R, TMH261R, TMH262R, TMH263R, TMH264R, TMH265R, TMH266R, TMH267R, TMH268R, TMH269R, TMH270R, TMH271R, TMH272R, TMH269R, TMH270R, TMH276R, TMH279R, TMH280R, TMH275R, TMH276R, TMH284R, TMH280R, TMH282R, TMH283R, TMH284R, TMH285R, TMH287R, TMH288R, TMH284R, TMH290R, TMH291R, TMH292R, TMH294R, TMH296R, TMH297R, TMH299R, TMH300R, TMH301R, TMH302R, TMH303R, TMH304R, TMH305R, TMH306R, TMH307R, TMH308R, TMH309R, TMH310R, TMH311R, TMH312R, TMH313R, TMH314R, TMH315R, TMH328R, TMH324R, TMH321R, TMH322R, TMH329R, TMH307R, TMH331R, TMH338R, TMH334R, TMH335R, TMH336R, TMH337R, TMH334R, TMH339R, TMH340R, TMH337R, TMH338R, TMH339R, TMH340R, TMH341R	46486	Dec-95
	TMH579R, TMH578RD	53195	Dec-97
GMC /GOLDFAN	TMH338R, TMH339R, TMH340R, TMH341R, TMH344RD, TMH345RD, TMH346RD, TMH347RD, TMH352RD, TMH353RD, TMH354RD, TMH355RD	49956	Jan-97

Company	Drill Hole Number	Announcement	Release Date
Northland	TMDDH-2, TMDDH-3, TMDDH-4, TMDDH-5, TMDDH-6, TMDDH-7, TMDDH-8	Large-Scale Mineral Resource at Coolgardie Gold Project's CNX Deposit	17-Dec-20
	20CNDD001, 20CNRC001, 20CNRC002, 20CNRC003	Exploration Update - Coolgardie Gold Project	26-Apr-21
FOCUS	21CNDD001, 21CNDD002, 21CNDD003, 21CNDD004, 21CNDD005, 21CNDD006, 21CNDD007, 21CNDD008, 21CNDD009, 21CNDD010, 21CNDD011, 21CNDD012, 21CNDD013, 21CNDD014, 21CNDD015, 21CNDD016, 21CNDD017, 21CNRC001, 21CND0016, 21CNDD017, 21CNRC004, 21CNRC002, 21CNRC003, 21CNRC004, 21CNRC005, 21CNRC006, 21CNRC007, 21CNRC011, 21CNRC009, 21CNRC010, 21CNRC014, 21CNRC015, 21CNRC016, 21CNRC017, 21CNRC018, 21CNRC019, 21CNRC020, 21CNRC018, 21CNRC022, 21CNRC023, 21CNRC021, 21CNRC026, 21CNRC023, 21CNRC024, 21CNRC026, 21CNRC028, 21CNRC029, 21CNRC030, 21CNRD001, 21CNRD002, 21CNRD003, 21CNRD004, 21CNRD005, 21CNRD025, 21CNRD027 21CNRD025, 21CNRD025,	CNX's Mineral Resource increases 30% in major boost for Coolgardie Gold Project	24-Jun-21
	21CNRD027 21CNRD007, 21CNRD035, 21CNRD036, 21CNRD037, 21CNRD038, 21CNRD039, 21CNRD040, 21CNRD041, 21CNRD042, 21CNRD043, 21CNRD044, 21CNRD045, 21CNRD046, 21CNRD047, 21CNRD048, 21CNRD049, 21CNRD050, 21CNRD051, 21CNRD052, 21CNRD053, CNDD014	CNX Mineral Resource Update	24-Nov-21

(MGA 94 Zone 51) (MGA94) (m) 0.5 g/t cut off and up to 3m 22CNRC001 327296 6577728 422 -57.6 320.0 42 22CNRC001 - 3.00m @ 1.16g/t frc 22CNRC002 327319 6577706 424 -57.7 314.0 54 22CNRC002 - 1.00m @ 1.04g/t frc 22CNRC003 327345 6577685 426 -62.2 310.0 54 22CNRC003 - 1.00m @ 0.58g/t frc	om 11m for (GxM 3) rom 25m for (GxM 17)
22CNRC001 327296 6577728 422 -57.6 320.0 42 22CNRC001 - 15.00m @ 1.11g/t fr 22CNRC002 327319 6577706 424 -57.7 314.0 54 22CNRC002 - 3.00m @ 1.91g/t fr 22CNRC003 327345 65777685 426 -57.7 314.0 54 22CNRC002 - 1.00m @ 1.85g/t fr 22CNRC003 - 3.00m @ 0.57g/t fr 22CNRC003 - 1.00m @ 0.57g/t fr 22CNRC002 - 1.00m @ 0.57g/t fr 22CNRC002 - 1.00m @ 0.84g/t fr	rom 25m for (GxM 17)
22CNRC002 327319 6577706 424 -57.7 314.0 54 22CNRC002 - 3.00m @ 1.91g/t fro 22CNRC002 - 10.00m @ 1.85g/t fro 22CNRC002 - 1.00m @ 1.04g/t fro 22CNRC002 - 7.00m @ 0.57g/t fro 22CNRC003 327345 6577685 426 -62 2 310 0 54 22CNRC003 - 1.00m @ 0.84g/t fro 22CNRC003 - 1.00m @ 0.84g/t fro	
22CNRC002 327319 6577706 424 -57.7 314.0 54 22CNRC002 - 10.00m @ 1.85g/t fr 22CNRC002 - 1.00m @ 1.04g/t frc 22CNRC002 - 7.00m @ 0.57g/t frc 22CNRC003 327345 6577685 426 -62 2 310 0 54 22CNRC003 - 1.00m @ 0.84g/t frc	
22CNRC002 327319 6577706 424 -57.7 314.0 54 22CNRC002 - 1.00m @ 1.04g/t frc 22CNRC003 327345 6577685 426 -62.2 310.0 54 22CNRC003 - 1.00m @ 0.57g/t frc 22CNRC003 327345 6577685 426 -62.2 310.0 54 22CNRC003 - 1.00m @ 0.84g/t frc	rom 14m for (GxM 19)
22CNRC002 - 7.00m @ 0.57g/t fro 22CNRC003 327345 6577685 426 -62 2 310 0 54 22CNRC003 - 1.00m @ 0.84g/t fro	
1 22(NR(003 + 32/345 + 65/685 + 426 + 622 + 3100) + 54	
22CINCOUS 327343 0377063 420 -02.2 310.0 34 22CINRCOUS - 5.00m @ 0.84a/t fre	om 16m for (GxM 1)
	om 45m for (GxM 4)
22CNRC004 - 16.00m @ 0.98g/t fr	
22CNRC004 327359 6577672 427 -59.0 317.7 48 22CNRC004 - 1.00m @ 0.67g/t fro	
22CNRC004 - 3.00m @ 0.69g/t frc	
22CNRC004 - 1.00m @ 0.69g/t fro	
22CNRC005 327374 6577656 428 -59.4 316.1 42 22CNRC005 - 11.00m @ 0.64g/t fi	
22CVRC005 527574 0577050 422 55.4 510.1 42 22CVRC005 11.00m @ 1.45g/11	
22CNRC006 - 9.00m @ 2.42g/t fro	
22CNRC006 - 4.00m @ 10.15g/t ft	
22CNRC006 327388 6577643 428 -59.6 315.7 54 22CNRC006 - 7.00m @ 0.75g/t fro	
22CNRC006 - 5.00m @ 0.86g/t frc	
22CNRC007 - 11.00m @ 2.34g/t fi	
22CNRC007 327399 6577633 426 -62.8 315.2 60 22CNRC007 - 1.00m @ 0.7g/t from	m 31m for (GxM 1)
22CNRC007 - 17.00m @ 0.67g/t fi	rom 43m for (GxM 11)
22CNRC008 - 1.00m @ 0.6g/t from	m 25m for (GxM 1)
22CNRC008 - 1.00m @ 0.6g/t from	m 28m for (GxM 1)
22CNRC008 327415 6577617 425 -60.0 308.0 72 22CNRC008 - 1.00m @ 0.63g/t frc	
22CNRC008 - 1.00m @ 2.71g/t frc	
22CNRC008 - 8.00m @ 0.7g/t from	
22CNRC009 327428 6577601 425 -60.9 317.1 36 22CNRC009 - 1.00m @ 1.84g/t frc	
22CNRC009 - 1.00m @ 0.69g/t fro	
22CNRC010 327443 6577589 425 -60.1 314.9 42 22CNRC010 - 2.00m @ 0.66g/t fro	
22CNRC011 - 1.00m @ 0.76g/t fro	
22CNRC011 327454 6577564 424 -60.8 315.4 42 22CNRC011 - 1.00m @ 1.79g/t fro 22CNRC011 - 5.00m @ 1.87g/t fro	
22CNRC011 - 5.00m @ 1.67g/t1rc	
22CNRC012 - 1.00m @ 1.04g/t fro	
22CNRC012 327300 6577708 422 -60.4 316.2 42 22CNRC012 4.00m @ 0.55g/t fro	
22CNRC012 - 7.00m @ 1.12g/t fro	
22CNRC013 - 5.00m @ 2.07g/t frc	
22CNRC013 327324 6577687 425 -59.7 313.0 42 22CNRC013 - 10.00m @ 0.73g/t fi	
22CNRC014 - 1.00m @ 2.23g/t fr	om 18m for (GxM 2)
22CNRC014 327334 6577670 425 -59.9 315.1 54 22CNRC014 - 1.00m @ 0.78g/t fro	om 29m for (GxM 1)
22CVRC014 32/334 03/10/0 423 -39.5 313.1 34 22CNRC014 - 1.00m @ 0.52g/t fro	om 31m for (GxM 1)
22CNRC014 - 2.00m @ 0.63g/t frc	
22CNRC015 327357 6577643 426 -60.3 311.2 42 22CNRC015 - 8.00m @ 1.62g/t fro	
22CNRC015 - 2.00m @ 0.88g/t fro	
22CNRC016 327376 6577632 427 -57.7 319.4 42 22CNRC016 - 5.00m @ 1.25g/t fro	
22CNRC016 - 9.00m @ 0.8g/t from	
22CNRC017 - 1.00m @ 0.56g/t fro	
22CNRC017 327395 6577612 424 -59.5 314.1 48 22CNRC017 - 5.00m @ 0.51g/t fro 22CNRC017 - 4.00m @ 2.09g/t fro	
22CNRC017 - 4.00m @ 2.09g/ tric 22CNRC017 - 1.00m @ 0.73g/t fro	
22CNRC018 - 1.00m @ 0.54g/t frc	
22CNRC018 327402 6577593 423 -61.3 314.6 30 22CNRC018 - 5.00m @ 2.12g/t fro	

Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection calculated using
	(MGA	A 94 Zone 51)			(MGA94)	(m)	0.5 g/t cut off and up to 3m internal dilution
22CNRC019	327427	6577573	424	-60.4	315.0	42	22CNRC019 - 1.00m @ 2.34g/t from 7m for (GxM 2) 22CNRC019 - 10.00m @ 0.77g/t from 16m for (GxM 8)
22CNRC020	327277	6577716	420	-59.7	314.7	54	22CNRC019 - 1.00m @ 1.28g/t from 41m for (GxM 1) 22CNRC020 - 21.00m @ 0.51g/t from 0m for (GxM 11) 22CNRC020 - 1.00m @ 1.18g/t from 25m for (GxM 1) 22CNRC020 - 200m @ 1.76g/t from 25m for (GxM 1)
							22CNRC020 - 3.00m @ 0.75g/t from 32m for (GxM 2) 22CNRC020 - 9.00m @ 1.69g/t from 39m for (GxM 15) 22CNRC021 - 1.00m @ 0.61g/t from 2m for (GxM 1)
22CNRC021	327284	6577698	420	-59.9	311.5	66	22CNRC021 - 2.00m @ 1.06g/t from 63m for (GxM 2) 22CNRC022 - 1.00m @ 2.01g/t from 4m for (GxM 2)
22CNRC022	327301	6577688	422	-60.5	313.8	54	22CNRC022 - 4.00m @ 0.68g/t from 10m for (GxM 3) 22CNRC022 - 3.00m @ 2.59g/t from 18m for (GxM 8) 22CNRC022 - 2.00m @ 2.74g/t from 52m for (GxM 5)
22CNRC023	327312	6577672	422	-60.7	317.6	48	22CNRC023 - 1.00m @ 0.9g/t from 1m for (GxM 1) 22CNRC023 - 1.00m @ 0.71g/t from 12m for (GxM 1) 22CNRC023 - 1.00m @ 1.76g/t from 18m for (GxM 2) 22CNRC023 - 3.00m @ 1.08g/t from 33m for (GxM 3)
23CNRC001	327193	6577400	410	-50.0	65.0	27	NA
23CNRC002	327195	6577401	410	-50.0	65.0	150	NA
23CNRC003	327107	6577360	410	-50.0	65.0	150	NA
							NA
							NA
							NA NA
							NA
							NA
							NA
						-	NA
				_			NA
							NA
							NA
23CNRC015	326811	6577750	414	-50.0	65.0	150	NA
23CNRC016	326776	6577899	416	-50.0	65.0	150	NA
23CNRC017	326701	6577889	416	-50.0	65.0	150	NA
23CNRC018	326632	6577843	416	-50.0	65.0	150	NA
23CNRC019	326560	6577810	417	-50.0	65.0	150	NA
23CNRC020	326529	6577972	419	-50.0	65.0	150	NA
23CNRC021	326455	6577939	419	-50.0	65.0	150	NA
				-50.0	65.0		NA
							NA NA
repor 1m.	ting wid	th of 1m	for I	RC h	oles and	0.3m	for diamond holes, composited to
 Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases. 8 RC/DD holes have been drilled with dips toward the northwest sub parallel and 							
mode acros overa	el in area is the ho ill tabula	as being ost stratig ar minera	con grap lisai	verte hy. tion i	d to Indic This orier s in fact c	cated ntation closer	status with holes planned to drill righ n while not perpendicular to the r to orthogonal to the mineralised
						he rel	lease.
There	is no ot	her mate	rial	explo	pration da	ata to	report at this time.
	22CNRC019 22CNRC020 22CNRC021 22CNRC021 22CNRC022 22CNRC023 23CNRC001 23CNRC002 23CNRC003 23CNRC004 23CNRC005 23CNRC006 23CNRC007 23CNRC008 23CNRC010 23CNRC011 23CNRC012 23CNRC012 23CNRC013 23CNRC014 23CNRC012 23CNRC012 23CNRC012 23CNRC012 23CNRC012 23CNRC012 23CNRC021 23CNRC022 23CNRC024 • Mineur • Mineur report 1m. • Mi	(MG/ 22CNRC019 327427 22CNRC020 327277 22CNRC021 327284 22CNRC022 327301 22CNRC022 327301 22CNRC023 327312 22CNRC023 327312 23CNRC001 327193 23CNRC002 327195 23CNRC003 327107 23CNRC004 327048 23CNRC005 326991 23CNRC006 327016 23CNRC007 326446 23CNRC010 326798 23CNRC011 326841 23CNRC012 326769 23CNRC013 326697 23CNRC014 326841 23CNRC015 326811 23CNRC016 326776 23CNRC017 326697 23CNRC018 326692 23CNRC018 326692 23CNRC020 326529 23CNRC021 326475 23CNRC023 326667 23CNRC024 327115 S Min	(MGA 94 Zone 51) 22CNRC019 327427 6577573 22CNRC020 327277 6577716 22CNRC021 327284 6577698 22CNRC022 327301 6577688 22CNRC023 327312 6577672 23CNRC001 327193 6577400 23CNRC002 327195 6577401 23CNRC003 327107 6577305 23CNRC004 327048 6577333 23CNRC005 32691 6577401 23CNRC006 327016 6577497 23CNRC007 326946 6577402 23CNRC008 326914 6577521 23CNRC010 326914 657754 23CNRC011 326841 6577588 23CNRC012 326798 6577770 23CNRC013 326699 6577524 23CNRC014 326587 6577770 23CNRC015 326816 6577789 23CNRC013 326693 6577730 23CNRC013 326506 6577810 <td>(MGA 94 Zone 51) 22CNRC019 327427 6577573 424 22CNRC020 327277 6577716 420 22CNRC021 327284 6577698 420 22CNRC022 327301 6577688 422 22CNRC023 327312 6577672 422 23CNRC001 327193 6577400 410 23CNRC002 327175 6577401 410 23CNRC003 327107 6577305 414 23CNRC004 327048 6577333 412 23CNRC005 326910 6577401 410 23CNRC006 327016 6577425 418 23CNRC017 326946 6577305 414 23CNRC018 326872 6577584 422 23CNRC013 326949 6577534 422 23CNRC013 326699 657754 422 23CNRC013 326699 6577584 422 23CNRC013 326670 6577899 416 <td< td=""><td>(MGA 94 Zone 51) Aug 22CNRC019 327427 6577573 424 -60.4 22CNRC020 327277 6577716 420 -59.7 22CNRC021 327284 6577698 420 -59.9 22CNRC022 327301 6577688 422 -60.5 22CNRC023 327312 6577672 422 -60.7 23CNRC001 327193 6577400 410 -50.0 23CNRC002 327105 6577401 410 -50.0 23CNRC003 327107 6577305 414 -50.0 23CNRC004 327016 6577497 414 -50.0 23CNRC005 326991 6577305 414 -50.0 23CNRC006 327016 6577497 414 -50.0 23CNRC007 326946 6577521 419 -50.0 23CNRC008 326872 6577335 417 -50.0 23CNRC013 326891 6577521 419 -50.0 23C</td><td>(MGA 94 Zone 51) (MGA94) 22CNRC019 327427 6577573 424 -60.4 315.0 22CNRC020 327277 6577716 420 -59.7 314.7 22CNRC021 327284 6577698 420 -59.9 311.5 22CNRC022 327301 6577698 422 -60.5 313.8 22CNRC023 327312 6577672 422 -60.7 317.6 23CNRC001 327195 6577401 410 -50.0 65.0 23CNRC002 327107 6577333 412 -50.0 65.0 23CNRC003 327107 6577333 412 -50.0 65.0 23CNRC004 327048 6577497 414 -50.0 65.0 23CNRC003 326914 657742 418 -50.0 65.0 23CNRC001 326946 657742 418 -50.0 65.0 23CNRC013 326827 657753 412 -50.0 65.0 23CNRC013<!--</td--><td>(MGA 94 Zone 53) (MGA 94) (m) 22CNRC019 327427 6577573 424 -60.4 315.0 42 22CNRC020 327277 6577716 420 -59.7 314.7 54 22CNRC021 327284 6577698 420 -59.7 311.5 66 22CNRC022 327301 6577698 422 -60.5 313.8 54 22CNRC023 327312 6577672 422 -60.7 317.6 48 23CNRC003 327193 6577401 410 -50.0 65.0 150 23CNRC004 327195 6577335 414 -60.0 65.0 150 23CNRC003 322916 6577335 414 -60.0 65.0 150 23CNRC003 32694 6577407 418 -50.0 65.0 150 23CNRC003 32694 6577457 418 -50.0 65.0 150 23CNRC013 32684 6577335 417 -50.0</td></td></td<></td>	(MGA 94 Zone 51) 22CNRC019 327427 6577573 424 22CNRC020 327277 6577716 420 22CNRC021 327284 6577698 420 22CNRC022 327301 6577688 422 22CNRC023 327312 6577672 422 23CNRC001 327193 6577400 410 23CNRC002 327175 6577401 410 23CNRC003 327107 6577305 414 23CNRC004 327048 6577333 412 23CNRC005 326910 6577401 410 23CNRC006 327016 6577425 418 23CNRC017 326946 6577305 414 23CNRC018 326872 6577584 422 23CNRC013 326949 6577534 422 23CNRC013 326699 657754 422 23CNRC013 326699 6577584 422 23CNRC013 326670 6577899 416 <td< td=""><td>(MGA 94 Zone 51) Aug 22CNRC019 327427 6577573 424 -60.4 22CNRC020 327277 6577716 420 -59.7 22CNRC021 327284 6577698 420 -59.9 22CNRC022 327301 6577688 422 -60.5 22CNRC023 327312 6577672 422 -60.7 23CNRC001 327193 6577400 410 -50.0 23CNRC002 327105 6577401 410 -50.0 23CNRC003 327107 6577305 414 -50.0 23CNRC004 327016 6577497 414 -50.0 23CNRC005 326991 6577305 414 -50.0 23CNRC006 327016 6577497 414 -50.0 23CNRC007 326946 6577521 419 -50.0 23CNRC008 326872 6577335 417 -50.0 23CNRC013 326891 6577521 419 -50.0 23C</td><td>(MGA 94 Zone 51) (MGA94) 22CNRC019 327427 6577573 424 -60.4 315.0 22CNRC020 327277 6577716 420 -59.7 314.7 22CNRC021 327284 6577698 420 -59.9 311.5 22CNRC022 327301 6577698 422 -60.5 313.8 22CNRC023 327312 6577672 422 -60.7 317.6 23CNRC001 327195 6577401 410 -50.0 65.0 23CNRC002 327107 6577333 412 -50.0 65.0 23CNRC003 327107 6577333 412 -50.0 65.0 23CNRC004 327048 6577497 414 -50.0 65.0 23CNRC003 326914 657742 418 -50.0 65.0 23CNRC001 326946 657742 418 -50.0 65.0 23CNRC013 326827 657753 412 -50.0 65.0 23CNRC013<!--</td--><td>(MGA 94 Zone 53) (MGA 94) (m) 22CNRC019 327427 6577573 424 -60.4 315.0 42 22CNRC020 327277 6577716 420 -59.7 314.7 54 22CNRC021 327284 6577698 420 -59.7 311.5 66 22CNRC022 327301 6577698 422 -60.5 313.8 54 22CNRC023 327312 6577672 422 -60.7 317.6 48 23CNRC003 327193 6577401 410 -50.0 65.0 150 23CNRC004 327195 6577335 414 -60.0 65.0 150 23CNRC003 322916 6577335 414 -60.0 65.0 150 23CNRC003 32694 6577407 418 -50.0 65.0 150 23CNRC003 32694 6577457 418 -50.0 65.0 150 23CNRC013 32684 6577335 417 -50.0</td></td></td<>	(MGA 94 Zone 51) Aug 22CNRC019 327427 6577573 424 -60.4 22CNRC020 327277 6577716 420 -59.7 22CNRC021 327284 6577698 420 -59.9 22CNRC022 327301 6577688 422 -60.5 22CNRC023 327312 6577672 422 -60.7 23CNRC001 327193 6577400 410 -50.0 23CNRC002 327105 6577401 410 -50.0 23CNRC003 327107 6577305 414 -50.0 23CNRC004 327016 6577497 414 -50.0 23CNRC005 326991 6577305 414 -50.0 23CNRC006 327016 6577497 414 -50.0 23CNRC007 326946 6577521 419 -50.0 23CNRC008 326872 6577335 417 -50.0 23CNRC013 326891 6577521 419 -50.0 23C	(MGA 94 Zone 51) (MGA94) 22CNRC019 327427 6577573 424 -60.4 315.0 22CNRC020 327277 6577716 420 -59.7 314.7 22CNRC021 327284 6577698 420 -59.9 311.5 22CNRC022 327301 6577698 422 -60.5 313.8 22CNRC023 327312 6577672 422 -60.7 317.6 23CNRC001 327195 6577401 410 -50.0 65.0 23CNRC002 327107 6577333 412 -50.0 65.0 23CNRC003 327107 6577333 412 -50.0 65.0 23CNRC004 327048 6577497 414 -50.0 65.0 23CNRC003 326914 657742 418 -50.0 65.0 23CNRC001 326946 657742 418 -50.0 65.0 23CNRC013 326827 657753 412 -50.0 65.0 23CNRC013 </td <td>(MGA 94 Zone 53) (MGA 94) (m) 22CNRC019 327427 6577573 424 -60.4 315.0 42 22CNRC020 327277 6577716 420 -59.7 314.7 54 22CNRC021 327284 6577698 420 -59.7 311.5 66 22CNRC022 327301 6577698 422 -60.5 313.8 54 22CNRC023 327312 6577672 422 -60.7 317.6 48 23CNRC003 327193 6577401 410 -50.0 65.0 150 23CNRC004 327195 6577335 414 -60.0 65.0 150 23CNRC003 322916 6577335 414 -60.0 65.0 150 23CNRC003 32694 6577407 418 -50.0 65.0 150 23CNRC003 32694 6577457 418 -50.0 65.0 150 23CNRC013 32684 6577335 417 -50.0</td>	(MGA 94 Zone 53) (MGA 94) (m) 22CNRC019 327427 6577573 424 -60.4 315.0 42 22CNRC020 327277 6577716 420 -59.7 314.7 54 22CNRC021 327284 6577698 420 -59.7 311.5 66 22CNRC022 327301 6577698 422 -60.5 313.8 54 22CNRC023 327312 6577672 422 -60.7 317.6 48 23CNRC003 327193 6577401 410 -50.0 65.0 150 23CNRC004 327195 6577335 414 -60.0 65.0 150 23CNRC003 322916 6577335 414 -60.0 65.0 150 23CNRC003 32694 6577407 418 -50.0 65.0 150 23CNRC003 32694 6577457 418 -50.0 65.0 150 23CNRC013 32684 6577335 417 -50.0

٠

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 FML data was geologically logged electronically, collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields. Data extracted from the database were validated visually in GEOVIA Surpac software and Seequent Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted. Historic data has been validated against WAMEX reports where possible.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducts regular site visits including October 27 and early December. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and last visited site in February 2014.
Geological interpretation	 All available drill hole and pit mapping data was used to guide the geological interpretation of the mineralisation. Drilling by FML in 2022 filled in gaps in the drill spacing and further confirmed the mineralisation interpretation from the November 2021 mineral resource update for CNX. Only minor modifications were made to the interpretation when adding in the new drill holes. The mineralised geological interpretation was created and updated in Leapfrog Geo software. The two different vein sets were modelled independently. A series of closely spaced, stacked flatter dipping lodes (33 in total) were modelled as dipping 30° to the SW. A further 29 regularly spaced steeper SE dipping feeder/cross faults were also interpreted as controlling the distribution of higher grade and thicker shoots. This population of veins is well supported from oriented drill core structural measurements and is mostly contained within the G2 Gabbro.

	 Minor deviation only of the lode geometry was noticed between drill holes along strike and down-dip within each of the two different mineralisation sets.
Dimensions	 The CNX – Three Mile Hill trend strikes NW – SE over 1.6km The reported CNX resource has been truncated using the Great Eastern Highway as a divide and only the northern portion of the resource is reported. The CNX mineralisation has been modelled over 700m, the lodes have been interpreted from near surface to approximately 250m below surface to the 150mRL. The average thickness of the flatter lodes is 4m. However, as the lodes are stacked the bulk style mineralisation combines to form a tabular style of very steeply southwest dipping mineralisation averaging 35-46m width over 700m strike currently defined by drilling.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run using Datamine software, following the process below: Extracts in a csv format from the FML acQuire database for drillhole collar, survey, assay and geology were imported into Datamine. A basic data validation in Datamine was undertaken revealing no errors. A 'static'' de-surveyed 3D drill hole file was then created. All holes other than RC, DD or RC/DD were filtered out. The drillhole samples were then coded within individual lodes, for the 2022 MRE no sharing of samples between vein sets was allowed. Where the different oriented veins over-lapped, the sample was assigned to the steep lode. Samples within the wireframes were composited to 1m, the dominant original sample interval, with a minimum of 0.2m. Core-loss intervals were left as null and ignored in the compositing process. Composited assay values of each lode were imported into Snowden Supervisor for geostatistical analysis. A review of histograms, probability plots and mean/variance plots for each domain revealed some outlier sample values. Top capping of higher Au values within each domain was carried out with Au values above the cut-off grade reset to the cut-off grade. An average top-cap of 8.5ppm Au was used and a maximum top-cap of 20ppm Au. Variography was performed on the individual lodes with larger sample numbers, in total 23 variograms were modelled. These models were shared with the other lodes of similar orientation and proximity. The back-transformed variogram models had moderate to high nugget effects (18% to 57% of total sill), with a range from 30m to greater than 300m for some of the flat stacked lodes. No "unfolding" of the mineralised wireframes was required. A no-rotated model was created in GDA 94 grid co-ordinates. Block sizes for the model were 5m in Y, 10m in X and 5m in Z direction. Sub celling of the parent blocks was

	 The estimate was validated by a number of methods including an initial visual review comparing estimated blocks and raw drill holes. Tonnage weighted mean grades were compared for all lodes with the raw and top-capped drill hole values. After the initial review of the estimate, four steep HG veins had blocks at depth "over-estimating" whereby few HG samples had greater influence in the sparser drilled area. A "grade restricted search" methodology was used on these four lodes, whereby samples 5ppm Au or greater were restricted to within a 10m ellipsoid search distance. Outside of this 10m search distance samples below 5ppm Au were used in the remaining un-estimated blocks. Swath plots were generated in Snowden Supervisor to compare the average grade trend over distance for both the estimate and composited sample data and showed that the estimated grades honoured the trend of the drilling data.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	The Resources for CNX have been reported above a 0.5g/t cut-off for open pit above 200mRL (~190m depth). This is based on an AUD \$2,200 gold price.
Mining factors or assumptions	The CNX open pit mine schedule is included in the recently released (Oct 22) Coolgardie resumption of production - Life of Mine Plan.
Metallurgical factors or assumptions	Results from the gravity separation and direct cyanide leach test work carried out in 2021 showed very high total extraction ranging from 96.9% to 98.2%. Gravity gold recovery ranged from 62.5% to 80.6% with low cyanide consumption.
Environmental factors or assumptions	 The CNX deposit occurs within an area of significant previous ground disturbance including: the existing CNX pit, Large scale alluvial/elluvial washing plants, Shaft/ trenches. The deposit is located just 1.25km north of the Three Mile Hill ROM pad. The southern margin of the reported Minera Resource has been truncated ~ 80m north of Great Eastern Highway which is seen as a reasonable break between what is considered CNX to the northwest and Three Mile Hill Mineral Resource (Not being Reported Here) to the southeast.
Bulk density	 Density values were assigned based on weathering profile. CNX has a very shallow weathering profile and the bulk to the deposit occurs in Fresh Rock. The same density values used in the November 2021 MRE were applied. These figures are based on diamond core from the 2020 and 2021 drill campaigns using the water immersion technique. The averages from the extensive testing were applied based on updated weathering surfaces. A value of 1.85 t/m³ was applied to oxide blocks, 2.70 t/m³ was applied to transitional material blocks and a value of 2.99 t/m³ applied to Fresh Rock.
Classification	 Resources have been classified as Measured, Indicated and Inferred based mainly on geological confidence in the geometry and continuity of the lodes, close spaced (10m x 10m to 20m x 10m) drilling across the bulk of the deposit and prospect for economic extraction. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Wireframe solids were created to encapsulate blocks that fit each classification criteria. Measured blocks were those that filled in the first search pass and were within the 10 – 20m x 10m drill spacing. Indicated blocks were blocks not classified as measured that filled predominantly in the first search pass and were above a reasonable open pit depth.

	 Blocks that filled in the second and third search pass and supported by recent FML drilling were classified as Inferred. Sub-inferred blocks exist at depth where drill spacing is sparse but and are not included in the reported mineral resources. These blocks are a future exploration target.
Audits or reviews	The CNX estimate has not been externally audited or reviewed.
Discussion of relative accuracy/ confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates. While production figures for CNX trial pit are unavailable, the adjacent Three Mile Hill was successfully mined.

JORC Code, 2012 Edition – Table 1 Alicia, Empress Deposits and overlying ROM stockpiles

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Commentary
 Commentary This report relates to results from Reverse Circulation (RC) drilling and diamond core (DD) drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a speared 4m composite and cone split 1m basis. Diamond core was sampled across identified zones of mineralisation by site geologists, the sample widths varied between a minimum of 0.3m and a maximum of 1m. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. 4m composite samples were taken by spear sampling the bulk 1m sample. Where results returned greater than 0.2g/t Au, the 1m samples were submitted. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. The core was cut in half using an Almonte automatic core saw. Goldfan collected 2kg samples as either 4m composites or as 1m samples through mineralised ground or interesting geology. Samples were run through a cyclone. Where the 4m composite samples returned greater than 0.2g/t Au, 1m samples were submitted. MPI collect RC drill cuttings at 1m intervals through a trailer mounted cyclone and stand-alone riffle splitter to provide 4-6kg samples. Composite samples up to 5m were initially taken using spear sampling methods from the 1m bulk resides. Where results returned > 0.5Auppm the 1m split samples were submitted on to 1.5m. One shallow hole (46m) drilled by Aberfoyle in 1981, 17 holes drilled by Ele

	the data into one database and considered it reliable for use in their resource estimates.
Drilling techniques	 All FML drilling was completed using an RC face sampling hammer or PQ3-HQ3 size diamond core. Where achievable, all drill core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling initially using an electronic multi-shot (EMS) camera. Goldfan used RC face sampling hammer, holes were downhole surveyed by Eastman single shot camera and later by Eastman multiple shot camera. MPI used an RC face sampling hammer or NQ2 size diamond core which was oriented by the drilling contractor. Holes were surveyed upon completion of drilling by using either an electronic multi-shot (EMS) camera or gyro-clinometer.
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. Goldfan states a consistent sample recovery in the range of 80-90%
	MPI stated all samples were dry.
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, veining, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure, and geologically logged using the same system as that for RC. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed one core tray at a time using a standardised photography jig. The entire length of all holes is logged. Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, notable features that are present.
Sub-sampling techniques and sample preparation	 The information of sub-sampling and sample preparation below applies to the drill holes drilled by FML only. Core samples were taken from half core, cut using an Almonte automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. RC samples were cone split to a nominal 3 - 5kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition and recovery percentage was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was initially by 40g aqua regia for the composite samples then 30g Fire Assay for individual samples with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.

	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	• Earlier FML QAQC checks involved inserting a standard or blank every 20 samples in RC or diamond drilling and taking a field duplicate every 20 samples in RC. Field duplicates were collected from the cone splitter on the rig. Diamond core field duplicates were not taken, a minimum of 3 standards were inserted for every sample batch submitted.
	Sampling was carried out by the supervising geologist and senior field staff, to
	 ensure all procedures were followed and best industry practice carried out. The sample sizes are considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Goldfan originally submitted its samples to Australian Laboratories Group Kalgoorlie. The 2kg samples were oven dried, then crushed to a nominal 6mm and split once through a Jones riffle splitter. A 1kg sub-sample was fine pulverised in a Keegor Pulveriser to a nominal 100 microns. This sample was homogenised and 400-500g split as the assay pulp for analysis. Assaying was by a classical fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Diamond core and later RC drilled by Goldfan was submitted to Minlab Kalgoorlie where the whole of the sample is pulverised in a ring mill before 300g sample is split as the assay pulp. Assaying was by fire assay on a 50g charge to a lower detection limit of 0.01 ppm gold. Goldfan conducted inter-laboratory check sampling over approx. 10% of holes over the whole program with results found to be within acceptable limits. Laboratory repeat checks were also run on the assay data. MPI submitted samples to Analabs in Perth for analysis by 50g Fire Assay for
	0.01ppm detection limit.
Quality of assay	The assay method and laboratory procedures were appropriate for this style of
data and laboratory tests	mineralisation. The fire assay technique was designed to measure total gold in the sample.
10313	No geophysical tools, spectrometers or handheld XRF instruments were used.
	 The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. In late 2020 FML twinned select historic holes with higher grade intersections. The results of these holes confirmed the width and grade tenor of the historic drilling used in the estimate. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data	• FML drill collars were surveyed after completion, using a DGPS instrument. All drill
points	 core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling. An electronic multi-shot camera was used, holes were surveyed open hole. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.

	• Goldfan holes were laid out and picked up by the Three Mile Hill Survey Department. Down hole surveying was conducted by Down Hole Surveys using Eastman multiple shot cameras.
Data spacing and distribution	• Drill spacing along the Alicia/Empress trend is 20m x 10m with the average depth of RC holes 70m below surface. The average depth of the diamond drilling including RC pre-collared diamond tails is 167.5m.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body, which was to the East. The southern extent of Alicia was historically interpreted as a fold-nose and the orientation of drilling was adjusted and drilled from both North and South orientations.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded.
Audits or reviews	• A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 All exploration was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing. Alicia and Empress are situated on tenement M15/646, part of the Tindals Mines Complex. The Malinyu Ghoorlie 2017 and Maduwongga 2017 Claims cover the majority of the Coolgardie tenure. At this stage no Coolgardie claims have progressed to determined status.
Exploration done by other parties	 Alicia and Empress lie within close proximity to other historically open pit mined deposits. Empress deposit was historically mined between 1897-1936. Some shafts and underground mining took place at Alicia but has not been well documented. Empress was mined open pit by FML from May 2011 to September 2012 with production figures of 192,241t @ 2.11g/t Au for 13,052 ounces. To the North of Alicia is the Tindals North open pit, mined in the 1980's to 1990's. The region has been explored in more modern times by various company drill programs since the late 1970's by Greenex, then Aberfoyle, Electrum, Goldfan, MPI and finally Focus.
Geology	• The deposit lies on the western margin of the Archaean Norseman – Menzies Greenstone Belt. Local geology is characterised by a quartz bearing diorite between a mafic basalt hanging wall and komatiite footwall that displays a distinctive spinifex texture. The majority of gold mineralisation is hosted by the diorite intrusions and associated quartz veining.

Company	Drill Hole Number	WAMEX Report A-Number	WAMEX Report Date
	TNG0451R, TNG0452R, TNG0453R, TNG0454R, TNG0455R, TNG0456R, TNG0459R, TNG0460R, TNG0461R, TNG0463R, TNG0464R, TNG0465R, TNG0466R, TNG0467R, TNG0468R, TNG0469R, TNG0470R, TNG0471R	44166	Mar-95
Goldfan	TNG1130R, TNG1131R, TNG1132R, TNG1133R, TNG1134R, TNG1135R, TNG1136R, TNG1137R, TNG0991R, TNG0992R, TNG0993R, TNG0994R, TNG0995R, TNG0996R, TNG0997R, TNG0998R, TNG0999R, TNG1000R, TNG1001R, TNG1002R, TNG1003R, TNG1004R, TNG1005R, TNG1006R, TNG1010R, TNG1012R, TNG1013R, TNG1014R, TNG1034R, TNG1035R, TNG1036R, TNG1037R, TNG1038R, TNG1149R, TNG1036R, TNG1037R, TNG1152R, TNG1153R, TNG1150R, TNG1151R, TNG1156R, TNG1157R, TNG1154R, TNG1155R, TNG1160R, TNG1161R, TNG1162R, TNG1163R, TNG1164R	47168	31-Mar-96
	TNG1647-R	60899	1-Aug-00
MDI	TNG1702-R, TNG1704-RD	63533	Sep-01
MPI	TNG1722-R, TNG1723-R, TNG1724-RD, TNG1725-RD, TNG1726-RD	66091	Feb-03
	TNDC0108, TNDC0109, TNDC0110, TNDC0111	85889	23-Feb-10
Focus	TNDC0076, TNDC0077, TNDC0079, TNDC0080, TNDC0081, TNDC0082, TNDC0083, TNDC0084, TNDC0085, TNDC0087, TNDC0088, TNDC0090, TNDC0091, TNDC0092, TNDC0094, TNDC0096, TNDC0097, TNDC0098, TNDC0099, TNDC0100, TNDC0104, TNDC0104A, TNDC0105, TNDC0107, TNDC0163, TNDC0164, TNDC0165, TNDC0166, TNDC0167, TNDC0168, TNDC0169, TNDC0170, TNDC0171, TNDC0172, TNDC0172A, TNDC0173, TNDC0174, TNDC0175, TNDC0176, TNDC0177, TNDC0178, TNDC0179, TNDC0180, TNDC0181, TNDC0086, TNDD0003, TNDD0004, TNDD0005	89322	23-Feb-11
	EMC293, EMC295, EMC297, EMC299, EMC301, EMC322, EMC323, EMC324, EMC325, EMC327, EMC328, EMC329, EMC330, EMC331, EMC332, EMC333, EMC334, EMC335, EMC336, EMC337, EMC338, EMC339, EMC340, EMC341, EMC342, EMC372, EMC375, EMC377, EMC380, EMC382, EMC383, EMC384, EMC386, EMC387, EMC388, EMC389, EMC390, EMC391, EMC393, EMC394, EMC395, EMC398, EMC400, EMC401, EMC402, EMC403, EMC404, EMC405, EMC406, EMC407, EMC408, EMC409, EMC410, EMC411, EMC412, EMC413, EMC414, EMC415, EMC416, EMC417, EMC418, EMC419, EMC420, EMC421, EMC422, EMC423, EMC424, EMC425, EMC426, EMC427, EMC428, EMC429, EMC431, EMC432, EMC433,	92766	9-Feb-12

EMC438, EMC439, EMC441, EMC442, EN EMC445, EMC448, EMC451, EMC452, EN EMC459, EMC463, EMC467, EMC468, EN EMC470, EMC471, EMC472, EMC473, EN EMC475, EMC476, EMC477, EMC478, EN EMC480, EMC481, EMC482, EMC483, EN EMC485, EMC486, EMC487, EMC488, EN EMC490	AC455, AC469, AC474, AC479, AC479, AC484,	96924	27-Feb-13
TND16063, TND16064		112010	19-Feb-1
Drill Hole Number	ASX	K Release Title	Date
AE010-2, AE020-3, AE020-4, AE020-5, AE060-5, AE100-2, AE100-3, AE120-4, AE120-6, AE140-2, AE160-2, AE983-1, AE990-2, AE990-3, AE990-4, TD220-1, TD340-1, EMC139, EMC140, EMC143, EMC144, EMC146, EMC147, EMC152, EMC153, EMC154, EMC303, EMC305, EMC307, EMC309, EMC311, EMC316, EMC317, EMC319, EMC320, EMC321, PDH117	Resour Coolga Deposi	20-Jul-21	
20ALRC001, 20ALRC002, 20ALRC003, 20ALRC004,	1		

• Focus drilling information NOT previously reported.

DRILL TYPE	HOLE ID	EAST	NORTH	RL	DEPTH (m)	AZIMUTH	DIP
DD	COD084	325640.51	6570536	324.79	350.5	210.12	-1.5
RC	EMC149	325476.98	6570129.7	421.69	40	90.05	-61
RC	EMC151	325483.93	6570110.1	422.55	40	90.05	-60
RC	EMC156	325279.26	6570249.8	422.89	48	90.05	-60
RC	EMC157	325299.72	6570249.3	421.85	48	90.05	-60
RC	EMC158	325296.14	6570239.9	421.95	48	90.05	-60
RC	EMC159	325305.29	6570240.2	421.76	48	93.04	-59
RC	EMC161	325312.06	6570230.1	421.66	44	98.05	-63
RC	EMC162	325328.85	6570231.1	421.71	34	94.04	-57
RC	EMC164	325300.39	6570219.5	421.53	48	90.05	-58
RC	EMC165	325307.65	6570220.4	421.48	48	84.05	-58
RC	EMC166	325319.72	6570219.6	421.56	48	90.05	-58
RC	EMC167	325330.24	6570220.1	421.86	48	85.05	-58
RC	EMC168	325338.05	6570219.7	422.3	48	96.05	-60
RC	EMC169	325299.62	6570194.9	421.42	48	94.05	-60
RC	EMC170	325309.58	6570194.8	421.53	48	90.05	-60
RC	EMC171	325319.41	6570195	421.78	48	90.05	-64
RC	EMC176	325327.11	6570173.3	422.95	48	91.04	-62
RC	EMC177	325281.02	6570159.8	420.63	48	90.05	-60
RC	EMC178	325300.67	6570159.5	421.46	48	90.05	-60
RC	EMC179	325319.92	6570159.6	422.56	48	96.05	-63

RC EMC180 325265.88 6570139.7 420.65 44 RC EMC181 325274.97 6570140 420.63 44 RC EMC182 325285.13 6570139.8 420.8 44 RC EMC183 325295.12 6570140.2 420.98 44 RC EMC184 325305.5 6570139.6 421.34 44	3 90.05 -60	
RC EMC182 325285.13 6570139.8 420.8 44 RC EMC183 325295.12 6570140.2 420.98 44 RC EMC184 325305.5 6570139.6 421.34 44)
RC EMC183 325295.12 6570140.2 420.98 44 RC EMC184 325305.5 6570139.6 421.34 44	3 90.05 -60	
RC EMC184 325305.5 6570139.6 421.34 4)
	3 90.05 -60)
	2 90.05 -60)
RC EMC185 325270.2 6570115 420.38 44	3 90.05 -62	1
RC EMC186 325279.92 6570114.8 420.24 44	3 90.04 -63	1
RC EMC187 325290.12 6570115.2 420.69 44	8 88.04 -60)
RC EMC188 325265.31 6570099.9 420.52 44	3 90.05 -60)
RC EMC189 325274.77 6570099.5 420.24 44	3 92.05 -62	1
RC EMC190 325285.22 6570100 420.2 44	3 90.05 -59	9
RC EMC191 325294.82 6570100 420.52 3	5 93.04 -59	9
RC EMC192 325259.91 6570080.3 420.29 44	3 90.04 -58	3
RC EMC193 325270.29 6570079.9 420.19 44		2
RC EMC194 325280.18 6570079.7 419.87 44		
RC EMC195 325289.5 6570079.8 419.57 44		
RC EMC196 325254.92 6570059.8 420.41 44		
RC EMC197 325264.84 6570060.1 420.16 44		-
RC EMC198 325274.86 6570059.5 420 44		
RC EMC199 325284.91 6570060.5 419.73 44		
RC EMC200 325294.78 6570060.2 419.69 44		
RC EMC201 325304.67 6570060.2 420.88 44		
RC EMC202 325255.12 6570039.9 419.89 44		
RC EMC207 325311.71 6570040.5 419.94 44		
RC EMC208 325247.74 6570020.4 419.89 44	3 94.04 -62	2
RC EMC209 325255 6570020.1 419.9 44	3 94.04 -57	7
RC EMC210 325265.37 6570020.2 419.95 44	3 94.04 -62	2
RC EMC211 325274.73 6570020 419.75 44	8 89.04 -58	3
RC EMC212 325285.41 6570019.8 419.58 44	3 92.04 -60)
RC EMC213 325294.43 6570020 419.35 44	3 90.04 -60)
RC EMC214 325351.57 6570168.4 424.25 3	5 277.04 -45	5
RC EMC215 325356.01 6570167.8 424.75 4	2 275.04 -52	2
RC EMC218 325359.63 6570147.5 424.5 33	3 266.04 -46	5
RC EMC219 325343.09 6570148.2 423.96 33	3 281.04 -49	Ð
RC EMC220 325318.15 6570115.9 424.36 3	7 275.04 -52	1
RC EMC221 325312.47 6570115.8 423.33 3	270.04 -45	5
RC EMC222 325318.13 6570108.2 424.58 3	7 267.04 -52	2
RC EMC223 325314.13 6570108.3 424.48 3	278.04 -48	3
RC EMC224 325330.06 6570088 424.4 44)
RC EMC225 325319.82 6570088.1 424.63 44		
RC EMC227 325323.57 6570067.5 422.21 4		2
RC EMC228 325317.33 6570068.3 422.5 3		

Но	le ID	Easting	Northing	DI_	Din	Azimuth	EOH	Intersection calculated using
но			94 Zone 5		υp	(MGA94)	(m)	0.5 g/t cut off and up to 3m internal dilution
		(IVIGA	. 94 Zone 5))		(IVIGA54)	(111)	20ALDD001 - 13.00m @ 1.14g/t from 29m for (GxM 15)
20AL	20ALDD001	325469	6570138	424	-49	89	82.8	20ALDD001 - 13.00m @ 1.14g/t from 29m for (GxM 15) 20ALDD001 - 4.00m @ 0.67g/t from 48m for (GxM 3)
								20ALDD001 - 4.00m @ 0.07g/t from 48m for (GxM 3)
								20ALDD002 - 0.50m @ 0.72g/t from 50.8m for (GxM 1)
2041	2000	325420	6570139	126	-50	91	117 2	20ALDD002 - 8.00m @ 1.74g/t from 77m for (GxM 14)
2041	00002	323420	0570135	420	-30	51	117.2	20ALDD002 - 2.20m @ 1.74g/t from 77m for (GxM 14)
								20ALDD002 - 1.00m @ 0.77g/t from 105m for (GxM 1)
2041	2000	325495	6570272	427	-50	270	91.6	20ALDD003 - 1.00m @ 0.9g/t from 27m for (GxM 1)
20/12	00000	525455	03/02/2	427	50	270	51.0	20ALRC001 - 1.00m @ 2.44g/t from 7m for (GxM 2)
								20ALRC001 - 2.00m @ 1.23g/t from 15m for (GxM 2)
								20ALRC001 - 1.00m @ 0.51g/t from 30m for (GxM 1)
								20ALRC001 - 9.00m @ 0.74g/t from 35m for (GxM 7)
2041	RC001	325378	6570028	419	-47	25	102	20ALRC001 - 5.00m @ 0.85g/t from 51m for (GxM 4)
		020070	0070020	415		23	101	20ALRC001 - 2.00m @ 0.62g/t from 61m for (GxM 1)
								20ALRC001 - 1.00m @ 0.6g/t from 80m for (GxM 1)
								20ALRC001 - 1.00m @ 0.75g/t from 84m for (GxM 1)
								20ALRC001 - 1.00m @ 0.71g/t from 91m for (GxM 1)
								20ALRC002 - 1.00m @ 0.84g/t from 0m for (GxM 1)
			6570239					20ALRC002 - 1.00m @ 0.57g/t from 36m for (GxM 1)
20AL	.RC002	325453		426	-60) 85	90	20ALRC002 - 6.00m @ 2.1g/t from 44m for (GxM 13)
								20ALRC002 - 23.00m @ 2.75g/t from 55m for (GxM 63)
								20ALRC003 - 1.00m @ 0.62g/t from 0m for (GxM 1)
			6570031					20ALRC003 - 9.00m @ 2.34g/t from 31m for (GxM 21)
				. 420		5 5		20ALRC003 - 13.00m @ 1.47g/t from 48m for (GxM 19)
20AL	RC003	325415			20 -45		108	20ALRC003 - 3.00m @ 0.64g/t from 65m for (GxM 2)
								20ALRC003 - 1.00m @ 0.69g/t from 87m for (GxM 1)
								20ALRC003 - 1.00m @ 0.8g/t from 90m for (GxM 1)
								20ALRC003 - 2.00m @ 0.92g/t from 103m for (GxM 2)
								20ALRC004 - 2.00m @ 1.53g/t from 1m for (GxM 3)
20AL	RC004	325489	6570134	425	-64	104	60	20ALRC004 - 6.00m @ 0.67g/t from 18m for (GxM 4)
								20ALRC004 - 1.00m @ 0.76g/t from 32m for (GxM 1)
								20ALRC005 - 1.00m @ 1.53g/t from 0m for (GxM 2)
20AL	RC005	325479	6570352	426	-46	90	54	20ALRC005 - 1.00m @ 1.02g/t from 20m for (GxM 1)
								20ALRC005 - 6.00m @ 1.2g/t from 29m for (GxM 7)
20AL	RC006	325472	6570317	426	-46	88	54	20ALRC006 - 6.00m @ 0.85g/t from 20m for (GxM 5)

Hole ID				Dip	Azimuth	EOH	Intersection calculated using
20ALRC006		94 Zone 5 6570317		-46	(MGA94) 88	(m) 54	0.5 g/t cut off and up to 3m internal dilution 20ALRC006 - 6.00m @ 0.85g/t from 20m for (GxM 5)
20ALRC007					86	54	20ALRC007 - 1.00m @ 0.52g/t from 28m for (GxM 1) 20ALRC007 - 1.00m @ 1.02g/t from 46m for (GxM 1)
20ALRC008	325440	6570123	421	-50	98	96	20ALRC008 - 5.00m @ 0.76g/t from 31m for (GxM 4) 20ALRC008 - 16.00m @ 1.38g/t from 41m for (GxM 22)
20ALRC009	325408	6570069	420	-61	3	54	20ALRC008 - 6.00m @ 1.55g/t from 75m for (GxM 9) 20ALRC009 - 7.00m @ 1.8g/t from 0m for (GxM 13) 20ALRC009 - 1.00m @ 0.68g/t from 26m for (GxM 1)
					-		20ALRC009 - 1.00m @ 0.73g/t from 35m for (GxM 1) 20ALRC010 - 1.00m @ 0.67g/t from 22m for (GxM 1)
20ALRC010	325399	6570055	420	-65	14	108	20ALRC010 - 4.00m @ 0.72g/t from 44m for (GxM 3) 20ALRC010 - 1.00m @ 0.57g/t from 64m for (GxM 1) 20ALRC010 - 3.00m @ 1.12g/t from 104m for (GxM 3)
20ALRC011	325450	6570160	423	-56	90	102	20ALRC011 - 1.00m @ 0.55g/t from 25m for (GxM 1) 20ALRC011 - 15.00m @ 0.82g/t from 42m for (GxM 12) 20ALRC011 - 2.00m @ 1.1g/t from 69m for (GxM 2) 20ALRC011 - 1.00m @ 2.04g/t from 98m for (GxM 2)
20ALRC012	325440	6570159	424	-60	92	114	20ALRC012 - 1.00m @ 0.55g/t from 0m for (GxM 1) 20ALRC012 - 17.00m @ 0.8g/t from 55m for (GxM 14) 20ALRC012 - 1.00m @ 0.66g/t from 85m for (GxM 1) 20ALRC012 - 1.00m @ 0.78g/t from 91m for (GxM 1)
20ALRC013	325459	6570219	426	-61	90	78	20ALRC012 - 1.00m @ 0.72g/t from 91m for (GAM 1) 20ALRC013 - 1.00m @ 0.62g/t from 20m for (GAM 1) 20ALRC013 - 25.00m @ 1.2g/t from 44m for (GAM 30)
20ALRC014	325445	6570218	426	-61	88	96	20ALRC014 - 1.00m @ 0.51g/t from 42m for (GxM 1) 20ALRC014 - 1.00m @ 0.55g/t from 52m for (GxM 1) 20ALRC014 - 1.00m @ 0.74g/t from 54m for (GxM 1) 20ALRC014 - 2.00m @ 0.76g/t from 57m for (GxM 2) 20ALRC014 - 17.00m @ 0.77g/t from 63m for (GxM 13)
20ALRC015	325430	6570255	426	-55	83	96	20ALRC014 - 1.00m @ 0.84g/t from 90m for (GxM 1) 20ALRC015 - 25.00m @ 1.76g/t from 66m for (GxM 44)
20ALRC016	325447	6570268	426	-56	105	96	20ALRC016 - 2.00m @ 1.01g/t from 37m for (GxM 2) 20ALRC016 - 21.00m @ 1.31g/t from 45m for (GxM 28)
20ALRC017	325444	6570269	426	-61	91	90	20ALRC017 - 1.00m @ 0.5g/t from 0m for (GxM 1) 20ALRC017 - 1.00m @ 0.5g/t from 47m for (GxM 1) 20ALRC017 - 28.00m @ 1.13g/t from 57m for (GxM 32)
20ALRC018	325456	6570166	423	-50	90	78	20ALRC018 - 1.00m @ 1.45g/t from 0m for (GxM 1) 20ALRC018 - 8.00m @ 0.77g/t from 35m for (GxM 6) 20ALRC018 - 1.00m @ 1.36g/t from 60m for (GxM 1) 20ALRC018 - 4.00m @ 0.6g/t from 65m for (GxM 2)
20ALRC019	325457	6570196	427	-60	99	96	20ALRC019 - 1.00m @ 0.96g/t from 0m for (GxM 1) 20ALRC019 - 1.00m @ 0.5g/t from 38m for (GxM 1) 20ALRC019 - 18.00m @ 1g/t from 43m for (GxM 18) 20ALRC019 - 1.00m @ 0.54g/t from 73m for (GxM 1)
20ALRC020	325452	6570199	427	-60	90	78	20ALRC020 - 1.00m @ 1.06g/t from 0m for (GxM 1) 20ALRC020 - 3.00m @ 0.65g/t from 39m for (GxM 2) 20ALRC020 - 16.00m @ 1.25g/t from 52m for (GxM 20)
20ALRC021	325458	6570063	420	-61	358	54	20ALRC021 - 1.00m @ 0.81g/t from 1m for (GxM 1) 20ALRC021 - 1.00m @ 1.6g/t from 14m for (GxM 2) 20ALRC021 - 1.00m @ 0.94g/t from 53m for (GxM 1)
20ALRC022	325471	6570080	420	-61	91	54	20ALRC022 - 19.00m @ 0.77g/t from 14m for (GxM 15)
20ALRC023	325462	6570092	420	-65	91	72	20ALRC023 - 2.00m @ 0.78g/t from 0m for (GxM 2) 20ALRC023 - 8.00m @ 0.8g/t from 16m for (GxM 6) 20ALRC023 - 11.00m @ 0.92g/t from 50m for (GxM 10)
20ALRC024	325481	6570260	425	-61	90	84	20ALRC024 - 1.00m @ 0.78g/t from 0m for (GxM 1) 20ALRC024 - 5.00m @ 0.79g/t from 70m for (GxM 4)
20ALRC025	325466	6570261	426	-62	88	72	20ALRC025 - 1.00m @ 0.95g/t from 8m for (GxM 1) 20ALRC025 - 15.00m @ 2.92g/t from 21m for (GxM 44) 20ALRC025 - 1.00m @ 0.83g/t from 60m for (GxM 1)
20ALRC026	325456	6570272	427	-61	89	78	20ALRC026 - 1.00m @ 0.79g/t from 0m for (GxM 1) 20ALRC026 - 2.00m @ 0.92g/t from 33m for (GxM 2) 20ALRC026 - 11.00m @ 3.68g/t from 39m for (GxM 40) 20ALRC026 - 1.00m @ 0.6g/t from 54m for (GxM 1) 20ALRC026 - 1.00m @ 1.24g/t from 61m for (GxM 1)
20ALRC027	325444	6570278	426	-59	89	90	20ALRC027 - 22.00m @ 1.1g/t from 52m for (GxM 24) 20ALRC027 - 4.00m @ 1.23g/t from 78m for (GxM 5)
20ALRC028	325454	6570290	426	-61	87	84	20ALRC028 - 9.00m @ 0.65g/t from 48m for (GxM 6)
20ALRC029	325458	6570300	426	-61	87	66	20ALRC029 - 3.00m @ 0.65g/t from 42m for (GxM 2) 20ALRC029 - 1.00m @ 0.74g/t from 49m for (GxM 1)
20ALRC030	325467	6570330	426	-46	87	42	20ALRC030 - 2.00m @ 0.75g/t from 31m for (GxM 2)

	Hole ID			-	Dip	Azimuth		Intersection calculated using
		(MGA	94 Zone 5	51)		(MGA94)	(m)	0.5 g/t cut off and up to 3m internal dilution
								20ALRC031 - 4.00m @ 1.03g/t from 0m for (GxM 4)
								20ALRC031 - 2.00m @ 6.82g/t from 22m for (GxM 14)
	20ALRC031	325426	6570070	420	-62	4	96	20ALRC031 - 4.00m @ 0.8g/t from 38m for (GxM 3)
								20ALRC031 - 1.00m @ 0.68g/t from 54m for (GxM 1)
								20ALRC031 - 1.00m @ 1.24g/t from 68m for (GxM 1)
•								20ALRC031 - 1.00m @ 0.53g/t from 82m for (GxM 1)
								20ALRC032 - 2.00m @ 0.6g/t from 23m for (GxM 1)
								20ALRC032 - 18.00m @ 2.44g/t from 33m for (GxM 44) 20ALRC032 - 10.00m @ 0.98g/t from 55m for (GxM 10)
	20ALRC032	325420	6570048	110	-63	2	120	20ALRC032 - 10.00m @ 0.38g/t from 70m for (GXM 10) 20ALRC032 - 1.00m @ 2.89g/t from 70m for (GXM 3)
	ZUALINCUJZ	525420	0370048	419	-03	2	120	20ALRC032 - 22.00m @ 3.76g/t from 76m for (GxM 83)
								20ALRC032 - 3.00m @ 1.13g/t from 104m for (GxM 3)
								20ALRC032 - 1.00m @ 0.58g/t from 114m for (GxM 1)
								20ALRC033 - 5.00m @ 0.82g/t from 0m for (GxM 4)
	20410-022	225414	6570070	420	F 4	200	42	20ALRC033 - 12.00m @ 2.44g/t from 12m for (GxM 29)
	20ALRC033	325411	6570070	420	-51	268	42	20ALRC033 - 2.00m @ 0.76g/t from 34m for (GxM 2)
								20ALRC033 - 1.00m @ 0.51g/t from 39m for (GxM 1)
	20ALRC034	325468	6570100	122	-61	90	72	20ALRC034 - 2.00m @ 0.69g/t from 24m for (GxM 1)
								20ALRC034 - 25.00m @ 1.29g/t from 31m for (GxM 32)
	20ALRC035	325486	6570112	422	-61	89	66	20ALRC035 - 26.00m @ 1.23g/t from 7m for (GxM 32)
	20ALRC036	325474	6570131	423	-58	91	66	20ALRC036 - 24.00m @ 2.33g/t from 20m for (GxM 56)
				1	Ľ			20ALRC036 - 1.00m @ 0.61g/t from 54m for (GxM 1)
				1				20ALRC037 - 1.00m @ 2.25g/t from 45m for (GxM 2)
	20ALRC037	325448	6570138	422	-61	90	90	20ALRC037 - 1.00m @ 1.69g/t from 59m for (GxM 2)
								20ALRC037 - 2.00m @ 0.64g/t from 67m for (GxM 1)
	20ALRC038	375100	6570115	122	-52	90	60	20ALRC037 - 3.00m @ 0.68g/t from 84m for (GxM 2) 20ALRC038 - 22.00m @ 1.31g/t from 5m for (GxM 29)
	ZUALKUUJÖ	JZJ488	0570115	423	-52	90	00	20ALRC038 - 22.00m @ 1.31g/t from 5m for (GXM 29) 20ALRC039 - 1.00m @ 1.25g/t from 0m for (GXM 1)
	20ALRC039	225/70	6570152	124	-55	89	60	20ALRC039 - 1.00m @ 1.25g/t from 5m for (GxM 1) 20ALRC039 - 1.00m @ 1.99g/t from 5m for (GxM 2)
	204110035	525475	0570152	1-24	55	05	00	20ALRC039 - 31.00m @ 1.83g/t from 13m for (GxM 2)
1								20ALRC040 - 1.00m @ 0.52g/t from 0m for (GxM 1)
	20ALRC040	325474	6570171	423	-49	90	54	20ALRC040 - 18.00m @ 1.14g/t from 11m for (GxM 21)
							-	20ALRC040 - 5.00m @ 1.35g/t from 39m for (GxM 7)
								20ALRC041 - 7.00m @ 2.52g/t from 6m for (GxM 18)
	20ALRC041	225475	6570210	425	62	89	78	20ALRC041 - 1.00m @ 1.1g/t from 17m for (GxM 1)
	ZUALINCO41	323473	05/0218	425	-02	89	/8	20ALRC041 - 2.00m @ 1.08g/t from 25m for (GxM 2)
								20ALRC041 - 1.00m @ 1.23g/t from 58m for (GxM 1)
								20ALRC042 - 1.00m @ 0.72g/t from 0m for (GxM 1)
								20ALRC042 - 1.00m @ 1.22g/t from 11m for (GxM 1)
								20ALRC042 - 5.00m @ 0.77g/t from 23m for (GxM 4)
	20ALRC042	325469	6570230	425	5 -74	85	96	20ALRC042 - 2.00m @ 1.46g/t from 34m for (GxM 3)
								20ALRC042 - 29.00m @ 2.76g/t from 41m for (GxM 80)
								20ALRC042 - 5.00m @ 0.75g/t from 79m for (GxM 4)
				-				20ALRC042 - 3.00m @ 0.79g/t from 88m for (GxM 2) 21ALDD001 - 1.00m @ 0.67g/t from 30m for (GxM 1)
				1				21ALDD001 - 1.00m @ 0.67g/t from 30m for (GXM 1) 21ALDD001 - 8.00m @ 0.97g/t from 42m for (GXM 8)
				1				21ALDD001 - 8.00m @ 0.87g/t from 42m for (GXM 8) 21ALDD001 - 1.00m @ 0.88g/t from 60m for (GXM 1)
				1				2141 DD001 1 00m @ 0 90g/t from 67m for (CvM 1)
	21ALDD001	325384	6570060	421	-55	64	126.3	21ALDD001 - 5.00m @ 1.67g/t from 81m for (GxM 8)
				1				21ALDD001 - 4.00m @ 0.57g/t from 92m for (GxM 2)
				1				21ALDD001 - 10.00m @ 1.49g/t from 102m for (GxM 15)
				L				21ALDD001 - 1.00m @ 14.96g/t from 117m for (GxM 15)
	21ALRC001	325443	6570421	427	-90	360	84	21ALRC001 - 2.00m @ 1.28g/t from 1m for (GxM 3)
	22ALRC001	275201	6570067	420	-46	171	36	22ALRC001 - 1.00m @ 0.94g/t from 0m for (GxM 1)
	ZZALKCUUI	222281	0370067	420	-40	1/1	30	22ALRC001 - 1.00m @ 0.6g/t from 25m for (GxM 1)
	22ALRC002	325291	6570070	420	-50	170	56	22ALRC002 - 1.00m @ 1.03g/t from 0m for (GxM 1)
	2271110002	323301	0570079	420	-30	1/0	50	22ALRC002 - 2.00m @ 0.65g/t from 38m for (GxM 1)
				1				22ALRC003 - 1.00m @ 1.15g/t from 10m for (GxM 1)
	22ALRC003	325383	6570091	421	-56	184	72	22ALRC003 - 1.00m @ 0.97g/t from 21m for (GxM 1)
			55, 5051	'		-07		22ALRC003 - 28.00m @ 0.77g/t from 31m for (GxM 22)
								22ALRC003 - 2.00m @ 0.77g/t from 65m for (GxM 2)
	22ALRC004	325399	6570092	420	-49	171	66	22ALRC004 - 6.00m @ 11.93g/t from 28m for (GxM 72)
				-				22ALRC004 - 13.00m @ 0.7g/t from 42m for (GxM 9)
				1				22ALRC005 - 8.00m @ 1.52g/t from 34m for (GxM 12)
	22ALRC005	225205	6570105	121	- 5 2	169	86	22ALRC005 - 4.00m @ 0.57g/t from 47m for (GxM 2) 22ALRC005 - 3.00m @ 0.78g/t from 55m for (GxM 2)
	ZZALKCUU5	323333	0370105	1 ⁴²¹	-52	109	00	22ALRC005 - 3.00m @ 0.78g/t from 55m for (GXM 2) 22ALRC005 - 1.00m @ 12.47g/t from 71m for (GXM 12)
				1				22ALRC005 - 1.00m @ 12.4/g/t from 71m for (GXM 12) 22ALRC005 - 6.00m @ 1.49g/t from 79m for (GXM 9)
	22ALRC006	325440	6570078	420	-46	170	56	22ALRC006 - 3.00m @ 0.74g/t from 0m for (GxM 2)
				1	Ē	-		22ALRC007 - 1.00m @ 0.56g/t from 0m for (GxM 1)
	22ALRC007	325439	6570091	420	-48	170	54	22ALRC007 - 1.00m @ 2.11g/t from 5m for (GxM 2)
								22ALRC007 - 3.00m @ 1.18g/t from 24m for (GxM 4)

	Hole ID		Northing	-	Dip		EOH	Intersection calculated using
		(MGA	94 Zone S	51)		(MGA94)	(m)	0.5 g/t cut off and up to 3m internal dilution
	22ALRC008	325/137	6570103	120	-51	170	66	22ALRC008 - 1.00m @ 1.28g/t from 7m for (GxM 1) 22ALRC008 - 5.00m @ 0.5g/t from 33m for (GxM 3)
	ZZALINCOUS	525457	0570105	420	-31	170	00	22ALRC008 - 1.00m @ 1.69g/t from 42m for (GxM 2)
								22ALRC009 - 10.00m @ 0.58g/t from 43m for (GxM 6)
	22ALRC009	325434	6570116	421	-50	172	78	22ALRC009 - 2.00m @ 0.62g/t from 61m for (GxM 1)
	22ALRC010	225400	6570070	410	12	170	36	22ALRC010 - 3.00m @ 1.05g/t from 1m for (GxM 3)
	ZZALKCUIU	323400	6570070	419	-43	170	50	22ALRC010 - 2.00m @ 2.35g/t from 24m for (GxM 5)
								22ALRC011 - 1.00m @ 0.62g/t from 0m for (GxM 1)
	22ALRC011	325403	6570081	420	-46	171	54	22ALRC011 - 2.00m @ 3.27g/t from 11m for (GxM 7)
								22ALRC011 - 9.00m @ 2.73g/t from 33m for (GxM 25)
	22ALRC012	325420	6570075	419	-47	173	36	22ALRC012 - 1.00m @ 0.59g/t from 1m for (GxM 1)
				<u> </u>				22ALRC012 - 1.00m @ 1.03g/t from 27m for (GxM 1)
	22ALRC013	225420	6570004	120	10	170	54	22ALRC013 - 1.00m @ 0.6g/t from 1m for (GxM 1) 22ALRC013 - 1.00m @ 0.5g/t from 3m for (GxM 1)
	ZZALKCUIS	525420	0370084	420	-40	170	54	22ALRC013 - 1.00m @ 0.32g/t from 35m for (GXM 1)
								22ALRC014 - 8.00m @ 1.29g/t from 45m for (GxM 10)
	22ALRC014	325417	6570097	420	-51	172	66	22ALRC014 - 1.00m @ 0.6g/t from 59m for (GxM 1)
		1						22ALRC015 - 1.00m @ 1.84g/t from 46m for (GxM 2)
	224100045	225 44 4	6570114	124		170	70	22ALRC015 - 4.00m @ 2.28g/t from 53m for (GxM 9)
	22ALRC015	325414	05/0111	421	-51	170	78	22ALRC015 - 1.00m @ 0.5g/t from 61m for (GxM 1)
								22ALRC015 - 1.00m @ 0.71g/t from 70m for (GxM 1)
	22ALRC016	225457	6570107	121	E 1	167	66	22ALRC016 - 1.00m @ 0.74g/t from 25m for (GxM 1)
	ZZALKCOIO	525457	0370107	421	-51	107	00	22ALRC016 - 1.00m @ 0.52g/t from 50m for (GxM 1)
								22ALRC017 - 1.00m @ 0.65g/t from 24m for (GxM 1)
								22ALRC017 - 1.00m @ 0.5g/t from 33m for (GxM 1)
	22ALRC017	325455	6570120	421	-51	168	78	22ALRC017 - 2.00m @ 1.95g/t from 38m for (GxM 4)
	22/12/1001/	020100	00/0120		01	100		22ALRC017 - 1.00m @ 0.64g/t from 45m for (GxM 1)
								22ALRC017 - 2.00m @ 0.78g/t from 57m for (GxM 2)
	2241 0 6040	225520	6570256	42.4	50	00	407	22ALRC017 - 1.00m @ 1.02g/t from 64m for (GxM 1) NA
	22ALRC018	325530	6570256	424	-50	90	137	
	22ALRC019	325509	6570225	424	-46	144	210	22ALRC019 - 1.00m @ 1.02g/t from 57m for (GxM 1)
	2241 0 6020	2255.00	6570204	42.4	46		24.0	22ALRC019 - 4.00m @ 2.68g/t from 144m for (GxM 11)
	22ALRC020	325509	6570301	424	-46	141	210	22ALRC020 - 8.00m @ 0.77g/t from 8m for (GxM 6)
Data aggregation	Mine	ralisod	lintoreo	otio	no 7	ro ropo	rtod a	t 2 0 5 a/t Au out off with 2 minimum
Data aggregation						-		t a 0.5g/t Au cut-off with a minimum
methods	repol	rting wi	idth of 1	m f	or R	C holes	and	0.2m for diamond holes, composited to 1m.
Relationship	Hole	s were	drilled	orth	ogo	nal to m	ineral	lisation as much as possible, however the
between	exac	t relatio	onship l	betw	een	interce	ot wia	Ith and true width cannot be estimated
			ll cases					
mineralisation	exac	uy in a	li cases	•				
widths and								
intercept lengths								
D'								
Diagrams	Accura	ate pla	ns are i	nclu	idec	in this a	annol	uncement.
Balanced reporting	Drillin	a resul	ts are re	enor	ted	in a hal	ancer	reporting style.
				•				
	FML drill assay results and historic drill hole results are predominantly available on							ole results are predominantly available on
	WAM	EX.						
Other each start is a	 ,			- 1				
Other substantive	• There	is no c	other ma	ater	al e	xpioratio	on da	ta to report at this time.
exploration data								
-		<u> </u>				_		
Further work	Future	e works	s at Alic	ia al	nd E	mpress	are ı	under review.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 FML data was geologically logged electronically, collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields. Data extracted from the database were validated visually in Datamine software and Seequent Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted. Historic data has been validated against WAMEX reports where possible.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and last visited site in February 2014.
Geological interpretation	 All available drill hole and mining data was used to guide the geological interpretation of the mineralisation. Knowledge and information generated from the Empress open pit and underground, Dreadnaught and Tindals mining operations also guided the interpretation. An approximate cut-off grade of 0.5g/t was implemented. At Alicia, the two distinctly different zones of mineralisation were modified from the July 2021 Alicia MRE in Seequent Leapfrog Geo software on a sectional basis. Only minor modifications to the steeply dipping N-S lodes were made to include the April 2022 drilling. The three continuous HG "core" lodes remain within the larger N-S striking Lodes. The southern "fold-nose" region was re-interpreted to more recent understandings on the geological controls of mineralisation in the area. The re-interpreted southern region has 9 NW-SE trending stacked flat dipping ~ 10° to WNW lodes that are cross-cut by 5 WSW trending lodes that are moderately steeply dipping ~ 70° WNW. These lodes link Alicia to Empress deposit. At Empress 13 NNE to NE striking sub-vertical lodes that intersect one another were interpreted. The WSW lodes at Empress aren't as well developed as at Alicia and have been interpreted as cross cutting the NNE lodes as a series of 17 stacked lodes that also dip ~ 70° WNW.

	• Two remanent historic ROM pads from Tindals mining have been modelled. One larger ROM covering the Northern N-S lodes and a smaller pad covering the southern lodes.
Dimensions	 The entire interpreted Alicia/Empress mineralisation extends over 400m. The Northern, Alicia N -S trending sub-vertical lodes (6) extend over a 340m strike length. The main N-S lode has been modelled from near surface to approximately 120m below surface. The average true thickness of the mineralised lodes is 2-5m. The Southern lodes extend over 160m strike length and 140m below the surface to the 280mRL and link Alicia to Empress The Empress NNE lodes strike over a 240m and have been modelled to approximately 130m below surface (290mRL). The southern stacked WSW lodes at Empress and have limited strike ~ 90m and extend approx. 150m below surface to the 280mRL. The Northern ROM pad covers an area approx. 200m x 180m, while the Southern ROM pad covers an area approx. 50m x 100m. The ROM pads vary from 2m to 7m thick.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run using Datamine software, following the process below: Drill hole data was selected within mineralised lodes and then within the internal HG core. All domain boundaries were considered "hard" boundaries and no drill hole information was used by another lode in the estimation. This includes the HG core lodes and the southern intersecting lodes where priority was given to the 5 moderately dipping WSW lodes at Alicia. The NNE sub-vertical lodes at Empress had priority over the WSW lodes. All drill hole data was composited to 1m downhole intervals – 1m is the dominant raw sampling interval. The composited assay values of each lode were imported into Snowden Supervisor for geostatistical analysis. A review of histograms, probability plots and mean/variance plots for each lode revealed some outlier sample values. Top capping of higher Au values within each lode was carried out with Au values above the cut-off grade reset to the cut-off grade. Not all lodes were top-cut. The different lodes have different top-cuts as required, a maximum top-cap of 20ppm was used with an average of 7ppm Au. Variography was performed on the individual lodes with larger sample numbers, in total 23 variograms were modelled. These models were shared with the other lodes of similar orientation and proximity. The back-transformed variogram models had moderate to high nugget effects (19% to 57% of total sill), with a range from 20m to 150m for the lodes. No "unfolding" of the mineralised wireframes was required. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 5 mE x 10 mN x 5 mRL – this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block.
	• The ellipsoid search parameters used the variogram ranges, with a minimum of 8 and maximum of 16 samples per block estimate was used. After the first pass 85% of blocks had estimated. For un-estimated blocks after this first pass, the search distance was expanded by a factor of two and the minimum number of samples dropped to 4. In the second pass 12% of blocks estimated. A third pass was then run with an increased search distance by a factor of four and the minimum number

-	
	 of samples 3 (for the smaller Empress WSW lodes) or 4. Only 2.8% of blocks estimated in the third search pass. The estimate was validated by visually stepping through the estimated blocks and sample data in Datamine. Comparing the estimated block statistics with composited sample data and generate trend (Swath) plots to ensure the estimate was honouring the trends of the data. Also, a review of the output parameters from the estimation process like kriging variance, negative weights, search distances and sample numbers. After an initial estimation run and validation check, a few lodes with higher grade values in sparsely drilled areas had a "distance limited search" function used whereby grades above a certain cut-off (5ppm AU) were restricted to only estimate blocks within a 10m search ellipse range. This helps to reduce the influence of higher grades into blocks of fewer low grade sample points. The two remanent ROM pads were estimated by using an Inverse Distance Squared approach with a 150m isotropic search and a minimum of 4 samples and a maximum of 18 samples. A top-cap of 3.5ppm Au was applied to the samples to remove any high-grade outliers. The ROM pads estimated in a single search pass.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	 The Mineral Resources at Alicia/Empress have been reported above a 0.7g/t cut-off for open pit. The ROM pads have been reported without a lower cut-off as it has already had a cut-off applied during the mining process.
Mining factors or assumptions	Alicia/Empress deposit would be mined by open-cut mining methods.
Metallurgical factors or assumptions	 Two core samples from the 2021 diamond drilling at Alicia were submitted to ALS Laboratories in July 2021 for gravity separation and direct cyanide leach testwork and intensive cyanide leach testwork. Results for the gravity gold recovery were between 48.1% to 75.9% while total extraction was very high for both samples 95.5% to 96.4% with low cyanide consumption. Intensive cyanidation was conducted on the two whole ore samples ground to 75µm to test leach performance using aggressive leaching at a finer grind size. Both samples had similar and slightly higher responses compared to the standard gravity leach test outlined above.
Environmental factors or assumptions	 The Alicia/Empress deposits sit within an area of previous ground disturbance to the immediate North is the Tindals open pit and waste dump. A small trial pit currently exists on the Empress deposit There are no unforeseen environmental considerations that would prevent open pit mining from re-commencing in the area.
Bulk density	 Density values were assigned based on weathering profile using SG test work on recently drilled FML diamond core samples and historic figures used in the region. An average density of 1.8 for oxidised t/m³, 2.4 t/m³ for transitional and 2.85 t/m³ for fresh rock were applied to the model. A density of 1.7 t/m³ was applied to the ROM stockpiles.
Classification	 Mineral Resources have been classified as either Indicated or Inferred based mainly on geological confidence in the geometry and continuity of the lodes. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Significant drilling exists mostly pattern drilled to 10m x 20m and the relatively shallow modelling of mineralisation and high percentage of blocks estimating in the first search pass therefore, the majority of the resource was classified as Indicated. Minor extension of the interpretation in the WSW lodes at Alicia that lead to blocks

	filling in the second search pass were constrained within a digitised wireframe and classified Inferred. The smaller WSW lodes at Empress were classified as Inferred.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of	This is addressed in the relevant paragraph on Classification above.
relative accuracy/ confidence	The Mineral Resource relates to global tonnage and grade estimates.

JORC Code, 2012 Edition – Table 1 Undaunted and Lady Charlotte Deposits

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML). RC percussion drill chips were collected through a cyclone and cone or riffle splitter. Samples were collected on a 1m basis to achieve a sample weight of approximately 3 - 5kg. The splitter was levelled at the beginning of each hole using a bullseye level. The spoils were collected at 1m intervals and either placed directly on the ground or collected in large "green bags". FML collected composite samples by spear sampling the 1m spoils and the corresponding 1m samples collected off the drill rig were submitted if the composite returned an assay >0.2ppm Au. Eltins submitted 5m composites of RC drill chips for analysis and re-submitted 1m samples where results returned >0.2ppm Au. Matador and RJV submitted 4m composites by spear sampling the 1m spoils or 1m RC chip samples from the rig splitter for analysis.
Drilling techniques	 All FML drilling was completed using a Reverse Circulation (RC) face sampling hammer with booster auxiliary. Eltins drilling was completed using an RC face sampling hammer. Matador/RJV drilling was completed using an RC face sampling hammer.
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust. Historic sample recovery is poorly recorded.
Logging	 FML RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. The entire length of all holes is logged. RC chips were washed and stored in chip trays, while diamond core was orientated and photographed prior to being ½ core sampled with remaining core stored at the TMH core yard. Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.

Sub-sampling techniques and sample preparation	 FML RC samples were drilled dry to maximise recovery where possible. The use of a booster and auxiliary compressor provide dry sample for depths below the water table. Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. FML utilised various laboratories over the years, however most Undaunted samples were sent to ALS. Samples were collected in a pre-numbered calico bag bearing a unique sample ID. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm. Initial 4m composite samples were analysed by 40g Aqua Regia. Where results returned >0.2ppm Au, 1m samples were submitted for 40g Fire Assay. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes are considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration. Etlin's assay methodology is not stated. Matador/RJV submitted assays for Fire Assay with 30g charge to ALS Laboratory.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. FML QAQC checks involved inserting a standard or blank every 10 to 20 samples. A minimum of 1 standard was inserted for every sample batch submitted. Pulp samples were submitted to a different laboratory for check sampling. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances. Matador/RJV utilised lab repeats as part of their QAQC checks.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. Holes were open hole surveyed upon completion of drilling using an electronic multi-shot camera or north-seeking gyroscope tool whilst drilling was in progress. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. Eltin collar survey methods are unknown, no down-hole surveying was conducted. Matador and RJV used electronic multi-shot camera for downhole surveys.

Data spacing and distribution	• Drill collars are on an approximate 10m x 10m narrow spacing along the core of the deposit with 20m x 20m spacing at the extents of the deposit.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Drill holes were oriented at right angles to strike of the main deposit, however given the differing orientations of the Undaunted mineralisation not all holes were orientated to best delineate the geology.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel. Historic sample security is not recorded.
Audits or reviews	• A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 All exploration was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing. Undaunted is primarily located on tenement M15/646, part of the Tindals Mining Centre. The historically defined Lady Charlotte deposit area is on tenement M15/1294 which is wholly surrounded by M15/646.
	• The Malinyu Ghoorlie 2017 and Maduwongga 2017 Claims cover the majority of the Coolgardie tenure. At this stage no Coolgardie claims have progressed to determined status.
Exploration done by other parties	 Lady Charlotte has been historically mined by underground shafts and drives. Historic figures indicate 9,859 tonnes were mined at an average grade of 20.1g/t Au. Other exploration works carried out consisted of mapping, soil sampling, RAB, RC and Diamond drilling, aerial surveys, ground magnetics.
Geology	 Regionally the deposit is located on the western margin of the Archaean Norseman Menzies Greenstone Belt. The province is sub-divided into three Terranes, with Undaunted occurring within the Kalgoorlie Terrane and further sub-divided into the Coolgardie Domain. The dominant rock types throughout the Coolgardie Domain are mafic to ultramafic volcanic rocks overlain by a thick succession of felsic volcanic and volcaniclastic rocks which in turn are intruded by a suite of felsic to intermediate porphyries and differentiated to undifferentiated dolerites and gabbros. Locally the prospect is within an area of complex interactions between the Brilliant Ultramafic, the underlying Lindsays Basalt and the felsic intrusives of the Bayleys Porphyry Suite. The area is also structurally complex with N-NNE trending shears and faults intersecting SW faults. Mineralisation is associated with the diorite intrusions and quartz veining, silicification and base metal sulphides.

Company	Drill Hole Number	WAME X Report A- Numbe r	WAME X Report Date
ELTINS	LC001, LC002, LC003, LC004, LC005, LC006, LC007, LC008, LC010, LC011, LC012, LC013, LC015, LC017, LC019	42470	Oct-94
MATADOR	05LCC001, 05LCC002, 05LCC005, 05LCC006, 05LCC007	72821	Jul-06
REDEMPTION JV	06LCC016, 06LCC017 UNC015, UNC020, UNC021, UNC022, UNC024,	74513	Feb-07
FOCUS	UNC025, UNC026, UNC028, UNC029, UNC030, UNC031, UNC032, UNC033, UNC034, UNC035, UNC036, UNC037, UNC038, UNC039, UNC040, UNC042, UNC043, UNC044, UNC045, UNC046, UNC047, UNC048, UNC049, UNC050, UNC051, UNC052, UNC053, UNC054, UNC055, UNC056, UNC057, UNC058, UNC059, UNC060, UNC065, UNC066, UNC067, UNC068, UNC069, UNC070, UNC072, UNC073, UNC074, UNC077, UNC078, UNC079, UNC081, UNC082, UNC083, UNC085, UNC086, UNC087, UNC089, UNC090, UNC093, UNC094, UNC095, UNC129, UNC130, UNC132, UNC133, UNC134, UNC135, UNC140, UNC141, UNC142, UNC143, UNC144, UNC145, UNC146, UNC148, UNC149, UNC150, UNC153, UNC232, UNC234, UNC236, UNC240, UNC244, UNC245, UNC251, UNC252, UNC253, UNC256, UNC250, UNC251, UNC252, UNC253, UNC264, UNC262, UNC263, UNC264, UNC266, UNC267, UNC262, UNC270, UNC273, UNC274, UNC275, UNC262, UNC270, UNC273, UNC274, UNC275, UNC264, UNC277, UNC278, UNC279, UNC280, UNC281, UNC282, UNC283, UNC284, UNC294, UNC295, UNC291, UNC292, UNC293, UNC294, UNC295, UNC291, UNC292, UNC233, UNC304, UNC305, UNC307	92766	Feb-11
	UNC330, UNC331, UNC332, UNC333, UNC334, UNC335, UNC336, UNC337, UNC338, UNC339, UNC340, UNC375, UNC425, UNC426	96924	Feb-13
	TND1515	107812	Feb-16

	• Foc	us drilling in	formation NC)T available	WAMEX r	eports.		
	DRILL TYPE	HOLE ID	EAST	NORTH	RL	DEPTH (m)	AZIMUTH	DIP
	RC	UNC001	326279.9	6570910	426.27	48	90.04	-60
	RC	UNC002	326271	6570907	425.81	48	90.04	-60
	RC	UNC003	326280.3	6570930	426.55	48	90.04	-60
	RC	UNC004	326270	6570930	425.45	48	90.04	-60
	RC	UNC006	326280.3	6570885	426.29	48	90.04	-60
	RC	UNC007	326269.7	6570890	426.43	48	90.04	-60
	RC	20UNRC 001	326275.6	6570910	427.73	78	89.74	-59.97
	RC	20UNRC 002	326405.9	6570897	432.46	72	91.16	-60.69
	RC	20UNRC 003	326403.2	6570707	432.23	138	269.35	-50.86
Data aggregation methods			ersections are of 1m for RC	•	t a 0.5g/t A	lu cut-off wit	th a minimum	
Relationship between mineralisation widths and intercept lengths	Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases.							
Diagrams	 Асси 	Accurate plans are included in this announcement.						
Balanced reporting	 Drilling results are reported in a balanced reporting style. FML drill assay results and historic drill hole results are predominantly available on WAMEX. 							
Other substantive exploration data	• The	e is no othe	r material ex _l	oloration dat	a to report	t at this time		
Further work		view of the r ning future c		lling and est	imation is	underway, v	with respect to	0

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 FML data was geologically logged electronically, collar and downhole surveys were also received electronically as were the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling programs for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist:

	 Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing collar information Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields. Data extracted from the database were validated visually in Datamine and Seequent Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted. Historic data has been validated against WAMEX reports where possible.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager - Exploration and conducted regular site visits throughout 2021. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and visited site in 2014.
Geological interpretation	 All available drill hole and pit mapping data was used to guide the geological interpretation of the mineralisation. The mineralised geological interpretation was completed using Seequent Leapfrog software on a section-by-section basis. A total of 28 lodes were modelled, an additional 9 lodes have been interpreted as splays coming off the main NNE trending lode. While the lodes all follow the same N-NNE trend they are clustered in five sets of 4 – 8 veins surrounding the main NE lode. All lodes are thin and dip sub-vertically to the East.
Dimensions	• Mineralisation has been modelled over 570m strike and have been interpreted from near surface to approx. 140m below surface. The average thickness of the individual lodes varies from 1m up to 10m thick.
Estimation and modelling techniques	 An Ordinary Kriging (OK) estimate was run using Datamine software, following the process below: Drill hole data was selected within mineralised lodes, boundaries between each lode were considered hard boundaries and no data is shared between lodes. All drill hole data was composited to 1m downhole intervals – 1m is the dominant sampling interval. The composited data was imported into Supervisor software for statistical and geostatistical analysis. After a review of the individual lode statistics, higher Au samples that were outliers to the main population were "top-capped" to a selected value for each lode. An average of 5ppm Au was used with a maximum of 12ppm Au. Variography was modelled on data transformed to normal scores, the variogram models were back transformed to original units before exporting. Variography was performed on the individual lodes with larger sample numbers, in total 6 variograms were modelled. These models were shared with the other lodes that fell within that domain of similar orientation and proximity. The back-transformed variogram models had moderate nugget effects (20 to 34% of total sill), with a range from 30m for the smaller lodes to 139m for the Main lode. Estimation (via Ordinary Kriging) was into a non-rotated block model in MGA94 grid, with a parent block size of 5 mE x 10 mN x 5 mRL – this is about the average drill spacing in the deposit. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block.

	 The ellipsoid search parameters used the variogram ranges, with a minimum of 8 and maximum of 18 samples per block estimate was used. After the first pass 46% of blocks had estimated. For un-estimated blocks after this first pass, the search distance was expanded by a factor of two and the minimum number of samples dropped to 4. In the second pass 43% of blocks estimated. A third pass was then run with an increased search distance by a factor of four and the same minimum number of samples. The remaining 11% of blocks estimated in the third search pass. The poor estimation of blocks is attributed to fact most drillholes are shallow and few targeted the mineralization at depth.
	• The estimate was validated by visually stepping through the estimated blocks and sample data in Datamine. Comparing the estimated block statistics with composited sample data and generate trend (Swath) plots to ensure the estimate was honouring the trends of the data. Also, a review of the output parameters from the estimation process like kriging variance, negative weights, search distances and sample numbers.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	• The Resources for Undaunted have been reported above a 0.5g/t Au cut-off and above the 340mRL. This is based on an AUD \$2,200 gold price and processing through FML's TMH Mill.
Mining factors or assumptions	• FML anticipates mining by open pit methods with ore to be processed through the Three Mile Hill plant some 6km to the north of Undaunted.
Metallurgical factors or assumptions	•
Environmental factors or assumptions	The deposits occur within an area of significant previous ground disturbance including open pits and waste dumps.
Bulk density	 Density values were assigned based weathering profile, using the values from the previous MRE that are based on the typical averages for the Coolgardie region. An oxide density of 1.80t/m3: transitional 2.40 t/m3 and 2.80 t/m3 was used for fresh.
Classification	 Mineral Resources have been classified as Inferred. Whilst there is close-spaced drilling along strike of the deposit and a large proportion of FML drill holes the shallow nature of the drilling resulting in a large proportion of the resource filling in the second search pass, the deposit has been classed as Inferred. Some blocks with low drill density at depth were set as unclassified and not reported.
Audits or reviews	• No independent audits or reviews of the mineral resource estimate have been conducted.
Discussion of relative accuracy/ confidence	 This is addressed in the relevant paragraph on Classification above. The Mineral Resource relates to global tonnage and grade estimates.

JORC Code, 2012 Edition – Table 1 for Central Coolgardie Gold Project Low grade Stockpiles and Tails

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary										
Sampling techniques	 This report relates to results from Reverse Circulation (RC) drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis through the targeted stockpiles and tails deposits. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level. At the assay laboratory all samples were oven dried before being pulverized to 90% passing 75µm. The samples were then prepared for fire assay. 										
Drilling techniques	 FML drilling was completed using an RC face sampling hammer. Hole were not down hole surveyed due to short length and orientation as vertical holes were used. All collars were picked up with high resolution DGPS and drone surveys were also used to improve topography control 										
Drill sample recovery	 FML Sample recovery was recorded by a visual estimate during the logging process. All RC samples were drilled dry 										
Logging	 All RC samples were geologically logged to primarily record the boundary of the deposit and any variations in oxidation state. The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. The entire length of all holes is logged. 										
Sub-sampling techniques and sample preparation	 RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. All RC samples were drilled dry to maximise recovery Sample condition was recorded (wet, dry, or damp) at the time of sampling and recorded in the database. The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was determined by a 30g to 50g fire assay with an ICP-OES or AAS Finish. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. A standard is inserted every 20th sample and all batches delivered to the lab have at least three standards in them. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were considered to be appropriate for the type, style and 										

Criteria	Commentary
	consistency of mineralisation encountered during this phase of exploration.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. No geophysical tools, spectrometers or handheld XRF instruments were used. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however, no twinned holes were drilled during this program. Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations. Historic holes were validated against paper copies and WAMEX reports where possible.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. As holes were vertical and very short no down hole dip/azimuth surveys were required. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments and drones.
Data spacing and distribution	• RC drill spacing was better or equal to 15m x 15m
Orientation of data in relation to geological structure	Drill holes were vertical and generally oriented at right angles to the flat lying deposits
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel.
Audits or reviews	• A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.

Section 2 Reporting of Exploration Results

Criteria	Commentary				
Mineral tenement and land tenure status	Limited or its subs good standing. • The Malinyu Ghoor	idiary co lie 2017	ompanies Claim co	s Fo over	ments 100% owned by Focus Minerals cus Operations Pty Ltd. All tenements are in the majority of the Coolgardie tenure. At this based to determined status.
Exploration done by other parties	The targeted stock	kpiles ar	id tails h	ave	negligible amounts of previous sampling
Geology	adjacent Green Tindals East st Tindals UG to 2 Bayleys, Reder Bayleys/Lynds Golden Bar tail	Stockpill fields op ockpile i 2012 mption, (ays gold s are fro and on th	e is comp pen pit 20 s compo Queen of system m unkno pe SE co	prise 012 sed f She and own sounting	ed of Low Grade mined by FML at the
Drill hole	New holes drilled	by FML	in 2023:		
Information	Hole ID Easting Northin (MGA 94 Zone		Azimuth (MGA94)	EOH (m)	Intersection calculated using 0.4 g/t cut off and up to 2m internal dilution
	23CGRC001 326835 657494	2 400 -90	0	3	23CGRC001 - 1m @ 0.54 g/t from 0m for (GxM 0.54)
	23CGRC002 326848 657494			3	
	23CGRC003 326862 657495 23CGRC004 326876 657496			3	23CGRC003 - 1m @ 0.47 g/t from 2m for (GxM 0.47) 23CGRC004 - 3m @ 0.59 g/t from 0m for (GxM 1.78)
	23CGRC004 326876 657496			3	23CGRC004 - 3in @ 0.39 g/t from 0in for (GXM 1.78) 23CGRC005 - 3m @ 0.61 g/t from 0m for (GXM 1.84)
	23CGRC006 326897 657497			3	23CGRC006 - 1m @ 0.4 g/t from 1m for (GxM 0.4)
	23CGRC007 326891 657498			3	23CGRC007 - 1m @ 0.63 g/t from 0m for (GxM 0.63)
	23CGRC008 326883 657498			3	23CGRC008 - 2m @ 0.64 g/t from 0m for (GxM 1.28)
	23CGRC009 326870 657497	5 400 -90	0	3	NA
	23CGRC010 326856 657496		0	3	23CGRC010 - 1m @ 0.7 g/t from 0m for (GxM 0.7)
	23CGRC011 326843 657496			3	23CGRC011 - 1m @ 0.49 g/t from 0m for (GxM 0.49)
	23CGRC012 326829 657495			3	23CGRC012 - 2m @ 0.5 g/t from 0m for (GxM 1)
		9 400 -90		3	23CGRC013 - 3m @ 0.75 g/t from 0m for (GxM 2.25)
	23CGRC014 326836 657497 23CGRC015 326850 657498			3	NA
	23CGRC015 326850 657498 23CGRC016 326863 657498		-	3	23CGRC016 - 1m @ 0.44 g/t from 0m for (GxM 0.44)
	23CGRC017 326877 657499			3	23CGRC017 - 2m @ 0.82 g/t from 0m for (GXM 1.64)
	23CGRC018 326885 657499			3	23CGRC018 - 2m @ 0.62 g/t from 0m for (GxM 1.84)
	23CGRC022 326455 657387			3	23CGRC022 - 1m @ 0.4 g/t from 1m for (GxM 0.4)
	23CGRC023 326462 657386			2	NA
	23CGRC024 326471 657384	8 409 -90	0	2	23CGRC024 - 1m @ 0.95 g/t from 0m for (GxM 0.95)
	23CGRC025 326483 657385	5 409 -90	0	2	23CGRC025 - 1m @ 0.4 g/t from 0m for (GxM 0.4)
	23CGRC026 326475 657386		0	2	23CGRC026 - 1m @ 0.49 g/t from 0m for (GxM 0.49)
	23CGRC027 326468 657388			3	23CGRC027 - 2m @ 0.61 g/t from 0m for (GxM 1.21)
	23CGRC028 326477 657389			2	
		9 409 -90		2	23CGRC029 - 1m @ 1.42 g/t from 0m for (GxM 1.42)
	23CGRC030 326488 657387			2	23CGRC030 - 1m @ 0.43 g/t from 0m for (GxM 0.43)
	23CGRC031 326494 657386			2	NA
	23CGRC032 326494 657389 23CGRC033 326506 657390			2	NA NA
	23CGRC033 326506 657390 23CGRC034 326497 657391			2	NA
1	230010034 320437 037391	-90	0	4	

(Criteria listed in the preceding section also apply to this section.)

ria	Comme	ntary						
	Hole ID				Dip	Azimuth	EOH	Intersection calculated using
			94 Zone 5			(MGA94)	(m)	0.4 g/t cut off and up to 2m internal dilution
	23CGRC035					0		NA
	23CGRC036					0	2	NA
	23CGRC037 23CGRC038					0	2	NA
	23CGRC039			_		0	2	NA
	23CGRC040			_		0	2	NA
	23CGRC041					0	2	NA
	23CGRC042					0	2	NA
	23CGRC043					0	2	NA
	23CGRC044			_		0	2	NA
	23CGRC045	326721	6573716	406	-90	0	2	NA
	23CGRC046	326715	6573721	406	-90	0	2	NA
	23CGRC047	326703	6573727	406	-90	0	2	NA
	23CGRC048	326689	6573734	406	-90	0	2	NA
	23CGRC049	326676	6573741	406	-90	0	2	NA
	23CGRC050	326682	6573752	406	-90	0	2	NA
	23CGRC051					0	2	NA
	23CGRC052			_		0	2	NA
	23CGRC053					0	2	NA
	23CGRC054			_		0	2	NA
	23CGRC055					0	3	23CGRC055 - 2m @ 1.61 g/t from 1m for (GxM 3.22)
	23CGRC056					0	3	23CGRC056 - 2m @ 1.8 g/t from 0m for (GxM 3.6)
	23CGRC057					0	2	23CGRC057 - 1m @ 0.69 g/t from 1m for (GxM 0.69)
	23CGRC058			_		0	3	NA
	23CGRC059			_		0	3	23CGRC059 - 2m @ 0.81 g/t from 0m for (GxM 1.61)
	23CGRC060					0	3	23CGRC060 - 3m @ 0.86 g/t from 0m for (GxM 2.57)
	23CGRC061					0	3	23CGRC061 - 3m @ 0.78 g/t from 0m for (GxM 2.33)
	23CGRC062 23CGRC063					0	3	23CGRC062 - 2m @ 0.71 g/t from 0m for (GxM 1.41)
				_		0	3	23CGRC063 - 1m @ 0.8 g/t from 2m for (GxM 0.8)
	23CGRC064 23CGRC065					0	3	23CGRC064 - 3m @ 1.13 g/t from 0m for (GxM 3.4)
	23CGRC065					0	2	23CGRC065 - 3m @ 1.99 g/t from 0m for (GxM 5.96) 23CGRC066 - 2m @ 1.5 g/t from 0m for (GxM 3)
	23CGRC067					0	2	23CGRC067 - 1m @ 0.54 g/t from 0m for (GxM 0.54)
	23CGRC068			_		0	3	23CGRC068 - 2m @ 0.84 g/t from 0m for (GxM 0.54)
	23CGRC069			_		0	3	NA
	23CGRC070					0	2	23CGRC070 - 1m @ 0.59 g/t from 0m for (GxM 0.59)
	23CGRC071					0	3	23CGRC071 - 3m @ 0.97 g/t from 0m for (GxM 2.92)
	23CGRC072					0	2	23CGRC072 - 2m @ 1.57 g/t from 0m for (GxM 3.13)
	23CGRC073	327751	6572648	402	-90	0	2	23CGRC073 - 2m @ 0.71 g/t from 0m for (GxM 1.42)
	23CGRC074	327755	6572637	401	-90	0	2	23CGRC074 - 2m @ 1.66 g/t from 0m for (GxM 3.31)
	23CGRC075					0	2	23CGRC075 - 2m @ 1.62 g/t from 0m for (GxM 3.23)
	23CGRC076	327760	6572618	402	-90	0	2	23CGRC076 - 2m @ 0.61 g/t from 0m for (GxM 1.22)
	23CGRC077					0	2	23CGRC077 - 2m @ 0.65 g/t from 0m for (GxM 1.3)
	23CGRC078					0	2	23CGRC078 - 2m @ 0.64 g/t from 0m for (GxM 1.28)
	23CGRC079	327786	6572629	402	-90	0	2	23CGRC079 - 1m @ 0.86 g/t from 0m for (GxM 0.86)
	23CGRC080	327795	6572643	402	-90	0	2	23CGRC080 - 2m @ 0.67 g/t from 0m for (GxM 1.34)
	23CGRC081	327801	6572649	402	-90	0	2	NA
	23CGRC082	327793	6572659	402	-90	0	2	23CGRC082 - 1m @ 0.58 g/t from 0m for (GxM 0.58)
	23CGRC083	327785	6572650	402	-90	0	2	23CGRC083 - 2m @ 0.96 g/t from 0m for (GxM 1.91)
	23CGRC084					0	2	23CGRC084 - 2m @ 1.27 g/t from 0m for (GxM 2.53)
	23CGRC085	327767	6572627	402	-90	0	2	23CGRC085 - 2m @ 1.15 g/t from 0m for (GxM 2.3)
	23CGRC086	326214	6570648	438	-90	0	6	23CGRC086 - 2m @ 1.23 g/t from 0m for (GxM 2.46)
	23CGRC087					0	6	23CGRC087 - 6m @ 0.83 g/t from 0m for (GxM 4.97)
	23CGRC088					0	6	23CGRC088 - 6m @ 2.96 g/t from 0m for (GxM 17.75)
	23CGRC089					0	6	23CGRC089 - 5m @ 0.85 g/t from 0m for (GxM 4.23)
	23CGRC090					0	6	23CGRC090 - 2m @ 0.55 g/t from 0m for (GxM 1.1)
	23CGRC091					0	6	23CGRC091 - 4m @ 0.48 g/t from 2m for (GxM 1.9)
	23CGRC092					0	6	23CGRC092 - 1m @ 0.47 g/t from 0m for (GxM 0.47)
	23CGRC092					0	6	23CGRC092 - 3m @ 0.73 g/t from 3m for (GxM 2.2)
	23CGRC093	326189	6570630	438	-90	0	6	23CGRC093 - 4m @ 0.56 g/t from 2m for (GxM 2.23)
	23CGRC094	326183	6570638	438	-90	0	6	23CGRC094 - 1m @ 0.45 g/t from 2m for (GxM 0.45)
								23CGRC094 - 2m @ 0.56 g/t from 4m for (GxM 1.12)
	23CGRC095	326169	6570637	438	-90	0	6	NA

Hole ID	_	Northing 94 Zone 5	-	Dip	Azimuth (MGA94)	EOH (m)	Intersection calculated using 0.4 g/t cut off and up to 2m internal dilution
23CGRC096				-90	0	6	23CGRC096 - 3m @ 0.65 g/t from 2m for (GxM 1.94)
23CGRC097		6570630			0	6	23CGRC097 - 2m @ 0.64 g/t from 2m for (GxM 1.27)
						-	23CGRC098 - 1m @ 0.45 g/t from 0m for (GxM 0.45)
23CGRC098	326117	6570630	435	-90	0	5	23CGRC098 - 3m @ 0.83 g/t from 2m for (GxM 2.48)
23CGRC099	326107	6570630	434	-90	0	4	NA
23CGRC100	326098	6570630	433	-90	0	3	23CGRC100 - 1m @ 0.7 g/t from 2m for (GxM 0.7)
23CGRC101	326088	6570630	432	-90	0	2	NA
23CGRC191	324732	6569784	439	-90	0	1	NA
23CGRC192	324734	6569796	439	-90	0	1	NA
23CGRC193					0	1	NA
23CGRC194					0	1	NA
23CGRC195					0	1	NA
23CGRC196			_		0	1	NA
23CGRC197			_		0	1	NA
23CGRC198					0	1	NA
23CGRC199	1				0	1	NA
23CGRC200			_		0	1	NA
23CGRC201					0	1	NA
23CGRC202					0	1	NA
23CGRC203					0	1	NA
23CGRC204 23CGRC205					0	1	NA
23CGRC205 23CGRC206			_		0	1	NA NA
23CGRC206 23CGRC207					0	1	NA
23CGRC207 23CGRC208					0	1	NA
23CGRC208 23CGRC209					0	1	NA
23CGRC209					0	1	NA
23CGRC210 23CGRC211					0	1	NA
23CGRC211 23CGRC212					0	1	NA
23CGRC212 23CGRC213					0	1	NA
23CGRC213			_		0	1	NA
23CGRC214					0	1	NA
23CGRC215					0	1	NA
23CGRC217					0	1	23CGRC217 - 1m @ 0.41 g/t from 0m for (GxM 0.41)
23CGRC218			_		0	1	NA
23CGRC219			_		0	1	23CGRC219 - 1m @ 1.06 g/t from 0m for (GxM 1.06)
23CGRC220					0	6	NA
23CGRC221			_		0	6	NA
23CGRC222	324911	6569707	431	-90	0	6	23CGRC222 - 4m @ 0.43 g/t from 2m for (GxM 1.7)
23CGRC223	324905	6569699	431	-90	0	6	23CGRC223 - 6m @ 0.72 g/t from 0m for (GxM 4.3)
23CGRC224	324904	6569679	430	-90	0	6	23CGRC224 - 4m @ 0.85 g/t from 2m for (GxM 3.4)
23CGRC225	324908	6569685	431	-90	0	6	23CGRC225 - 6m @ 0.59 g/t from 0m for (GxM 3.56)
23CGRC226	324913	6569693	431	-90	0	6	23CGRC226 - 6m @ 6.12 g/t from 0m for (GxM 36.7)
23CGRC227	324919	6569701	430	-90	0	6	23CGRC227 - 2m @ 0.45 g/t from 2m for (GxM 0.9)
23CGRC228	324925	6569709	431	-90	0	6	NA
23CGRC229	-				0	6	23CGRC229 - 2m @ 0.41 g/t from 0m for (GxM 0.82)
23CGRC230	324936	6569709	430	-90	0	6	NA
23CGRC231	1				0	6	23CGRC231 - 2m @ 0.96 g/t from 4m for (GxM 1.92)
23CGRC232			_		0	6	NA
23CGRC233			430		0	6	NA
23CGRC234					0	6	NA
23CGRC235	1				0	6	NA
23CGRC236					0	6	NA
23CGRC237					0	6	
23CGRC238					0	6	23CGRC238 - 2m @ 0.5 g/t from 0m for (GxM 1)
23CGRC239					0	4	23CGRC239 - 2m @ 3.99 g/t from 2m for (GxM 7.98)
23CGRC240					0	4	NA
23CGRC241					0	2	NA
23CGRC242					0	1	
23CGRC243					0	1	23CGRC243 - 1m @ 0.57 g/t from 0m for (GxM 0.57)
23CGRC244					0	2	23CGRC244 - 2m @ 0.52 g/t from 0m for (GxM 1.04)
23CGRC245					0	2	23CGRC245 - 2m @ 0.58 g/t from 0m for (GxM 1.16)
	JZ0351	05/5498	40/	-90	0	2	23CGRC246 - 2m @ 0.65 g/t from 0m for (GxM 1.29)
23CGRC246		6E7EF0C	100	00	<u>^</u>	2	22(CPC)17 2m @ 0 6 alt from 0 - f - 1 (1 1 2)
23CGRC246 23CGRC247 23CGRC248	326364				0	2	23CGRC247 - 2m @ 0.6 g/t from 0m for (GxM 1.2) 23CGRC248 - 2m @ 0.83 g/t from 0m for (GxM 1.65)

ia	Comme	ntary						
	Hole ID		Northing 94 Zone 5		Dip	Azimuth (MGA94)	EOH (m)	Intersection calculated using 0.4 g/t cut off and up to 2m internal dilution
	23CGRC249				-90	0	2	23CGRC249 - 2m @ 0.66 g/t from 0m for (GxM 1.31)
	23CGRC250					0	1	23CGRC250 - 1m @ 0.65 g/t from 0m for (GxM 0.65)
	23CGRC251	_				0	2	23CGRC251 - 2m @ 0.55 g/t from 0m for (GxM 1.09)
	23CGRC252	326330	6575472	406	-90	0	2	23CGRC252 - 2m @ 0.51 g/t from 0m for (GxM 1.02)
	23CGRC253	326340	6575483	406	-90	0	2	23CGRC253 - 2m @ 0.53 g/t from 0m for (GxM 1.06)
	23CGRC254	326355	6575494	406	-90	0	3	23CGRC254 - 2m @ 0.58 g/t from 0m for (GxM 1.16)
	23CGRC255	326434	6575531	404	-90	0	2	23CGRC255 - 2m @ 0.74 g/t from 0m for (GxM 1.48)
	23CGRC256	326443	6575550	404	-90	0	2	23CGRC256 - 2m @ 0.62 g/t from 0m for (GxM 1.24)
	23CGRC257	326457	6575557	404	-90	0	2	23CGRC257 - 2m @ 0.65 g/t from 0m for (GxM 1.29)
	23CGRC258	326471	6575563	404	-90	0	2	23CGRC258 - 2m @ 0.73 g/t from 0m for (GxM 1.45)
	23CGRC259				-90	0	2	23CGRC259 - 2m @ 0.61 g/t from 0m for (GxM 1.21)
	23CGRC260	326463	6575544	405	-90	0	2	23CGRC260 - 2m @ 0.67 g/t from 0m for (GxM 1.34)
	23CGRC261					0	2	23CGRC261 - 2m @ 0.73 g/t from 0m for (GxM 1.46)
	23CGRC262					0	2	23CGRC262 - 2m @ 0.57 g/t from 0m for (GxM 1.14)
	23CGRC263		6575531	_		0	2	23CGRC263 - 2m @ 0.55 g/t from 0m for (GxM 1.1)
	23CGRC264				-90	0	2	23CGRC264 - 1m @ 0.6 g/t from 0m for (GxM 0.6)
	23CGRC265	_				0	2	23CGRC265 - 1m @ 0.42 g/t from 0m for (GxM 0.42)
	23CGRC266					0	2	23CGRC266 - 2m @ 0.53 g/t from 0m for (GxM 1.05)
	23CGRC267	326488	6575526	403	-90	0	2	23CGRC267 - 2m @ 0.78 g/t from 0m for (GxM 1.55)
	23CGRC268	326078	6575182	410	-90	0	2	23CGRC268 - 2m @ 0.46 g/t from 0m for (GxM 0.92)
	23CGRC269	326065	6575183	410	-90	0	2	23CGRC269 - 2m @ 0.93 g/t from 0m for (GxM 1.85)
	23CGRC270	326049	6575184	410	-90	0	2	23CGRC270 - 2m @ 2.44 g/t from 0m for (GxM 4.87)
	23CGRC271					0	2	23CGRC271 - 2m @ 1.92 g/t from 0m for (GxM 3.84)
	23CGRC272	326002	6575153	411	-90	0	2	23CGRC272 - 2m @ 4.45 g/t from 0m for (GxM 8.9)
	23CGRC273			_		0	2	23CGRC273 - 2m @ 1.93 g/t from 0m for (GxM 3.86)
	23CGRC274				-90	0	2	23CGRC274 - 1m @ 0.87 g/t from 1m for (GxM 0.87)
	23CGRC275		6575154			0	2	23CGRC275 - 2m @ 0.47 g/t from 0m for (GxM 0.94)
	23CGRC276					0	2	23CGRC276 - 2m @ 0.61 g/t from 0m for (GxM 1.22)
	23CGRC277			_		0	2	23CGRC277 - 2m @ 0.67 g/t from 0m for (GxM 1.33)
	23CGRC278					0	2	23CGRC278 - 2m @ 0.44 g/t from 0m for (GxM 0.88)
	23CGRC279					0	2	23CGRC279 - 2m @ 0.5 g/t from 0m for (GxM 1)
	23CGRC280	_				0	2	23CGRC280 - 2m @ 0.45 g/t from 0m for (GxM 0.9)
	23CGRC281					0	2	23CGRC281 - 1m @ 0.58 g/t from 1m for (GxM 0.58)
	23CGRC282			_		0	2	NA
	23CGRC283	_				0	2	23CGRC283 - 1m @ 0.45 g/t from 0m for (GxM 0.45)
	23CGRC284			_		0	2	23CGRC284 - 1m @ 0.48 g/t from 1m for (GxM 0.48)
	23CGRC285	_				0	3	23CGRC285 - 2m @ 0.62 g/t from 1m for (GxM 1.24)
	23CGRC286					0	3	23CGRC286 - 3m @ 1.11 g/t from 0m for (GxM 3.33)
	23CGRC287					0	3	23CGRC287 - 1m @ 0.55 g/t from 1m for (GxM 0.55)
	23CGRC288					0	3	23CGRC288 - 2m @ 0.85 g/t from 1m for (GxM 1.69)
	23CGRC289			_		0	3	23CGRC289 - 3m @ 0.46 g/t from 0m for (GxM 1.37)
	23CGRC290			_		0	3	23CGRC290 - 3m @ 0.7 g/t from 0m for (GxM 2.1)
	23CGRC291	_				0	3	23CGRC291 - 3m @ 0.61 g/t from 0m for (GxM 1.83)
	23CGRC292			_		0	3	23CGRC292 - 3m @ 0.79 g/t from 0m for (GxM 2.38)
	23CGRC293					0	3	23CGRC293 - 2m @ 0.75 g/t from 0m for (GxM 1.5)
	23CGRC294					0	3	23CGRC294 - 2m @ 0.78 g/t from 1m for (GxM 1.56)
	23CGRC295			_		0	3	23CGRC295 - 1m @ 1.1 g/t from 2m for (GxM 1.1)
	23CGRC296					0	3	23CGRC296 - 2m @ 0.54 g/t from 1m for (GxM 1.07)
	23CGRC297					0	3	23CGRC297 - 3m @ 0.55 g/t from 0m for (GxM 1.64)
	23CGRC298 23CGRC299			_		0	3	23CGRC298 - 3m @ 0.67 g/t from 0m for (GxM 2)
	23CGRC299			_		0	3	23CGRC299 - 2m @ 0.8 g/t from 1m for (GxM 1.59)
				_		0	3	23CGRC300 - 3m @ 0.85 g/t from 0m for (GxM 2.54)
	23CGRC301					0	-	23CGRC301 - 3m @ 1.14 g/t from 0m for (GxM 3.43)
	23CGRC302					0	3	23CGRC302 - 3m @ 1.03 g/t from 0m for (GxM 3.09)
	23CGRC303					0	3	23CGRC303 - 3m @ 0.74 g/t from 0m for (GxM 2.23)
	23CGRC304					0	3	23CGRC304 - 2m @ 1.12 g/t from 1m for (GxM 2.24)
	23CGRC305	_				0	3	23CGRC305 - 3m @ 0.95 g/t from 0m for (GxM 2.86)
	23CGRC306					0	3	23CGRC306 - 3m @ 1 g/t from 0m for (GxM 3.01)
	23CGRC307					0	3	23CGRC307 - 2m @ 0.76 g/t from 0m for (GxM 1.51)
	23CGRC308					0	3	23CGRC308 - 3m @ 0.86 g/t from 0m for (GxM 2.57)
	23CGRC309	325915	6575215	413	-90	0	3	23CGRC309 - 3m @ 1 g/t from 0m for (GxM 3)
	23CGRC310	325915	6575230	411	-90	0	3	23CGRC310 - 1m @ 0.41 g/t from 0m for (GxM 0.41)
								23CGRC310 - 1m @ 0.42 g/t from 2m for (GxM 0.42)

iteria	Comme	ntary						
	Hole ID		Northing 94 Zone 5		Dip	Azimuth (MGA94)		Intersection calculated using 0.4 g/t cut off and up to 2m internal dilution
	23CGRC311				-90	0	3	23CGRC311 - 3m @ 0.72 g/t from 0m for (GxM 2.15)
	23CGRC312					0	3	23CGRC312 - 3m @ 0.72 g/t from 0m for (GxM 2.13)
	23CGRC313					0	3	23CGRC313 - 1m @ 0.98 g/t from 0m for (GxM 0.98)
	23CGRC314					0	2	23CGRC314 - 1m @ 0.55 g/t from 0m for (GxM 0.55)
	23CGRC315					0	2	23CGRC315 - 1m @ 0.76 g/t from 0m for (GxM 0.76)
	23CGRC316					0	3	23CGRC316 - 1m @ 0.64 g/t from 0m for (GxM 0.64)
	23CGRC317	325900	6575275	412	-90	0	3	23CGRC317 - 3m @ 0.6 g/t from 0m for (GxM 1.81)
	23CGRC318	325900	6575290	412	-90	0	3	23CGRC318 - 3m @ 0.59 g/t from 0m for (GxM 1.77)
	23CGRC319	325900	6575305	412	-90	0	3	23CGRC319 - 2m @ 1.01 g/t from 0m for (GxM 2.02)
	23CGRC320	325883	6575299	412	-90	0	3	23CGRC320 - 2m @ 0.51 g/t from 0m for (GxM 1.01)
	23CGRC321	325885	6575290	412	-90	0	3	23CGRC321 - 2m @ 0.83 g/t from 0m for (GxM 1.66)
	23CGRC322	325871	6575290	411	-90	0	2	NA
	23CGRC323	325872	6575275	412	-90	0	2	23CGRC323 - 1m @ 0.65 g/t from 0m for (GxM 0.65)
	23CGRC324	325885	6575275	412	-90	0	3	23CGRC324 - 2m @ 0.75 g/t from 0m for (GxM 1.5)
	23CGRC325	325856	6575290	413	-90	0	2	NA
	23CGRC326	325858	6575300	413	-90	0	2	NA
	23CGRC327	325854	6575304	413	-90	0	2	NA
	23CGRC328	325794	6575215	415	-90	0	2	NA
	23CGRC329	325809	6575215	415	-90	0	2	NA
	23CGRC330					0	2	NA
	23CGRC331		6575200			0	2	NA
	23CGRC332				-90	0	2	NA
	23CGRC333			_		0	2	NA
	23CGRC334					0	2	NA
	23CGRC335					0	2	NA
	23CGRC336					0	2	NA
	23CGRC337					0	2	NA
	23CGRC338					0	2	NA
	23CGRC339				-90	0	2	NA
	23CGRC340					0	2	NA
	23CGRC341					0	2	NA
	23CGRC342					0	2	NA
	23CGRC343					0	2	NA
	23CGRC344					0	2	NA NA
	23CGRC345 23CGRC346					0	2	NA
	23CGRC346 23CGRC347					0	2	NA
	23CGRC347					0	1	NA
	23CGRC348					0	1	23CGRC349 - 1m @ 0.49 g/t from 0m for (GxM 0.49)
						0		
	23CGRC350 23CGRC351					0	2	NA
	23CGRC351			-		0	2	NA
	23CGRC353					0	2	NA
	23CGRC354					0	2	23CGRC354 - 1m @ 0.51 g/t from 0m for (GxM 0.51)
	23CGRC355					0	2	NA
	23CGRC355					0	2	NA
	23CGRC357					0	2	23CGRC357 - 1m @ 0.96 g/t from 0m for (GxM 0.96)
	23CGRC358					0	2	23CGRC358 - 2m @ 1.44 g/t from 0m for (GxM 2.87)
	23CGRC359					0	1	NA
	23CGRC360					0	1	23CGRC360 - 1m @ 0.5 g/t from 0m for (GxM 0.5)
	23CGRC361					0	2	NA
	23CGRC362		6575107			0	1	NA
	23CGRC363					0	2	NA
	23CGRC364					0	1	NA
	23CGRC365					0	2	23CGRC365 - 2m @ 0.97 g/t from 0m for (GxM 1.94)
	23CGRC366					0	2	23CGRC366 - 1m @ 0.53 g/t from 1m for (GxM 0.53)
	23CGRC367					0	2	23CGRC367 - 2m @ 1.12 g/t from 0m for (GxM 2.23)
	23CGRC368					0	2	23CGRC368 - 2m @ 1.06 g/t from 0m for (GxM 2.11)
	23CGRC369					0	2	NA
	23CGRC370					0	2	NA
	23CGRC371					0	2	23CGRC371 - 2m @ 1.57 g/t from 0m for (GxM 3.13)
	23CGRC372					0	2	23CGRC372 - 2m @ 0.76 g/t from 0m for (GxM 1.52)
	23CGRC373					0	2	23CGRC373 - 1m @ 0.91 g/t from 0m for (GxM 0.91)
			-					

ria	Comme	ntary						
	Hole ID		Northing 94 Zone 5		Dip	Azimuth (MGA94)		Intersection calculated using 0.4 g/t cut off and up to 2m internal dilution
	23CGRC374			_	00	(INGA94) 0		NA
	23CGRC374					0	2	NA
	23CGRC376					0	2	23CGRC376 - 2m @ 0.44 g/t from 0m for (GxM 0.88)
	23CGRC377					0	2	23CGRC377 - 1m @ 0.71 g/t from 1m for (GxM 0.71)
	23CGRC378				-90	0	2	23CGRC378 - 2m @ 1.11 g/t from 0m for (GxM 2.21)
	23CGRC379					0	2	23CGRC379 - 2m @ 0.68 g/t from 0m for (GxM 1.36)
	23CGRC380					0	2	NA
	23CGRC381					0	2	23CGRC381 - 2m @ 0.47 g/t from 0m for (GxM 0.94)
	23CGRC382				-90	0	2	23CGRC382 - 1m @ 0.69 g/t from 1m for (GxM 0.69)
	23CGRC383					0	2	23CGRC383 - 2m @ 0.49 g/t from 0m for (GxM 0.98)
	23CGRC384					0	2	23CGRC384 - 1m @ 0.61 g/t from 1m for (GxM 0.61)
	23CGRC385					0	2	NA
	23CGRC386					0	2	NA
	23CGRC387				-90	0	2	23CGRC387 - 1m @ 0.44 g/t from 1m for (GxM 0.44)
	23CGRC388				-90	0	2	23CGRC388 - 1m @ 0.76 g/t from 1m for (GxM 0.76)
	23CGRC389				_	0	2	23CGRC389 - 2m @ 1.46 g/t from 0m for (GxM 2.92)
	23CGRC390					0	2	23CGRC390 - 1m @ 0.49 g/t from 0m for (GxM 0.49)
	23CGRC390					0	2	
						0	2	23CGRC391 - 1m @ 0.57 g/t from 0m for (GxM 0.57) NA
	23CGRC392							
	23CGRC393					0	2	
	23CGRC394					0	2	23CGRC394 - 1m @ 0.77 g/t from 0m for (GxM 0.77)
	23CGRC395					0	2	23CGRC395 - 1m @ 0.54 g/t from 1m for (GxM 0.54)
	23CGRC396					0	2	NA
	23CGRC397					0	2	23CGRC397 - 2m @ 0.44 g/t from 0m for (GxM 0.87)
	23CGRC398					0	2	23CGRC398 - 2m @ 0.57 g/t from 0m for (GxM 1.14)
	23CGRC399					0	2	23CGRC399 - 2m @ 1.18 g/t from 0m for (GxM 2.36)
	23CGRC400			_		0	2	23CGRC400 - 2m @ 0.67 g/t from 0m for (GxM 1.34)
	23CGRC401					0	2	23CGRC401 - 2m @ 0.65 g/t from 0m for (GxM 1.3)
	23CGRC402				-90	0	2	23CGRC402 - 2m @ 1.31 g/t from 0m for (GxM 2.61)
	23CGRC403					0	2	23CGRC403 - 2m @ 0.97 g/t from 0m for (GxM 1.93)
	23CGRC404					0	2	23CGRC404 - 2m @ 1.17 g/t from 0m for (GxM 2.33)
	23CGRC405					0	2	23CGRC405 - 2m @ 1.38 g/t from 0m for (GxM 2.76)
	23CGRC406			411	-90	0	2	23CGRC406 - 2m @ 1.33 g/t from 0m for (GxM 2.66)
	23CGRC407					0	2	23CGRC407 - 2m @ 0.58 g/t from 0m for (GxM 1.15)
	23CGRC408	325972	6575184	411	-90	0	2	23CGRC408 - 1m @ 0.56 g/t from 1m for (GxM 0.56)
	23CGRC409					0	3	23CGRC409 - 3m @ 0.75 g/t from 0m for (GxM 2.26)
	23CGRC410	325945	6575183	414	-90	0	3	23CGRC410 - 3m @ 0.63 g/t from 0m for (GxM 1.9)
	23CGRC411	325929	6575182	414	-90	0	3	23CGRC411 - 2m @ 1.05 g/t from 0m for (GxM 2.1)
	23CGRC412					0	3	23CGRC412 - 1m @ 0.87 g/t from 0m for (GxM 0.87)
	23CGRC413	325929	6575167	414	-90	0	3	23CGRC413 - 2m @ 0.5 g/t from 0m for (GxM 0.99)
	23CGRC414	325928	6575154	414	-90	0	3	23CGRC414 - 3m @ 1.23 g/t from 0m for (GxM 3.7)
	23CGRC415	325928	6575138	414	-90	0	3	23CGRC415 - 3m @ 1.46 g/t from 0m for (GxM 4.38)
	23CGRC416	325915	6575140	414	-90	0	3	23CGRC416 - 1m @ 0.85 g/t from 0m for (GxM 0.85)
	23CGRC417	325900	6575139	416	-90	0	2	NA
	23CGRC418	325886	6575139	417	-90	0	2	NA
	23CGRC419	325883	6575124	415	-90	0	2	NA
	23CGRC420	325897	6575124	415	-90	0	2	23CGRC420 - 1m @ 0.46 g/t from 1m for (GxM 0.46)
	23CGRC421	325913	6575124	414	-90	0	2	NA
	23CGRC422	325927	6575124	414	-90	0	2	23CGRC422 - 1m @ 0.4 g/t from 1m for (GxM 0.4)
	23CGRC423	325943	6575125	414	-90	0	3	23CGRC423 - 2m @ 0.52 g/t from 1m for (GxM 1.03)
	23CGRC424	325943	6575138	414	-90	0	3	23CGRC424 - 1m @ 0.67 g/t from 2m for (GxM 0.67)
	23CGRC425	325942	6575154	413	-90	0	3	23CGRC425 - 2m @ 0.56 g/t from 0m for (GxM 1.11)
	23CGRC426	325944	6575167	413	-90	0	3	23CGRC426 - 1m @ 0.65 g/t from 1m for (GxM 0.65)
	23CGRC427	325958	6575167	413	-90	0	3	23CGRC427 - 3m @ 1.1 g/t from 0m for (GxM 3.31)
	23CGRC428	325958	6575152	413	-90	0	3	23CGRC428 - 3m @ 0.6 g/t from 0m for (GxM 1.81)
	23CGRC429	325958	6575139	414	-90	0	3	23CGRC429 - 1m @ 0.74 g/t from 1m for (GxM 0.74)
	23CGRC430					0	3	23CGRC430 - 3m @ 0.64 g/t from 0m for (GxM 1.93)
	23CGRC431					0	2	23CGRC431 - 2m @ 2.13 g/t from 0m for (GxM 4.25)
	23CGRC432					0	2	23CGRC432 - 1m @ 0.71 g/t from 1m for (GxM 0.71)
	23CGRC433					0	2	23CGRC433 - 2m @ 0.91 g/t from 0m for (GxM 1.82)
	23CGRC434					0	2	23CGRC434 - 2m @ 1.29 g/t from 0m for (GxM 2.57)
	23CGRC435					0	2	23CGRC435 - 2m @ 1.4 g/t from 0m for (GxM 2.8)
	23CGRC436					0	2	23CGRC436 - 2m @ 0.93 g/t from 0m for (GxM 1.85)
						Ľ Ť		

Criteria	Comme	ntary						
	Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Intersection calculated using
		(MGA	94 Zone 5	51)		(MGA94)	(m)	0.4 g/t cut off and up to 2m internal dilution
	23DNRC102	325139	6569000	420	-90	0	3	NA
	23DNRC103	325149	6569001	420	-90	0	4	NA
	23DNRC104	325161	6569007	420	-90	0	3	NA
	23DNRC105	325178	6569013	420	-90	0	3	NA
	23DNRC106	325192	6569016	420	-90	0	3	NA
	23DNRC107	325206	6569016	420	-90	0	3	NA
	23DNRC108	325223	6569019	420	-90	0	3	NA
	23DNRC109	325237	6569023	419	-90	0	3	NA
	23DNRC110	325251	6569027	419	-90	0	3	NA
	23DNRC111	325266	6569031	419	-90	0	3	NA
	23DNRC112	325281	6569033	418	-90	0	3	NA
	23DNRC113	325294	6569035	419	-90	0	3	NA
	23DNRC114	325312	6569041	419	-90	0	3	23DNRC114 - 1m @ 0.4 g/t from 2m for (GxM 0.4)
	23DNRC115	325307	6569051	419	-90	0	3	23DNRC115 - 1m @ 0.46 g/t from 1m for (GxM 0.46)
	23DNRC116	325292	6569049	419	-90	0	3	NA
	23DNRC117	325278	6569046	419	-90	0	3	NA
	23DNRC118	325264	6569042	419	-90	0	3	23DNRC118 - 1m @ 0.91 g/t from 2m for (GxM 0.91)
	23DNRC119	325249	6569039	419	-90	0	3	NA
	23DNRC120	325234	6569035	419	-90	0	3	NA
	23DNRC121	325220	6569032	420	-90	0	3	NA
	23DNRC122	325205	6569029	420	-90	0	3	NA
	23DNRC123	325190			-90	0	4	NA
	23DNRC124					0	4	NA
	23DNRC125					0	4	NA
	23DNRC126			_		0	4	NA
			6569012	420	-90	0	4	NA
	23DNRC128					0	3	NA
	23DNRC128					0	4	NA
	23DNRC129					0	4	NA
	23DNRC130		6569037	_		0	4	NA
	23DNRC131 23DNRC132			421	-90	0	4 5	NA
	_			_		-	4	
	23DNRC133		6569044		-90 -90	0	4	NA
	23DNRC134					-		
	23DNRC135					0	4	NA
	23DNRC136			_		0	4	
	23DNRC137			420	-90	0	4	23DNRC137 - 1m @ 0.76 g/t from 3m for (GxM 0.76)
	23DNRC138			_		0	4	NA
	23DNRC139					0	4	NA
	23DNRC140					0	4	NA
	23DNRC141			_		0		NA
	23DNRC142			_		0	4	NA
	23DNRC143	325271	6569074	420	-90	0	4	NA
	23DNRC144	325257	6569071	421	-90	0	4	NA
	23DNRC145	325242	6569068	421	-90	0	4	NA
	23DNRC146	325228	6569065	421	-90	0	3	NA
	23DNRC147	325213	6569061	421	-90	0	4	NA
	23DNRC148	325198	6569058	421	-90	0	4	NA
	23DNRC149	325183	6569054	421	-90	0	4	NA
	23DNRC150	325169	6569051	421	-90	0	4	NA
	23DNRC151	325154	6569048	421	-90	0	4	NA
	23DNRC152	325140	6569045	421	-90	0	4	NA
	23DNRC153	325127	6569041	421	-90	0	4	NA
	23DNRC154		1			0	4	23DNRC154 - 1m @ 0.41 g/t from 0m for (GxM 0.41)
	23DNRC155					0	3	NA
	23DNRC156	-				0	4	23DNRC156 - 2m @ 0.81 g/t from 2m for (GxM 1.62)
	23DNRC150			_	-90	0	3	23DNRC157 - 2m @ 0.64 g/t from 1m for (GxM 1.02)
	23DNRC157			_		0	3	
	23DNRC158 23DNRC159		1			0	3	23DNRC158 - 1m @ 0.41 g/t from 1m for (GxM 0.41) NA
						-	3	NA
	23DNRC160					0		
	23DNRC161	325194	02690/3			0	3	23DNRC161 - 1m @ 0.51 g/t from 1m for (GxM 0.51)
	220 10 04 02	225400	CECOCO:	422	I ^^'		2	
	23DNRC162 23DNRC163			_		0	2	23DNRC162 - 1m @ 0.44 g/t from 1m for (GxM 0.44) 23DNRC163 - 1m @ 0.46 g/t from 0m for (GxM 0.46)

HO	ole ID				Dip	Azimuth	EOH	
			94 Zone 5	_		(MGA94)	(m)	0.4 g/t cut off and up to 2m internal dilution
			6569079			0	4	NA
			6569082			0	4	NA
			6569086			0	4	23DNRC166 - 3m @ 0.57 g/t from 0m for (GxM 1.7)
			6569089	_		0	4	23DNRC167 - 1m @ 0.41 g/t from 1m for (GxM 0.41)
			6569093			0	3	23DNRC168 - 1m @ 0.55 g/t from 2m for (GxM 0.55)
			6569109	_		0	1	NA
			6569099			0	2	23DNRC170 - 1m @ 0.58 g/t from 0m for (GxM 0.58)
			6569086			0	2	NA
23D	VRC172	325332	6569076	418	-90	0	2	NA
23D	NRC173	325341	6569075	418	-90	0	1	NA
23D	NRC174	325351	6569078	418	-90	0	2	NA
23D	NRC175	325361	6569080	418	-90	0	2	NA
23D	NRC176	325371	6569082	417	-90	0	2	NA
23D	NRC177	325381	6569084	417	-90	0	2	NA
23D	NRC178	325377	6569097	416	-90	0	2	NA
23D	NRC179	325368	6569097	417	-90	0	2	NA
23D	VRC180	325357	6569094	417	-90	0	2	NA
			6569092			0	2	23DNRC181 - 1m @ 0.42 g/t from 1m for (GxM 0.42)
			6569090			0	2	NA
23D	NRC183	325327	6569087	418	-90	0	2	NA
		325322	6569104			0	2	NA
			6569109			0	2	23DNRC185 - 1m @ 0.42 g/t from 1m for (GxM 0.42)
			6569106			0	2	NA
			6569106	_		0	2	NA
			6569121	_		0	2	
						-		23DNRC188 - 1m @ 0.91 g/t from 0m for (GxM 0.91)
			6569118			0	2	
			6569113			0	3	23DNRC190 - 1m @ 0.42 g/t from 0m for (GxM 0.42)
			6576568			0	6	23TMRC001 - 1m @ 0.4 g/t from 4m for (GxM 0.4)
			6576553			0	4	23TMRC002 - 4m @ 0.86 g/t from 0m for (GxM 3.45)
			6576568			0	6	23TMRC003 - 1m @ 0.54 g/t from 0m for (GxM 0.54)
			6576568			0	6	23TMRC003 - 3m @ 0.61 g/t from 2m for (GxM 1.83)
2311	/RC004	327570	6576583	420	-90	0	10	23TMRC004 - 3m @ 0.95 g/t from 2m for (GxM 2.84)
2370	/RC005	327577	6576594	420	-90	0	10	23TMRC005 - 1m @ 0.54 g/t from 0m for (GxM 0.54)
								23TMRC005 - 1m @ 0.62 g/t from 4m for (GxM 0.62)
23TM	/RC006	327584	6576539	417	-90	0	4	23TMRC006 - 1m @ 0.71 g/t from 0m for (GxM 0.71)
23TN	/RC007	327585	6576554	418	-90	0	5	23TMRC007 - 5m @ 0.81 g/t from 0m for (GxM 4.03)
23TN	/RC008	327584	6576568	419	-90	0	10	23TMRC008 - 4m @ 0.69 g/t from 0m for (GxM 2.77)
23TN	/RC009	327584	6576583	420	-90	0	12	23TMRC009 - 6m @ 1.37 g/t from 0m for (GxM 8.21)
			6576599			0	10	23TMRC010 - 3m @ 0.47 g/t from 0m for (GxM 1.41)
23TM	/RC011	327586	6576607	420	-90	0	10	23TMRC011 - 6m @ 0.81 g/t from 0m for (GxM 4.87)
23TN	/RC012	327600	6576540	0	-90	0	4	NA
23TN	/RC013	327596	6576554	418	-90	0	5	23TMRC013 - 3m @ 2.08 g/t from 0m for (GxM 6.23)
23TM	/RC014	327598	6576569	419	-90	0	10	23TMRC014 - 6m @ 0.57 g/t from 0m for (GxM 3.43)
			6576584	_		0	12	23TMRC015 - 2m @ 1.74 g/t from 2m for (GxM 3.48)
			6576598			0	10	23TMRC016 - 1m @ 0.42 g/t from 0m for (GxM 0.42)
								23TMRC017 - 5m @ 1.02 g/t from 0m for (GxM 5.1)
2311	/RC017	327599	6576612	420	-90	0	9	23TMRC017 - 1m @ 0.54 g/t from 8m for (GxM 0.54)
231	/IRC018	327615	6576555	0	-90	0	10	
			6576571			0		23TMRC019 - 2m @ 0.69 g/t from 3m for (GxM 1.37)
			6576584			0	10	23TMRC020 - 3m @ 0.86 g/t from 1m for (GxM 2.58)
			6576598	_		0	10	23TMRC021 - 1m @ 1.53 g/t from 0m for (GxM 1.53)
			6576614			0	10	23TMRC022 - 3m @ 0.67 g/t from 0m for (GxM 2.01)
			6576555	421	-90	0	10	NA
			6576568			0	10	23TMRC024 - 4m @ 0.76 g/t from 0m for (GxM 3.02)
			6576584			0	10	23TMRC025 - 1m @ 0.47 g/t from 0m for (GxM 0.47)
			6576598			0	10	23TMRC026 - 2m @ 0.71 g/t from 0m for (GxM 1.42)
			6576613			0	9	
231			6576572			0	10	23TMRC028 - 2m @ 0.93 g/t from 0m for (GxM 1.85)
	/IRC029		6576584			0	10	
	10.00							
23TM		327644	6576598 6576608	_		0	10 16	23TMRC030 - 1m @ 0.69 g/t from 0m for (GxM 0.69) 23TMRC031 - 1m @ 0.65 g/t from 0m for (GxM 0.65)

Criteria	Commentary
Data aggregation methods	Mineralised intersections are reported at a 0.4g/t Au cut-off with a minimum reporting width of 1m for RC holes
Relationship between mineralisation widths and intercept lengths	Holes were drilled orthogonal to deposits as much as possible
Diagrams	Refer to Figures and Tables in body of the release.
Balanced reporting	 The majority of historic drill assay results used in this estimation are published in previous news releases.
Other substantive exploration data	• There is no other material exploration data to report at this time.
Further work	Metallurgical testwork on selected representative samples is still in progress

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	Commentary
Database integrity	 Data was geologically logged electronically; collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational, and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: no duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format, or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields Data extracted from the database were validated visually in Datamine Studio software and ARANZ Geo Leapfrog software. Also, when loading the data any errors regarding missing values and overlaps are highlighted.
Site visits	 Alex Aaltonen, the Competent Person for Sections 1 and 2 of Table 1 is FML's General Manager of Exploration and Geology, conducts regular site visits. Hannah Kosovich, the Competent Person for Section 3 of Table 1 is FML's Resource Geologist and has conducted site visits in the past.

Criteria	Commentary
Geological interpretation	 All available drill hole and historic mining data was used to guide the geological interpretation of the mineralisation. An approximate cut-off grade of 0.4g/t was implemented. Some internal dilution was included for consistency. The mineralised geological interpretation was constructed in Seequent Leapfrog Geo software. The stockpiles and tails were interpreted in Leapfrog Geo software with solids constructed within the surveyed deposits around zones of consistently thicker mineralisation. Cut off for the previously milled quartz vein tails is estimated at 0.4 g/t and mineable/recoverable volumes have been built that exceed this cut off. Furthermore, where consistently higher metal content areas were delineated, these were sub domained and estimated separately.
Dimensions	• The historic stockpiles and tails averaged 2 -3m thickness with variable extents. The largest extending ~ 200m x 150m, smaller tails around 30m x 30m. Within each stockpile the recoverable volumes varied from 719m ³ to 42,219m ³ .
Estimation and modelling techniques	The tails stockpiles were estimated in Datamine software by Inverse Distance (ID ²) into a separate unrotated block model in MGA 94 grid, with a parent block size of 5 mE x 5 mN x 1 mRL – ½ the average drill spacing. Sub-blocking was used to best fill the wireframes and inherit the grade of the parent block. The sample spacing was all 1m and no compositing was required. A top cap of 3ppm Au was applied to only 2 samples. An isotropic search distance of 50m x 50m x 5m was run with a minimum of 4 samples and a maximum of 8 samples to estimate a parent block. After the initial first pass only a small handful of blocks had not estimated and were assigned the average grade of the surrounding estimated blocks.
Moisture	Tonnages are estimated on a dry basis.
Cut-off parameters	 The tails stockpiles have only been reported within mineable/recoverable volumes that exceed 0.4ppm Au cut-off. Operating costs considered include underground mining, transport to and processing at FML's Three Mile Hill processing plant (<7km km away) and administration.
Mining factors or assumptions	 The Three Mile Hill Processing Plant (TMH Plant) has been commissioned as is running up towards name plate 1.2Mtpa rate. Grade controlled stockpiles and tails comprise recoverable geometries of free dig material suitable for mechanised load and haul. The targeted stockpiles and tails are located within close proximity to transport routes and between 150m and 7km from the Three Mile Hill ROM The recoverable material will be blended as an additional feed to primary ore from open pits and underground sources. Given tails material represent previously milled quartz veins it is likely that this material can be blended for processing without displacing primary material considered by the life of mine plan.
Metallurgical factors or assumptions	 Representative metallurgical samples have been collected from the 2023 grade control drilling. Follow up metallurgical testwork is yet to be conducted. The Greenfields and Tindals low grade stockpiles are generated from sources last mined by FML to 2013. These ore sources historically provided very good recoveries at Three Mile Hill Mill.

Criteria	Commentary
Environmental factors or assumptions	 All grade controlled stockpiles and tails fall within the foot print of current and previous mining areas. Gradual processing of stockpiles and tails with storage within approved tails management facilities will enable the current mine footprints to be reduced ahead of rehabilitation works.
Bulk density	• A bulk density of 1.6 t/m ³ was applied to the tail's stockpiles. This figure is based on the approximate bulk density of sand similar to the processed quartz material.
Classification	 The recoverable portions of the stockpiles and tails have undergone grade control RC drilling at 15m x 15m spacing. The recoverable parts of the stockpiles/tails exceed the 0.4 g/t economic cut off by a considerable margin and have been classified as Indicated Mineral Resources.
Audits or reviews	No external audits of the mineral resource have been conducted.
Discussion of relative accuracy/ confidence	This is addressed in the relevant paragraph on Classification above.