

ASX Announcement

Assays Confirm High-Grade Lithium at New Dawn

Highlights

- High-grade lithium (spodumene) lodes intersected at New Dawn Project (peak grade of 3.99% Li₂O), 200m west of Mineral Resources' Bald Hill lithium mine
- 35 meters (cumulative) of lithium mineralised pegmatites intersected in hole 23NDRC016
 - 10m @ 1.51% Li₂O, from 51m including 1m @ 3.99% Li₂O, from 52m and: 15m @ 1.17% Li₂O, from 220m including 7m @ 2.12% Li₂O, from 221m and: 10m @ 1.15% Li₂O, from 265m including 6m @ 1.76% Li₂O, from 267m
- Other significant intersections include:
 - 23NDRC013: 10m @ 1.15% Li₂O, from 208m including 5m @ 2.15% Li₂O, from 209m and: 12m @ 1.18% Li₂O, from 239m including 4m @ 2.14% Li₂O, from 243m
 - 23NDRC012: 12m @ 1.00% Li₂O, from 39m including 2m @ 2.04% Li₂O, from 42m and: 8m @ 0.92% Li₂O, from 193m including 3m @ 1.29% Li₂O, from 193m and: 3m @ 0.98% Li₂O, from 254m including 1m @ 1.79% Li₂O, from 254m and: 3m @ 0.98% Li₂O, from 263m including 2m @ 1.18% Li₂O, from 264m
 - 23NDRC007: 8m @ 1.09% Li₂O, from 47m including 1m @ 3.66% Li₂O, from 53m and: 14m @ 1.01% Li₂O, from 192m including 4m @ 2.32% Li₂O, from 199m and: 6m @ 0.66% Li₂O, from 259m including 1m @ 1.41% Li₂O, from 263m
 - 23NDRC008: 7m @ 1.01% Li₂O, from 173m including 3m @ 1.91% Li₂O, from 176m and: 7m @ 1.01% Li₂O, from 213m including 3m @ 1.79% Li₂O, from 216m and: 4m @ 1.02% Li₂O, from 257m including 2m @ 1.87% Li₂O, from 258m
 - 23NDRC014: 7m @ 0.99% Li₂O, from 191m including 3m @ 1.77% Li₂O, from 194m and: 2m @ 1.07% Li₂O, from 227m and: 9m @ 1.02% Li₂O, from 237m including 2m @ 2.21% Li₂O, from 240m
 - 23NDRC005: 7m @ 1.01% Li₂O, from 28m including 2m @ 1.42% Li₂O, from 29m and: 7m @ 1.06% Li₂O, from 196m including 4m @ 1.64% Li₂O, from 198m
- Shallow intersections demonstrate continuous pegmatite lodes open to the north and on a southeast trend towards the neighbouring Bald Hill mining operation.
- Deeper intersections also demonstrate continuous pegmatite lodes (spodumene confirmed by Raman spectroscopy) remain open to the north, south and west and on a southeast trend towards the neighbouring Bald Hill deposit.
- Significant grades of Tantalum (Ta), Niobium (Nb) Rubidium (Rb) and Tin (Sn) also noted outside of the stronger Li
 mineralised zones (refer Appendix 1).

New Dawn Lithium Project - Drilling results

Torque Metals Limited (ASX: **TOR**) (the "Company"), is pleased to provide assay results from its inaugural reverse circulation ("RC") drilling campaign at the New Dawn Lithium Project ("New Dawn") located 600m West of the active Bald Hill lithium – tantalum mine (ASX: **MIN**) near Widgiemooltha, WA.

Torque herewith reports results from 19 RC drill and 2 diamond holes at New Dawn, part of Torque's first drilling campaign, including spodumene bearing pegmatites with a peak grade of **3.99% Li**₂**O**.

The best result is from 23NDRC016 which intersected **35** cumulative meters of highly mineralised pegmatites, interpreted by the Company to continue up dip to the west within New Dawn tenements. These mineralised intervals remain open in all directions:

10m @ 1.51% Li₂O, from 51m including 1m @ 3.99% Li₂O, from 52m and: 15m @ 1.17% Li₂O, from 220m including 7m @ 2.12% Li₂O, from 221m and: 10m @ 1.15% Li₂O, from 265m including 6m @ 1.76% Li₂O, from 267m

Other notable intersections include: (see full assay data in Appendix 1)

- 23NDRC019: 6m @ 0.83% Li₂O, from 30m including 2m @ 1.78% Li₂O, from 30m
- 23NDRC017: 8m @ 1.01% Li₂O, from 232m including 1m @ 3.42% Li₂O, from 238m
- 23NDRC015: 9m @ 1.01% Li₂O, from 263m including 3m @ 2.24% Li₂O, from 263m
- 23NDRC014: 7m @ 0.99% Li₂O, from 191m including 3m @ 1.77% Li₂O, from 194m and: 2m @ 1.07% Li₂O, from 227m and: 9m @ 1.02% Li₂O, from 237m including 2m @ 2.21% Li₂O, from 240m
- 23NDRC013: 10m @ 1.15% Li₂O, from 208m including 5m @ 2.15% Li₂O, from 209m and: 12m @ 1.18% Li₂O, from 239m including 4m @ 2.14% Li₂O, from 243m
- 23NDRC012: 12m @ 1.00% Li₂O, from 39m including 2m @ 2.04% Li₂O, from 42m and: 8m @ 0.92% Li₂O, from 193m including 3m @ 1.29% Li₂O, from 193m and: 3m @ 0.98% Li₂O, from 254m including 1m @ 1.79% Li₂O, from 254m and: 3m @ 0.98% Li₂O, from 263m including 2m @ 1.18% Li₂O, from 264m
- 23NDRC011: 4m @ 1.04% Li₂O, from 268m including 3m @ 1.24% Li₂O, from 268m
- 23NDRC010: 5m @ 0.73% Li₂O, from 68m including 1m @ 1.28% Li₂O, from 70m and: 1m @ 1.23% Li₂O, from 264m
- 23NDRC009: 5m @ 1.05% Li₂O, from 202m including 3m @ 1.64% Li₂O, from 202m
- 23NDRC008: 7m @ 1.01% Li₂O, from 173m including 3m @ 1.91% Li₂O, from 176m and: 7m @ 1.01% Li₂O, from 213m including 3m @ 1.79% Li₂O, from 216m and: 4m @ 1.02% Li₂O, from 257m including 2m @ 1.87% Li₂O, from 258m
- 23NDRC007: 8m @ 1.09% Li₂O, from 47m including 1m @ 3.66% Li₂O, from 53m and: 14m @ 1.01% Li₂O, from 192m including 4m @ 2.32% Li₂O, from 199m and: 6m @ 0.66% Li₂O, from 259m including 1m @ 1.41% Li₂O, from 263m
- 23NDRC005: 7m @ 1.01% Li₂O, from 28m including 2m @ 1.42% Li₂O, from 29m and: 7m @ 1.06% Li₂O, from 196m including 4m @ 1.64% Li₂O, from 198m
- 23NDRC003: 4m @ 0.99% Li₂O, from 55m including 2m @ 1.17% Li₂O, from 55m

New Dawn

Lithium Project

OPEN

- Reported drilling results
- Results in this announcement 0
- Pegmatite outcrop
- 🥖 Ta pegmatite
- O Pegmatite trend

Mineral Resources (ASX: MIN)

Bald Hill Lithium Mine

Figure 2 New Dawn Lithium Project showing pre-Native Title mining licences proximal to Mineral Resources' Bald Hill Lithium Tantalum mine.

Mineral Resources (ASX: MIN) Tenements

Geological model

Shallow intersections at New Dawn reveal the presence of thick and continuous pegmatite lodes, with spodumene clearly indicated under UV light. Notably, these lodes remain open in both the north and south directions, following a north-west trend from the adjacent Bald Hill deposit.

Figure 3 New Dawn Lithium Project, cross section A – B including relevant grades (see full assay data in Appendix 1)

Figure 4 New Dawn Lithium Project, cross section C – D including relevant grades (see full assay data in Appendix 1)

Additionally, deep intersections exhibit much the same characteristics as the shallow lodes, main difference being that these pegmatite bodies also remain open up-dip towards the west and southeast towards the Bald Hill deposit, displaying a distinctive directional trend. Collectively, results strengthen confidence in the geological continuity between the Bald Hill Lithium mine and New Dawn.

Figure 6 New Dawn Lithium Project, cross section W – E including relevant grades (see full assay data in Appendix 1)

Torque's Managing Director, Cristian Moreno comments:

"Torque presents assay results for its New Dawn lithium project, strategically positioned just 600 meters from Mineral Resources' Bald Hill operating lithium mine.

"A highlight of our exploration endeavours is encapsulated in drill hole 23NDRC0016, intersecting vertically stacked pegmatites, hosting spodumene (as confirmed by Raman spectroscopy). This repetition of several stacked pegmatites is a signature of the nearby operating Bald Hill mine.

"The presence of stacked pegmatites enhances the geological diversity of New Dawn and instils confidence regarding its potential scale. Cumulative results over **35 meters** are **10m** @ **1.51%** Li₂O from **51m**, **15m** @ **1.17%** Li₂O from **220m** and **10m** @ **1.15%** Li₂O from **265m**.

"Beyond its geological attraction, New Dawn boasts proximity to infrastructure, sharing a thoroughfare with major gold, nickel and lithium producers optimising logistical aspects and its mining licences expediting a pathway to production."

New Dawn Lithium Project – Spodumene identified by Raman Spectroscopy

Raman spectroscopy is an analytical technique that provides information about the molecular structures and chemical environments of organic and inorganic molecules and molecular ions (Raman and Krishnan, A new type of secondary radiation. Nature, 1928).

Raman spectroscopy provides vibrational fingerprints of chemical compounds, enabling their identification via a comparison with reference spectra. The assignment of Raman spectra to minerals and, more generally, inorganic phases, is straightforward and unambiguous, if appropriate reference data is accessible (Raman Spectroscopy, Horiba Scientific France SAS, 2019).

Identification of spodumene in pegmatite drill chips using Raman spectroscopy was conducted by the Centre for Microscopy, Characterisation and Analysis of the University of Western Australia. Laboratory results confirmed the presence of spodumene in the RC drill chips with an almost identical spodumene standard response, results as follows

Figure 7 Raman spectroscopy output, standard sample at top (reference https://rruff.info/Spodumene/X050152) averaged Raman spectra from the Raman map for sample NDRC014_195m (c) and Raman spectra at Spot 2 for sample NDRC014_195m (d).

Torque Metals Limited ASX: TOR PO Box 27, West Perth, WA, 6872 ABN 44 621 122 905

Tantalum (Ta), Niobium (Nb) and Tin (Sn) mineralisation

Torque's drilling results are also demonstrating strong grades of Tantalum (Ta), Niobium (Nb) and Tin (Sn) mineralisation at New Dawn, generally when lithium grades are low, that is, there is a converse relationship between the concentrations of Tantalum (Ta), Niobium (Nb), Rubidium (Rb) and Tin (Sn) compared to lithium. This inverse grade correlation signifies a distinctive mineralisation pattern within New Dawn. (refer Appendix 1).

Completion of Acquisition to Expand Penzance Exploration Camp

As announced on 11 October 2023, Torque entered into a binding agreement with Parker Hill Pty Ltd to acquire three tenements aside the Company's existing tenement footprint at the broader Penzance Project.

The acquisition has now been completed and delivers three tenements: two adjacent to the Paris Gold Project and one with lithium potential along the same geological trend as the New Dawn Lithium Project.

Tenement E15/1604 is strategically positioned on a magnetic anomaly associated with greenstone belts. This greenstone belt interfaces with a prospective Cal-alkaline granitic melt, possibly indicating the presence of a peraluminous S-type granite—a recognized source of lithium-caesium-tantalum LCT pegmatites.

The acquisition increases Torque's total land area to approximately 600km2, including 12 mining, 4 prospective, 15 exploration licences and is in-line with the Company's strategy to consolidate its presence in the region.

The tenements were acquired from private vendor Parker Hill Pty Ltd for consideration of 500,000 ordinary shares and 1,500,000 unlisted options with an exercise price of \$0.60, expiring 3 years from the date of issue, together with payment of \$20,000 as part reimbursement of tenement expenditures.

About Torque Metals

Torque Metals (**ASX**: **TOR**) is a smart exploration company with a proven discovery methodology, combining drilling results with machine learning algorithms and geological interpretation. Torque's Board and management have successful records and extensive experience in the exploration, development, and financing of mining projects in Australia and overseas.

Torque's Penzance Exploration Camp covers over ~600km² which includes 12 wholly owned, granted, pre-native title mining, 4 prospective and 15 exploration licences (3 under application) situated in the heart Western Australian goldfields.

Torque is focused on mineral exploration in well-established mineral provinces in Australia. The Company continues to evaluate and pursue other prospective opportunities in the resources sector in line with a strategy to develop high quality assets.

Figure 8 Penzance Exploration Camp including tenements under option.

Competent Person Statement – Exploration Results

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Cristian Moreno, who is a Member of the Australasian Institute of Mining and Metallurgy as well a Member of the Australian Institute of Company Directors. Mr Moreno is an employee of Torque Metals Limited ("the Company"), is eligible to participate in short and long-term incentive plans in the Company and holds performance rights in the Company as has been previously disclosed. Mr Moreno has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Moreno consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

This report may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis.

However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected, or implied by such forward-looking statements. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this report, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

This announcement has been authorised by the Board of Directors of Torque Metals.

For more information contact:

Cristian Moreno Managing Director Torque Metals cristian@torquemetals.com M: +61 410280809 www.torquemetals.com

Media: Fiona Marshall, Senior Communications Advisor White Noise Communications M: +61 400512109 fiona@whitenoisecomms.com

APPENDIX 1: Laboratory assay results: Sodium Peroxide Fusion in a zirconium crucible.

Samples dissolved in a dilute HCl, and the solution is analysed by ICP-ES. Significant Li₂O assays are recorded in the following table, Ta₂O₅, Nb₂O₅, SnO₂ are recorded along Li₂O except where relevant as part of a longer intercept. All intercepts are presented as down-hole lengths.

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC001	30	31	1	0.067164	28.61	191.38	0	1.2211
2023NDRC001	31	32	1	0.02411	85.83	3073.016	88.872	56.78115
2023NDRC001	32	33	1	0.039825	114.44	1410.744	126.96	68.99215
2023NDRC001	33	34	1	0.031214	92.9825	2373.112	139.656	122.11
2023NDRC001	34	35	1	0.016361	135.8975	1443.552	203.136	285.7374
2023NDRC001	35	36	1	0.051665	178.8125	92.956	266.616	534.8418
2023NDRC001	246	247	1	0.030568	121.5925	365.2624	38.088	58.6128
2023NDRC001	247	248	1	0.168772	35.7625	388.228	38.088	15.8743
2023NDRC001	248	249	1	0.202784	7.1525	246.06	25.392	1.2211
2023NDRC001	261	262	1	0.066518	78.6775	1618.528	101.568	11.60045
2023NDRC001	262	263	1	0.032936	14.305	2088.776	25.392	3.05275
2023NDRC001	263	264	1	0.058984	121.5925	757.8648	63.48	44.57015
2023NDRC001	264	265	1	0.106559	28.61	398.0704	38.088	6.71605
2023NDRC001	265	266	1	0.096441	14.305	296.3656	0	1.83165
2023NDRC001	266	267	1	0.118829	7.1525	125.764	0	0
2023NDRC002	54	55	1	0.10333	7.1525	189.1928	0	0
2023NDRC002	55	56	1	0.092781	7.1525	246.06	0	0
2023NDRC002	56	57	1	0.038103	64.3725	4111.936	152.352	64.7183
2023NDRC002	57	58	1	0.01227	121.5925	4111.936	50.784	54.9495
2023NDRC002	58	59	1	0.009472	85.83	2143.456	76.176	87.9192
2023NDRC002	59	60	1	0.066734	85.83	2176.264	114.264	205.1448
2023NDRC002	60	61	1	0.004736	114.44	211.0648	152.352	957.3424
2023NDRC002	61	62	1	0.003444	114.44	137.7936	165.048	752.1976
2023NDRC002	62	63	1	0.042623	135.8975	440.7208	266.616	415.174
2023NDRC002	63	64	1	0.116676	28.61	302.9272	38.088	40.90685
2023NDRC002	64	65	1	0.097087	14.305	111.5472	0	27.47475
2023NDRC002	123	124	1	0.101607	35.7625	223.0944	38.088	15.26375
2023NDRC002	124	125	1	0.102899	100.135	1585.72	63.48	36.633
2023NDRC002	125	126	1	0.029707	143.05	2908.976	38.088	70.8238
2023NDRC002	126	127	1	0.198909	143.05	653.9728	88.872	62.88665
2023NDRC002	127	128	1	0.198909	143.05	694.436	88.872	64.7183
2023NDRC002	128	129	1	0.075345	135.8975	1257.64	101.568	256.431
2023NDRC002	129	130	1	0.122489	28.61	168.4144	76.176	14.04265
2023NDRC002	130	131	1	0.104836	7.1525	171.6952	88.872	4.27385
2023NDRC003	6	7	1	0.029061	7.1525	177.1632	38.088	0
2023NDRC003	7	8	1	0.042839	7.1525	191.38	50.784	0
2023NDRC003	8	9	1	0.089552	21.4575	464.78	114.264	4.8844
2023NDRC003	9	10	1	0.017867	35.7625	3663.56	152.352	47.01235
2023NDRC003	10	11	1	0.017437	100.135	1027.984	190.44	126.9944
2023NDRC003	11	12	1	0.074268	35.7625	377.292	63.48	26.8642
2023NDRC003	50	51	1	0.124426	7.1525	203.4096	0	2.4422
2023NDRC003	51	52	1	0.167695	7.1525	218.72	0	0

PO Box 27, West Perth, WA, 6872 ABN 44 621 122 905

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC003	52	53	1	0.254019	57.22	1312.32	266.616	131.8788
2023NDRC003	53	54	1	0.046283	121.5925	1640.4	203.136	284.5163
2023NDRC003	54	55	1	0.226034	100.135	3040.208	152.352	70.21325
2023NDRC003	55	56	1	0.988089	157.355	1706.016	152.352	137.9843
2023NDRC003	56	57	1	1.346944	100.135	1859.12	88.872	69.6027
2023NDRC003	57	58	1	0.968715	71.525	2887.104	114.264	71.43435
2023NDRC003	58	59	1	0.660879	57.22	2482.472	139.656	60.44445
2023NDRC003	59	60	1	0.251866	64.3725	3368.288	114.264	66.54995
2023NDRC003	60	61	1	0.579076	78.6775	4571.248	139.656	97.688
2023NDRC003	61	62	1	0.247561	57.22	5041.496	126.96	62.2761
2023NDRC003	62	63	1	0.117537	42.915	1037.8264	101.568	40.2963
2023NDRC003	63	64	1	0.119475	14.305	450.5632	25.392	4.27385
2023NDRC003	178	179	1	0.101607	7.1525	66.7096	25.392	0
2023NDRC003	179	180	1	0.099885	7.1525	100.6112	25.392	1.2211
2023NDRC003	180	181	1	0.023034	85.83	166.2272	25.392	35.4119
2023NDRC003	181	182	1	0.01593	71.525	143.2616	25.392	34.80135
2023NDRC003	182	183	1	0.020235	71.525	196.848	38.088	37.24355
2023NDRC003	183	184	1	0.103975	14.305	82.5668	38.088	6.1055
2023NDRC003	184	185	1	0.10742	7.1525	65.616	25.392	0
2023NDRC004	7	8	1	0.032721	71.525	3554.2	139.656	70.2075
2023NDRC004	8	9	1	0.037672	71.525	1684.144	152.352	106.8375
2023NDRC004	9	10	1	0.028846	114.44	1618.528	165.048	108.0585
2023NDRC004	10	11	1	0.016576	85.83	2471.536	139.656	64.713
2023NDRC004	11	12	1	0.017437	178.8125	1334.192	241.224	317.46
2023NDRC004	12	13	1	0.015284	143.05	1181.088	76.176	295.482
2023NDRC004	13	14	1	0.006243	121.5925	329.1736	76.176	400.488
2023NDRC004	186	187	1	0.045637	57.22	624.4456	63.48	65.934
2023NDRC004	187	188	1	0.025187	85.83	982.0528	63.48	105.006
2023NDRC004	188	189	1	0.070178	28.61	323.7056	25.392	25.0305
2023NDRC004	237	238	1	0.097733	14.305	294.1784	25.392	5.4945
2023NDRC004	238	239	1	0.04822	50.0675	513.992	38.088	23.199
2023NDRC004	239	240	1	0.096872	14.305	148.7296	25.392	2.442
2023NDRC004	240	241	1	0.111725	7.1525	71.6308	12.696	0.6105
2023NDRC004	256	257	1	0.07599	7.1525	115.9216	0	0
2023NDRC004	257	258	1	0.089768	7.1525	135.6064	12.696	0.6105
2023NDRC004	258	259	1	0.021742	7.1525	3357.352	12.696	2.442
2023NDRC004	259	260	1	0.719002	57.22	2613.704	50.784	20.757
2023NDRC004	260	261	1	0.305683	92.9825	1279.512	63.48	31.746
2023NDRC004	261	262	1	0.402555	35.7625	1115.472	50.784	14.652
2023NDRC004	262	263	1	0.19934	21.4575	470.248	38.088	9.1575
2023NDRC004	263	264	1	0.108927	7.1525	125.764	12.696	2.442
2023NDRC004	292	293	1	0.071039	7.1525	60.6948	0	0.6105
2023NDRC004	293	294	1	0.065873	7.1525	78.7392	0	1.221
2023NDRC004	294	295	1	0.057262	85.83	205.5968	38.088	96.459
2023NDRC004	295	296	1	0.010548	107.2875	271.2128	38.088	86.0805
2023NDRC004	296	297	1	0.010979	135.8975	709.7464	63.48	113.553

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC004	297	298	1	0.012055	114.44	1782.568	50.784	55.5555
2023NDRC004	298	299	1	0.026478	1087.18	1213.896	114.264	1501.83
2023NDRC004	299	300	1	0.103114	14.305	180.444	50.784	10.3785
2023NDRC004	300	301	1	0.123996	7.1525	100.6112	50.784	1.8315
2023NDRC004	303	304	1	0.081803	7.1525	96.7836	0	1.221
2023NDRC004	304	305	1	0.100531	14.305	79.286	25.392	11.5995
2023NDRC004	305	306	1	0.121843	28.61	77.0988	38.088	27.4725
2023NDRC004	306	307	1	0.165973	7.1525	106.0792	38.088	1.8315
2023NDRC004	307	308	1	0.143585	14.305	79.8328	25.392	2.442
2023NDRC005	26	27	1	0.070393	7.1525	134.5128	12.696	3.663
2023NDRC005	27	28	1	0.110434	35.7625	311.676	25.392	6.7155
2023NDRC005	28	29	1	0.839553	78.6775	2318.432	152.352	60.4395
2023NDRC005	29	30	1	1.336827	121.5925	974.3976	177.744	72.039
2023NDRC005	30	31	1	1.500432	164.5075	1334.192	228.528	109.89
2023NDRC005	31	32	1	0.906287	107.2875	893.4712	88.872	53.724
2023NDRC005	32	33	1	0.660879	529.285	1848.184	203.136	1440.78
2023NDRC005	33	34	1	1.526264	92.9825	1509.168	203.136	161.172
2023NDRC005	34	35	1	0.325058	78.6775	6736.576	101.568	100.122
2023NDRC005	35	36	1	0.135835	78.6775	3860.408	88.872	97.0695
2023NDRC005	36	37	1	0.093212	7.1525	157.4784	0	1.221
2023NDRC005	37	38	1	0.086754	7.1525	152.0104	0	3.0525
2023NDRC005	189	190	1	0.11151	7.1525	153.104	0	1.221
2023NDRC005	190	191	1	0.122058	21.4575	168.4144	38.088	10.3785
2023NDRC005	191	192	1	0.057908	78.6775	293.0848	50.784	66.5445
2023NDRC005	192	193	1	0.149828	7.1525	316.0504	50.784	1.8315
2023NDRC005	193	194	1	0.177382	0	378.3856	63.48	1.221
2023NDRC005	194	195	1	0.243255	7.1525	695.5296	76.176	0.6105
2023NDRC005	195	196	1	0.053602	164.5075	258.0896	38.088	131.868
2023NDRC005	196	197	1	0.333669	57.22	1749.76	114.264	36.63
2023NDRC005	197	198	1	0.164466	64.3725	778.6432	76.176	40.9035
2023NDRC005	198	199	1	1.64251	207.4225	895.6584	63.48	146.52
2023NDRC005	199	200	1	1.039754	135.8975	1476.36	50.784	87.912
2023NDRC005	200	201	1	2.019233	92.9825	728.3376	76.176	70.818
2023NDRC005	201	202	1	1.862086	121.5925	922.9984	76.176	73.8705
2023NDRC005	202	203	1	0.396097	107.2875	1684.144	38.088	58.608
2023NDRC005	203	204	1	0.093427	92.9825	407.9128	50.784	53.1135
2023NDRC005	204	205	1	0.232492	7.1525	254.8088	38.088	1.221
2023NDRC005	205	206	1	0.186639	7.1525	172.7888	25.392	1.8315
2023NDRC006	20	21	1	0.052311	7.1525	141.0744	0	0.61055
2023NDRC006	21	22	1	0.075345	7.1525	437.44	50.784	0.61055
2023NDRC006	22	23	1	0.05188	57.22	1509.168	126.96	51.89675
2023NDRC006	23	24	1	0.010118	214.575	5314.896	203.136	302.8328
2023NDRC006	24	25	1	0.009687	85.83	2526.216	203.136	129.4366
2023NDRC006	25	26	1	0.015069	100.135	1213.896	215.832	123.3311
2023NDRC006	26	27	1	0.086969	50.0675	809.264	152.352	35.4119
2023NDRC006	27	28	1	0.068886	14.305	261.3704	25.392	3.0 <mark>5275</mark>

PO Box 27, West Perth, WA, 6872 ABN 44 621 122 905

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC006	28	29	1	0.100316	7.1525	120.296	12.696	1.2211
2023NDRC006	63	64	1	0.153057	7.1525	282.1488	0	0.61055
2023NDRC006	64	65	1	0.177382	14.305	438.5336	25.392	0.61055
2023NDRC006	65	66	1	0.02411	100.135	5260.216	139.656	105.62515
2023NDRC006	66	67	1	0.105052	100.135	3346.416	114.264	157.5219
2023NDRC006	67	68	1	0.030999	71.525	4483.76	76.176	90.3614
2023NDRC006	68	69	1	0.217423	71.525	5161.792	152.352	64.7183
2023NDRC006	69	70	1	0.125933	42.915	1246.704	63.48	29.3064
2023NDRC006	70	71	1	0.141002	14.305	375.1048	25.392	4.27385
2023NDRC006	230	231	1	0.078358	7.1525	147.636	0	0.61055
2023NDRC006	231	232	1	0.089983	14.305	192.4736	12.696	4.27385
2023NDRC006	232	233	1	0.630741	71.525	688.968	76.176	32.9697
2023NDRC006	233	234	1	0.979479	64.3725	978.772	63.48	27.47475
2023NDRC006	242	243	1	0.07965	57.22	395.8832	38.088	37.8541
2023NDRC006	252	253	1	0.033582	28.61	1246.704	12.696	10.9899
2023NDRC006	253	254	1	0.018298	507.8275	1716.952	38.088	195.376
2023NDRC006	254	255	1	0.024971	28.61	1673.208	38.088	7.93715
2023NDRC006	255	256	1	0.049727	7.1525	138.8872	0	1.83165
2023NDRC006	256	257	1	0.045207	7.1525	96.7836	0	0.61055
2023NDRC007	0	1	1	0.015284	21.4575	134.5128	38.088	20.14815
2023NDRC007	1	2	1	0.02368	71.525	461.4992	139.656	75.09765
2023NDRC007	2	3	1	0.030568	92.9825	579.608	380.88	122.11
2023NDRC007	3	4	1	0.03961	121.5925	954.7128	292.008	123.3311
2023NDRC007	4	5	1	0.025402	121.5925	597.1056	177.744	73.266
2023NDRC007	5	6	1	0.013347	71.525	224.188	25.392	16.48485
2023NDRC007	47	48	1	0.026693	236.0325	5511.744	101.568	225.9035
2023NDRC007	48	49	1	0.39825	100.135	1574.784	190.44	106.84625
2023NDRC007	49	50	1	1.080655	57.22	3958.832	114.264	31.7486
2023NDRC007	50	51	1	1.829795	64.3725	1498.232	190.44	43.34905
2023NDRC007	51	52	1	1.407866	92.9825	456.0312	139.656	40.90685
2023NDRC007	52	53	1	0.205368	57.22	256.996	88.872	63.4972
2023NDRC007	53	54	1	3.65959	78.6775	940.496	215.832	59.22335
2023NDRC007	54	55	1	0.09558	42.915	4647.8	101.568	54.33895
2023NDRC007	191	192	1	0.060276	0	123.5768	0	1.2211
2023NDRC007	192	193	1	0.076851	7.1525	591.6376	25.392	3.05275
2023NDRC007	193	194	1	0.056401	35.7625	546.8	25.392	14.04265
2023NDRC007	194	195	1	0.029277	100.135	1760.696	25.392	50.67565
2023NDRC007	195	196	1	0.060706	0	185.912	25.392	2.4422
2023NDRC007	196	197	1	0.639352	78.6775	505.2432	63.48	25.6431
2023NDRC007	197	198	1	0.43054	85.83	3138.632	88.872	31.13805
2023NDRC007	198	199	1	0.598451	92.9825	786.2984	101.568	35.4119
2023NDRC007	199	200	1	2.712402	143.05	1377.936	101.568	76.31875
2023NDRC007	200	201	1	2.04076	107.2875	383.8536	63.48	56.1706
2023NDRC007	201	202	1	1.244261	78.6775	353.2328	50.784	34.80135
2023NDRC007	202	203	1	3.293631	157.355	614.6032	114.264	72.65545
2023NDRC007	203	204	1	0.790041	71.525	1749.76	63.48	39.0752

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC007	204	205	1	1.655426	92.9825	326.9864	76.176	45.79125
2023NDRC007	205	206	1	0.464983	64.3725	1235.768	50.784	36.02245
2023NDRC007	259	260	1	1.552097	14.305	888.0032	38.088	6.1055
2023NDRC007	260	261	1	0.070824	14.305	347.7648	0	7.93715
2023NDRC007	261	262	1	0.061567	21.4575	398.0704	25.392	4.8844
2023NDRC007	262	263	1	0.161453	100.135	2362.176	50.784	42.12795
2023NDRC007	263	264	1	1.407866	57.22	743.648	76.176	19.5376
2023NDRC007	264	265	1	0.678101	100.135	732.712	76.176	42.7385
2023NDRC007	265	266	1	0.141432	35.7625	410.1	25.392	14.6532
2023NDRC007	266	267	1	0.078143	14.305	234.0304	0	6.1055
2023NDRC007	281	282	1	0.037457	21.4575	769.8944	12.696	6.1055
2023NDRC007	282	283	1	0.021958	50.0675	1771.632	25.392	17.0954
2023NDRC007	283	284	1	0.021527	107.2875	1870.056	38.088	43.9596
2023NDRC007	284	285	1	0.041978	85.83	2230.944	114.264	26.8642
2023NDRC007	285	286	1	0.028631	35.7625	954.7128	25.392	10.9899
2023NDRC008	32	33	1	0.008396	35.7625	75.4584	0	0.61055
2023NDRC008	33	34	1	0.013131	0	74.9116	12.696	0
2023NDRC008	34	35	1	0.036596	514.98	2230.944	787.152	514.0831
2023NDRC008	35	36	1	0.030353	243.185	2023.16	952.2	280.853
2023NDRC008	36	37	1	0.012486	135.8975	3565.136	152.352	111.73065
2023NDRC008	37	38	1	0.010333	64.3725	877.0672	50.784	36.02245
2023NDRC008	55	56	1	0.014854	50.0675	4505.632	38.088	68.3816
2023NDRC008	56	57	1	0.03595	343.32	3499.52	292.008	520.1886
2023NDRC008	57	58	1	0.056185	157.355	2941.784	317.4	245.4411
2023NDRC008	58	59	1	0.090413	100.135	2952.72	203.136	89.75085
2023NDRC008	59	60	1	0.062428	164.5075	7491.16	495.144	223.4613
2023NDRC008	60	61	1	0.01959	71.525	2449.664	165.048	84.86645
2023NDRC008	61	62	1	0.016361	14.305	462.5928	63.48	12.82155
2023NDRC008	170	171	1	0.021958	42.915	124.6704	279.312	112.95175
2023NDRC008	171	172	1	0.018944	0	119.2024	12.696	5.49495
2023NDRC008	172	173	1	0.153703	7.1525	205.5968	38.088	1.83165
2023NDRC008	173	174	1	0.162959	7.1525	146.5424	25.392	0.61055
2023NDRC008	174	175	1	0.197618	14.305	360.888	50.784	4.27385
2023NDRC008	175	176	1	0.387486	78.6775	516.1792	63.48	42.7385
2023NDRC008	176	177	1	1.80181	121.5925	521.6472	63.48	64.7183
2023NDRC008	177	178	1	2.133326	257.49	726.1504	63.48	170.954
2023NDRC008	178	179	1	1.782436	107.2875	358.7008	76.176	61.055
2023NDRC008	179	180	1	0.61352	150.2025	857.3824	88.872	118.4467
2023NDRC008	180	181	1	0.09149	114.44	986.4272	126.96	96.4669
2023NDRC008	181	182	1	0.04004	100.135	1181.088	63.48	51.2862
2023NDRC008	182	183	1	0.121628	28.61	229.656	25.392	14.6532
2023NDRC008	183	184	1	0.162959	14.305	120.296	0	4.27385
2023NDRC008	184	185	1	0.193312	7.1525	105.5324	0	1.2211
2023NDRC008	213	214	1	0.191375	7.1525	161.8528	0	0.61055
2023NDRC008	214	215	1	0.328287	7.1525	100.0644	0	1.2211
2023NDRC008	215	216	1	0.195465	85.83	802.7024	76.176	52.5073

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC008	216	217	1	2.690875	71.525	587.2632	76.176	27.47475
2023NDRC008	217	218	1	0.660879	42.915	1323.256	25.392	25.6431
2023NDRC008	218	219	1	2.034302	71.525	568.672	76.176	36.02245
2023NDRC008	219	220	1	1.001006	121.5925	1399.808	126.96	68.3816
2023NDRC008	220	221	1	0.087615	114.44	54.1332	12.696	134.321
2023NDRC008	221	222	1	0.054679	71.525	458.2184	38.088	74.4871
2023NDRC008	222	223	1	0.037242	0	111.5472	0	1.2211
2023NDRC008	256	257	1	0.048005	50.0675	271.2128	38.088	86.6981
2023NDRC008	257	258	1	0.058984	57.22	2034.096	25.392	17.70595
2023NDRC008	258	259	1	1.528417	28.61	189.1928	38.088	12.82155
2023NDRC008	259	260	1	2.217281	57.22	868.3184	63.48	25.03255
2023NDRC008	260	261	1	0.2749	71.525	565.3912	12.696	31.7486
2023NDRC008	274	275	1	0.045207	14.305	230.7496	0	4.27385
2023NDRC008	277	278	1	0.611367	14.305	1115.472	25.392	4.27385
2023NDRC008	278	279	1	0.072977	0	122.4832	0	1.2211
2023NDRC008	279	280	1	0.178244	71.525	1377.936	38.088	24.422
2023NDRC009	12	13	1	0.054679	7.1525	91.3156	0	0
2023NDRC009	13	14	1	0.07147	7.1525	89.6752	0	0.61055
2023NDRC009	14	15	1	0.038533	157.355	510.7112	101.568	148.9742
2023NDRC009	15	16	1	0.007104	128.745	274.4936	101.568	304.0539
2023NDRC009	16	17	1	0.005812	135.8975	60.148	190.44	357.7823
2023NDRC009	17	18	1	0.014854	150.2025	1246.704	228.528	103.18295
2023NDRC009	18	19	1	0.017006	157.355	388.228	88.872	391.9731
2023NDRC009	19	20	1	0.022819	100.135	893.4712	114.264	56.1706
2023NDRC009	20	21	1	0.019159	100.135	2209.072	139.656	83.64535
2023NDRC009	21	22	1	0.014208	128.745	1356.064	114.264	121.49945
2023NDRC009	22	23	1	0.048005	78.6775	250.4344	63.48	185.6072
2023NDRC009	155	156	1	0.136266	7.1525	367.4496	38.088	6.1055
2023NDRC009	156	157	1	0.419777	78.6775	1651.336	76.176	50.0651
2023NDRC009	157	158	1	0.040471	78.6775	1388.872	50.784	39.0752
2023NDRC009	158	159	1	0.098163	28.61	522.7408	25.392	10.9899
2023NDRC009	199	200	1	0.074699	0	96.7836	0	1.83165
2023NDRC009	200	201	1	0.079435	7.1525	119.2024	0	1.2211
2023NDRC009	201	202	1	0.125718	14.305	207.784	25.392	3.6633
2023NDRC009	202	203	1	1.668343	107.2875	1213.896	76.176	26.8642
2023NDRC009	203	204	1	1.390644	100.135	437.44	63.48	46.4018
2023NDRC009	204	205	1	1.870696	42.915	548.9872	76.176	12.82155
2023NDRC009	205	206	1	0.189868	14.305	158.572	12.696	2.4422
2023NDRC009	206	207	1	0.145092	7.1525	82.5668	0	1.2211
2023NDRC009	219	220	1	0.105913	7.1525	152.0104	12.696	1.83165
2023NDRC009	220	221	1	0.123134	7.1525	177.1632	25.392	0.61055
2023NDRC009	221	222	1	0.102038	50.0675	1011.58	50.784	23.2009
2023NDRC009	228	229	1	0.057047	78.6775	1137.344	50.784	20.14815
2023NDRC009	229	230	1	0.871844	50.0675	1025.7968	76.176	15.26375
2023NDRC009	230	231	1	0.378875	21.4575	442.908	38.088	4.8844
2023NDRC009	231	232	1	0.14789	14.305	246.06	12.696	2.4422

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC009	232	233	1	0.120551	14.305	180.444	0	1.83165
2023NDRC010	30	31	1	0.012486	28.61	174.976	12.696	1.2211
2023NDRC010	31	32	1	0.017437	78.6775	838.7912	253.92	172.1751
2023NDRC010	32	33	1	0.051019	78.6775	346.6712	241.224	99.51965
2023NDRC010	33	34	1	0.017437	28.61	137.7936	63.48	12.82155
2023NDRC010	34	35	1	0.006458	35.7625	59.0544	0	1.2211
2023NDRC010	65	66	1	0.01227	221.7275	1673.208	38.088	199.0393
2023NDRC010	66	67	1	0.010979	50.0675	5063.368	63.48	61.66555
2023NDRC010	67	68	1	0.10333	64.3725	3543.264	101.568	77.53985
2023NDRC010	68	69	1	0.854622	114.44	2198.136	177.744	174.6173
2023NDRC010	69	70	1	0.316447	157.355	768.8008	228.528	178.2806
2023NDRC010	70	71	1	1.278704	78.6775	1301.384	152.352	31.7486
2023NDRC010	71	72	1	0.462831	121.5925	1388.872	165.048	54.33895
2023NDRC010	72	73	1	0.716849	71.525	2143.456	203.136	58.6128
2023NDRC010	73	74	1	0.075775	64.3725	5314.896	165.048	59.22335
2023NDRC010	74	75	1	0.232492	64.3725	1170.152	253.92	79.98205
2023NDRC010	75	76	1	0.21118	42.915	1054.2304	215.832	50.0651
2023NDRC010	262	263	1	0.016361	7.1525	635.3816	0	3.05275
2023NDRC010	263	264	1	0.049082	64.3725	673.6576	76.176	49.45455
2023NDRC010	264	265	1	1.229192	35.7625	704.2784	63.48	7.3266
2023NDRC010	274	275	1	0.019159	14.305	1068.4472	0	4.27385
2023NDRC011	13	14	1	0.01184	128.745	4779.032	253.92	110.50955
2023NDRC011	14	15	1	0.026263	92.9825	3882.28	1752.048	210.0292
2023NDRC011	15	16	1	0.021527	78.6775	1192.024	177.744	46.4018
2023NDRC011	16	17	1	0.009257	21.4575	400.2576	38.088	8.5477
2023NDRC011	17	18	1	0.006889	0	104.4388	25.392	1.2211
2023NDRC011	25	26	1	0.029492	42.915	3204.248	139.656	34.80135
2023NDRC011	26	27	1	0.021312	472.065	2974.592	114.264	804.7049
2023NDRC011	27	28	1	0.007965	28.61	5336.768	50.784	46.4018
2023NDRC011	28	29	1	0.018083	50.0675	4243.168	88.872	49.45455
2023NDRC011	29	30	1	0.028846	57.22	369.6368	38.088	64.10775
2023NDRC011	30	31	1	0.086108	7.1525	402.4448	38.088	1.2211
2023NDRC011	31	32	1	0.106989	14.305	284.336	25.392	1.2211
2023NDRC011	177	178	1	0.091059	7.1525	118.1088	0	0
2023NDRC011	178	179	1	0.148106	28.61	258.0896	50.784	6.71605
2023NDRC011	179	180	1	0.07556	121.5925	1432.616	76.176	67.77105
2023NDRC011	180	181	1	0.07599	121.5925	1334.192	76.176	64.7183
2023NDRC011	181	182	1	0.126794	64.3725	305.1144	25.392	32.35915
2023NDRC011	182	183	1	0.109142	14.305	136.7	0	1.2211
2023NDRC011	217	218	1	0.13562	7.1525	170.6016	0	0
2023NDRC011	218	219	1	0.262629	14.305	348.8584	76.176	0
2023NDRC011	219	220	1	0.097517	78.6775	475.716	76.176	26.8642
2023NDRC011	220	221	1	0.034443	64.3725	275.5872	38.088	22.59035
2023NDRC011	221	222	1	0.14789	14.305	211.0648	25.392	2.4422
2023NDRC011	222	222	1	0.186424	7.1525	200.1288	0	0
2023NDRC011	231	232	1	0.077282	0	99.5176	0	0

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC011	232	233	1	0.040686	71.525	2110.648	38.088	41.5174
2023NDRC011	233	234	1	0.043054	57.22	1618.528	38.088	32.35915
2023NDRC011	234	235	1	0.529564	143.05	3007.4	76.176	44.57015
2023NDRC011	235	236	1	0.325058	35.7625	2876.168	38.088	10.37935
2023NDRC011	236	237	1	0.116461	92.9825	977.6784	38.088	51.2862
2023NDRC011	237	238	1	0.085247	193.1175	83.6604	0	399.2997
2023NDRC011	238	239	1	0.092351	150.2025	58.5076	0	205.1448
2023NDRC011	239	240	1	0.052526	157.355	70.5372	0	166.0696
2023NDRC011	240	241	1	0.049727	14.305	441.8144	63.48	4.8844
2023NDRC011	267	268	1	0.032506	71.525	2405.92	38.088	22.59035
2023NDRC011	268	269	1	1.261482	21.4575	451.6568	25.392	7.93715
2023NDRC011	269	270	1	1.221873	0	69.9904	0	2.4422
2023NDRC011	270	271	1	1.278704	64.3725	680.2192	50.784	17.0954
2023NDRC011	271	272	1	0.393944	14.305	346.6712	25.392	2.4422
2023NDRC011	272	273	1	0.182118	7.1525	177.1632	0	1.2211
2023NDRC012	0	1	1	0.018728	42.915	162.9464	38.088	53.11785
2023NDRC012	1	2	1	0.013131	57.22	199.0352	76.176	80.5926
2023NDRC012	2	3	1	0.032506	64.3725	1443.552	380.88	116.61505
2023NDRC012	3	4	1	0.036596	21.4575	365.2624	165.048	34.80135
2023NDRC012	4	5	1	0.037457	50.0675	318.2376	228.528	168.5118
2023NDRC012	5	6	1	0.023895	92.9825	515.0856	266.616	88.52975
2023NDRC012	6	7	1	0.019374	64.3725	254.8088	63.48	21.9798
2023NDRC012	37	38	1	0.032936	0	118.1088	0	1.83165
2023NDRC012	38	39	1	0.069317	221.7275	686.7808	63.48	200.2604
2023NDRC012	39	40	1	0.458525	71.525	2908.976	165.048	54.9495
2023NDRC012	40	41	1	0.185132	57.22	5303.96	88.872	54.9495
2023NDRC012	41	42	1	1.399255	193.1175	2110.648	114.264	146.532
2023NDRC012	42	43	1	0.977326	121.5925	2088.776	139.656	79.3715
2023NDRC012	43	44	1	3.099888	57.22	1706.016	253.92	60.44445
2023NDRC012	44	45	1	0.088261	92.9825	1837.248	126.96	129.4366
2023NDRC012	45	46	1	0.245408	100.135	1891.928	228.528	177.0595
2023NDRC012	46	47	1	1.306689	42.915	1574.784	203.136	59.22335
2023NDRC012	47	48	1	0.15564	28.61	511.8048	63.48	18.3165
2023NDRC012	48	49	1	2.989885	121.5925	645.224	50.784	212.4714
2023NDRC012	49	50	1	0.173508	21.4575	636.4752	38.088	34.1908
2023NDRC012	50	51	1	0.927814	71.525	1018.1416	152.352	179.5017
2023NDRC012	51	52	1	0.077928	0	232.9368	25.392	6.1055
2023NDRC012	52	53	1	0.042839	0	117.0152	0	3.05275
2023NDRC012	190	191	1	0.025832	0	69.9904	0	0
2023NDRC012	191	192	1	0.023249	42.915	757.8648	38.088	30.5275
2023NDRC012	192	193	1	0.176737	57.22	1410.744	76.176	18.92705
2023NDRC012	193	194	1	1.072045	128.745	667.096	88.872	45.79125
2023NDRC012	194	195	1	1.726465	171.66	673.6576	76.176	54.33895
2023NDRC012	195	196	1	1.050518	250.3375	826.7616	126.96	148.9742
2023NDRC012	196	197	1	0.802957	107.2875	1044.388	114.264	61.055
2023NDRC012	197	198	1	0.275546	264.6425	674.7512	76.176	91.5825

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC012	198	199	1	0.979479	85.83	1913.8	50.784	29.3064
2023NDRC012	199	200	1	0.630741	100.135	2132.52	50.784	42.7385
2023NDRC012	200	201	1	0.811568	85.83	1552.912	63.48	33.58025
2023NDRC012	201	202	1	0.057262	28.61	540.2384	25.392	27.47475
2023NDRC012	202	203	1	0.046714	0	135.6064	0	3.6633
2023NDRC012	203	204	1	0.06372	14.305	320.4248	0	7.3266
2023NDRC012	204	205	1	0.089552	28.61	2034.096	38.088	23.81145
2023NDRC012	205	206	1	0.046714	21.4575	634.288	25.392	17.0954
2023NDRC012	245	246	1	0.025617	42.915	2165.328	0	26.25365
2023NDRC012	253	254	1	0.049943	7.1525	532.5832	241.224	6.1055
2023NDRC012	254	255	1	1.786741	78.6775	567.5784	76.176	31.7486
2023NDRC012	255	256	1	0.753445	57.22	894.5648	50.784	25.6431
2023NDRC012	256	257	1	0.39825	42.915	1003.9248	76.176	18.92705
2023NDRC012	257	258	1	0.053818	7.1525	208.8776	0	3.05275
2023NDRC012	258	259	1	0.03961	0	265.7448	0	2.4422
2023NDRC012	260	261	1	0.033582	0	73.2712	0	1.2211
2023NDRC012	261	262	1	0.039825	0	136.7	0	1.2211
2023NDRC012	262	263	1	0.546786	85.83	1031.2648	126.96	46.4018
2023NDRC012	263	264	1	0.570466	171.66	895.6584	114.264	112.95175
2023NDRC012	264	265	1	1.153847	71.525	1498.232	63.48	29.3064
2023NDRC012	265	266	1	1.207665	57.22	702.0912	76.176	21.9798
2023NDRC012	266	267	1	0.243255	92.9825	789.5792	114.264	53.11785
2023NDRC012	267	268	1	0.381028	92.9825	1148.28	139.656	64.10775
2023NDRC012	268	269	1	0.325058	50.0675	758.9584	88.872	41.5174
2023NDRC012	269	270	1	0.046283	0	187.0056	76.176	3.6633
2023NDRC012	270	271	1	0.027985	0	55.7736	0	15.26375
2023NDRC012	297	298	1	0.031429	0	83.1136	0	0.61055
2023NDRC012	298	299	1	0.03961	21.4575	780.8304	0	3.6633
2023NDRC012	299	300	1	0.628588	92.9825	1596.656	25.392	27.47475
2023NDRC013	10	11	1	0.041978	100.135	1148.28	368.184	84.2559
2023NDRC013	11	12	1	0.011625	150.2025	263.5576	304.704	362.6667
2023NDRC013	12	13	1	0.039394	100.135	1356.064	241.224	142.8687
2023NDRC013	13	14	1	0.035089	100.135	395.8832	165.048	62.2761
2023NDRC013	48	49	1	0.038964	157.355	1859.12	126.96	93.41415
2023NDRC013	49	50	1	0.256171	21.4575	1432.616	165.048	19.5376
2023NDRC013	50	51	1	0.009257	0	7097.464	50.784	5.49495
2023NDRC013	51	52	1	0.014423	808.2325	2646.512	63.48	515.3042
2023NDRC013	52	53	1	0.011194	64.3725	1706.016	88.872	38.46465
2023NDRC013	53	54	1	0.008826	42.915	4243.168	38.088	34.1908
2023NDRC013	54	55	1	0.013777	92.9825	1076.1024	88.872	48.844
2023NDRC013	55	56	1	0.01959	107.2875	2209.072	114.264	47.01235
2023NDRC013	56	57	1	0.010979	85.83	2154.392	76.176	50.0651
2023NDRC013	57	58	1	0.017437	472.065	1334.192	215.832	405.4052
2023NDRC013	58	59	1	0.012486	42.915	5205.536	114.264	37.24355
2023NDRC013	59	60	1	0.017652	135.8975	995.176	114.264	68.99215
2023NDRC013	61	62	1	0.017222	171.66	809.264	101.568	84.2559

18

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC013	62	63	1	0.015499	135.8975	2493.408	63.48	106.84625
2023NDRC013	63	64	1	0.013777	85.83	1629.464	88.872	76.31875
2023NDRC013	64	65	1	0.008396	57.22	809.264	152.352	100.1302
2023NDRC013	65	66	1	0.012486	35.7625	202.316	50.784	15.8743
2023NDRC013	208	209	1	0.221728	64.3725	2034.096	38.088	17.70595
2023NDRC013	209	210	1	2.137631	28.61	2307.496	76.176	13.4321
2023NDRC013	210	211	1	2.690875	0	431.972	114.264	21.36925
2023NDRC013	211	212	1	1.640357	42.915	238.4048	88.872	101.3513
2023NDRC013	212	213	1	2.021385	121.5925	150.9168	50.784	115.39395
2023NDRC013	213	214	1	2.260335	135.8975	200.1288	50.784	48.844
2023NDRC013	214	215	1	0.151642	40.1587	130.2413	24.351	29.1839
2023NDRC013	215	216	1	0.183625	50.0675	649.5984	25.392	32.9697
2023NDRC013	216	217	1	0.113878	0	78.1924	0	4.8844
2023NDRC013	217	218	1	0.063289	0	61.7884	0	1.83165
2023NDRC013	221	222	1	0.069102	35.7625	548.9872	38.088	9.15825
2023NDRC013	223	224	1	0.173508	78.6775	1356.064	63.48	23.2009
2023NDRC013	224	225	1	0.11194	78.6775	550.0808	50.784	21.36925
2023NDRC013	239	240	1	0.385333	85.83	1213.896	76.176	20.14815
2023NDRC013	240	241	1	0.140571	50.0675	347.7648	38.088	18.3165
2023NDRC013	241	242	1	0.076206	7.1525	256.996	0	10.37935
2023NDRC013	242	243	1	1.870696	92.9825	751.3032	76.176	24.422
2023NDRC013	243	244	1	2.927672	85.83	520.5536	101.568	50.67565
2023NDRC013	244	245	1	2.432551	71.525	721.776	76.176	23.2009
2023NDRC013	245	246	1	1.069892	64.3725	1760.696	63.48	18.3165
2023NDRC013	246	247	1	2.113951	57.22	239.4984	50.784	51.89675
2023NDRC013	247	248	1	1.257177	135.8975	425.4104	63.48	45.79125
2023NDRC013	248	249	1	1.726465	128.745	466.9672	152.352	75.09765
2023NDRC013	249	250	1	0.068241	0	109.36	0	2.4422
2023NDRC013	250	251	1	0.064581	0	63.9756	0	1.2211
2023NDRC013	296	297	1	0.029707	14.305	234.0304	0	7.93715
2023NDRC013	297	298	1	0.012486	35.7625	766.6136	38.088	54.9495
2023NDRC013	298	299	1	0.03595	14.305	246.06	0	5.49495
2023NDRC014	25	26	1	0.004305	28.61	93.5028	38.088	7.93715
2023NDRC014	26	27	1	0.01184	57.22	2559.024	114.264	61.66555
2023NDRC014	27	28	1	0.005597	35.7625	4680.608	25.392	50.0651
2023NDRC014	28	29	1	0.013347	228.88	960.1808	152.352	144.0898
2023NDRC014	29	30	1	0.010979	221.7275	298.5528	76.176	357.7823
2023NDRC014	30	31	1	0.01184	92.9825	3302.672	139.656	67.1605
2023NDRC014	31	32	1	0.023034	85.83	2110.648	253.92	75.09765
2023NDRC014	32	33	1	0.013777	57.22	2952.72	241.224	53.7284
2023NDRC014	33	34	1	0.017652	35.7625	575.2336	50.784	9.7688
2023NDRC014	34	35	1	0.013131	21.4575	98.424	0	1.2211
2023NDRC014	190	191	1	0.025832	0	57.9608	0	0
2023NDRC014	191	192	1	0.985937	121.5925	1531.04	88.872	29.3064
2023NDRC014	192	193	1	0.23895	178.8125	1913.8	76.176	47.6229
2023NDRC014	193	194	1	0.20752	164.5075	1531.04	50.784	50.0651

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC014	194	195	1	1.478905	271.795	437.44	88.872	225.9035
2023NDRC014	195	196	1	2.475605	135.8975	587.2632	114.264	70.8238
2023NDRC014	196	197	1	1.351896	143.05	1148.28	76.176	47.6229
2023NDRC014	197	198	1	0.168341	100.135	3871.344	38.088	30.5275
2023NDRC014	198	199	1	0.449914	121.5925	2077.84	63.48	43.34905
2023NDRC014	199	200	1	0.333669	157.355	1585.72	63.48	72.0449
2023NDRC014	200	201	1	0.05145	0	202.316	0	1.83165
2023NDRC014	201	202	1	0.060491	7.1525	610.2288	25.392	5.49495
2023NDRC014	226	227	1	0.041547	85.83	2121.584	88.872	17.0954
2023NDRC014	227	228	1	1.248566	107.2875	1104.536	50.784	33.58025
2023NDRC014	228	229	1	0.88476	42.915	646.3176	50.784	13.4321
2023NDRC014	229	230	1	0.119044	7.1525	132.3256	0	2.4422
2023NDRC014	230	231	1	0.054248	0	76.0052	0	1.2211
2023NDRC014	237	238	1	0.333669	50.0675	3740.112	50.784	18.3165
2023NDRC014	238	239	1	1.326063	121.5925	784.1112	63.48	50.0651
2023NDRC014	239	240	1	0.214409	50.0675	1913.8	38.088	28.69585
2023NDRC014	240	241	1	1.683411	92.9825	1126.408	63.48	42.7385
2023NDRC014	241	242	1	2.733929	71.525	562.1104	76.176	21.9798
2023NDRC014	242	243	1	1.175374	157.355	488.8392	63.48	53.7284
2023NDRC014	243	244	1	0.426665	135.8975	612.416	50.784	191.7127
2023NDRC014	244	245	1	0.787888	92.9825	1454.488	63.48	103.18295
2023NDRC014	245	246	1	0.512343	28.61	836.604	38.088	28.0853
2023NDRC014	246	247	1	0.043054	7.1525	195.7544	0	7.3266
2023NDRC014	280	281	1	0.068671	650.8775	2110.648	76.176	185.6072
2023NDRC014	281	282	1	0.798652	78.6775	1290.448	76.176	20.7587
2023NDRC014	282	283	1	0.305683	50.0675	1541.976	63.48	12.82155
2023NDRC014	283	284	1	0.158008	21.4575	559.9232	25.392	6.1055
2023NDRC015	0	1	1	0.004951	57.22	237.3112	0	83.0348
2023NDRC015	1	2	1	0.00818	28.61	190.2864	12.696	31.13805
2023NDRC015	2	3	1	0.016145	57.22	2220.008	88.872	32.35915
2023NDRC015	3	4	1	0.01593	85.83	1946.608	101.568	59.22335
2023NDRC015	4	5	1	0.021527	78.6775	1224.832	190.44	42.12795
2023NDRC015	5	6	1	0.027124	100.135	1399.808	228.528	61.66555
2023NDRC015	6	7	1	0.034443	57.22	1323.256	418.968	255.2099
2023NDRC015	7	8	1	0.015499	50.0675	3401.096	215.832	97.07745
2023NDRC015	8	9	1	0.017006	50.0675	3171.44	114.264	36.633
2023NDRC015	9	10	1	0.017867	85.83	2843.36	126.96	53.11785
2023NDRC015	10	11	1	0.01184	14.305	381.6664	25.392	11.60045
2023NDRC015	31	32	1	0.004521	85.83	103.3452	38.088	255.2099
2023NDRC015	32	33	1	0.012916	107.2875	1115.472	126.96	338.2447
2023NDRC015	33	34	1	0.003229	128.745	285.4296	25.392	322.3704
2023NDRC015	34	35	1	0.005166	185.965	669.2832	50.784	395.6364
2023NDRC015	35	36	1	0.043915	622.2675	5107.112	203.136	609.3289
2023NDRC015	36	37	1	0.028416	236.0325	6670.96	126.96	302.8328
2023NDRC015	37	38	1	0.006458	171.66	879.2544	63.48	417.6162
2023NDRC015	38	39	1	0.0437	171.66	659.4408	228.528	400.5208

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC015	39	40	1	0.064366	100.135	1137.344	190.44	130.6577
2023NDRC015	40	41	1	0.030138	50.0675	414.4744	139.656	70.21325
2023NDRC015	48	49	1	0.03552	42.915	2176.264	114.264	242.9989
2023NDRC015	49	50	1	0.058123	85.83	1104.536	266.616	834.0113
2023NDRC015	50	51	1	0.024541	28.61	159.6656	38.088	75.09765
2023NDRC015	251	252	1	0.292767	100.135	1213.896	76.176	36.02245
2023NDRC015	252	253	1	0.112371	100.135	453.844	50.784	69.6027
2023NDRC015	253	254	1	0.057692	78.6775	570.8592	50.784	32.9697
2023NDRC015	261	262	1	0.034228	0	136.7	0	0
2023NDRC015	262	263	1	0.097517	135.8975	253.7152	25.392	251.5466
2023NDRC015	263	264	1	3.293631	57.22	402.4448	88.872	18.92705
2023NDRC015	264	265	1	2.085966	71.525	984.24	50.784	31.7486
2023NDRC015	265	266	1	1.341132	78.6775	1727.888	38.088	30.5275
2023NDRC015	266	267	1	0.292767	28.61	2701.192	38.088	9.7688
2023NDRC015	267	268	1	0.553244	114.44	1159.216	63.48	39.0752
2023NDRC015	268	269	1	0.129593	114.44	1421.68	152.352	103.18295
2023NDRC015	269	270	1	0.284156	64.3725	364.1688	63.48	67.77105
2023NDRC015	270	271	1	0.932119	71.525	562.1104	126.96	42.7385
2023NDRC015	271	272	1	0.18341	57.22	581.7952	126.96	62.88665
2023NDRC015	272	273	1	0.097087	14.305	147.636	38.088	6.1055
2023NDRC016	51	52	1	0.113878	200.27	1137.344	126.96	185.6072
2023NDRC016	52	53	1	3.939441	92.9825	192.4736	545.928	249.1044
2023NDRC016	53	54	1	2.79851	185.965	1090.3192	203.136	81.8137
2023NDRC016	54	55	1	2.820037	85.83	883.6288	139.656	75.7082
2023NDRC016	55	56	1	2.58324	264.6425	551.1744	215.832	250.3255
2023NDRC016	56	57	1	0.531717	50.0675	2209.072	292.008	68.99215
2023NDRC016	57	58	1	0.156501	64.3725	3772.92	50.784	26.25365
2023NDRC016	58	59	1	0.269088	107.2875	3838.536	76.176	97.688
2023NDRC016	59	60	1	1.356201	85.83	1859.12	190.44	60.44445
2023NDRC016	60	61	1	0.480052	28.61	2209.072	139.656	23.2009
2023NDRC016	61	62	1	0.037672	0	108.2664	25.392	0
2023NDRC016	62	63	1	0.038533	0	68.8968	12.696	1.2211
2023NDRC016	218	219	1	0.029923	0	52.4928	0	0
2023NDRC016	219	220	1	0.032506	0	54.1332	0	0
2023NDRC016	220	221	1	0.759903	78.6775	1235.768	88.872	20.7587
2023NDRC016	221	222	1	2.04937	121.5925	1042.2008	126.96	35.4119
2023NDRC016	222	223	1	1.775978	128.745	751.3032	101.568	83.0348
2023NDRC016	223	224	1	1.773825	135.8975	1034.5456	139.656	84.86645
2023NDRC016	224	225	1	3.379739	85.83	867.2248	152.352	50.67565
2023NDRC016	225	226	1	2.303389	100.135	402.4448	114.264	39.0752
2023NDRC016	226	227	1	1.528417	92.9825	634.288	101.568	35.4119
2023NDRC016	227	228	1	2.053676	92.9825	557.736	88.872	33.58025
2023NDRC016	228	229	1	0.617825	121.5925	1045.4816	50.784	51.89675
2023NDRC016	229	230	1	0.413318	100.135	1078.2896	38.088	32.35915
2023NDRC016	230	231	1	0.21527	21.4575	203.4096	12.696	6.71605
2023NDRC016	231	232	1	0.426235	35.7625	339.016	25.392	12.82155

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC016	232	233	1	0.081803	7.1525	194.6608	0	3.05275
2023NDRC016	233	234	1	0.056616	85.83	2198.136	76.176	70.21325
2023NDRC016	234	235	1	0.054463	35.7625	562.1104	25.392	45.1807
2023NDRC016	235	236	1	0.034013	14.305	191.38	0	12.211
2023NDRC016	265	266	1	0.070609	50.0675	1804.44	63.48	31.13805
2023NDRC016	266	267	1	0.617825	85.83	2635.576	101.568	25.03255
2023NDRC016	267	268	1	1.724313	78.6775	1334.192	88.872	20.14815
2023NDRC016	268	269	1	1.814726	92.9825	1003.9248	114.264	17.0954
2023NDRC016	269	270	1	0.882607	57.22	727.244	114.264	22.59035
2023NDRC016	270	271	1	1.763061	71.525	281.0552	139.656	56.78115
2023NDRC016	271	272	1	2.733929	28.61	306.208	63.48	13.4321
2023NDRC016	272	273	1	1.627441	64.3725	626.6328	88.872	16.48485
2023NDRC016	273	274	1	0.219575	71.525	1019.2352	63.48	26.25365
2023NDRC016	274	275	1	0.066949	78.6775	790.6728	63.48	59.22335
2023NDRC016	275	276	1	0.056401	35.7625	480.0904	25.392	33.58025
2023NDRC016	276	277	1	0.03552	0	166.2272	0	3.05275
2023NDRC017	206	207	1	0.025832	pending	pending	pending	pending
2023NDRC017	207	208	1	0.314294	pending	pending	pending	pending
2023NDRC017	208	209	1	0.077497	pending	pending	pending	pending
2023NDRC017	209	210	1	0.025832	pending	pending	pending	pending
2023NDRC017	210	211	1	0.027985	pending	pending	pending	pending
2023NDRC017	211	212	1	0.038749	pending	pending	pending	pending
2023NDRC017	212	213	1	0.305683	pending	pending	pending	pending
2023NDRC017	213	214	1	0.036596	pending	pending	pending	pending
2023NDRC017	214	215	1	0.02368	pending	pending	pending	pending
2023NDRC017	228	229	1	0.030138	pending	pending	pending	pending
2023NDRC017	229	230	1	0.032291	pending	pending	pending	pending
2023NDRC017	230	231	1	0.025832	pending	pending	pending	pending
2023NDRC017	231	232	1	0.204507	pending	pending	pending	pending
2023NDRC017	232	233	1	0.217423	pending	pending	pending	pending
2023NDRC017	233	234	1	2.949199	pending	pending	pending	pending
2023NDRC017	234	235	1	0.260477	pending	pending	pending	pending
2023NDRC017	235	236	1	0.774972	pending	pending	pending	pending
2023NDRC017	236	237	1	0.105482	pending	pending	pending	pending
2023NDRC017	237	238	1	0.036596	pending	pending	pending	pending
2023NDRC017	238	239	1	3.422793	pending	pending	pending	pending
2023NDRC017	239	240	1	0.309989	pending	pending	pending	pending
2023NDRC017	240	241	1	0.040901	pending	pending	pending	pending
2023NDRC018	266	267	1	0.042839	Pending	Pending	Pending	Pending
2023NDRC018	267	268	1	0.041332	Pending	Pending	Pending	Pending
2023NDRC018	268	269	1	0.058338	Pending	Pending	Pending	Pending
2023NDRC018	269	270	1	0.177382	Pending	Pending	Pending	Pending
2023NDRC018	270	271	1	0.024756	Pending	Pending	Pending	Pending
2023NDRC018	271	272	1	0.031645	Pending	Pending	Pending	Pending
2023NDRC018	272	273	1	0.034013	Pending	Pending	Pending	Pending
2023NDRC018	274	275	1	0.032721	Pending	Pending	Pending	Pending

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDRC018	275	276	1	0.032936	Pending	Pending	Pending	Pending
2023NDRC018	276	277	1	0.032936	Pending	Pending	Pending	Pending
2023NDRC018	277	278	1	1.478905	Pending	Pending	Pending	Pending
2023NDRC018	278	279	1	0.596298	Pending	Pending	Pending	Pending
2023NDRC018	279	280	1	0.086323	Pending	Pending	Pending	Pending
2023NDRC018	280	281	1	0.030353	Pending	Pending	Pending	Pending
2023NDRC018	281	282	1	0.029277	Pending	Pending	Pending	Pending
2023NDRC019	27	28	1	0.027124	Pending	Pending	Pending	Pending
2023NDRC019	28	29	1	0.027985	Pending	Pending	Pending	Pending
2023NDRC019	29	30	1	0.052095	Pending	Pending	Pending	Pending
2023NDRC019	30	31	1	2.217281	Pending	Pending	Pending	Pending
2023NDRC019	31	32	1	1.349743	Pending	Pending	Pending	Pending
2023NDRC019	32	33	1	0.094504	Pending	Pending	Pending	Pending
2023NDRC019	33	34	1	0.053818	Pending	Pending	Pending	Pending
2023NDRC019	34	35	1	0.893371	Pending	Pending	Pending	Pending
2023NDRC019	35	36	1	0.365959	Pending	Pending	Pending	Pending
2023NDRC019	36	37	1	0.046283	Pending	Pending	Pending	Pending
2023NDRC019	37	38	1	0.056831	Pending	Pending	Pending	Pending
2023NDRC019	38	39	1	0.006673	Pending	Pending	Pending	Pending
2023NDRC019	39	40	1	0.004951	Pending	Pending	Pending	Pending
2023NDRC019	40	41	1	0.006458	Pending	Pending	Pending	Pending
2023NDRC019	41	42	1	0.032721	Pending	Pending	Pending	Pending
2023NDRC019	42	43	1	0.029061	Pending	Pending	Pending	Pending
2023NDRC019	309	310	1	0.054248	Pending	Pending	Pending	Pending
2023NDRC019	310	311	1	1.375575	Pending	Pending	Pending	Pending
2023NDRC019	312	313	1	0.041117	Pending	Pending	Pending	Pending
2023NDRC019	313	314	1	0.880454	Pending	Pending	Pending	Pending
2023NDRC019	314	315	1	0.23895	Pending	Pending	Pending	Pending
2023NDRC019	315	316	1	0.219575	Pending	Pending	Pending	Pending
2023NDRC019	316	317	1	0.076851	Pending	Pending	Pending	Pending
2023NDRC019	317	318	1	0.026478	Pending	Pending	Pending	Pending
2023NDRC019	318	319	1	0.029061	Pending	Pending	Pending	Pending
2023NDRC019	332	333	1	0.024971	Pending	Pending	Pending	Pending
2023NDRC019	333	334	1	0.028416	Pending	Pending	Pending	Pending
2023NDRC019	334	335	1	0.081803	Pending	Pending	Pending	Pending
2023NDRC019	335	336	1	0.025402	Pending	Pending	Pending	Pending
2023NDRC019	336	337	1	0.140141	Pending	Pending	Pending	Pending
2023NDRC019	337	338	1	0.968715	Pending	Pending	Pending	Pending
2023NDRC019	338	339	1	1.679106	Pending	Pending	Pending	Pending
2023NDRC019	339	340	1	0.141648	Pending	Pending	Pending	Pending
2023NDRC019	340	341	1	0.030138	Pending	Pending	Pending	Pending
2023NDRC019	341	342	1	0.083525	Pending	Pending	Pending	Pending
2023NDRC019	342	343	1	0.048436	Pending	Pending	Pending	Pending
2023NDRC019	343	344	1	0.036811	Pending	Pending	Pending	Pending
2023NDDD007	29.78	30.4	0.62	0.099885	21.4575	343.3904	38.088	4.27385
2023NDDD007	30.4	31.1	0.7	0.018513	92.9825	4877.456	88.872	105.62515

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDDD007	31.1	31.8	0.7	0.049943	135.8975	3761.984	139.656	133.0999
2023NDDD007	31.8	32.43	0.63	0.130884	85.83	2493.408	228.528	101.96185
2023NDDD007	32.43	33.02	0.59	0.008611	14.305	8683.184	38.088	17.0954
2023NDDD007	33.02	33.64	0.62	0.054033	57.22	4407.208	76.176	35.4119
2023NDDD007	33.64	34.19	0.55	0.041332	71.525	2438.728	342.792	50.0651
2023NDDD007	34.19	34.82	0.63	0.017222	107.2875	3346.416	63.48	79.3715
2023NDDD007	34.82	35.21	0.39	0.012701	14.305	9481.512	25.392	10.9899
2023NDDD007	35.21	35.7	0.49	0.03595	64.3725	4308.784	76.176	63.4972
2023NDDD007	35.7	36.14	0.44	0.016145	85.83	2187.2	126.96	112.95175
2023NDDD007	36.14	36.52	0.38	0.01184	64.3725	2821.488	114.264	86.08755
2023NDDD007	36.52	37	0.48	0.029923	57.22	3313.608	165.048	68.3816
2023NDDD007	37	37.52	0.52	0.157578	14.305	372.9176	12.696	4.27385
2023NDDD007	37.52	38.14	0.62	0.125933	7.1525	212.1584	0	0
2023NDDD007	38.14	38.89	0.75	0.105052	7.1525	191.38	0	1.2211
2023NDDD007	38.89	39.26	0.37	0.098378	7.1525	254.8088	0	0
2023NDDD007	39.26	39.91	0.65	0.092997	7.1525	202.316	0	0
2023NDDD007	39.91	40.38	0.47	0.119905	7.1525	130.1384	0	0
2023NDDD007	40.38	40.98	0.6	0.125502	7.1525	111.5472	0	0
2023NDDD007	40.98	41.69	0.71	0.092781	7.1525	107.7196	0	0
2023NDDD007	41.69	42.38	0.69	0.095795	7.1525	159.6656	0	1.83165
2023NDDD007	215.84	216.51	0.67	0.120766	0	143.2616	0	0
2023NDDD007	216.51	217.18	0.67	0.112156	0	188.0992	0	0
2023NDDD007	217.18	217.68	0.5	0.110003	7.1525	178.2568	0	0
2023NDDD007	217.68	218.45	0.77	0.113663	0	153.104	12.696	0
2023NDDD007	218.45	219	0.55	0.070609	0	157.4784	0	0
2023NDDD007	219	219.81	0.81	0.14337	0	178.2568	38.088	1.2211
2023NDDD007	219.81	220.37	0.56	0.013347	92.9825	2515.28	25.392	26.8642
2023NDDD007	220.37	220.7	0.33	0.015284	50.0675	2515.28	38.088	13.4321
2023NDDD007	220.7	221.5	0.8	0.111725	157.355	848.6336	114.264	51.2862
2023NDDD007	221.5	222	0.5	0.056831	64.3725	1345.128	63.48	15.26375
2023NDDD007	222	222.67	0.67	0.046929	143.05	937.2152	76.176	55.56005
2023NDDD007	222.67	223.53	0.86	0.026693	85.83	1137.344	50.784	26.8642
2023NDDD007	223.53	224.15	0.62	0.017006	85.83	1257.64	63.48	35.4119
2023NDDD007	224.15	224.77	0.62	0.161022	7.1525	368.5432	25.392	1.2211
2023NDDD007	224.77	225.42	0.65	0.139064	7.1525	127.9512	0	0
2023NDDD007	225.42	225.97	0.55	0.094934	0	135.6064	0	0
2023NDDD007	225.97	226.68	0.71	0.106343	0	124.6704	0	0
2023NDDD007	226.68	227.31	0.63	0.078358	0	129.0448	0	0
2023NDDD007	227.31	228	0.69	0.10785	7.1525	122.4832	0	0
2023NDDD007	228	228.62	0.62	0.081157	7.1525	150.9168	0	0
2023NDDD007	228.62	229.33	0.71	0.145738	7.1525	107.7196	12.696	6.1055
2023NDDD007	229.33	229.99	0.66	0.176306	0	232.9368	38.088	0
2023NDDD007	229.99	230.39	0.4	0.210965	7.1525	291.9912	63.48	1.2211
2023NDDD007	230.39	231.12	0.73	0.021527	42.915	2471.536	25.392	14.6532
2023NDDD007	231.12	231.73	0.61	0.009902	42.915	2766.808	25.392	14.6532
2023NDDD007	231.73	232.29	0.56	0.058123	321.8625	588.3568	114.264	109.899

Hole ID	From (m)	To (m)	Interval (m)	Li2O (%)	Nb2O5 ppm	Rb20 ppm	SnO2 ppm	Ta2O5 ppm
2023NDDD007	232.29	232.77	0.48	0.077712	57.22	593.8248	88.872	20.7587
2023NDDD007	232.77	233.53	0.76	0.114308	7.1525	135.6064	38.088	1.2211
2023NDDD007	233.53	234.23	0.7	0.096872	14.305	97.3304	126.96	3.6633
2023NDDD007	234.23	234.73	0.5	0.018944	271.795	269.0256	50.784	103.18295
2023NDDD007	234.73	235.36	0.63	0.013347	100.135	263.5576	38.088	74.4871
2023NDDD007	235.36	235.96	0.6	0.023034	78.6775	768.8008	76.176	21.36925
2023NDDD007	235.96	236.67	0.71	0.003875	50.0675	1563.848	25.392	41.5174
2023NDDD007	236.67	237.32	0.65	0.032291	100.135	836.604	101.568	38.46465
2023NDDD007	237.32	237.89	0.57	0.023464	114.44	487.7456	76.176	45.1807
2023NDDD007	237.89	238.19	0.3	0.120551	64.3725	517.2728	114.264	32.35915
2023NDDD007	238.19	238.74	0.55	0.049943	57.22	182.6312	63.48	31.13805
2023NDDD007	238.74	239.42	0.68	0.277698	14.305	507.4304	63.48	4.27385
2023NDDD007	239.42	240.13	0.71	0.232492	7.1525	431.972	50.784	1.2211
2023NDDD007	240.13	240.91	0.78	0.150258	7.1525	259.1832	38.088	2.4422
2023NDDD007	240.91	241.61	0.7	0.100101	7.1525	106.626	0	0
2023NDDD007	241.61	242.3	0.69	0.089552	7.1525	131.232	0	0
2023NDDD007	242.3	243	0.7	0.128731	7.1525	130.1384	0	0
2023NDDD007	243	243.72	0.72	0.090629	7.1525	115.9216	0	0
2023NDDD007	243.72	244.48	0.76	0.108711	7.1525	130.1384	0	0
2023NDDD007	244.48	244.98	0.5	0.095365	0	130.1384	0	0
2023NDDD007	244.98	245.67	0.69	0.127009	7.1525	152.0104	12.696	0
2023NDDD007	245.67	246.13	0.46	0.175015	14.305	188.0992	25.392	4.27385
2023NDDD007	246.13	246.67	0.54	0.005382	28.61	3357.352	12.696	11.60045
2023NDDD007	246.67	247.12	0.45	0.004521	35.7625	2985.528	12.696	10.9899
2023NDDD007	247.12	247.46	0.34	0.02777	85.83	485.5584	50.784	33.58025
2023NDDD007	247.46	247.82	0.36	0.027339	42.915	475.716	50.784	12.211
2023NDDD007	247.82	248.43	0.61	0.140141	7.1525	173.8824	0	1.2211
2023NDDD007	248.43	249.12	0.69	0.087615	7.1525	165.1336	0	0
2023NDDD007	249.12	249.8	0.68	0.086969	7.1525	177.1632	0	0
2023NDDD007	249.8	250.54	0.74	0.09192	7.1525	146.5424	0	0
2023NDDD007	250.54	251.16	0.62	0.118614	7.1525	119.2024	0	1.2211
2023NDDD007	251.16	252	0.84	0.113232	7.1525	89.1284	0	0
2023NDDD007	252	252.74	0.74	0.084601	7.1525	98.9708	0	0
2023NDDD007	252.74	253.45	0.71	0.072115	0	106.0792	0	0

APPENDIX 2: Collar and down hole survey of diamond and RC drillholes released in this announcement.

All locations on Australian Geodetic Grid MGA_GDA94-51.

Downhole surveys were completed on all the DD and RC drill holes by the drillers. They used a True North seeking Gyro downhole tool to collect the surveys approximately every 5m down the hole. The azimuth shown is the magnetic azimuth of the drilling direction.

	Coordinates		Death (m)	Collar	0 - inc	Dia	Drill to ma	Drilling	A + - +	
Hole ID	Easting	Northing	RL (m)	Deptn (m)	method	Azımuth	Dip	Drill type	status	Assay status
2023NDDD007	420247	6513587	296	273	RTK-GPS	270	-55	DD	Drilled	Received
2023NDDD008	420146	6513427	294	252	RTK-GPS	270	-80	DD	Drilled	Received
2023NDRC001	420323	6513468	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC002	420237	6513457	294	276	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC003	420257	6513537	295	276	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC004	420303	6513416	293	312	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC005	420369	6513451	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC006	420281	6513580	295	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC007	420406	6513457	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC008	420345	6513539	293	306	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC009	420349	6513577	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC010	420446	6513457	293	320	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC011	420362	6513502	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC012	420401	6513502	293	320	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC013	420485	6513458	293	324	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC014	420393	6513577	293	320	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC015	420473	6513577	293	320	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC016	420427	6513537	293	300	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC017	420479	6513502	293	320	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC018	420417	6513417	293	354	RTK-GPS	270	-60	RC	Drilled	Received
2023NDRC019	420494	6513418	292	366	RTK-GPS	270	-60	RC	Drilled	Received

APPENDIX 3: JORC Code, 2012 Edition – Table 1 Exploration Results

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Industry-standard methods of diamond drilling (DD) and reverse circulation drilling (RC) were used. Core is collected in three metre passes and is then carefully transferred to core trays to retain the lithologies in the correct in-ground sequence. RC drilling was to generally accepted industry standards producing 1.0m samples which were collected beneath the cyclone and then passed through a cone splitter. The splitter reject RC samples collected into green plastic bags or plastic buckets and laid out on the ground in 20-40m rows. RC chips were sampled as 3m composites, for the full length of all the RC holes drilled, using a PVC spear to produce an approximate 3kg representative sample. Split samples of 1m were obtained within, pegmatite intersections. Samples were bagged into pre-numbered calico bags. The full length of each hole drilled was sampled. All samples collected are submitted to the contracted commercial laboratory, Bureau Veritas. Samples are dried, crushed and homogenised to produce a 40g charge for fire assay and a separate sample for 4-acid digest and 60 multi-element analysis using an Induced Coupled Plasma Mass Spectrometer. Core may be intact or broken (eg in weathered or fault zones). Core recovery for each drill run was recorded down the full length of the drillhole The core is photographed and logged for lithology, visible mineralisation, alteration, structural features, and any other pertinent characteristics. Zones of interest are marked for cutting / sawing. These intervals are cut in half using a diamond saw, with one half retained in the core tray and the other submitted to the laboratory for analysis/testwork. Industry standard assay procedures, compliant with ISO 9001Quality Management Systems, are carried out on the core samples by Bureau Veritas laboratory, which holds NATA ISO 17025 certifications. UV light was used to determine prelimina
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc). 	 The holes were drilled with a KWL1600 multi- purpose rig mounted on a Mercedes 8 x 8 with a 500psi/1350cfm Onboard Compressor supplied and operated by Blue Spec Drilling. DD holes were diamond drilled from surface to End of Hole. Coring used HQ and NQ2 diamond bits. Core was orientated where possible using standard drilling industry techniques. Each drillhole was surveyed approximately every

		5m using a north-seeking gyro tool.
		 RC holes were drilled using a 145mm (5.5in) face-
		sampling drilling bit.
		 Relevant support vehicles were provided.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Diamond drilling gathers uncontaminated fresh core samples that are processed on the drill site to eliminate drilling fluids and cuttings, resulting in clean core for logging and analysis. The RC samples were not individually weighed or measured for recovery.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 To ensure maximum sample recovery and the representivity of the samples, an experienced Company geologist was present during drilling to monitor the sampling process. Any issues were immediately rectified. Furthermore, a triple tube core barrel was utilized for Diamond drilling to ensure maximum sample recovery is obtained. Sample recovery was recorded by the Company Field Assistant based on how much of the sample is returned from the cyclone and cone splitter. This is recorded as good, fair, poor or no sample. Torque is satisfied that the RC holes have taken a sufficiently representative sample of the interval and minimal loss of fine, including coarse material has occurred in the RC drilling resulting in minimal sample bias. No twin RC drill holes have been completed to assess sample bias. At this stage no investigations have been made into whether there is a relationship between sample recovery and grade. The core is laid out sequentially in core trays logged and then photographed. Sections logged as being of geological interest – particularly pegmatite intervals - are marked for cutting and submission for assay. Minimal issues of sample recovery were encountered. Zones where broken material occurred (from zones of intense weathering / faulting) are recorded in the logs. Half core sampling ensures that samples are as
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core from each hole is logged by site geologists, recording visual features of interest, the presence or absence of alteration, the presence and orientation of structural features, mineralisation if observed, the lithologies present and any other relevant factors or features in sufficient detail to allow for meaningful geological modelling and interpretation. Logging is both qualitative (eg lithological details) and quantitative (eg structural measurements). All the 1m RC samples were sieved and collected into 20m chip trays for geological logging of colour, weathering, lithology, alteration and mineralisation for potential Mineral Resource estimation and mining studies. The total length of the RC and Diamond holes was logged. Where no sample was returned due to cavities/voids it was recorded as such The chip trays were examined under ultraviolet light to identify the presence and estimated percentage of any fluorescing mineral that could be spodumene. The total length of the RC holes was logged. Where no sample was returned as such

Sub-	 If core whether cut or sawn and whether 	 Sampling technique:
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling technique: All RC samples were collected beneath the cyclone and passed through the cone splitter. The samples were generally dry, and all attempts were made to ensure the collected samples were dry. However, on deeper portions of some of the drillholes some samples were logged as moist and/or wet. The cyclone and cone splitter were cleaned with compressed air at the end of every completed hole. The sample sizes were appropriate to correctly represent the mineralisation based on its style, thickness and the consistency of intersections; the sampling methodology and assay ranges for the primary elements. Quality Control Procedures A duplicate sample was collected every hole. Certified Reference Material (CRM) samples were inserted in the field every approximately 50 samples containing a range of lithium and base metal values. Blank washed sand material was inserted in the field every approximately 50 samples. Overall QAQC insertion rate of 1:10 samples Laboratory repeats taken and standards inserted at pre-determined level specified by the laboratory. The sections of core selected for assay are cut in half using a diamond saw. This is carried out by established Kalgoorlie-based industry service provider Petricor Services. This approach is considered fit for purpose and
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 provides representative samples for assay. The samples collected were submitted to Bureau Veritas Laboratories in Perth. For lithium assays, after crushing and pulverising, an aliquot is digested by Sodium Peroxide Fusion in a zirconium crucible. The melt is dissolved in a dilute HCl and the solution is analysed by ICP-ES. This procedure is considered a total digest and is appropriate for the determination of lithium content in pegmatites. Industry standard assay procedures, compliant with ISO 9001Quality Management Systems, are carried out on the samples. Bureau Veritas laboratory holds NATA ISO 17025 certifications. Duplicates, blanks and samples containing standards are included in the sample stream / batches submitted. Rock chips samples were selected from 2023NDR007 (@202m-203m) and 2023NDR014 (@194m-195m) for RAMAN spectroscopy. The analysis was conducted without further sample preparation. Raman spectroscopy was conducted on a WITec Alpha 300RA+ Raman system with an Andor iDUS 401 CCD maintained at -60°C and a 20x objective. An infrared (785 nm) laser was used with a 600 mm-1 grating. The mineral identification was conducted by comparing the measured Raman spectra obtained from the samples with spectra from spodumene standards (https://rruff.info/Spodumene/X050152).Th @ analysis was conducted independently by the CMCA, University of Western Australia. The comparison to standard footprint of Spodumene was

		confirmed in the selected samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples collected were logged in field notebooks by Torque personnel. Experienced Torque technical personnel reviewed all sampling and logging processes in the field. Significant intersections have been independently verified by alternative company personnel. No twin RC holes were drilled. Primary logging and sampling data are captured into Excel templates on palmtops or laptops. All paper copies of data have been stored. All data are ultimately stored in Torque's Perth- based centralised Access database with a Microsoft SQL front end which is managed by a qualified database geologist. Element assays are converted to stoichiometric oxide values using defined conversion factors (Source https://www.jcu.edu.au/advanced- analytical-centre/resources/element-to- stoichiometric-oxide-conversion-factors)
		Element ppm Conversion Factor Oxide Form
		Li 2.1527 Li ₂ O
		Cs 1.0602 Cs ₂ O
		Rb 1.0936 Rb ₂ O
		Nb 1.4305 Nb ₂ O ₅
		Sn 1.2696 SnO ₂
		Ta 1.2211 Ta ₂ O ₅
		 No adjustments or calibrations have been made to any assay data, apart from the above conversions to oxide values.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars were initially located by a company geologist using a conventional hand-held GPS unit. Final collar surveys were conducted using a RTK GPS (Hi-Target RTK GPS V200), using a base station and GNSS rover. The base station was setup with a known reference point and survey accuracy was verified with a second known reference point. An independent drone survey for topography was conducted, that also supported the validation of the RTK GPS surveyed collar locations (validated within a margin of less than 0.5m difference). Downhole surveys are completed approximately every 5m using a true north-seeking Gyro tool. The grid system for the New Dawn Project is MGA_GDA94 Zone 51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 All drill collar data is tabulated in this announcement and shown on relevant diagrams herein. This initial drilling campaign is very early stage, is part of the due diligence process being undertaken, and reference to Resources or Reserves is premature. Sample compositing has been applied to this drilling programme with 1m samples collected and submitted to the laboratory as 1m and 3m splits.

	applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of the drill core maximises unbiased sampling of relevant sections. The work is still at too early a stage to confirm categorically that all factors relevant to the actual deposit type have been established. No sampling bias is suggested based on geological information collected and collated to date.
Sample security	The measures taken to ensure sample security.	 The core trays containing the core samples were transported by Torque staff and delivered to Petricore's Kalgoorlie facility for cutting. Petricore then arranged delivery to the Bureau Veritas Laboratories sample collection depot. RC samples were collected in calico sample bags and, together with the c hip trays, were transported to the Perth office or the relevant Kalgoorlie or Perth laboratory by courier or company personnel. Sample security is not considered a significant risk.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits or reviews have been undertaken in respect of the sampling techniques and data reported in this announcement. The work is still part of a Due Diligence process for acquiring the project and such reviews would be considered premature.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Two granted mining licences (M15/217, M15/468) owned by and registered to H.A.N. Strindberg (50%) and S.H.F. Strindberg (50%). At the time of reporting, there are no caveats or mortgages registered against the tenements and no known impediments to obtaining a licence to operate in the area. The tenements are in good standing. Both tenements were granted pre-Native Title Act.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The tenements, totalling some 254 ha, were previously known as the Dawn View tantalite workings and were on a mineralised granite pegmatite originally discovered by Electra Holdings Pty Ltd in 1981 while under option from the Strindberg brothers. The Strindbergs subsequently carried out a gouging operation over a number of years until the property was acquired by J. Dautch, a director of Dawn View Pty Ltd, who constructed a treatment plant and is reported to have mined about 8,000 tonnes at an average recovered grade of 0.75 lbs Ta₂O₅ per tonne (375 ppm Ta₂O₅). This operation ceased in late 1991 owing to prolonged litigation leading to financing problems and the property was subsequently purchased by E. Dechow and T. Plotts who carried out a programme of geological mapping, sampling and drilling in early 1992. In 2001, Tantalum Australia undertook an intensive drilling project to define resources along the eastern one-third of the property covering the old Dawn View mine. A drilling program in 2001 led to a measured resource estimate of 1.04 Mt at 0.016% Ta₂O₅ over a strike length of 600m and to a depth of 30m.

		Potential exists to extend this resource southwards along strike. In recent years the ground has been worked by the Strindbergs, accumulating material in surface "stockpiles"
Geology	Deposit type, geological setting, and style of mineralisation.	 accumulating material in surface "stockpiles". The district is underlain mainly by Archean metasediments intruded by porphyry dykes parallel to the regional foliation and is situated east of the Binneringie granite pluton which occurs on the eastern flank of the Kambalda mafic—ultramafic complex. The Mt Monger fault is projected to pass within a kilometre of the western boundary of the tenements. A number of pegmatite bodies occur on the property, mainly hosted within metasediments comprised of biotite quartzite and quartz felspar biotite schist. Minor horizons of tourmaline quartzite and meta arkose are evident from float and small outcrops. A quartz felspar porphyry dyke forms a low strike ridge along the western side of the tenements and small outcrops of a felspar porphyry occur near the central part of the eastern boundary. Four main areas of pegmatite have been defined; the SW, NW, NE and Dawn View zone with other smaller scattered outcrops. The open cut workings and RC drilling carried out by Dawn View Pty Ltd at the Dawn View zone in late 1989 (54 holes, 1,090m) defined an irregular pegmatite zone some 200m long with an albite-rich assemblage comprised of albite, quartz, blocky rx-felspar, spodumene and green (lithium-rich) muscovite. Spodumene crystals up to a metre long are evident in the open cut. Tantalite mineralisation is evident as coarse crystals up to one or two centimetres long in massive albite and as finer disseminations in fine grained albite-muscovite intergrowths. Occasionally the tantalite is seen to develop alteration rims of microlite. The North-East Zone may be the northerm extension of the Dawn View pegmatites, a western body trending NNW and an eastern body trending NW. Both pegmatites appear to be flat lying. The assemblage is mainly blocky f-felspar, quartz and muscovite, however sugary albite
		outcrops occur near the southern boundary and north-east towards the Dawn View workings. A flat lying spodumene bearing pegmatite occurs west of the Dawn View zone and a narrow linear apparently steep dipping
		pegmatite occurs near the eastern boundary.

		The near-horizontal pegmatites were considered more prospective for commercial tantalum mineralization. In general, the pegmatites range from 2 to 10 m in thickness and are commonly covered by shallow colluvial material. The pegmatites have yielded a rich assemblage of minerals, particularly around the old Dawn View mine. The mineralized massive albite-cleavelandite zone contains quartz, K-feldspar, and green lithium-rich muscovite. Spodumene crystals up to 1 m long have been recorded in the Dawn View pit. Tantalite mineralization is present as fine disseminations in albite-muscovite intergrowths, and also as coarse crystals 1-2 cm in length in massive albite and muscovite. Whole-rock chemical analysis of one tantalite specimen yielded Ta values of 10,491 ppm, Nb values of 5,244 ppm, and Rb values of 2,513 ppm. Other tantalum minerals include microlite, tantite, and coarse ixiolite crystals.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth AND hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant information for the drillholes reported in this announcement can be found in the relevant tables and appendices included herein. All intercepts are presented as down- hole lengths. Insufficient data have been collected to date to allow confident reporting of true widths.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No high-grade cuts have been applied to the assay results reported in this announcement. Arithmetic weighted averages are used: eg 192m to 206m in hole 23NDRC007 is reported as 14m @ 1.01% Li₂O, comprising fourteen contiguous samples, calculated as follows: [(1m*0.077%)+(1m*0.056%)+(1m*0.03%)+(1m *0.06%)+(1m*0.64%)+(1m*0.43%)+(1m*0.6%) +(1m*2.71%)+(1m*2.04%)+(1m*1.655%)+(1m*0.4 65%)]/ [14] = 14.09308/14 = 1.01% Li₂O, reported as 1.01% Li₂O over 14m. No metal equivalent values have been used.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 All results are reported as downhole widths. Insufficient knowledge of the structural controls on the mineralisation and attitude of the mineralised horizons is known yet to allow true widths to be established.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps and summary intercept tables are included in this report. Where sufficient structural data have been gathered to allow meaningful interpretation of the structural setting controlling the mineralisation, appropriate sections for significant discoveries

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable,	 are also included. Where structural data is as at this stage insufficient to allow meaningful interpretation, sections are not provided as to do so could be considered misleading. The individual assays for all drill hole intercepts mentioned herein are reported in
	representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	Appendix 1. All intercepts are presented as down-hole lengths.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material information has been included in the body of this announcement. The main exploration aim of the current programme is to complete the due diligence process on the New Dawn prospect to establish whether or not advancement to formal acquisition is warranted.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The possible locations, and extent, of follow- up drilling or other work will depend on the decision to exercise the option and proceed to acquisition of the project.