

DY6 Stakes Highly Prospective REE Carbonatite Project in Malawi

HIGHLIGHTS

- DY6 has applied for an exclusive prospecting licence over a project area with significant REE potential in southern Malawi
- *'Tundulu' is a known carbonatite ring complex with abundant REE mineralisation, predominantly in the form of bastnaesite and apatite*
- <u>Shallow historical drilling (1988) (>max depth of 50m), includes:</u>
 - <u>41m @ 3.7% TREO</u>, from 8m (JMT-22)
 - <u>17m @1.3% TREO</u>, from surface and <u>14m @1.1% TREO</u>, from 21m (JMT-14)
 - <u>11m @ 2.2% TREO</u>, from 17m and <u>14m @ 4.1% TREO</u>, from 36m (JMT-17)
 - <u>14m @ 1.1% TREO</u>, from 3m (JMT-07)
- Samples from recent reconnaissance field visit at Tundulu have been despatched for laboratory analysis
- Tundulu complements the Company's existing REE & critical metals portfolio in Malawi

DY6 Metals Ltd (ASX: DY6) ("DY6", the "Company"), a strategic metals explorer targeting Heavy Rare Earths (HREE) and Niobium (Nb) in southern Malawi, is pleased to announce that it has submitted an exclusive prospecting licence application (91.5km²) over a carbonatite ring complex in southern Malawi known as Tundulu, with significant potential for REE ("Tundulu" or the "Project").

Shallow historical drilling at Tundulu undertaken by JICA ("Japanese International Cooperation Agency") in 1988 (up to a max depth of 50m), included:

- 41m @ 3.7% TREO, from 8m (JMT-22);
- 17m @1.3% TREO, from surface and 14m @1.1% TREO, from 21m (JMT-14);
- 11m @ 2.2% TREO, from 17m and 14m @ 4.1% TREO, from 36m (JMT-17); and
- 14m @ 1.1% TREO, from 3m (JMT-07).

The Company's geological team recently undertook reconnaissance field visit over parts of the licence application area and samples have been submitted for laboratory analysis in South Africa.

Registered Office Level 8, 99 St Georges Terrace Perth WA 6000

P: +61 8 9486 4036 **E**: info@dy6metals.com

dy6metals.com

The Company's CEO, Mr Lloyd Kaiser said:

"We are very excited about this strategic licence application in southern Malawi. Tundulu is a known carbonatite ring complex close to our flagship HREE Machinga Project with an interesting profile of bastnaesite and apatite with abundant REE mineralisation, and easily accessible by road. Tundulu will complement our existing REE projects, Machinga and Salambidwe. While the Company waits for the license to be granted, the focus of the exploration team will be on undertaking a detailed geological and geophysical review of this new licence over the coming months."

Tundulu REE Project

Figure 1. Location of the Tundulu REE Project in Southern Malawi

Tundulu is a carbonatite ring complex forming part of the Chilwa Alkaline Province in southern Malawi located approximately 60km south-east of the Company's flagship HREE, Machinga Project and situated at the southern tip of Lake Chilwa (refer Figure 1). The Project area covers 91.5km². Previous exploration has identified significant REE mineralisation, mainly in the form of bastnaesite, in addition to substantial amounts of apatite (phosphate).

Figure 2. Topographical Map of Tundulu with sample locations from recent reconnaissance field visit

The geological structure of the Tundulu Ring Complex comprises of three igneous centres. The first comprises a circular aureole of fenitization about a 2 km diameter plug of syenite. The second carbonatite ring structure centred on Nathace Hill has a diameter of 500-600m. Wrench faulting prior to emplacement of the third centre displaced the western half of the Nathace Hill ring structure 250m to the north. The third centre comprises small plugs and thin sheets of meta-nephelinite and beforsite. The main apatite deposit forms an arcuate zone (300m N-S and 50m E-W) around the eastern side of the hill.

Access to the area is relatively straightforward, the east side of the complex and Nathace Hill can be reached via dirt road from nearby village of Nambazo.

Figure 3. (A) above, Google earth image of the Tundulu Ring Complex, facing north, *(B)* below, Geological map of Tundulu, adopted from Garson (1962) with JICA drill collar locations (1988) and sample locations.

Figure 4. Rock chip samples 2 and 5 from Tundulu, *left*: visible syenite and *right*: visible brecciated carbonatite

Sample ID	Description	WGS84 Z36S East	WGS84 Z36S North
Tundu 1	Fenite	801400.67	8280145.68
Tundu 2	Syenite	801359.01	8280084.4
Tundu 3	Weathered Fenite	801518.79	8279689.68
Tundu 4	Syenite	801453.23	8279901.36
Tundu 5	Brecciated Carbonatite	801441.71	8280000.87

The Tundulu carbonatite intrusion was first reported in detail by M.S. Garson in 1965 and was extensively drilled for REE and rock phosphate resources by JICA between 1988 to 1991 with three separate non-JORC resources being delineated at Nathace Hill within the apatite.

These three areas were subject to small scale mining in 2010 and subsequently a joint venture between Optichem and Mota-Engil undertook an evaluation of the REE potential during 2014/15. They completed 55 holes, mainly RC for 7002m. A preliminary non-JORC resource was defined.

The Company has only limited historical data on the Tundulu Project. In the coming months, the Company will look to obtain all available data government and public sources and undertake a more detailed geological review.

-ENDS-

This announcement has been authorised by the Board of DY6.

More information

Mr Lloyd Kaiser	Mr John Kay	Mr Luke Forrestal		
CEO	Director & Company Secretary	Investor Relations		
lloyd.kaiser@dy6metals.com	john.kay@dy6metals.com	+61 411 479 144		

Competent Persons Statement

The Information in this announcement that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant of the Company. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Younger consents to the inclusion of this information in the form and context in which it appears in this announcement. Mr Younger holds shares in the Company.

Historical Exploration Results – Cautionary Statement

The historical geological mapping and sampling, that defined the prospect at Tundulu, and as shown in Figure 3B, was conducted in various programs between 1988 and 1991 by previous owners JICA (Japanese International Cooperation Agency). The Company is in possession of the report covering the first year of that activity.

Nothing has come to the attention of DY6 that causes the Company to question the accuracy or reliability of the former owner's Exploration Results; but DY6 has not independently validated the former owner's soil sampling results or drilling and therefore is not to be regarded as reporting, adopting or endorsing those results.

Drilling results (Exploration Results) from JICA presented in this announcement have not reported previously by the former owner of the Tundulu project, JICA. The source and date of the results are listed in the Technical References below.

As a result, the reported Exploration Results -

• Have not been reported in accordance with the JORC Code 2012 and may not conform with the JORC Code 2012.

• A Competent Person has not done sufficient work to disclose the Exploration Results in accordance with the JORC Code 2012.

• It is possible that following further evaluation and/or exploration work that the confidence in the prior reported Exploration Results may be reduced when reported under the JORC Code 2012.

• Nothing has come to the attention of the Company that causes it to question the accuracy or reliability of the former owner's Exploration Results; but

• The Company has not independently validated the former owner's Exploration Results and therefore is not to be regarded as reporting, adopting or endorsing those results.

DY6 intends to undertake further exploration including soil sampling, infill and extensional drilling at Tundulu confirm the tenor and continuity of REE and phosphate mineralisation JICA.

Technical References

Garson, M.S., (1965). Carbonatites of Southern Malawi: Bulletin of Geological Survey of Malawi, 15.

Broom-Fendley, S., Styles, M.T., Appleton, J.D., Gunn, G. & Wall, F., (2016). Evidence of dissolutionreprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes: American Mineralogist, Vol 10, pages 596-611.

Yanagiya, K., & Sato, J., (1988). Report on the Cooperative Mineral Exploration in the Chilwa Alkaline area, Republic of Malawi. Japan International Cooperation Metal Mining Agency of Japan, JICA.

Licence Application Details

Tenement No.	Tenement Size (km ²)	Application Date	Date Granted
GR:1248129	91.5km ²	7 December 2023	Pending

Hole ID	East	North	Total Depth (m)	Туре	Dip	Azimuth
JMT-01	802121	8280665	50.3	DDH	-90	0
JMT-02	802258	8280461	50.3	DDH	-90	0
JMT-03	801845	8280690	50.3	DDH	-90	0
JMT-04	802112	8280465	50.3	DDH	-90	0
JMT-05	802084	8280268	50.3	DDH	-90	0
JMT-06	801654	8280839	50.4	DDH	-90	0
JMT-07	801295	8280152	50.2	DDH	-90	0
JMT-08	801105	8280074	50.2	DDH	-90	0
JMT-09	801802	8280081	50.1	DDH	-90	0
JMT-10	801956	8280080	50.1	DDH	-90	0
JMT-11	801952	8280274	50.2	DDH	-90	0
JMT-12	801959	8280469	50.2	DDH	-90	0
JMT-13	801814	8280464	50.3	DDH	-90	0
JMT-14	801290	8280293	50.2	DDH	-90	0
JMT-15	801188	8280173	50.2	DDH	-90	0
JMT-16	801230	8280054	50.1	DDH	-90	0
JMT-17	801047	8279927	50.1	DDH	-90	0
JMT-18	801195	8279966	50.1	DDH	-90	0
JMT-19	801303	8279991	50.1	DDH	-90	0
JMT-20	801108	8280363	50.2	DDH	-90	0
JMT-21	801234	8280305	50.1	DDH	-90	0
JMT-22	801304	8280233	50.2	DDH	-90	0
JMT-23	801235	8280132	50.2	DDH	-90	0
JMT-24	801296	8280066	50.1	DDH	-90	0

Table 1: Digitised Collar Locations from JICA Report 1988 (WGS84)

JMT-01 No significant intersection JPP-01 JPP-01 <th>Hole ID</th> <th>From</th> <th>To m</th> <th>Width</th> <th>La (ppm)</th> <th>Ce (nnm)</th> <th>Nd (nnm)</th> <th>Sm (nnm)</th> <th>Eu (ppm)</th> <th>Tb (ppm)</th> <th>Nb (nnm)</th> <th>Sr (nnm)</th> <th>Y (nnm)</th> <th>P (nnm)</th> <th>TREO</th> <th>TREO</th>	Hole ID	From	To m	Width	La (ppm)	Ce (nnm)	Nd (nnm)	Sm (nnm)	Eu (ppm)	Tb (ppm)	Nb (nnm)	Sr (nnm)	Y (nnm)	P (nnm)	TREO	TREO
JMT-02 16.1 22.1 6 853 1732 607 78.7 18.2 23.4 513 5949 107 37183 4108 and 42.5 45.5 3 973 1819 652 79 20.2 5.1 420 8431 101 32007 4385 JMT-04 No significant intersection 7 7 499 5285 10560 1 101 3041 1 2663 5802 1030 346.2 111.1 60.4 2048 4541 1478 131976 14249 1.485% JMT-07 2 3 1 2663 5802 346.2 111.1 60.4 2048 4541 1478 131976 14249 1.485% JMT-08 No significant intersection 79 281 100 58 126 1400 3671 279 1208 1.499 1.479 1.485% JMT-08 No significant intersection JMT-08 100 </th <th>JMT-01</th> <th>N</th> <th>lo sian</th> <th>ificant in</th> <th>tersection</th> <th>on</th> <th>(PP)</th> <th>(PP)</th> <th>(PP)</th> <th>(pp/</th> <th>(pp/</th> <th>(PP)</th> <th>(PP)</th> <th>(PP/</th> <th>(pp/</th> <th>(/0)</th>	JMT-01	N	lo sian	ificant in	tersection	on	(PP)	(PP)	(PP)	(pp/	(pp/	(PP)	(PP)	(PP/	(pp/	(/0)
mod 42.5 45.5 3 973 1819 652 79 20.2 5.1 420 6431 101 32087 4385 JMT-03 32.6 34.7 2.1 550 1173 382 60.5 11.5 66.2 753 5205 64 30437 2772 JMT-05 30.4 31.3 0.9 2066 450.5 35.3 103.3 459 735 59 5285 10560 and 4.6 47.7 1.7 4481 798 2260 334.9 57.4 9.2 470 912 251 9744 18490 1.85%, JMT-00 3 4.7 8.1.4 2799 20.8 201.9 58 2851 7244 1318 131709 1424 91.42 192.4 8.2 6334 2734 456 2.9 63 56 1171 13053 1.30% JMT-00 1.3 4.3 3 3622	JMT-02	16.1	22.1	6	853	1732	607	78 7	18.2	23.4	513	5949	107	37183	4108	
JMT-03 32.6 34.7 2.1 550 1173 382 60.5 11.5 66.2 753 5205 64 30437 2772 JMT-04 No significant intersection -	and	42.5	45.5	3	973	1819	652	79	20.2	5.1	420	8431	101	32087	4385	
Diff-O4 No significant intersection US Color Diff Diff Diff Diff Diff Diff Diff Diff JMT-06 No significant intersection JMT-06 No significant intersection JMT-07 2 3 1 2665 957.4 9.2 470 912 251 9744 18490 1.85%. JMT-06 No significant intersection JMT-07 2 3 1 2665 981 209.9 60 29.7 1442 1936 767 72831 1177 Including 3.4 9 5.6 2932 6366 1322 334.2 100.9 58 2851 7244 1318 131709 1503 1.50%. JMT-04 1.3 4.3 3 362 734 263 46.4 131.1 c0.1 465 1006 66 51913 1786 JMT-09 1.3 4.3 3 362 734 456.6 2.9 63 61 17	JMT-03	32.6	34.7	21	550	1173	382	60.5	11.5	66.2	753	5205	64	30437	2772	
JMT-05 30.4 31.3 0.9 2406 4508 1436 208.5 35.3 103.3 459 735 99 5285 10560 and 46 47.7 1.7 1.4857 7988 2260 33.49 57.4 9.2 470 912 251 141 1490 1.42% JMT-0 No significant intersection	JMT-04	No sia	nifican	t interse	ection	1110	002	00.0	11.0	00.2	100	0200	01	00101	2112	
Initial and the section Initia and the section Initia and the	JMT-05	30.4	31.3	0.9	2406	4508	1436	208.5	35.3	103.3	459	735	99	5285	10560	
Inited No. No.<	and	46	47.7	17	4485	7988	2260	334.0	57.4	9.2	470	912	251	9744	18490	1 85%
JMT-07 2 3 1 266 1307 346.2 111.1 60.4 2048 4541 1478 131976 14249 14.42% and 3.4 17.8 14.4 2779 4952 891 20.9 60 29.7 1442 1036 776 72331 11717 Including 3.4 9 5.6 2932 6366 1322 33.42 100.9 5.8 2851 7244 1318 13709 15033 1.50% and 14.2 22.4 22.4 8884 1010 2005 38 12.6 1400 666 51913 1786 JMT-10 16.8 23.8 7 2559 6535 2714 411.6 77.6 78.17 18 152 1176 18383 90 29219 3739 JMT-13 No significant intersection 14249 14863 1413 1354 147 141 141 141 141 <t< td=""><td>IMT-06</td><td>No sia</td><td>nifican</td><td>t interse</td><td>oction</td><td>7300</td><td>2200</td><td>004.0</td><td>57.4</td><td>5.2</td><td>470</td><td>512</td><td>201</td><td>5744</td><td>10430</td><td>1.00 /0</td></t<>	IMT-06	No sia	nifican	t interse	oction	7300	2200	004.0	57.4	5.2	470	512	201	5744	10430	1.00 /0
Ont O D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	.IMT-07	2	3	1	2663	5802	1307	346.2	111 1	60.4	2048	4541	1478	131976	14249	1 42%
Including O.1 I.S.	and	34	17.8	14.4	2779	4952	891	209.9	60	29.7	1442	10936	776	72931	11717	1.42 /0
Instanta 0.3 0.3 0.3 0.3 0.33 0.32 0.33 0.32 0.34 0.135 0.134 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.135 0.134 0.135 0.134 0.135 0.135 0.135 0.134 0.135 0.135 0.135 0.134 0.135 0.134 0.133 0.135 0.134 0.135 0.134 0.135 0.134 0.135 0.134 0.134 0.134 <td>including</td> <td>3.4</td> <td>17.0 Q</td> <td>5.6</td> <td>2032</td> <td>6366</td> <td>1322</td> <td>334.2</td> <td>100.9</td> <td>58</td> <td>2851</td> <td>7244</td> <td>1318</td> <td>131700</td> <td>15043</td> <td>1 50%</td>	including	3.4	17.0 Q	5.6	2032	6366	1322	334.2	100.9	58	2851	7244	1318	131700	15043	1 50%
Init of the line line of the line of the line line of the line line of the line	and	14.2	224	8.2	6434	8884	1010	200.5	38	12.6	1400	31871	276	17947	20276	2 03%
JMT-09 1.3 4.3 3 362 734 263 46.4 13.1 <0.1 465 1006 66 51913 1786 JMT-10 16.8 23.8 7 2559 6353 2714 411.1 67.6 79.8 172 664 114 3954 14759 1.48% and 27.9 29.8 1.9 2539 6260 2064 273.4 45.6 2.9 63 636 61 170 1523 1.35% JMT-11 No significant intersection 17.3 3441 5590 72.7 264.6 66.2 23 2261 19984 416 27.74 179 1.37% Including 10.4 14 3.6 1474 2877 1061 226.9 72.5 35.4 5345 5948 663 41912 7729 and 21.3 25.3 4 2065 233 2012 1	IMT-08		nifican	t interse	otion	0004	1010	200.0	00	12.0	1400	010/1	210	11041	20210	2.0070
JMT-10 16.8 23.8 7 25.9 63.5 2714 411.1 67.6 78.8 172 664 114 3954 14759 1489 and 27.9 29.8 1.9 2539 6260 2064 273.4 45.6 2.9 63 635 61 170 13523 1.35% JMT-11 No significant intersection - <td></td> <td>13</td> <td>43</td> <td>3</td> <td>362</td> <td>734</td> <td>263</td> <td>46.4</td> <td>13.1</td> <td><0.1</td> <td>465</td> <td>1006</td> <td>66</td> <td>51013</td> <td>1786</td> <td></td>		13	43	3	362	734	263	46.4	13.1	<0.1	465	1006	66	51013	1786	
and 27.9 29.8 1.9 25.5 6200 17.4 71.1 07.5 72.5 72.6 74.7 74.7 75.5 72.6 74.7 74.7 75.5 72.6 74.7 74.7 75.5 74.7 75.5 74.7 75.5 75.7 7	IMT-10	16.8	23.8	7	2559	6353	200	411 1	67.6	79.8	172	664	114	3054	14759	1 48%
and 21.3 23.3 1.23.9 1.23.9 1.23.9 1.23.9 1.23.9 1.23.9 1.33 1.34 1.559 1.273 2.64.6 68.2 2.32 2.261 19984 416 2.274 1.379 1.378 1.341 1.379 1.373 3.414 2.433 3.304 1.433 2.37.3 61.1 1.8.6 2.91 1.663 1.8916 1.1028 1.053 1.021 1.553 3.01 1.028 1.053 1.028 1.053 1.028 1.054 1.38 1.028 1.053 1.028 1.0128 1.0128<	and	27.0	20.0	10	2539	6260	2064	272.4	45.6	20	63	635	61	170	12522	1 25%
JMT-12 3.2 2.4 2.0.8 800 1532 579 78.7 18 15.2 1176 18383 90 29219 3739 and 42 50.2 8.2 715 1356 508 74.4 16.6 11.8 2149 14863 90 33591 3330 JMT-13 No significant intersection 1.379 1.379 1.379 1.379 90 33591 3330 1.3353 1.4 2433 3804 1433 237.3 61.1 18.6 2391 9161 363 18916 11028 including 13.1 366 5385 152 152.3 20.7 7.8 297 30750 47 146 12526 and 37.3 41.4 4.1 3053 4508 965 138.5 21.2		No sia	29.0 nifican	t interse	z	0200	2004	275.4	43.0	2.9	03	035	01	170	15525	1.55%
JMT-12 J.2 Z.2 Z.3 Z.4 Z.3.5 J.6.7 T.6.7 T.6.7 T.6.3 T.6.3 <tht.6.3< th=""> <tht.6.3< th=""> <tht.6.3< td="" th<=""><td>IMT 12</td><td>3.2</td><td>21 21</td><td>20.9</td><td>800</td><td>1532</td><td>570</td><td>79.7</td><td>19</td><td>15.2</td><td>1176</td><td>19393</td><td>00</td><td>20210</td><td>3730</td><td></td></tht.6.3<></tht.6.3<></tht.6.3<>	IMT 12	3.2	21 21	20.9	800	1532	570	79.7	19	15.2	1176	19393	00	20210	3730	
And Solution	and	12	50.2	20.0	715	1356	508	70.7	16.6	11.2	2140	14963	90	29219	3739	
JMT-14 O I/T.3 I/T.4 I/T.4 <thi t.4<="" th=""> <thi t.4<="" th=""> <thi t.4<="" th=""> <thi t.4<<="" td=""><td></td><td>42 No sig</td><td>JU.Z</td><td>0.2</td><td>rion</td><td>1330</td><td>500</td><td>74.4</td><td>10.0</td><td>11.0</td><td>2149</td><td>14003</td><td>90</td><td>22281</td><td>3330</td><td></td></thi></thi></thi></thi>		42 No sig	JU.Z	0.2	rion	1330	500	74.4	10.0	11.0	2149	14003	90	22281	3330	
JMT-19 O 17.3 17.4 0.300 127.3 204.0 0.0.2 2.20 13904 4.10 22.214 137.6 including 10.4 14 3.6 1474 2877 1061 226.9 72.5 35.4 535.4 535.4 5948 663 41912 7729 and 21.3 25.3 4 2065 4297 1390 273.1 86.1 40 4603 20012 592 36120 10534 and 39.7 43.6 3.9 20623 23292 3442 461 50.1 <0.1			17.2	17.2	2441	5500	1272	264.6	68.2	23	2261	1008/	116	22724	12710	1 27%
Induding 10.4 14 23.0 1474 23.7 10.6 22.0.5 72.3 33.4 33.4 34.95 60.03 41912 172.9 and 21.3 35.3 14 2433 3804 1433 237.3 61.1 18.6 2391 9161 363 18916 11028 and 39.7 43.6 3.9 20623 23292 3442 461 50.1 <0.1	jivi1-14	10.4	17.5	2.6	1474	2077	1273	204.0	72.5	25 /	5254	5049	662	41012	7720	1.37 /0
and 21.3 3.3.3 14 24.3.3 380.4 14.33 23.3.3 0.1.1 10.6 2.5.3 10.1 30.5 10.1 30.5 10.1 30.5 10.1 30.5 10.1 30.5 10.1 30.5 10.1 30.5 30.1 20623 223.2 3442 461 50.1 <0.1 4603 20012 592 361.0 10.25 10.534 and 30.6 3.4 3.4 5711 8922 1972 290.9 43.3 <0.1	and	21.2	25.2	3.0	2422	2011	1422	220.9	61.1	10.6	2201	0161	262	41912	11029	
Including 21.3 4 2003 42.9 1330 21.0 00.1 40.03 20012 322 30120 10334 and 39.7 43.6 3.9 20623 23292 3442 461 50.1 0.1 4360 55515 80 2462 57501 5.75% JMT-15 0 3.1 3.1 3666 5385 1152 152.3 20.7 7.8 297 30750 47 146 12526 and 30.6 34 3.4 5711 8922 1972 290.9 43.3 <0.1	including	21.3	25.3	14	2433	4207	1400	237.3	96.1	10.0	4603	20012	503	36120	10534	
and 3.5. 2402 3.5. 2402 3442 401 50.1 4300 30313 80 2402 37301 3.7.% JMT-15 0 3.1 3666 5385 1152 152.3 20.7 7.8 297 30750 47 146 12526 and 30.6 34 3.4 5711 8922 1972 290.9 43.3 <0.1	and	21.3	42.6	2.0	2003	4297	2442	275.1	50.1	40 <0.1	4003	20012	90	2462	57501	E 7E%
JMT-13 0 3.1 3.1 3.1 3.1 3.11 8922 1972 290.9 43.3 <0.1 182 8965 72 465 2044 2.04% and 37.3 41.4 4.1 3053 4508 965 138.5 21.2 1.5 244 8834 90 2836 10543 JMT-16 21.2 27.8 6.6 3990 5959 1266 195.1 27.3 <0.1		39.7	43.0	3.9	20023	5292	3442	401	20.7	<0.1 7 0	4300	20750	47	2402	12526	5.75%
and 37.3 41.4 4.1 3053 4508 965 138.5 21.2 1.5 244 8834 90 2836 10543 JMT-16 21.2 27.8 6.6 3990 5959 1266 195.1 27.3 <0.1 280 1891 58 1592 13804 1.38% and 39.5 48.1 8.6 3663 4835 991 146.7 23 11.8 467 14011 70 1585 11702 JMT-17 2.9 5.2 2.3 1667 2258 665 170.1 50.8 35.5 447 2323 537 28009 6483 and 29.6 35.2 5.6 5503 8193 1758 261.4 41 12 2344 25270 43 551 1896 1.90% and 36.2 50.1 13.9 13642 1716 2804 419.2 58.3 2.1 1880 50843 39 178 41141 4.11% JMT-19 1.3 4.8 <t< td=""><td>JIVIT-15</td><td>20.6</td><td>24</td><td>3.1</td><td>5000</td><td>0000</td><td>1072</td><td>200.0</td><td>20.7</td><td>7.0</td><td>100</td><td>20750 2065</td><td>47</td><td>140</td><td>20424</td><td>2 0 4 9/</td></t<>	JIVIT-15	20.6	24	3.1	5000	0000	1072	200.0	20.7	7.0	100	20750 2065	47	140	20424	2 0 4 9/
and 37.3 41.4 41.4 3033 4306 3053 21.2 1.3 244 3034 30 2336 10343 JMT-16 21.2 27.8 6.6 3990 5959 1266 195.1 27.3 <0.1	anu	27.2	34 41.4	3.4	2052	4509	1972	290.9	43.3	<u> </u>	244	0900	00	2026	20434	2.04%
JMT-10 21.2 27.3 6.0 3990 3990 3939 1266 193.1 27.3 40.1 200 31891 38 1992 13804 1.387a and 39.5 48.1 8.6 3663 4835 991 146.7 23 11.8 467 14011 70 1585 11702 JMT-17 2.9 5.2 2.3 1667 2258 665 170.1 50.8 35.5 447 2323 537 28909 6483 and 17.7 29 11.3 7112 9251 1826 271.9 41.5 5.7 1500 34396 49 927 2264 223% and 36.2 50.1 13.9 13642 17316 2804 419.2 58.3 2.1 1880 50843 39 178 41141 4.11% JMT-18 48.4 50.1 1.7 7900 9198 2838 436.3 96.7 90.3 848 11623 810 46709 25622 2.56% JMT-19 1.		37.3	41.4 07.0	4.1	2000	4000 5050	1266	105.0	21.2	-0.1	244	21001	90 59	2030	12004	1 200/
and 39.5 40.1 6.0 3605 4635 991 140.7 2.3 11.8 407 14011 70 1385 11702 JMT-17 2.9 5.2 2.3 1667 2258 665 170.1 50.8 35.5 447 2323 537 28909 6483 and 17.7 29 11.3 7112 9251 1826 271.9 41.5 5.7 1500 34396 49 927 22264 2.23% and 36.2 50.1 13.9 13642 17316 2804 419.2 58.3 2.1 1880 50843 39 178 41141 4.11% JMT-18 48.4 50.1 1.7 7900 9198 2838 436.3 96.7 90.3 848 11623 810 46709 25622 2.56% JMT-19 1.3 4.8 3.5 879 1630 581 140.9 47.1 49.5 82 4460 1510 122165 5903 2166 2121 1417	JIVIT-TO	21.2	27.0	0.0	3990	1939	001	195.1	21.3	<u> </u>	200	14011	30	1592	13004	1.30%
JMI-17 2.3 3.2 2.3 1007 2236 003 170.1 30.8 33.3 447 2323 537 28909 0403 and 17.7 29 11.3 7112 9251 1826 271.9 41.5 5.7 1500 34396 49 927 22264 223% and 29.6 35.2 5.6 5503 8193 1758 261.4 41 12 2344 25270 43 551 18986 1.90% and 36.2 50.1 13.9 13642 17316 2804 419.2 58.3 2.1 1880 50843 39 178 41141 4.11% JMT-19 1.3 4.8 3.5 879 1630 581 140.9 47.1 49.5 82 4460 1510 122165 5903 and 12.4 14.6 2.2 708 1445 591 196 80.4 51.2 121 4457 1473 105549 5544 and 17.7 24.7 <t< td=""><td></td><td>39.5</td><td>40.1 5.2</td><td>0.0</td><td>1667</td><td>4035</td><td>991</td><td>140.7</td><td><u> 23</u></td><td>25.5</td><td>407</td><td>14011</td><td>527</td><td>2000</td><td>6492</td><td></td></t<>		39.5	40.1 5.2	0.0	1667	4035	991	140.7	<u> 23</u>	25.5	407	14011	527	2000	6492	
and 17.7 29 11.3 1712 9231 1626 271.5 41.3 3.7 1300 54396 49 927 22204 22004 22204 22004 2304 230 301 178 41141 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11 4.11 4.11 4.11 4.11 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% 4.11% <td>JIVIT-17</td> <td>17.7</td> <td>20</td> <td>2.3</td> <td>7112</td> <td>0251</td> <td>1926</td> <td>271.0</td> <td>30.8 41 E</td> <td>55.5</td> <td>447</td> <td>24206</td> <td>- 337</td> <td>20909</td> <td>0403</td> <td>2 220/</td>	JIVIT-17	17.7	20	2.3	7112	0251	1926	271.0	30.8 41 E	55.5	447	24206	- 337	20909	0403	2 220/
and 36.2 5.0 53.0 53.05 51.95 17.36 201.4 41 12 23.44 23.70 43 53.7 10900 1.90% and 36.2 50.1 13.9 13642 17316 2804 419.2 58.3 2.1 1880 50843 39 17.8 41141 4.11% JMT-18 48.4 50.1 1.7 7900 9198 2838 436.3 96.7 90.3 848 11623 810 46709 25622 2.56% JMT-19 1.3 4.8 3.5 879 1630 581 140.9 47.1 49.5 82 4460 1510 122165 5903 and 12.4 14.6 2.2 708 1445 591 196 80.4 51.2 121 4457 1473 105549 5544 and 17.7 24.7 7 491 854 266 59.2 16.2 25.6 124 2411 249 37067 2369 JMT-20 1.6 4.6	and	20.6	29	5.6	5503	9201	1759	261.4	41.5	12	2344	25270	49	927	12026	2.23%
and 36.2 36.1 16.9 25.622 2.56% JMT-19 1.3 4.8 3.5 879 1630 581 140.9 47.1 49.5 82 4460 1510 122165 5903 and 12.4 14.6 2.2 708 1445 591 196 80.4 51.2 121 4457 1473 105549 5544 and 17.7 24.7 7 491 854 266 59.2 16.2 25.6 124 2411 249 37067 2369 JMT-20 1.6 4.6 3 1580 2602 802 198.5 75.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 <	and	29.0	50.2	12.0	136/12	17216	2804	110.0	50 C	21	1880	50812	40	179	10300	1.30 /0
JMT-10 40.4 30.1 1.7 7500 5150 2050 430.3 50.7 50.3 646 11023 610 40709 23622 2.36% JMT-19 1.3 4.8 3.5 879 1630 581 140.9 47.1 49.5 82 4460 1510 122165 5903 and 12.4 14.6 2.2 708 1445 591 196 80.4 51.2 121 4457 1473 105549 5544 and 17.7 24.7 7 491 854 266 59.2 16.2 25.6 124 2411 249 37067 2369 JMT-20 1.6 4.6 3 1580 2602 802 198.5 75.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 2.2 2832 4821 1388 235.5 43.3 5.3 194 45964 141 6907 11369 JMT-21 0 4.1 4.1 1836		12 /	50.1	10.9	7000	0109	2004	419.2	06.7	2.1	100U 2/9	11622	29 210	46700	25622	2 56%
and 1.3 4.6 3.3 0.75 1030 301 140.5 47.1 49.5 62 4400 1310 122165 3903 and 12.4 14.6 2.2 708 1445 591 196 80.4 51.2 121 4457 1473 105549 5544 and 17.7 24.7 7 491 854 266 59.2 16.2 25.6 124 2411 249 37067 2369 JMT-20 1.6 4.6 3 1580 2602 802 198.5 75.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 2.2 2832 4821 1388 235.5 43.3 5.3 194 45964 141 6907 11369 JMT-21 0 4.1 4.1 1836 3197 975 192.6 54.2 9.8 461 7282 582 48055 8253 and 33.7 42.2 8.5 1785 2964 899	IMT 10	40.4	JU.1 ΛΩ	1.1	870	1620	2030 501	400.0	JU.7	30.3 40 F	040 20	11023	1510	122165	50022	2.50%
and 12 14.0 2.2 1400 1443 351 150 60.4 51.2 121 4437 1473 103349 3344 and 17.7 24.7 7 491 854 266 59.2 16.2 25.6 124 2411 249 37067 2369 JMT-20 1.6 4.6 3 1580 2602 802 198.5 75.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 2.2 2832 4821 1388 235.5 43.3 5.3 194 45964 141 6907 11369 JMT-21 0 4.1 4.1 1836 3197 975 192.6 54.2 9.8 461 7282 582 48055 8253 and 33.7 42.2 8.5 1785 2964 899 237 86.9 44.8 1384 7113 784 42991 8205 10337 JMT-22 8.7 49.8 41.1 12981 1498	and	10 /	1/6	2.5	709	1///	501	106	90 A		101	4400	1/172	105540	5511	
and 11.1 24.1 1 491 0.04 200 39.2 10.2 23.0 124 2411 249 37007 2309 JMT-20 1.6 4.6 3 1580 2602 802 198.5 75.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 2.2 2832 4821 1388 235.5 43.3 5.3 194 45964 141 6907 11369 JMT-21 0 4.1 4.1 1836 3197 975 192.6 54.2 9.8 461 7282 582 48055 8253 and 33.7 42.2 8.5 1785 2964 899 237 86.9 44.8 1384 7113 784 42991 8205 including 38 42.2 4.2 2121 3532 1195 342.5 135.3 89.8 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988	and	17.4	2/ 7	2.2	/00	1440 857	281	50.0	16.0	25.6	121	2/11	2/0	37067	2260	
Imitizo 1.0 4.0 5 1360 2002 602 136.3 7.5.2 20.2 390 3250 743 61020 7268 and 26.2 28.4 2.2 2832 4821 1388 235.5 43.3 5.3 194 45964 141 6907 11369 JMT-21 0 4.1 4.1 1836 3197 975 192.6 54.2 9.8 461 7282 582 48055 8253 and 33.7 42.2 8.5 1785 2964 899 237 86.9 44.8 1384 7113 784 42991 8205 including 38 42.2 4.2 2121 3532 1195 342.5 135.3 89.8 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988 2272 315.5 35 5 617 37510 76 2878 36791 3.68% JMT-23 39.7 44.7 5 5992		1.1	24.1	1	1500	2602	200	100 F	75.0	20.0	200	2950	249	61020	2009	
and 20.2 20.4 2.2 20.2 40.1 1300 233.3 43.3 5.3 194 43904 141 0907 11309 JMT-21 0 4.1 4.1 1836 3197 975 192.6 54.2 9.8 461 7282 582 48055 8253 and 33.7 42.2 8.5 1785 2964 899 237 86.9 44.8 1384 7113 784 42991 8205 including 38 42.2 4.2 2121 3532 1195 342.5 135.3 89.8 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988 2272 315.5 35 5 617 37510 76 2878 36791 3.68% JMT-23 39.7 44.7 5 5992 8534 1750 254.6 34.7 1 410 22377 103 2360 20004 2% JMT-24 1 4.9 3.9	and	26.2	4.0 28 /	20	2822	1801	1299	190.0 235 F	10.2	<u>20.2</u>	10/	1506/	143	6007	11260	
omit-21 o 4.1 4.1 1030 519 573 152.0 54.2 5.0 401 7202 532 40035 5253 and 33.7 42.2 8.5 1785 2964 899 237 86.9 44.8 1384 7113 784 42991 8205 including 38 42.2 4.2 2121 3532 1195 342.5 135.3 89.8 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988 2272 315.5 35 5 617 37510 76 2878 36791 3.68% JMT-23 39.7 44.7 5 5992 8534 1750 254.6 34.7 1 410 22377 103 2360 20004 2% JMT-24 1 4.9 3.9 3833 5226 280 238.5 59.9 22.9 746 5920 788 61679 13780 1.38% and 8.2 12.9	IMT 21	20.2	20.4 1 1	<u> </u>	1826	3107	075	200.0 102.6	40.0 51 0	0.0	194	7020	141 500	18055	8252	
and 55.7 42.2 6.5 1765 2504 655 257 60.9 44.6 1364 7115 764 4299 6205 including 38 42.2 4.2 2121 3532 1195 342.5 135.3 89.8 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988 2272 315.5 35 5 617 37510 76 2878 36791 3.68% JMT-23 39.7 44.7 5 5992 8534 1750 254.6 34.7 1 410 22377 103 2360 20004 2% JMT-24 1 4.9 3.9 3833 5226 280 238.5 59.9 22.9 746 5920 788 61679 13780 1.38% and 8.2 12.9 4.7 4860 6891 1384 258.4 54 50.1 1834 3372 640 43271 16952 170%	and	32.7	42.2	9.1 Q.F	1795	2064	800	132.0	96 0	9.0 11 Q	129/	7110	79/	42003	8205	
Incidenting 50 42.2 4.2 2121 5332 1135 542.5 153.5 69.6 1930 4202 1147 61602 10337 JMT-22 8.7 49.8 41.1 12981 14988 2272 315.5 35 5 617 37510 76 2878 36791 3.68% JMT-23 39.7 44.7 5 5992 8534 1750 254.6 34.7 1 410 22377 103 2360 20004 2% JMT-24 1 4.9 3.9 3833 5226 280 238.5 59.9 22.9 746 5920 788 61679 13780 1.38% and 8.2 12.9 4.7 4860 6891 1384 258.4 54 50.1 1834 3372 640 43271 16952 1 70%	including	20	42.2	0.0	2121	2504	1105	201 312 F	135.2	90.0	1020	110	104	61602	10203	
JMT-23 39.7 44.7 5 5992 8534 1750 254.6 34.7 1 410 22377 103 2360 2004 2% JMT-24 1 4.9 3.9 3833 5226 280 238.5 59.9 22.9 746 5920 788 61679 13780 1.38% and 8.2 12.9 4.7 4860 6891 1384 258.4 54 54 50.1 1834 3372 640 43271 16952 170%	IMT 22	90 87	42.2	4.Z	12021	1/022	2272	315 5	100.0	09.0 F	617	37510	76	201002	36701	3 69%
JMT-24 1 4.9 3.9 3833 5226 280 238.5 59.9 22.9 746 5920 788 61679 13780 1.38% and 8.2 12.9 4.7 4860 6891 1384 258.4 54.4 0.1 1834 3372 640 43271 16952 1 70%	IMT_22	30.7	43.0	-+1.1 5	5007	8521	1750	25/ 6	3/ 7	1	/10	22277	102	2360	2000/	5.00 /0 2%
and 8.2 12.9 4.7 4860 6891 1384 258.4 54 <0.1 1834 3372 640 43271 16052 1 70%	IMT 24	39.7	10	30	3833	5226	280	204.0 239 F	50.0	22.0	7/6	5020	799	61670	13790	<u> </u>
	and	82	12.0	47	4860	6801	138/	258.4	53.9	<0.1	183/	3372	640	43271	16052	1 70%

Table 2: Drillhole Results from JICA Report 1988

Annexure A: JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 This is an interim announcement of qualitative results. This program which is currently in process consists of the discovery, field mapping and rock chip sampling of outcrops. No rock chip sample assays are provided in this announcement. Field samples of outcrop were taken by field staff from outcrops utilising a geo-pick and hand tool. Samples are photographed and stored in labelled clear plastic bags for transport to the lab for analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No recent drilling is utilised on this program or reported in this announcement.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	• Not recorded

	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	Qualitative geological logging of rock chips and outcrops is completed in the field.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (costean, channel, etc) photography. 	 The sampling technique used to obtain rock chip samples from outcrops manually is in line with industry standards and standard exploration practices.
	• The total length and percentage of the relevant intersections le If core, whether cut or sawn and whether quarter, half or all co taken.	ogged. ore
	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	
	• For all sample types, the nature, quality and appropriateness of sample preparation technique.	of the
	 Quality control procedures adopted for all sub-sampling stages maximise representivity of samples. 	s to
	 Measures taken to ensure that the sampling is representative in situ material collected, including for instance results for field duplicate/second-half sampling. 	of the I
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	

Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. No recent assays are reported in this announcement, the announcement is an operations update relating to the current mapping and rock chip sampling program that is still currently underway. Historical analyses are defined only as being ICP; digestion methods are not specified in available data.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. No information pertaining to this release or program is or will be used in Mineral Resource estimation.

Criteria	•	JORC Code explanation Specification of the grid system used. Quality and adequacy of topographic control.	Commentary
Data spacing and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Not applicable the announcement is preliminary notification of tenement acquisition.
Orientation of data in relation to geological structure	•	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Not recorded. Core is reportedly available for inspection at Malawi Geological Survey Head Office in Zomba.
Sample security	•	The measures taken to ensure sample security.	Company staff collected all laboratory samples. Contractors affiliated to the laboratory were for the transport of the samples to the lab.
Audits or reviews		• The results of any audits or reviews of sampling techniques and • data.	No audit of data has been completed to date.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All claims are believed to be in good standing with the relevant government authorities and there are no known impediments to operation in the project area.

Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	•	Historical exploration is known to have been conducted by JICA (Japanese International Cooperation Agency) from 1988-91. Full details are being researched.
		•	A joint venture between Optichem and Mota-Engil explored the area for REE during 2014/15, details are being researched.
		•	Small scale mining was also undertaken by unknown parties in 2014.
		•	A full literature search will be undertaken by DY6 staff to acquire all relevant data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Geology	• Deposit type, geological setting and style of mineralisation.	 Tundulu is a carbonatite ring complex forming part of the Chilwa Alkaline Province in southern Malawi. The geological structure of the Tundulu Ring Complex comprises of three igneous centres. The first comprises a circular aureole of fenitization about a 2 km diameter plug of syenite. The second carbonatite ring structure centred on Nathace Hill has a diameter of 500-600m. Wrench faulting prior to emplacement of the third centre displaced the western half of the Nathace Hill ring structure 250m to the north. The third centre comprises small plugs and thin sheets of meta- nephelinite and beforsite

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• No drilling has been undertaken on the project.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No aggregation methods were used and no metal equivalents are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	• No new mineralisation widths are being reported. Historical results are included for context.

Criteria	 JORC Code explanation If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Commentary
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Please see maps and diagrams included in the announcement text, that provide locations for the claims and their location relative to other projects in the area, with known geology from government mapping.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The release is considered to be balanced and is based on current available data for the project area
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• The historical data currently available to the Company is known to be incomplete. Attempts will be made to obtain and collate the full historical exploration data.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The Company intends to continue explore the tenements taking priority samples with a view to do follow-up soil sampling and/or drilling. Historical data will be integrated as in becomes available.