

Thick Graphite Mineralisation in Historical Drill Core at Rullbo and High Grade Sampling Results at Loberget - Sweden

HIGHLIGHTS

Historical drill core assaying discovers thick graphite mineralisation at Rullbo and rock chip sampling has discovered two new zones of graphitic schists with high grade samples up to 15.9% TGC.

<u>Rullbo</u>

- Resampling of graphitic schist from historic diamond holes conducted with intervals up to 21.45m @ 4.10% TGC from just 40m.
- Graphitic schist intercepts are coincident with areas of low resistivity that strike northwest over an <u>extensive strike length of 7km</u>.
- The company intends to test these targets along the extensive strike and will undertake preliminary metallurgical test work to determine flake size, impurities, microscopy, and physical and simple kinetic flotation tests to evaluate the recoverability of graphite

Loberget

- Rock chip sampling identified two new zones of graphitic schist outcrop up with samples up to 15.9% TGC.
- Graphitic schist outcrops are also coincident with areas of low resistivity and measure across an impressive NW strike length of 4km.
- Planning for Loupe mobile TEM survey in February underway to further define priority targets.
- Application approved for Hogabert nr 100 permit that extends exploration target by 9.5km along strike from and between the Woxna Graphite Mine and the Mattsmyra graphite resource.
- Eight diamond holes drilled within the Hogabert permit are held at the National Drill Core housed at SGU's Mineral Resources Information Office in Malå and will be inspected.

Western Gold Resources (**ASX: WGR**) ("**WGR**" or "**the Company**") is pleased to advise that it has completed a follow-up field program exploring the graphite potential of the Loberget and Rullbo prospects (Figure 1). As part of the field assessment WGR completed a mapping program and rock chip sampling program at the Loberget project as well as resampling of historic drill core from the Rullbo project. WGR recently applied for the Hogaberg nr 100 permit (Figure 1) located north of the Woxna graphite mine, which is now been approved.

WGR Managing Director Warren Thorne commented:

"A second field program by the exploration team has further enhanced the prospectivity of the Loberget and Rullbo exploration permits. The identification of high-grade graphitic schist in outcrop, coincident with a geophysical conductive zone, may indicate mineralisation extends for over 4km within the permit. WGR's field program at Loberget and Hogaberg and will now shift to planning for a Loupe TEM survey to delineate targets for trenching and subsequent drilling. Similarly, at Rullbo the identification of graphite mineralisation from historic drilling substantiates the interpretation that larger conductive zones within the permit may host significant mineralisation. Together with the Juttegruven Nickel prospect, WGR will conduct further field work and possible ground EM surveys to develop further exploration targets".

Figure 1. Approved Rullbo, Loberget and Hogaberg permits on regional TMI and location of the Storsjon-Edsbyn Deformation Zone (SEDZ)

Loberget Graphite Project

Graphite mineralization occurs in prehnite-bearing meta-tuffs, garnetiferous metaargillite and pegmatitic gneiss. A previous field program by the company identified graphite mineralisation in outcrop of 10% TGC (See ASX announcement 5th October 2023). A second field program was completed in October to further define outcropping graphite mineralisation.

Two samples were taken from pegmatites from a granite quarry and ten samples of outcropping graphitic schist (Figure 2). The samples are by no means representative of the overall grade of the prospects, which in is better determined by drilling. Rather, they were taken to provide confirmation of graphite mineralisation and to define mineral associations at each site. These relationships are pivotal to defining the most appropriate and efficient exploration programs for each prospect.

Twelve rock chip samples were submitted for multi-element and TGC analysis (Table 1) at ALS, Pitea.

Figure 2. Sample Locations and grade (% TGC) of Loberget rock chip samples on SLINGRAM resistivity (blue – low resistivity – high conductivity)

The two areas of graphitic schist outcrop (Western and Eastern) strike at approximately 290° and dip steeply (70-80°) to the south-west. Mineralization may extend over 1.6 km between the two areas and remains to be tested by further filed programs.

Additionally, the application Hogabert nr 100 permit thas now been approved and that extends exploration target by 9.5km along strike from and between the Woxna Graphite Mine and the Mattsmyra graphite resource.

Eight diamond holes drilled within the Hogabert permit are held at the National Drill Core housed at SGU's Mineral Resources Information Office in Malå and will be inspected.

Rullbo Graphite Project

The Rullbo project is situated within the southwestern part of the 1.97–1.87 Ga Bothnian Basin, north of the Bergslagen district. The Bothnian basin is dominated by metasedimentary rocks with minor intercalated metavolcanic rocks. The volcanosedimentary sequence was intruded by the 1843 Ma Ljusdal granite. The rocks were strongly affected by NW- to NNW-trending shear zones of the so-called Storsjö– Edsbyn deformation zone (Figure 1).

The project area has seen previous exploration primarily for base metals with no active graphite exploration (see ASX Announcement 28th September). Graphitic shale from three historic drill cores (84009, 84008 and 84004) were submitted to ALS, Malmo for analysis and summarized in Table 2 and displayed in Figure 3.

Hole_ID	Sample_ID	Northing	Easting	Drill Year	Depth	Dip	Azimuth	From	То	Interval	% TGC
84009	Rullbo	6849763	1452435	1984	96.2	55	343	40.15	61.6	21.45	4.11
84008	Rullbo	6850320	1452565	1984	70.2	55	364	9.5	11.8	2.3	4.33
84008					and	55		21.1	22	0.9	4.79
84004	Rullbo	6851389	1452867	1984	95.3	55	384	78.1	79.3	1.2	3.07

Table 2. Historic drillholes resampled for g	raphite at Rullbo prospect.
--	-----------------------------

The mineralisation in drillhole 84004 coincides with a prospect-width magnetic and conductive zone that trends NE-SW (Figure 3). The results support the exploration model that the Rullbo prospect can host significant graphite mineralisation. WGR is currently engaging Geovista to reprocess historic geophysical datasets which will assist WGR in defining targets for further drilling.

Next Steps

With the significant progress made in the Swedish Autumn, WGR will look to predominantly conduct geophysical programs over the coming winter.

The Company plans to undertake:

• Analyse remaining diamond core from Rullbo held at the SGU Malmo core shed.

- Complete integration of ground and airborne geophysical over the Rullbo, Loberget and Hogaberg.
- Update regional exploration database to assist in application for further exploration ground.
- Planning for Loupe survey at the Loberget and Hogaberg projects.

Figure 3. Rullbo drillholes displaying assay results from assayed drillholes on TMI with interpreted conductors shown.

AUTHORISED FOR RELEASE ON THE ASX BY THE COMPANY'S BOARD OF DIRECTORS

Gary Lyons Chairman E: garylyons@heiniger.com.au Warren Thorne Managing Director E: warrent@westerngoldresources.com.au

Competent Person's Statement

The information in this report which relates to Exploration Results is based on information compiled by Dr Warren Thorne, he is a member of the Australasian Institute of Mining and Metallurgy (AusIMM) and a full-time employee of the company. Dr Thorne who is an option-holder, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves" (JORC Code). Dr Thorne consents to inclusion in the report of the matters based on this information in the form and context in which it appears.

Forward-Looking Statements

This document includes forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning WGR's planned exploration programs, corporate activities, and any, and all, statements that are not historical facts. When used in this document, words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should" and similar expressions are forward-looking statements. WGR believes that it has a reasonable basis for its forward-looking statements; however, forward-looking statements involve risks and uncertainties, and no assurance can be given that actual future results will be consistent with these forward-looking statements. All figures presented in this document are unaudited and this document does not contain any forecasts of profitability or loss.

Table 1. Rock chip multielement (AuME-TL44) and C assay results (C-IR18)

		AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44
SAMPLE	DESCRIPTION	Au	Ag	AI	As	в	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	к	La	Li	Mg	Mn
		ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm
LOBR001	PEGMATITE	<0.001	0.06	0.6	0.7	<10	20	0.07	0.03	2.33	0.36	68.1	3.4	4	0.2	41.9	1.25	4.18	0.17	0.15	0.02	0.011	0.14	22.8	4.5	0.37	147
LOBR002	PEGMATITE	< 0.001	0.29	1.1	0.4	<10	30	0.26	0.04	1.5	0.31	71.5	12.2	7	0.15	104	1.8	5.39	0.19	0.15	0.02	0.007	0.13	31.9	6.1	0.41	148
LOBR003	GRAPHTITIC SCHIST	0.002	1.63	0.82	1.1	<10	30	0.43	0.78	0.12	1.92	17.65	2.6	30	2.59	265	3.56	3.45	0.12	0.11	0.01	0.079	0.3	9.3	10.1	0.36	138
LOBR004	GRAPHTITIC SCHIST	0.002	5.43	1.14	1.5	<10	20	0.53	1.06	0.32	4.19	11.7	10.3	21	1.84	368	7.09	5.83	0.18	0.13	0.02	0.076	0.25	5.8	12.4	0.49	109
LOBR005	GRAPHTITIC SCHIST	0.001	1.38	1.56	2	<10	50	0.61	0.54	0.12	1.45	20.7	25.1	71	4.66	395	5.9	10.1	0.17	0.24	0.03	0.028	0.97	9.6	17.8	1.34	277
LOBR006	GRAPHTITIC SCHIST	0.001	1.44	0.22	2	<10	30	0.18	0.93	0.02	0.03	18.3	0.2	11	1.72	85.8	1.22	1.8	0.08	0.22	0.02	0.057	0.26	10.6	1.4	0.03	27
LOBR007	GRAPHTITIC SCHIST	0.002	1.68	0.83	1.5	<10	20	0.32	1.21	0.03	7.14	24.4	20.6	32	3.83	437	5.2	4.03	0.09	0.23	0.02	0.213	0.45	13.1	10.1	0.43	149
LOBR008	GRAPHTITIC SCHIST	<0.001	1.36	1.82	5.1	<10	40	0.43	1.29	0.08	0.5	27.6	28.9	49	4.89	348	9.86	8.24	0.19	0.24	0.03	0.059	1.01	13.8	33.2	1.07	285
LOBR009	GRAPHTITIC SCHIST	< 0.001	1.3	0.89	2.9	<10	30	0.49	0.56	0.06	0.15	21.1	5.7	46	3.6	157	8.99	4.86	0.13	0.14	0.02	0.025	0.4	11.6	13.7	0.42	113
LOBR010	GRAPHTITIC SCHIST	0.001	2.1	0.69	5	<10	10	0.22	1.56	0.16	0.21	20.9	0.9	31	0.74	32.8	2.67	4.98	0.12	0.07	0.02	0.082	0.14	12	5.9	0.45	111
LOBR011	GRAPHTITIC SCHIST	<0.001	0.96	0.7	2.5	<10	20	0.59	0.69	0.12	0.22	27.1	3.7	48	0.94	280	7.96	4.3	0.15	0.12	0.02	0.029	0.12	14.6	2.6	0.11	63
LOBR012	GRAPHTITIC SCHIST	<0.001	1.7	0.81	3.3	<10	10	0.22	0.76	0.04	0.13	23.6	2	28	1.08	213	11.3	6.36	0.14	0.07	0.01	0.169	0.12	12.7	5.4	0.4	98
LOBR013	GRAPHTITIC SCHIST	0.001	1.68	0.35	3.6	<10	20	0.15	0.94	0.01	0.46	42.2	6.2	16	0.73	72.9	3	2.99	0.09	0.28	0.02	0.026	0.12	22.5	1.1	0.02	56
LOBR014	GRAPHTITIC SCHIST	0.001	1.25	2.59	3.4	<10	10	0.83	0.64	0.01	0.5	32.5	14.2	71	0.5	99.4	16.85	11.4	0.18	0.13	0.02	0.03	0.04	13.6	29.3	0.78	348
																											-
		AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	AuME-TL44	C-IR18
SAMPLE		AuME-TL44 Mo	AuME-TL44 Na	AuME-TL44 Nb	AuME-TL44 Ni	AuME-TL44 P	AuME-TL44 Pb	AuME-TL44 Rb	AuME-TL44 Re	AuME-TL44 S	AuME-TL44 Sb	AuME-TL44 Sc	AuME-TL44 Se	AuME-TL44 Sn	AuME-TL44 Sr	AuME-TL44 Ta	AuME-TL44 Te	AuME-TL44 Th	AuME-TL44 Ti	AuME-TL44 Tl	AuME-TL44 U	AuME-TL44 V	AuME-TL44 W	AuME-TL44 Y	AuME-TL44 Zn	AuME-TL44 Zr	C-IR18 C Graphitic
SAMPLE DESCRIPTION		AuME-TL44 Mo ppm	AuME-TL44 Na %	AuME-TL44 Nb ppm	AuME-TL44 Ni ppm	AuME-TL44 P ppm	AuME-TL44 Pb ppm	AuME-TL44 Rb ppm	AuME-TL44 Re ppm	AuME-TL44 S %	AuME-TL44 Sb ppm	AuME-TL44 Sc ppm	AuME-TL44 Se ppm	AuME-TL44 Sn ppm	AuME-TL44 Sr ppm	AuME-TL44 Ta ppm	AuME-TL44 Te ppm	AuME-TL44 Th ppm	AuME-TL44 Ti %	AuME-TL44 Tl ppm	AuME-TL44 U ppm	AuME-TL44 V ppm	AuME-TL44 W ppm	AuME-TL44 Y ppm	AuME-TL44 Zn ppm	AuME-TL44 Zr ppm	C-IR18 C Graphitic %
SAMPLE DESCRIPTION LOBR001	PEGMATITE	AuME-TL44 Mo ppm 0.39	AuME-TL44 Na % 0.04	AuME-TL44 Nb ppm 2.85	AuME-TL44 Ni ppm 3.7	AuME-TL44 P ppm >10000	AuME-TL44 Pb ppm 19.2	AuME-TL44 Rb ppm 3.9	AuME-TL44 Re ppm <0.001	AuME-TL44 S % 0.05	AuME-TL44 Sb ppm <0.05	AuME-TL44 Sc ppm 4.6	AuME-TL44 Se ppm <0.2	AuME-TL44 Sn ppm 0.4	AuME-TL44 Sr ppm 13.8	AuME-TL44 Ta ppm 0.03	AuME-TL44 Te ppm 0.02	AuME-TL44 Th ppm 1.8	AuME-TL44 Ti % 0.07	AuME-TL44 Tl ppm 0.03	AuME-TL44 U ppm 10.45	AuME-TL44 V ppm 15	AuME-TL44 W ppm 0.11	AuME-TL44 Y ppm 121.5	AuME-TL44 Zn ppm 142	AuME-TL44 Zr ppm 0.9	C-IR18 C Graphitic % <0.02
SAMPLE DESCRIPTION LOBR001 LOBR002	PEGMATITE PEGMATITE	AuME-TL44 Mo ppm 0.39 0.28	AuME-TL44 Na % 0.04 0.04	AuME-TL44 Nb ppm 2.85 0.95	AuME-TL44 Ni ppm 3.7 10.5	AuME-TL44 P ppm >10000 5080	AuME-TL44 Pb ppm 19.2 18	AuME-TL44 Rb ppm 3.9 3.9	AuME-TL44 Re ppm <0.001 <0.001	AuME-TL44 S % 0.05 0.01	AuME-TL44 Sb ppm <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5	AuME-TL44 Se ppm <0.2 <0.2	AuME-TL44 Sn ppm 0.4 0.3	AuME-TL44 Sr ppm 13.8 64.4	AuME-TL44 Ta ppm 0.03 0.02	AuME-TL44 Te ppm 0.02 0.04	AuME-TL44 Th ppm 1.8 7.7	AuME-TL44 Ti % 0.07 0.071	AuME-TL44 Tl ppm 0.03 0.04	AuME-TL44 U ppm 10.45 12.65	AuME-TL44 V ppm 15 29	AuME-TL44 W ppm 0.11 0.13	AuME-TL44 Y ppm 121.5 100	AuME-TL44 Zn ppm 142 114	AuME-TL44 Zr ppm 0.9 1	C-IR18 C Graphitic % <0.02 <0.02
SAMPLE DESCRIPTION LOBR001 LOBR002 LOBR003	PEGMATITE PEGMATITE GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5	AuME-TL44 Na % 0.04 0.04 0.02	AuME-TL44 Nb ppm 2.85 0.95 0.15	AuME-TL44 Ni ppm 3.7 10.5 20.7	AuME-TL44 P ppm >10000 5080 310	AuME-TL44 Pb ppm 19.2 18 14.8	AuME-TL44 Rb ppm 3.9 3.9 25	AuME-TL44 Re ppm <0.001 <0.001 0.017	AuME-TL44 S % 0.05 0.01 0.89	AuME-TL44 Sb ppm <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2	AuME-TL44 Se ppm <0.2 <0.2 13.4	AuME-TL44 Sn ppm 0.4 0.3 0.9	AuME-TL44 Sr ppm 13.8 64.4 6.4	AuME-TL44 Ta ppm 0.03 0.02 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11	AuME-TL44 Th ppm 1.8 7.7 3.4	AuME-TL44 Ti % 0.07 0.071 0.049	AuME-TL44 Tl ppm 0.03 0.04 0.86	AuME-TL44 U ppm 10.45 12.65 2.32	AuME-TL44 V ppm 15 29 104	AuME-TL44 W ppm 0.11 0.13 0.29	AuME-TL44 Y ppm 121.5 100 4.33	AuME-TL44 Zn ppm 142 114 412	AuME-TL44 Zr ppm 0.9 1 5.7	C-IR18 C Graphitic % <0.02 <0.02 8.32
SAMPLE DESCRIPTION LOBR001 LOBR002 LOBR003 LOBR004	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85	AuME-TL44 Na % 0.04 0.04 0.02 0.03	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8	AuME-TL44 P ppm >10000 5080 310 610	AuME-TL44 Pb ppm 19.2 18 14.8 4.8	AuME-TL44 Rb ppm 3.9 3.9 25 19.6	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014	AuME-TL44 S % 0.05 0.01 0.89 3.3	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7	AuME-TL44 Ti % 0.07 0.071 0.049 0.062	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65	AuME-TL44 U ppm 10.45 12.65 2.32 1.83	AuME-TL44 V ppm 15 29 104 55	AuME-TL44 W ppm 0.11 0.13 0.29 0.32	AuME-TL44 Y ppm 121.5 100 4.33 4.01	AuME-TL44 Zn ppm 142 114 412 651	AuME-TL44 Zr ppm 0.9 1 5.7 5.2	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12
SAMPLE DESCRIPTION LOBR001 LOBR002 LOBR003 LOBR004 LOBR005	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25	AuME-TL44 Na % 0.04 0.04 0.02 0.03 0.07	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173	AuME-TL44 P ppm >10000 5080 310 610 650	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1	AuME-TL44 Rb ppm 3.9 3.9 25 19.6 67.9	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014 0.031	AuME-TL44 5 % 0.05 0.01 0.89 3.3 4.18	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2	AuME-TL44 V ppm 15 29 104 55 199	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36	AuME-TL44 Zn ppm 142 114 412 651 322	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73
SAMPLE DESCRIPTION LOBR001 LOBR003 LOBR003 LOBR004 LOBR005 LOBR006	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1	AuME-TL44 P ppm >10000 5080 310 610 650 90	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4	AuME-TL44 Rb ppm 3.9 3.9 25 19.6 67.9 15.3	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014 0.031 0.017	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172 0.074	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1	AuME-TL44 V ppm 15 29 104 55 199 44	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7	AuME-TL44 Zn ppm 142 114 412 651 322 10	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85
SAMPLE DESCRIPTION LOBR001 LOBR002 LOBR003 LOBR004 LOBR005 LOBR005 LOBR006	PEGMATITE PEGMATITE GRAPHTITC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5	AuME-TL44 P ppm >10000 5080 310 610 650 90 230	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4	AuME-TL44 Re ppm <0.001 0.017 0.014 0.031 0.017 0.027	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91 4.67	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4 8.7	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 3.7 7.9	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172 0.074 0.045	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8	AuME-TL44 V ppm 15 29 104 55 199 44 105	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33
SAMPLE DESCRIPTION LOBR001 LOBR002 LOBR003 LOBR004 LOBR005 LOBR006 LOBR007 LOBR007	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03 0.04	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.95	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4 78.8	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014 0.031 0.017 0.027 0.063	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91 4.67 5.7	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4 8.7 10.5	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5 13.1	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6 0.9	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3.7 3	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25 0.25 0.16	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 3.6 3.7 7.9 5.8	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172 0.074 0.045 0.223	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9	AuME-TL44 V ppm 15 29 104 55 199 44 44 105 442	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28 1.84	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200 1245	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35
SAMPLE DESCRIPTION LOBR001 LOBR003 LOBR003 LOBR004 LOBR005 LOBR005 LOBR007 LOBR008 LOBR008	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9 36.3	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03 0.04 0.03	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.95 0.11	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154 26.2	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210 230	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6 20.2	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4 78.8 28.3	AuME-TL44 Re ppm <0.001 0.017 0.014 0.031 0.017 0.027 0.063 0.032	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91 4.67 5.7 1.96	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 11.8 11.4 8.7 10.5 8.1	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5 13.1 11.1	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6 0.9 0.6 0.9 1	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3 3 4.7	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25 0.16 0.18	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 7.9 5.8 6.2	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172 0.074 0.045 0.223 0.113	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08 0.76	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9 4.32	AuME-TL44 V ppm 15 29 104 55 199 44 105 442 213	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28 1.84 1.18	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47 6.06	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200 1200 1245 224	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2 6	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35 11.4
SAMPLE DESCRIPTION LOBRO01 LOBRO02 LOBRO03 LOBRO05 LOBRO05 LOBRO05 LOBRO07 LOBRO09 LOBRO09 LOBRO10	PEGMATITE PEGMATITE GRAPHITTIC SCHIST GRAPHITTIC SCHIST GRAPHITTIC SCHIST GRAPHITTIC SCHIST GRAPHITTIC SCHIST GRAPHITTIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9 36.3 13.45	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03 0.04 0.03 0.04	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.95 0.11 0.5	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154 26.2 3	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210 230 410	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6 20.2 9.3	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4 78.8 28.3 10.4	AuME-TL44 Re ppm <0.001 0.017 0.014 0.031 0.017 0.027 0.063 0.032 0.011	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91 4.67 5.7 1.96 1.32	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4 8.7 10.5 8.1 1.9	AuME-TL44 Se ppm <0.2 0.2 13.4 15.6 12.5 11.9 7.5 13.1 11.1 11.1 13.7	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6 0.9 0.6 0.9 1 0.8	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3.7 3.7 3.4.7 3.9	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25 0.16 0.18 0.34	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 7.9 5.8 6.2 4.2	AuME-TL44 Ti % 0.071 0.049 0.062 0.172 0.074 0.045 0.223 0.113 0.135	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08 0.76 0.16	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9 4.32 1.34	AuME-TL44 V ppm 15 29 104 55 199 44 105 442 213 213 75	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28 1.84 1.18 0.25	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47 6.06 4	AuME-TL44 Zn ppm 142 651 322 10 1200 1245 224 45	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2 6 3.1	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35 11.4 4.79
SAMPLE DESCRIPTION LOBRO01 LOBRO02 LOBRO03 LOBRO04 LOBRO05 LOBRO05 LOBRO07 LOBRO07 LOBRO09 LOBRO09 LOBRO10 LOBRO10	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9 36.3 13.45 40.9	AuME-TL44 Na % 0.04 0.04 0.02 0.03 0.07 0.04 0.03 0.04 0.03 0.04 0.03	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.95 0.11 0.5 0.06	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154 26.2 3 16.4	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210 230 410 160	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6 20.2 9.3 16.9	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4 78.8 28.3 10.4 9.6	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014 0.031 0.017 0.027 0.063 0.032 0.011 0.006	AuME-TL44 S % 0.05 0.01 0.89 3.3 4.18 0.91 4.67 5.7 1.96 1.32 0.09	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4 8.7 10.5 8.1 1.9 3.2	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5 13.1 11.1 13.7 16.2	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6 0.9 1 0.6 0.9 1 0.8 0.3	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3.7 3.7 3.7 3.7 3.9 5.6	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.25 0.23 0.25 0.16 0.18 0.34 0.24	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 7.9 5.8 6.2 4.2 8.9	AuME-TL44 Ti % 0.07 0.071 0.049 0.062 0.172 0.074 0.045 0.223 0.113 0.135 0.074	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08 0.76 0.16 0.18	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9 4.32 1.34 7.98	AuME-TL44 V ppm 15 29 104 55 199 44 105 442 213 75 172	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28 1.84 1.18 0.25 0.18	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47 6.06 4 5.44	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200 1245 1245 45 187	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2 6 3.1 4.9	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35 12.35 11.4 4.79 12.85
SAMPLE DESCRIPTION LOBRO01 LOBRO03 LOBRO03 LOBRO03 LOBRO05 LOBRO06 LOBRO07 LOBRO09 LOBRO10 LOBR010 LOBR011	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9 36.3 13.45 34.9 34.5	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.95 0.11 0.5 0.06 0.41	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154 26.2 3 16.4 9.3	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210 230 410 160 380	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6 20.2 9.3 16.9 17	AuME-TL44 Rb ppm 3.9 3.9 25 19.6 67.9 15.3 34.4 78.8 28.3 10.4 9.6 8.8	AuME-TL44 Re ppm <0.001 <0.001 0.017 0.014 0.017 0.027 0.063 0.032 0.011 0.006 0.023	AuME-TL44 S % 0.05 0.89 3.3 4.18 0.91 4.67 5.7 1.96 1.32 0.09 2.27	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 11.8 1.4 8.7 10.5 8.1 1.9 3.2 2.6	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5 13.1 11.1 13.7 16.2 12.4	AuME-TL44 Sn ppm 0.4 0.9 0.7 1.8 0.9 0.6 0.9 1 0.6 0.9 1 0.8 0.3 0.3	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.9 5.6 1.7	AuME-TL44 Ta ppm 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25 0.16 0.18 0.34 0.24 0.22	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 7.9 5.8 6.2 4.2 4.2 4.2 9 9	AuME-TL44 Ti % 0.077 0.071 0.049 0.062 0.074 0.045 0.223 0.113 0.135 0.074 0.09	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08 0.76 0.16 0.16 0.18 0.18	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9 4.32 1.34 7.98 9.23	AuME-TL44 V ppm 15 29 104 55 199 44 105 442 213 75 75 172 210	AuME-TL44 W ppm 0.11 0.13 0.29 0.32 0.73 0.51 0.28 1.84 1.18 0.25 0.18 0.74	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47 6.06 4 5.44 11.7	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200 1245 224 45 187 321	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2 6 3.1 4.9 2.4	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35 11.4 4.79 12.85 9.62
SAMPLE DESCRIPTION LOBRO01 LOBRO03 LOBRO03 LOBRO04 LOBRO05 LOBRO05 LOBRO05 LOBRO09 LOBRO10 LOBRO10 LOBRO11 LOBRO11 LOBRO12 LOBRO13	PEGMATITE PEGMATITE GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST GRAPHTITIC SCHIST	AuME-TL44 Mo ppm 0.39 0.28 16.5 14.85 17.25 29.4 24.8 50.9 36.3 13.45 40.9 34.5	AuME-TL44 Na % 0.04 0.02 0.03 0.07 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04	AuME-TL44 Nb ppm 2.85 0.95 0.15 0.21 0.45 0.11 0.05 0.11 0.5 0.11 0.5 0.06 0.41 0.09	AuME-TL44 Ni ppm 3.7 10.5 20.7 67.8 173 1 107.5 154 26.2 3 16.4 9.3 16.2	AuME-TL44 P ppm >10000 5080 310 610 650 90 230 210 230 410 160 380 150	AuME-TL44 Pb ppm 19.2 18 14.8 4.8 11.1 21.4 33.8 11.6 20.2 9.3 16.9 17 21.6	AuME-TL44 Rb ppm 3.9 25 19.6 67.9 15.3 34.4 78.8 28.3 10.4 9.6 8.8 9.3	AuME-TL44 Re ppm <0.001 0.017 0.014 0.031 0.017 0.063 0.032 0.011 0.006 0.023 0.005	AuME-TL44 S % 0.05 0.89 3.3 4.18 0.91 4.67 5.7 1.96 1.32 0.09 2.27 0.09	AuME-TL44 Sb ppm <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <05 00 00 0	AuME-TL44 Sc ppm 4.6 5 6.2 2.4 11.8 1.4 8.7 10.5 8.1 1.9 3.2 2.6 1.6	AuME-TL44 Se ppm <0.2 <0.2 13.4 15.6 12.5 11.9 7.5 13.1 11.1 13.7 16.2 12.4 9.3	AuME-TL44 Sn ppm 0.4 0.3 0.9 0.7 1.8 0.9 0.6 0.9 1 0.8 0.3 0.3 0.4	AuME-TL44 Sr ppm 13.8 64.4 6.4 13.8 2.8 7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 4.7 5.6 1.7 4.1	AuME-TL44 Ta ppm 0.03 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	AuME-TL44 Te ppm 0.02 0.04 0.11 0.37 0.25 0.23 0.25 0.23 0.25 0.16 0.18 0.34 0.24 0.22 0.32	AuME-TL44 Th ppm 1.8 7.7 3.4 2.7 3.6 3.7 7.9 5.8 6.2 4.2 8.9 9 8.8	AuME-TL44 Ti % 0.07 0.049 0.062 0.172 0.074 0.045 0.223 0.113 0.135 0.074 0.074 0.099 0.099	AuME-TL44 Tl ppm 0.03 0.04 0.86 0.65 1.6 0.48 1.3 1.08 0.76 0.16 0.18 0.18 0.15	AuME-TL44 U ppm 10.45 12.65 2.32 1.83 18.2 1.1 6.8 24.9 4.32 1.34 7.98 9.23 6.9	AuME-TL44 V ppm 15 29 104 55 199 44 105 442 213 75 172 210 108	AuME-TL44 W ppm 0.11 0.13 0.29 0.73 0.51 0.28 1.84 1.18 0.25 0.18 0.74 0.08	AuME-TL44 Y ppm 121.5 100 4.33 4.01 9.36 2.7 6.83 8.47 6.06 4 5.44 11.7 4.6	AuME-TL44 Zn ppm 142 114 412 651 322 10 1200 1245 224 45 187 321 230	AuME-TL44 Zr ppm 0.9 1 5.7 5.2 10.2 11.2 9.2 9.2 6 3.1 4.9 2.4 12.8	C-IR18 C Graphitic % <0.02 <0.02 8.32 5.12 4.73 11.85 4.33 12.35 11.4 4.79 12.85 9.62 12.7

JORC 2012 Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock Chips Rocks were selectively sampled to ensure high-level representivity of various rock and alteration types observed at each site. Samples collected were first-pass reconnaissance samples to develop familiarity with each of the prospects studied. Graphite and pegmatite samples were collected from the outcrop. Sample type, style, condition, and size were recorded for all samples collected by WGR. Company rock chip samples attempted to be representative for the general outcrop in the area. Rock samples typically represented multiple chips from the broader outcrop using a hammer to collect the chips. Company rock chip samples typically ranged from 0.5kg to 1.5kg in size. Drilling. Historical diamond drill holes have been sampled as half core and quarter core samples taken over two approximately metre length intervals.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling has been undertaken using diamond coring methods. No reverse circulation, auger, or other drilling methods have been used. Reported historical drilling are WL56 diamond drillholes (39mm core diameter)
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery was not recorded in historical holes at the time. WGR relogged samples and recovery of core was measured using tape measure directly from core.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Company records of the diamond core were qualitative.

	• The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core cut by ALS Malmo Where previous sampling had been completed on the core, WGR sample intervals were either all half-core or quarter-core. No QA/QC sampling exists for historical drill holes.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The Company collected 12 rock chip samples and samples 63 diamond core samples. Rock chip samples were submitted to ALS laboratories, Piteå and drill core submitted to ALS, Malmo Samples very, dried, fine crush entire sample to better than 70% -2mm, rotary split off up to 250g and pulverize split to better than 85% passing 75 micron. Au(0.01-1ppm) and Multi Element package(50g nominal sample weight) from an Aqua Regia Digestion and a combination of ICP-AES & ICP-MS finish. Samples were also submitted for Total Graphitic Carbon content by IR spectroscopy (C-IR18)

		AuM	E-TL43™ (25g sample) & AuME-TL44፣	™ (50g :	sample) Analy	/tes &	Ranges (ppm)
		Au	0.001-1 Cs	0.05-500	Мо	0.05-10000	Sr	0.2-10000
		Ag	0.01-100 Cu	0.2-10000	Na	0.01-10%	Та	0.01-500
		Al	0.01-25% Fe	0.01-50%	Nb	0.05-500	Те	0.01-500
		As	0.1-10000 Ga	0.05-10000	Ni	0.2-10000	Th	0.2-10000
		В	10-10000 Ge	0.05-500	Р	10-10000	Ti	0.005-10%
		Ва	10-10000 Hf	0.02-500	РЬ	0.2-10000	TI	0.02-10000
		Be	0.05-1000 Hg	0.01-10000	Rb	0.1-10000	U	0.05-10000
		Bi	0.01-10000 In	0.005-500	Re	0.001-50	V	1-10000
		Ca	0.01-25% K	0.01-10%	S	0.01-10%	W	0.05-10000
		Cd	0.01-2000 La	0.2-10000	Sb	0.05-10000	Y	0.05-10000
		Ce	0.02-10000 Li	0.1-10000	Sc	0.1-10000	Zn	2-10000
		Со	0.1-10000 Mg	0.01-25%	Se	0.2-1000	Zr	0.5-500
		Cr	1-10000 Mn	5-50000	Sn	0.2-500		
		•	ALS routinely inse	rts analytical	blanks	s, standards	and d	uplicates into the
Marifiantian of	The verification of significant interpretions by either independent or elterative		client sample batc	hes for labora	atory G	AQC perform	nance	monitoring.
sampling and	The verification of significant intersections by either independent of alternative company personnel	•	Dala was extracted	une se	JO WED	site ww.sgu.	se/en	
assaying	The use of twinned holes.							
	• Documentation of primary data, data entry procedures, data verification, data							
	storage (physical and electronic) protocols.							
	storage (physical and electronic) protocols.Discuss any adjustment to assay data.							
Location of	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole 	•	Grid system is SW	EREF 99 TM [EPSG:	3006]		
Location of data points	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource ortimation. 	•	Grid system is SWI All samples were l	EREF 99 TM [ocated using	EPSG: a hanc	3006] dheld GPS sy	stem	ata is
Location of data points	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used 	•	Grid system is SW All samples were l Topographic contr sufficient for the r	EREF 99 TM [ocated using ol is not repo econnaissanc	EPSG: a hand orted bu	3006] dheld GPS sy ut GPS eleva re of the san	rstem tion c	ata is
Location of data points	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	•	Grid system is SWI All samples were l Topographic contr sufficient for the r	EREF 99 TM [ocated using ol is not repo econnaissanc	EPSG: a hanc irted bi e natu	3006] dheld GPS sy ut GPS eleva re of the san	rstem tion c npling	ata is I.
Location of data points Data spacing	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. 	•	Grid system is SWI All samples were l Topographic contr sufficient for the r Drillholes were dri	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s	EPSG: a hand orted bu e natu pacing	3006] dheld GPS sy ut GPS eleva re of the san g on line 900	rstem tion c npling m and	ata is 1 600 apart, along
Location of data points Data spacing and	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of 	•	Grid system is SW All samples were l Topographic contr sufficient for the r Drillholes were dri strike of graphitic	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hanc orted bu e natu pacing	3006] dheld GPS sy ut GPS eleva re of the san g on line 900	rstem tion c npling m and	ata is . 1 600 apart, along
Location of data points Data spacing and distribution	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore 	•	Grid system is SWI All samples were l Topographic contr sufficient for the r Drillholes were dri strike of graphitic	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hanc rted bu e natu pacing	3006] dheld GPS sy ut GPS eleva re of the san g on line 900	vstem tion c npling m and	ata is I. I 600 apart, along
Location of data points Data spacing and distribution	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	•	Grid system is SWI All samples were l Topographic contr sufficient for the r Drillholes were dri strike of graphitic	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hanc rted bu e natu pacing	3006] Jheld GPS sy ut GPS eleva re of the san on line 900	rstem tion c npling m and	ata is I 600 apart, along
Location of data points Data spacing and distribution	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	•	Grid system is SWI All samples were l Topographic contr sufficient for the r Drillholes were dri strike of graphitic	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hand inted bi e natu ipacing	3006] dheld GPS sy ut GPS eleva re of the san g on line 900	vstem tion c npling m and	ata is 1 600 apart, along
Location of data points Data spacing and distribution	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the overther to which the is is foreing the description. 	•	Grid system is SWI All samples were I Topographic contr sufficient for the r Drillholes were dri strike of graphitic	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hand rted bi e natu pacing along	3006] dheld GPS sy ut GPS eleva re of the san g on line 900 fences/sectii	ons o	ata is 1 600 apart, along rientated
Location of data points Data spacing and distribution Orientation of data in relation	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling crientation and the orientation of kny 	•	Grid system is SWI All samples were I Topographic contr sufficient for the r Drillholes were dri strike of graphitic All drill holes have approximately per	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units	EPSG: a hanc rted bi e natu pacing along the st	3006] dheld GPS sy ut GPS eleva re of the san g on line 900 fences/section rike of the gu	ons o	ata is d 600 apart, along rientated e mineralised considering the
Location of data points Data spacing and distribution Orientation of data in relation to geological structure	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling hiss this 	•	Grid system is SWI All samples were I Topographic contr sufficient for the r Drillholes were dri strike of graphitic All drill holes have approximately per unit. This is deeme geometry of the d	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units e been drilled pendicular to ed appropriat	EPSG: a hand rted bu e natu pacing pacing along the st e to av	3006] Jheld GPS sy ut GPS eleva re of the san on line 900 fences/section rike of the given of th	ons o raphing ons o raphing g bias	ata is d 600 apart, along rientated e mineralised considering the
Location of data points Data spacing and distribution Orientation of data in relation to geological structure	 storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	•	Grid system is SWI All samples were I Topographic contr sufficient for the r Drillholes were dri strike of graphitic All drill holes have approximately per unit. This is deeme geometry of the de Drill holes have be	EREF 99 TM [ocated using ol is not repo econnaissanc lled at 60m s shale units e been drilled pendicular to ed appropriat eposit.	EPSG: a hand rted bu e natu pacing pacing along the st e to av	3006] dheld GPS sy ut GPS eleva re of the san g on line 900 fences/section rike of the gro roid sampling	vstem tion c npling m and ons o raphil g bias betwe	ata is d 600 apart, along rientated e mineralised considering the en 50° and 55°

		mineralisation. As such, drill hole intersections are oblique to the mineralisation
Sample security	• The measures taken to ensure sample security.	 All samples were collected and accounted for by WGR employee during collection. All samples were bagged into calico bags and tied. Samples were transported to Pitea from logging site by WGR employees and submitted directly to ALS. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	None undertaken at this stage.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	• The Rullbo and Loberget nr 100 permits have been granted.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Exploration was initially undertaken during the early 1900's by several private entities and the Swedish Geological Survey (SGU).
Geology	• Deposit type, geological setting and style of mineralisation.	The local geology is dominated by steeply to moderately dipping porphyroblastic metavolcanic and meta-argillic lithologies with common intrusive alkali pegmatites. Bedrock mapping and geophysical interpretation indicate the presence of an offset off a regional-scale shear fault with dextral sense of motion. The graphite mineralisation is broken up into several discrete domains with lower-order faulting normal to this large fault zone.). The nearby Mattsmyra deposit seems to have higher grade metamorphism present, with prograde metamorphism to sillimanite grade and later retrograde metamorphism to chlorite grade, with chlorite, epidote, and phlogophite present in iron- and magnesium-rich lithologies
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	Drilling information shown in Table 2.

	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighting or averaging techniques have been applied to the sample assay results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All drill holes have been drilled along fences/sections orientated approximately perpendicular to the strike of the graphite mineralised unit. This is deemed appropriate to avoid sampling bias considering the geometry of the deposit. Drill holes have been drilled at 50°-55° inclination, with the graphite mineralisation being approximately sub-vertical or near vertical (65°-85°).
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps, have been included within this report
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	Historic results have been reported as reported by SGU
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• The Company is not in possession of other relevant exploration results
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Systematic geochemical sampling of known mineral occurrences within the tenement in conjunction with reconnaissance geological mapping. Existing geophysical surveys will be purchased and reprocessed to help define prospective regions.