

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Majority of drill-holes intersect spodumene-bearing pegmatites at Muvero

Highlights

- Drill-holes MRC01 to MRC17 completed, for a total of 2,656m
- Spodumene recognised in drill-cuttings from 13 drill-holes
- At least 40 intersections of spodumene-bearing pegmatite
- Presence of unexposed spodumene-bearing pegmatites at depth confirmed
- Drilling at Muvero to restart in January 2024, in addition to drilling at other prospects

Tyranna Resources Ltd ("Tyranna" or **"the Company")** is pleased to provide an update of the drilling program at the Muvero Prospect, in which 17 RC drill-holes, (MRC01 to MRC17, shown below in Figure 1), have been completed, with drilling to recommence in January 2024.

Figure 1: MRC17 in-progress, drilling from built-up drill-pad.

Tyranna Technical Director, Peter Spitalny, commented: "The fact that more than 75% of the drill-holes have intersected spodumene-bearing pegmatite, but drilling has only occurred in about 15% of the Muvero prospect is exciting. Drilling at Muvero will resume in January 2024, with drilling coverage expanding to ensure that the entire prospect is explored effectively and is likely to continue through to April 2024. Tyranna believes the drilling to be completed in 2024 at Muvero will discover substantial amounts of spodumene-bearing pegmatite, and drilling of other prospects will yield positive results that further enhance the value of the Namibe Lithium Project!"

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Discussion of drilling to-date

The Muvero Prospect consists of an area extending approximately 500m East-West and 300m North-South in which there are 3 major pegmatite outcrops and at least 30 additional smaller outcrops. The drilling discussed in this announcement has focussed upon investigating the western portion of the prospect, covering about 15% of the total prospect area, with key points being:

- 17 drill-holes (MRC01 MRC17) have been completed for a total of 2,665m.
- **Spodumene clearly recognised in 13 drill-holes, and likely present in 3 other drill-holes** (MRC07, MRC10 and MRC13), based upon recognised spodumene in extensions of pegmatite intersected in adjacent drill-holes.
- 40 recognised intersections of spodumene bearing pegmatite have been attained.
- Down-hole length of the spodumene-bearing pegmatite intersections range from 2m to 35m.
- Most drill-holes have multiple intersections of spodumene-bearing pegmatite.
- Spodumene-bearing pegmatite intersection depths (down-hole) range from surface (0m) to approximately 120m (MRC12; 115m-123m spodumene-bearing pegmatite).

The nature of the Muvero pegmatite is reasonably well understood because of the exposures in workings and drill-core from the 2022 drilling program. The spodumene occurs mostly as phenocrystic megacrysts (up to several metres in length) in a coarse-grained matrix comprised chiefly of cleavelandite and quartz, with accompanying varying minor amounts of lepidolite and elbaite, muscovite and microcline. However, RC drilling usually results in small fragments, and it can be difficult to recognise spodumene in this situation.

Fortunately, some of the intersections of spodumene-bearing pegmatite are quite distinctive (Figure 2) due to the presence of pale blue cleavelandite (e.g., the 27m-28m compartment of the chip tray in Figure 2), or traces of purple lepidolite (e.g., the 29m-30m compartment). Spodumene presents typically as elongate tabular or bladed fragments, e.g., in the 30m-31m compartment of the chip tray, but can also be "blocky" e.g., the large grey fragment in the 28m-29m compartment.

Figure 2: Chip-tray of 20m-40m interval of MRC15.

Note the mineralisation evident from 25m to 32m, which contains spodumene (10%-20%), lepidolite (1%-5%), elbaite (1%-3%), cleavelandite (variety of albite feldspar, 20%-40%), microcline (variety of potassium feldspar, 5%-10%), muscovite (variety of mica, 5%-10%), and quartz (20%-30%).

*<u>Note</u>: visual indications and estimates of mineral species and abundance should never be considered a proxy or substitute for laboratory analysis where concentrations or grades are the factor of principal economic interest. Visual estimates also provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results are expected in January 2024 and, after verification, will be announced as soon as possible.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Seven of the drill-holes (MRC01, MRC02, MRC03, MRC04, MRC05, MRC08 (Figure 3), and MRC11) had 3 distinctly recognisable intersections of spodumene-bearing pegmatite. **These intersections occur from surface and at varying depths, confirming that spodumene-bearing pegmatite is abundant.**

Figure 3: Multiple spodumene-bearing intersections attained by MRC08.

Spodumene is present in the interval from 0m-11m (1%-5% spodumene), 22m-36m (10%-20% spodumene, with distinct large fragment 26m-27m) and 66m-79m (5%-10% spodumene). Detailed composition of these intervals is provided in Appendix 3.

The collar details of the drill-holes are attached as Appendix 1. Summary logs of the geology intersected up to the time of writing this report is attached as Appendix 2. The spodumene-bearing intersections achieved to-date are summarised in Table 1, with composition details provided in Appendix 3.

*<u>Note</u>: visual indications and estimates of mineral species and abundance should never be considered a proxy or substitute for laboratory analysis where concentrations or grades are the factor of principal economic interest. Visual estimates also provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results are expected in January 2024 and, after verification, will be announced as soon as possible.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Table 1: Mineralised intersections*1 of MRC01 – MRC17

Drill-hole I.D.	From (m)	To (m)	interval (m)	Approximate Spodumene content of interval
MRC01	22	29	7	10%-20% spodumene; unaltered, unweathered
MRC01	31	43	12	5%-15% spodumene; unaltered, unweathered
MRC01	59	61	2	1%-5% spodumene; unaltered, unweathered
MRC02	9	15	7	5%-15% spodumene; unaltered, unweathered
MRC02	27	42	15	5%-10% spodumene; unaltered, unweathered
MRC02	44	47	3	5%-10% spodumene; unaltered, unweathered
MRC03	11	17	6	5%-10% spodumene; unaltered, unweathered
MRC03	39	61	22	5%-10% spodumene; unaltered, unweathered
MRC03	80	82	2	1%-5% spodumene; unaltered, unweathered
MRC04	12	26	14	5%-15% spodumene; unaltered, unweathered
MRC04	39	42	3	5%-15% spodumene; unaltered, unweathered
MRC04	50	52	2	1%-5% spodumene; unaltered, unweathered
MRC04	70	105	35	10%-20% spodumene; unaltered, unweathered
MRC05	20	34	14	5%-10% spodumene; unaltered, unweathered
MRC05	38	40	2	1%-5% spodumene; unaltered, unweathered
MRC05	45	57	12	5%-15% spodumene; unaltered, unweathered
MRC05	58	76	22	10%-20% spodumene; unaltered, unweathered
MRC05	99	103	4	1%-5% spodumene; unaltered, unweathered
MRC05	113	114	1	1%-2% spodumene; unaltered, unweathered
MRC05	119	120	1	1%-2% spodumene; unaltered, unweathered
MRC06	6	12	6	1%-2% spodumene; unaltered, unweathered
MRC07	0	247 (EOH)		11pegmatite intersections; No spodumene recognised*
MRC08	0	11	11	1%-5% spodumene; minor weathering
MRC08	22	36	12	10%-20% spodumene; unaltered, unweathered
MRC08	66	79	13	5%-10% spodumene; unaltered, unweathered
MRC09	38	41	4	1%-2% spodumene; unaltered, unweathered
MRC09	47	54	7	10%-20% spodumene; unaltered, unweathered
MRC09	72	79	7	10%-20% spodumene; unaltered, unweathered
MRC09	89	91	2	1%-2% spodumene; unaltered, unweathered

*¹ <u>Note</u>: stated lengths are down-hole lengths of intersection, and the true thickness of the intersected pegmatites is not yet known. A complete description of the composition of mineralised intervals is attached as Appendix 3.

*² All intersected intervals of pegmatite will be assayed, as spodumene can sometimes be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	interval (m)	Approximate Spodumene content of interval
MRC10	0	121 (EOH)		3 pegmatite intersections; No spodumene recognised* ²
MRC11	0	9	9	1%-2% spodumene; minor weathering
MRC11	11	16	5	1%-2% spodumene; unaltered, unweathered
MRC11	27	33	6	10%-20% spodumene; unaltered, unweathered
MRC11	45	49	4	1%-2% spodumene; unaltered, unweathered
MRC11	97	100	3	10%-20% spodumene; unaltered, unweathered
MRC11	106	110	4	1%-5% spodumene; unaltered, unweathered
MRC12	0	17	17	1%-2% spodumene; unaltered, unweathered
MRC12	115	123	7	10%-20% spodumene; unaltered, unweathered
MRC13	0	151		7 pegmatite intersections; No spodumene recognised*
MRC14	83	88	5	5%-10% spodumene; unaltered, unweathered
MRC15	25	32	7	10%-20% spodumene; unaltered, unweathered
MRC15	47	49	2	1%-2% spodumene; unaltered, unweathered
MRC16	0	126		3 pegmatite intersections; No spodumene*
MRC17	62	66	4	1%-2% spodumene; unaltered, unweathered

Table 1: Mineralised intersections^{*1} of MRC01 – MRC17 (continued)

*¹ <u>Note</u>: stated lengths are down-hole lengths of intersection, and the true thickness of the intersected pegmatites is not yet known. A complete description of the composition of mineralised intervals is attached as Appendix 3.

*² All intersected intervals of pegmatite will be assayed, as spodumene can sometimes be difficult to recognise.

Although identification of spodumene fragments in RC drill cuttings is routinely achievable by suitably experienced geologists, visual identification of mineral species and any estimate of abundance should never be considered a proxy or substitute for laboratory analysis where concentrations or grades are the factor of principal economic interest. Visual estimates also provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results are expected in January 2024 and, after verification, will be announced as soon as possible.

Development Update

For the drilling summarised in this announcement, most personnel operated out of Namibe, as cooking and ablutions facilities were not yet ready. However, progress has accelerated (Figure 4) and when drilling recommences in January, most personnel will operate out of the camp, increasing operational efficiency, reducing travel time and the potential for accidents due to travel to and from the project.

Next Steps

Drilling will recommence in January 2024, with approximately 6,000m remaining to be drilled at the Muvero prospect, along with drilling at other prospects. Approximately half the samples from the drilling have been received by ALS Namibia (Okahandja) for processing into pulps for export to Australia and subsequent analysis. The remaining samples will be delivered before Christmas.

Receipt of the assay results from the first batch of samples is anticipated to occur in January 2024 and, after required validation, will be announced as soon as possible.

ASX Announcement 12 December 2023 ASX: TYX

6

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

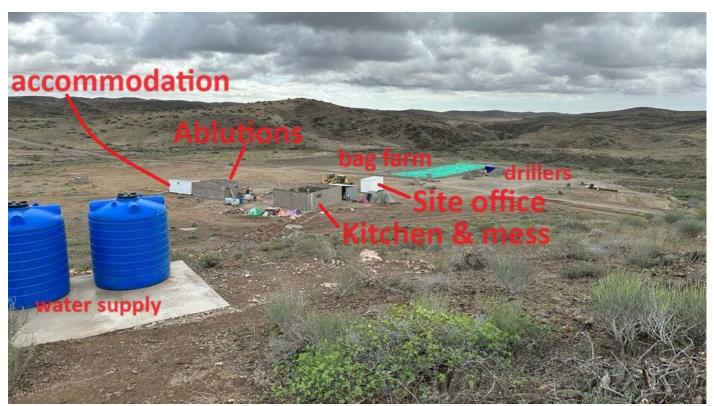


Figure 4: Namibe Lithium Project Camp, 6/12/23.

Continuing progress updates will be provided in the New Year.

Authorised by the Board of Tyranna Resources Ltd

Joe Graziano Chairman

Competent Person's Statement

The information in this report that relates to exploration results for the Namibe Lithium Project is based on, and fairly represents, information and supporting geological information and documentation that has been compiled by Mr Peter Spitalny who is a Fellow of the AusIMM. Mr Spitalny is employed by Han-Ree Holdings Pty Ltd, through which he provides his services to Tyranna as an Executive Director; he is a shareholder of the company. Mr Spitalny has more than five years relevant experience in the exploration of pegmatites and qualifies as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Spitalny consents to the inclusion of the information in this report in the form and context in which it appears.

Forward Looking Statement

This announcement may contain some references to forecasts, estimates, assumptions, and other forward-looking statements. Although the company believes that its expectations, estimates, and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this presentation are to Australian currency, unless otherwise stated. Investors should make and rely upon their own enquires and assessments before deciding to acquire or deal in the Company's securities.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill hole ID	Coll. Easting (mE)	Coll. Northing (mN)	Azimuth (wrt TN)	Datum	dip	EOH(m)
MRC01	221555	8322658	340	WGS-84 z33L	-45	253
MRC02	221558	8322655	331	WGS-84 z33L	-45	102
MRC03	221558	8322655	295	WGS-84 z33L	-47	108
MRC04	221565	8322640	270	WGS-84 z33L	-45	204
MRC05	221565	8322640	270	WGS-84 z33L	-70	151
MRC06	221561	8322634	250	WGS-84 z33L	-45	204
MRC07	221561	8322634	250	WGS-84 z33L	-70	247
MRC08	221561	8322630	360	WGS-84 z33L	-80	151
MRC09	221561	8322630	320	WGS-84 z33L	-70	109
MRC10	221558	8322651	295	WGS-84 z33L	-75	121
MRC11	221571	8322639	245	WGS-84 z33L	-80	181
MRC12	221563	8322634	234	WGS-84 z33L	-45	204
MRC13	221563	8322634	237	WGS-84 z33L	-75	151
MRC14	221562	8322633	216	WGS-84 z33L	-45	198
MRC15	221565	8322603	N/A	WGS-84 z33L	-90	67
MRC16	221540	8322604	216	WGS-84 z33L	-45	126
MRC17	221541	8322606	216	WGS-84 z33L	-65	79

APPENDIX 1: Drill Collar Table

Azi(wrt TN)* = Azimuth with respect to True North.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC01	0	3	3	N/A; drill-pad fill	site built-up to permit drilling
MRC01	3	6	3	mafic host rock	minor pegmatite veinlets 4m-6
MRC01	6	16	10	pegmatite	spodumene not seen*1
MRC01	16	22	6	mafic host rock	
MRC01	22	29	7	pegmatite	spodumene present* ²
MRC01	29	31	2	mafic host rock	xenolith?
MRC01	31	43	12	pegmatite	spodumene present* ²
MRC01	43	45	2	mixed mafic & pegmatite	contact zone
MRC01	45	59	14	mafic host rock	
MRC01	59	61	2	pegmatite	spodumene present* ²
MRC01	61	72	11	mafic host rock	
MRC01	72	76	4	pegmatite	spodumene not seen ^{*1}
MRC01	76	253 (EOH)	177	mafic host rock	
MRC02	0	3	3	N/A; drill-pad fill	site built-up to permit drilling
MRC02	3	9	6	mafic host rock	
MRC02	9	15	7	pegmatite	spodumene present ^{*2}
MRC02	15	27	12	mafic host rock	
MRC02	27	42	15	pegmatite	spodumene present* ²
MRC02	42	44	2	mafic host rock	xenolith?
MRC02	44	47	3	pegmatite	spodumene present* ²
MRC02	47	58	11	mafic host rock	
MRC02	58	61	3	pegmatite	spodumene not seen ^{*1}
MRC02	61	70	9	mafic host rock	
MRC02	70	72	2	mafic host & pegmatite	several small pegmatite veins
MRC02	72	76	4	pegmatite	spodumene not seen*1
MRC02	76	102 (EOH)	26	mafic host rock	
MRC03	0	3	3	N/A; drill-pad fill	site built-up to permit drilling
MRC03	3	11	8	mafic host rock	
MRC03	11	17	6	pegmatite	spodumene present ^{*2}
MRC03	17	39	22	mafic host rock	· · ·
MRC03	39	61	22	pegmatite	spodumene present* ²
MRC03	61	77	16	mafic host rock	· · · ·
MRC03	77	79	3	pegmatite	spodumene not seen*1
MRC03	79	80	1	mafic host rock	
MRC03	80	82	2	pegmatite	spodumene present ^{*2}
MRC03	82	98	16	mafic host rock	
MRC03	98	100	2	pegmatite	spodumene not seen*1
MRC03	100	108 (EOH)		mafic host rock	,

APPENDIX 2: Drill Summary Geology Logs

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

rill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC04	0	12	12	mafic host rock	
MRC04	12	26	14	pegmatite	spodumene present ^{*2}
MRC04	26	39	13	mafic host rock	
MRC04	39	42	3	pegmatite	spodumene present ^{*2}
MRC04	42	50	7	mafic host rock	
MRC04	50	52	2	pegmatite	spodumene present ^{*2}
MRC04	52	70	28	mafic host rock	
MRC04	70	105	35	pegmatite	spodumene present ^{*2}
MRC04	105	107	2	mafic host rock	
MRC04	107	109	2	pegmatite	spodumene not seen ^{* 1}
MRC04	109	127	18	mafic host rock	
MRC04	127	129	1	pegmatite	spodumene not seen ^{* 1}
MRC04	129	135	6	mafic host rock	
MRC04	135	136	1	pegmatite	spodumene not seen ^{* 1}
MRC04	136	204 (EOH)	68	mafic host rock	
MRC05	0	20	20	mafic host rock	
MRC05	20	34	14	pegmatite	spodumene present* ²
MRC05	34	38	4	mafic host rock	spouimene present
MRC05	38	40	2	pegmatite	spodumene present* ²
MRC05	40	40	5	mafic host rock	spoulinene present
MRC05	40	57	12		spodumene present* ²
MRC05	57	58	12	pegmatite mafic host rock	xenolith?
	58		22		spodumene present*2
MRC05 MRC05	76	76 85	3	pegmatite mafic host rock	spodumene present
MRC05	85	87	2	mafic host & pegmatite	
MRC05	87	88	1	mafic host rock	
MRC05	88	92	4	mafic host & pegmatite	
MRC05	92	95	3	mafic host rock	
MRC05	95	97	2	mafic host & pegmatite	
MRC05	99	103	4	pegmatite	spodumene present* ²
MRC05	103	105	3	mafic host rock	
MRC05	106	109	3	mafic host & pegmatite	
MRC05	109	111	2	mafic host rock	
MRC05	111	113	2	mafic host & pegmatite	
MRC05	113	114	1	pegmatite	spodumene present* ²
MRC05	114	119	5	mafic host rock	
MRC05	119	120	1	pegmatite	spodumene present* ²
MRC05	120	136	16	mafic host rock	
MRC05	136	137	1	pegmatite	spodumene not seen* 1
MRC05	137	151 (EOH)	14	mafic host rock	

APPENDIX 2: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC06	0	4	3	mafic host rock	
MRC06	4	6	2	mafic host & pegmatite	
MRC06	6	12	6	pegmatite	spodumene present* ²
MRC06	12	13	1	mafic host & pegmatite	
MRC06	13	28	15	mafic host rock	
MRC06	28	29	1	mafic host & pegmatite	
MRC06	29	30	1	pegmatite	spodumene not seen* 1
MRC06	30	49	19	mafic host rock	
MRC06	49	50	1	pegmatite	spodumene not seen ^{* 1}
MRC06	50	54	4	mafic host & pegmatite	
MRC06	54	55	1	mafic host rock	
MRC06	55	56	1	mafic host & pegmatite	
MRC06	56	59	3	mafic host rock	
MRC06	59	63	4	mafic host & pegmatite	
MRC06	63	75	12	mafic host rock	
MRC06	75	77	2	pegmatite	spodumene not seen* ¹
MRC06	77	78	1	mafic host & pegmatite	
MRC06	78	125	47	mafic host rock	
MRC06	125	126	1	mafic host & pegmatite	
MRC06	126	204 (EOH)	25	mafic host rock	
MRC07	0	6	6	mafic host rock	
MRC07	6	10	4	pegmatite	spodumene not seen* ¹
MRC07	10	17	7	mafic host rock	
MRC07	17	22	5	pegmatite	spodumene not seen*1
MRC07	22	82	60	mafic host rock	spoudinene not seen
MRC07	82	84	2	pegmatite	spodumene not seen ^{* 1}
MRC07	84	125	41	mafic host rock	spoulinene not seen
MRC07	125	126	1	pegmatite	spodumene not seen* ¹
MRC07	125	135	9	mafic host rock	spoumene not seen
MRC07	135	135	2		spodumene not seen ^{* 1}
MRC07	135	137	12	pegmatite mafic host rock	spodumene not seen
					* 1
MRC07 MRC07	149	151	25	pegmatite	spodumene not seen ^{* 1}
	151	156	-	mafic host rock	
MRC07	156	157	1	pegmatite	spodumene not seen ^{* 1}
MRC07	157	163	6	mafic host rock	1
MRC07	163	165	2	pegmatite	spodumene not seen ^{* 1}
MRC07	165	170	5	mafic host rock	1
MRC07	170	173	3	pegmatite	spodumene not seen ^{* 1}
MRC07	173	177	4	mafic host rock	
MRC07	177	178	1	pegmatite	spodumene not seen* ¹
MRC07	178	183	5	mafic host rock	
MRC07	183	187	4	pegmatite	spodumene not seen* ¹
MRC07	187	247 (EOH)	60	mafic host rock	

<u>APPENDIX 2</u>: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

ASX Announcement 12 December 2023 ASX: TYX

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC08	0	11	11	pegmatite	spodumene present* ²
MRC08	11	12	1	mafic host & pegmatite	
MRC08	12	16	4	mafic host rock	
MRC08	16	18	2	pegmatite	spodumene not seen*1
MRC08	18	19	1	mafic host & pegmatite	
MRC08	19	22	3	mafic host rock	
MRC08	22	36	12	pegmatite	spodumene present*2
MRC08	36	37	19	mafic host & pegmatite	
MRC08	37	38	1	pegmatite	spodumene not seen*1
MRC08	38	40	2	mafic host rock	
MRC08	40	41	1	pegmatite	spodumene not seen*1
MRC08	41	42	1	mafic host & pegmatite	
MRC08	42	65	3	mafic host rock	
MRC08	65	66	4	mafic host & pegmatite	
MRC08	66	79	13	pegmatite	spodumene present*2
MRC08	79	83	4	mafic host rock	• • •
MRC08	83	85	2	pegmatite	spodumene not seen*1
MRC08	85	86	1	mafic host rock	
MRC08	86	87	1	pegmatite	spodumene not seen*1
MRC08	87	91	4	mafic host rock	
MRC08	91	94	3	mafic host & pegmatite	
MRC08	94	95	1	pegmatite	spodumene not seen*1
MRC08	95	100	5	mafic host rock	opedamene netecci
MRC08	100	102	2	pegmatite	spodumene not seen*1
MRC08	100	151(EOH)	49	mafic host rock	spournene not seen
			-		
Drill-hole I.D.		To (m)	length (m)	Lithology	Comments
MRC09	0	10	10	pegmatite	spodumene not seen*1
MRC09	10	11	1	mafic host & pegmatite	
MRC09	11	24	13	pegmatite	spodumene not seen*1
MRC09					
MRC09	24	28	4	mafic host rock	
WINC09	24 28	28 33	4 5	mafic host rock pegmatite	spodumene not seen*1
MRC09					spodumene not seen*1
	28	33	5	pegmatite	spodumene not seen*1 spodumene not seen*1
MRC09	28 33	33 34	5 1	pegmatite mafic host rock	
MRC09 MRC09	28 33 34	33 34 35	5 1 1	pegmatite mafic host rock pegmatite	spodumene not seen*1
MRC09 MRC09 MRC09	28 33 34 35	33 34 35 36	5 1 1 1 1	pegmatite mafic host rock pegmatite mafic host rock	
MRC09 MRC09 MRC09 MRC09	28 33 34 35 36	33 34 35 36 38	5 1 1 1 1 1	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite	spodumene not seen*1
MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38	33 34 35 36 38 41	5 1 1 1 1 1 4	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite	spodumene not seen* ¹ spodumene present ^{*2}
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41	33 34 35 36 38 41 47	5 1 1 1 1 1 4 6	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock	spodumene not seen*1
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41 47	33 34 35 36 38 41 47 54	5 1 1 1 1 4 6 7	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock pegmatite	spodumene not seen*1 spodumene present*2 spodumene present*2
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41 47 54	33 34 35 36 38 41 47 54 72	5 1 1 1 1 4 6 7 18	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock pegmatite mafic host rock	spodumene not seen* ¹ spodumene present ^{*2}
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41 47 54 72 79	33 34 35 36 38 41 47 54 72 79	5 1 1 1 1 4 6 7 18 7	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock pegmatite mafic host rock pegmatite mafic host rock	spodumene not seen*1 spodumene present*2 spodumene present*2 spodumene present*2
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41 47 54 72	33 34 35 36 38 41 47 54 72 79 89	5 1 1 1 1 4 6 7 18 7 10	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock pegmatite mafic host rock pegmatite	spodumene not seen*1 spodumene present*2 spodumene present*2
MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09 MRC09	28 33 34 35 36 38 41 47 54 72 79 89	33 34 35 36 38 41 47 54 72 79 89 91	5 1 1 1 1 4 6 7 18 7 10 2	pegmatite mafic host rock pegmatite mafic host rock mafic host & pegmatite pegmatite mafic host rock pegmatite mafic host rock pegmatite mafic host rock pegmatite	spodumene not seen*1 spodumene present*2 spodumene present*2 spodumene present*2

APPENDIX 2: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC10	0	1	1	N/A; drill-pad fill	site built-up to permit drilling
MRC10	1	2	1	mafic host & pegmatite	
MRC10	2	10	8	mafic host rock	
MRC10	10	11	1	mafic host & pegmatite	
MRC10	11	13	2	pegmatite	spodumene not seen ^{*1}
MRC10	13	67	54	mafic host rock	
MRC10	67	68	1	mafic host & pegmatite	
MRC10	68	69	1	pegmatite	spodumene not seen ^{* 1}
MRC10	69	80	11	mafic host & pegmatite	
MRC10	80	93	13	pegmatite	spodumene not seen*1
MRC10	93	94	1	mafic host & pegmatite	
MRC10	94	121 (EOH)	7	mafic host rock	
MRC11	0	1	1	N/A; drill-pad fill	site built-up to permit drilling
MRC11	1	9	8	pegmatite	spodumene not seen ^{* 1}
MRC11	9	11	2	mafic host & pegmatite	
MRC11	11	16	5	pegmatite	spodumene not seen ^{* 1}
MRC11	16	20	4	mafic host rock	
MRC11	20	21	1	mafic host & pegmatite	
MRC11	21	26	5	mafic host rock	
MRC11	26	27	1	mafic host & pegmatite	
MRC11	27	33	6	pegmatite	spodumene present* ²
MRC11	33	45	12	mafic host rock	
MRC11	45	49	4	pegmatite	spodumene not seen ^{* 1}
MRC11	49	71	22	mafic host rock	
MRC11	71	72	1	mafic host & pegmatite	
MRC11	72	75	3	pegmatite	spodumene not seen ^{* 1}
MRC11	75	93	18	mafic host rock	
MRC11	93	95	2	mafic host & pegmatite	
MRC11	95	97	2	mafic host rock	
MRC11	97	100	3	pegmatite	spodumene present* ²
MRC11	100	102	2	mafic host & pegmatite	
MRC11	102	105	3	mafic host rock	
MRC11	105	106	1	mafic host & pegmatite	
MRC11	106	110	4	pegmatite	spodumene present* ²
MRC11	110	111	1	mafic host & pegmatite	
MRC11	111	119	8	mafic host rock	
MRC11	119	120	1	mafic host & pegmatite	
MRC11	120	122	2	pegmatite	spodumene not seen ^{* 1}
MRC11	122	126	4	mafic host rock	
MRC11	126	127	1	pegmatite	spodumene not seen ^{* 1}
MRC11	127	181 (EOH)	54	mafic host rock	

<u>APPENDIX 2</u>: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC12	0	2	2	pegmatite	spodumene not seen* ¹
MRC12	2	3	1	mafic host & pegmatite	
MRC12	3	17	14	pegmatite	spodumene present* ²
MRC12	17	51	34	mafic host rock	
MRC12	51	52	1	mafic host & pegmatite	
MRC12	52	53	1	mafic host rock	
MRC12	53	56	3	pegmatite	spodumene not seen ^{*1}
MRC12	56	76	20	mafic host rock	
MRC12	76	77	1	pegmatite	spodumene not seen*1
MRC12	77	103	26	mafic host rock	
MRC12	103	107	4	pegmatite	spodumene not seen*1
MRC12	105	114	7	mafic host rock	spoudinene not seen
MRC12	114	115	1	mafic host & pegmatite	
MRC12	115	123	8	pegmatite	spodumene present* ²
MRC12 MRC12	113	123	° 1	mafic host & pegmatite	spoumene present
MRC12 MRC12	123	124	33	mafic host rock	
MRC12 MRC12	157	159	2	mafic host & pegmatite	
MRC12	159	161	2	mafic host rock	
MRC12	161	163	2	mafic host & pegmatite	
MRC12	163	172	9	mafic host rock	
MRC12	172	176	4	pegmatite	spodumene not seen*1
MRC12	176	204 (EOH)	28	mafic host rock	spoulinene not seen
MDC12	0		5		spodumene not seen*1
MRC13 MRC13	5	5	2	pegmatite	spodumene not seen
				mafic host rock	
MRC13	7	12	5	pegmatite	spodumene not seen*1
MRC13	12	16	4	mafic host rock	
MRC13	16	19	3	mafic host & pegmatite	
MRC13	19	24	5	pegmatite	spodumene not seen ^{*1}
MRC13	24	67	43	mafic host rock	
MRC13	67	70	3	mafic host & pegmatite	
MRC13	70	74	4	pegmatite	spodumene not seen ^{*1}
MRC13	74	78	4	mafic host rock	
MRC13	78	79	1	mafic host & pegmatite	
MRC13	79	103	24	mafic host rock	
MRC13	103	106	3	pegmatite	spodumene not seen ^{*1}
MRC13	106	115	9	mafic host rock	
MRC13	115	117	2	mafic host & pegmatite	
MRC13	117	124	7	mafic host rock	
MRC13	124	126	2	mafic host & pegmatite	
MRC13	126	145	19	mafic host rock	
MRC13	145	146	1	mafic host & pegmatite	
MRC13	146	147	1	pegmatite	spodumene not seen ^{*1}
MRC13	147	148	1	mafic host & pegmatite	
MRC13	148	151 (EOH)	3	mafic host rock	

APPENDIX 2: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC14	0	3	3	pegmatite	spodumene not seen ^{* 1}
MRC14	3	4	1	mafic host & pegmatite	
MRC14	4	7	3	pegmatite	spodumene not seen ^{*1}
MRC14	7	8	1	mafic host & pegmatite	
MRC14	8	12	4	mafic host rock	
MRC14	12	14	2	mafic host & pegmatite	
MRC14	14	82	68	mafic host rock	
MRC14	82	83	1	mafic host & pegmatite	
MRC14	83	88	5	pegmatite	spodumene present* ²
MRC14	88	92	4	mafic host & pegmatite	
MRC14	92	104	12	mafic host rock	
MRC14	104	105	1	mafic host & pegmatite	
MRC14	105	107	2	mafic host rock	
MRC14	107	108	1	pegmatite	spodumene not seen*1
MRC14	108	123	15	mafic host rock	
MRC14	123	125	2	mafic host & pegmatite	
MRC14	125	129	4	mafic host rock	
MRC14	129	130	1	mafic host & pegmatite	
MRC14	130	131	1	pegmatite	spodumene not seen ^{* 1}
MRC14	131	132	1	mafic host rock	
MRC14	132	198 (EOH)	66	mafic host & pegmatite	
MRC15	0	5	5	pegmatite	spodumene not seen*1
MRC15	5	6	1	mafic host & pegmatite	
MRC15	6	10	4	mafic host rock	
MRC15	10	11	1	mafic host & pegmatite	
MRC15	11	14	3	mafic host rock	
MRC15	14	16	2	pegmatite	spodumene not seen ^{*1}
MRC15	16	17	1	mafic host & pegmatite	
MRC15	17	24	7	mafic host rock	
MRC15	24	25	1	mafic host & pegmatite	
MRC15	25	32	7	pegmatite	spodumene present* ²
MRC15	32	33	1	mafic host & pegmatite	
MRC15	33	46	13	mafic host rock	
MRC15	46	47	1	mafic host & pegmatite	
MRC15	47	49	2	pegmatite	spodumene present* ²
MRC15	49	50	1	mafic host & pegmatite	
MRC15	50	67 (EOH)	17	mafic host rock	

APPENDIX 2: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

Drill-hole I.D.	From (m)	To (m)	length (m)	Lithology	Comments
MRC16	0	7	7	pegmatite	spodumene not seen*1
MRC16	7	16	9	mafic host rock	
MRC16	16	17	1	pegmatite	spodumene not seen ^{* 1}
MRC16	17	33	16	mafic host rock	
MRC16	33	34	1	mafic host & pegmatite	
MRC16	34	35	1	pegmatite	spodumene not seen ^{* 1}
MRC16	35	36	1	mafic host & pegmatite	
MRC16	36	40	4	mafic host rock	
MRC16	40	41	1	pegmatite	spodumene not seen ^{* 1}
MRC16	41	42	1	mafic host & pegmatite	
MRC16	42	117	75	mafic host rock	
MRC16	117	118	1	mafic host & pegmatite	
MRC16	118	126 (EOH)		mafic host rock	
MRC17	0	2	2	pegmatite	spodumene not seen ^{* 1}
MRC17	2	3	1	mafic host & pegmatite	
MRC17	3	16	13	mafic host rock	
MRC17	16	18	2	mafic host & pegmatite	
MRC17	18	24	6	mafic host rock	
MRC17	24	26	2	pegmatite	spodumene not seen ^{* 1}
MRC17	26	31	5	mafic host rock	
MRC17	31	33	2	mafic host & pegmatite	
MRC17	33	35	2	mafic host rock	
MRC17	35	36	1	mafic host & pegmatite	
MRC17	36	37	1	mafic host rock	
MRC17	37	38	1	mafic host & pegmatite	
MRC17	38	41	3	pegmatite	spodumene not seen* 1
MRC17	41	44	3	mafic host rock	
MRC17	44	46	2	pegmatite	spodumene not seen* ¹
MRC17	46	59	13	mafic host rock	
MRC17	59	62	3	mafic host & pegmatite	
MRC17	62	66	4	pegmatite	spodumene present* ²
MRC17	66	67	1	mafic host & pegmatite	
MRC17	67	79 (EOH)	12	mafic host rock	

APPENDIX 2: Drill Summary Geology Logs (continued)

*1: All intersected intervals of pegmatite will be assayed, as mineralisation can be difficult to recognise.

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

<u>APPENDIX 3</u>: Complete composition of mineralised intersections

Drill-hole I.D.	From (m)	To (m)	interval (m)	
MRC01	22	29	7	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC01	31	43	12	spd 5%-15%, lpd 1%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC01	59	61	2	spd 1%-5%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC02	9	15	7	spd 5%-15%, lpd 1%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC02	27	42	15	<mark>spd</mark> 5%-10%, lpd 5%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC02	44	47	3	spd 5%-10%, lpd 5%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC03	11	17	6	spd 5%-10%, lpd 5%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, gtz 20%-30%
MRC03	39	61	22	spd 5%-10%, lpd 5%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC03	80	82	2	spd 1%-5%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC04	12	26	14	spd 5%-15%, lpd 1%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC04	39	42	3	spd 5%-15%, lpd 1%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC04	50	52	2	spd 1%-5%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC04	70	105	35	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC05	20	34	14	spd 5%-10%, lpd 1-2%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC05 MRC05	38 45	40 57	2 12	spd 1%-5%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC05	45 58	76	22	spd 5%-15%, lpd 1%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30% spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC05	99	103	4	spd 10%-20%, ipd 1%-3%, eib 1%-3%, cieav 20%-40%, mic 0%-3%, musc 1%-3%, qtz 20%-30% spd 1%-5%, ipd 0%, eib 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC05	113	103	1	spd 1%-3%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC05	113	114	1	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
				· · · · · · · · · · · · · · · · · · ·
MRC06	6	12	6	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC07	0	247 (EOH)		11 pegmatite intersections; no spd, lpd, elb recognised*
MRC08	0	11	11	spd 1%-5%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC08	22	36	12	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC08	66	79	13	spd 5%-10%, lpd 1-2%, elb 1%, cleav 20%-40%, mic 10%-20%, musc 1%-5%, qtz 20%-30%
MRC09	38	41	4	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, gtz 30%-40%
MRC09	47	54	7	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC09	72	79	7	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC09	89	91	2	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC10	0	121		significant pegmatite 80m-93m, but no spd, lpd, elb recognised*
	0	9	0	
MRC11	11	9 16	9 5	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC11 MRC11	27	33	6	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40% spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC11 MRC11	45	49	4	spd 1%-2%, lpd 0%, elb 0%, cleav 40%-60%, mic 0%, mic 0%-5%, qtz 30%-40%
MRC11 MRC11	43 97	100	3	spd 10%-20%, lpd 0%, elb 0%, cleav 40%-00%, linc 0%, lincs 1%-5%, qtz 20%-40%
MRC11 MRC11	106	100	4	spd 10%-20%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 20%-30%
MRC12	0	17	17	spd 1%-2%, lpd 0%, elb 0%, cleav 10%-20%, mic 10%-20%, musc 1%-5%, qtz 30%-40%
MRC12	115	123	7	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, qtz 20%-30%
MRC13	0	151		7 pegmatite intersections; no spd, lpd, elb recognised*
MRC14	83	88	5	spd 5%-10%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC15	25	32	7	spd 10%-20%, lpd 1%-5%, elb 1%-3%, cleav 20%-40%, mic 0%-5%, musc 1%-5%, gtz 20%-30%
MRC15	47	49	2	spd 1%-2%, lpd 0%, elb 0%, cleav 20%-40%, mic 0%, musc 1%-5%, qtz 30%-40%
MRC16	0	126		3 pegmatite intersections; no spd, lpd, elb recognised*

spd = spodumene, lpd = lepidolite, elb = elbaite, cleav = cleavelandite (variety of albite feldspar), mic = microcline (variety of potassium feldspar), musc = muscovite mica, qtz = quartz.

ASX Announcement 16 November 2023 ASX: TYX

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation drilling was used to obtain samples from each 1 meter down-hole interval of every drill-hole. Samples were collected as 1-meter splits derived from a cone-splitter beneath the dump box at the base of the cyclone. Sample mass was approximately 3kg, which was delivered to ALS Okahandja (Namibia), where the samples were crushed to achieve particle sizes of which 70% < 2mm. From this, 250g was split-off and pulverized to produce a pulp having particle size of 85% passing through 75 microns. A 100g sub-sample was split and packaged for export to Nagrom Laboratory, Perth, Western Australia, for assay. Sample representivity was ensured through collection of samples as 1-meter splits derived from a cone-splitter beneath the dump box at the base of the cyclone. Consistency of the sample mass of the 1-meter splits delivered by the cone-splitter was monitored to achieve consistent masses of approximately 3kg, depending upon total sample recovery of the 1 meter interval.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Reverse Circulation Percussion (RC) drilling, utilizing a 135mm diameter face-sampling bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	

	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 		Sample recovery for each 1-metre down-hole interval of every drill- hole was monitored and assessed through inspected of the volume of the sample and was recorded. Sample recovery was maximized through implementation of industry standard drilling protocols, including pausing at the end of each 1- meter interval with use of air to flush-out excess cuttings. Drill-sample recovery was consistently high. As sample recovery was consistently high, all fractions of the sample were collected, preventing sample bias through preferential loss or gain of fine or coarse material.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	•	The chips from RC holes is logged according to lithology and mineralogy in sufficient detail sufficient to support Mineral Resource estimates, mining, and metallurgical studies. Logging included lithology, mineral composition, recovery and intensity of weathering. Logging was recorded on standard logging descriptive sheets and then entered into Excel tables. Logging is qualitative in nature. All chip trays are photographed.
		•	100% of all drill-holes were geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	•	Each 1-meter split sample had a mass of approximately 3kg, which was delivered to ALS Okahandja (Namibia), where the samples were crushed to achieve particle sizes of which 70% < 2mm. From this, 250g was split-off and pulverized to produce a pulp having particle size of 85% passing through 75 microns. A 100g sub-sample was split and packaged for export to Nagrom Laboratory, Perth, Western Australia, for assay. The sample preparation procedures implemented by ALS Okahandja (Namibia) incorporates standard industry best-practice and is appropriate. Duplicate sampling was incorporated in the reported drilling program. For each 1-meter interval, two 1-meter splits were collected, such that one sample is a duplicate of the other. A duplicate sample was inserted into the sample stream at a rate of approximately 1 in 30.

ASX Announcement 16 November 2023 ASX: TYX

		•	Sample sizes are in-accord with standard industry best-practice and are appropriate for the material being sampled.	
Quality of assay data and laboratory tests Verification of	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or 	•	The samples were submitted to ALS Okahandja (Namibia), where they were crushed and pulverized to produce pulps. These pulps were exported to Australia and analyzed by Nagrom Laboratory in Perth, Western Australia using a Sodium Peroxide Fusion followed by digestion using a dilute acid thence determination by method ICP005 with ICPMS for Li ₂ O (%), Be, Cs, Nb, Rb, Sn, Ta & Y, and ICPOES analysis for Al, B, Ba, Ca, Fe, K, P, Si, & Ti. Sodium Peroxide Fusion is a total digest and considered the preferred method of assaying pegmatite samples. It results in the complete digestion of the sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-tungsten solid solution series. They also provide a more- complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralization. Geophysical instruments are not used in assessing the mineralization within Tyranna's Namibe Lithium Project. Tyranna has incorporated standard QA/QC procedures to monitor the precision, accuracy, and general reliability of all assay results. As part of Tyranna's sampling protocol, CRM's (standards), blanks and duplicates are inserted into the sampling stream. In addition, the laboratory (Nagrom, Perth) incorporates its own internal QA/QC procedures to monitor its assay results. The assay results from the QA/QC samples will be interrogated to confirm that the assay results are reliable.	
sampling and assaying	 The vertication of significant intersections by either independent of alternative company personnel. The use of twinned holes. 		Results will be verified by alternative company personnel. Twinned holes have not been used.	

	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 in Perth, WA. Assay results will not be adjusted. In discussing the significance of the highest-grade results for Cs, Ta and Sn, the primary assay results, in ppm, will be converted to % of the individual oxides. The conversions are: %Cs₂O = (Cs(ppm) x 1.06)/10000 %Ta₂O₅ = (Ta(ppm) x 1.221)/10000
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 % SnO₂ = (Sn(ppm) x 1.27)/10000 Collar locations picked up with handheld Garmin <i>GPSmap65s</i>, having an accuracy of approximately +/- 1.8m. All locations recorded in WGS-84 Zone 33L Topographic locations interpreted from GPS pickups (barometric altimeter) and field observations. Adequate for first pass pegmatite mapping. Down-hole survey achieved using a Reflex EZ-Trac[™] multi-shot magnetic orientation tool.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill-hole locations were selected based upon achievability of an effective drill-site on the hill upon which the prospect is located, in conjunction with surface expressions of mineralisation. As such, drill-collars do not have a uniform distribution or spacing. This is adequate for initial drilling. There is not yet sufficient drilling coverage or density to permit estimation of a Mineral Resource. Sample compositing has not been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The drill-holes orientation with respect to the intersected mineralisation varies, due to the variable nature of the mineralised bodies but is not considered to have introduced a significant bias. The intersected pegmatite is in parts very coarse-grained, with some spodumene megacrysts up to 3m long, so there is potential for sampling bias to occur if there is a preferred orientation of crystal growth, however, observations to-date suggest that the spodumene megacrysts are randomly oriented and the density of their

SECURING FUTURE LITHIUM SUPPLY IN AFRICA

		occurrence (i.e., proportion of matrix to spodumene) is unpredictable.
Sample security	□ The measures taken to ensure sample security.	• Chain of custody was maintained on-site and during transport of the samples to ALS Okahandja (Namibia). After preparation to produce pulps for export, ALS personnel put the pulps into sealed boxes which were delivered by DHL to Nagrom laboratory in Perth.
Audits o reviews	r 🗆 The results of any audits or reviews of sampling techniques and data.	• Internal review of the drilling, of sampling techniques and of the data has been completed and practices are deemed adequate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Namibe Lithium Project is comprised of a single licence, Prospecting Title No. 023/05/03/T.P/ANG-MIREMPET/2023, held 100% by Angolitio Exploracao Mineira (SU) LDA, via a 90% owned subsidiary (AM) Mauritius Limited and a wholly owned subsidiary of Angolan Minerals Pty Ltd, of which Tyranna has 80% ownership. Consequently, Tyranna has 72% ownership of the Namibe Lithium Project. The project is located in an undeveloped land east of the city of Namibe, provincial capital of Namibe Province in southwest Angola. The project area is not within reserves or land allocated to special purposes and is not subject to any operational or development restrictions. The granted licence (Prospecting Title) was transferred on 15/05/2023 and is valid until 15/05/2024, at which time the term may be extended for an additional 5 years. The licence is maintained in good- standing. The project is located in undeveloped land east of the city of Namibe, provincial capital of Namibe Province in southwest Angola. The

		project area is not within reserves or land allocated to special purposes and is not subject to any operational or development restrictions.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration was completed in the late 1960's until 1975 by The Lobito Mining Company, who produced feldspar and beryl from one of the pegmatites. Another company, Genius Mineira LDA was also active in the area at this time. There was no activity from 1975 until the mid-2000's because of the Angolan Civil War. There has been very little activity since that time, with investigation restricted to academic research, re-mapping of the region as part of the Planageo initiative and an assessment by VIG World Angola LDA in 2019 of the potential to produce feldspar from the pegmatite field. Exploration by VIG World focussed upon mapping of some pegmatites and selective rock-chip sampling to determine feldspar quality.
Geology	Deposit type, geological setting and style of mineralisation.	 The Giraul Pegmatite Field is comprised of more than 800 pegmatites that have chiefly intruded metamorphic rocks of the Paleoproterozoic Namibe Group. The pegmatites are also of Paleoproterozoic age and their formation is related to the Eburnean Orogeny. The pegmatite bodies vary in orientation, with some conformable with the foliation of enclosing metamorphic rocks while others are discordant, cross-cutting lithology and foliation. The largest pegmatites are up to 1,500m long and outcrop widths exceed 100m. Pegmatites within the pegmatite field vary in texture and composition, ranging from very coarse-grained through to finer-grained rocks, with zonation common. Some of the pegmatites contain lithium minerals although no clear control upon the location of the lithium pegmatites is known at present and the distribution of the Giraul Pegmatite Field are members of the Lithium-Caesium-Tantalum (LCT) family and include LCT-Complex spodumene pegmatites are LCT-Complex spodumene pegmatites having distinct zones defined by compositional and textural differences. The spodumene-bearing zones mostly comprise an interior portion of the pegmatite, either as a distinct core-

		zone or a zone surrounding a distinct core zone. The spodumene- bearing zones typically consist of phenocrystic spodumene megacrysts (up to several metres length) in a coarse grained cleavelandite-quartz matrix also containing some lepidolite, elbaite, muscovite and erratic microcline. Rare accessories include beryl, amblygonite-montebrasite and pollucite.
Drill hole Information	□ A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	• A complete Collar Table is included, which provides details of location, orientation and down-hole length of each drill-hole. A summary table listing pegmatite intersections is also included.
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	□ If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 Cut-off grades will not be applied. Reported mineralised intervals will be restricted to lithium enrichment in pegmatite only and the mineralised interval is defined
	□ Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such	by observable mineralogy that allows distinct compositional zones to be recognised. Within these zones, there is some variability in the abundance of lithium minerals, but it is the extent of the distinctive zone that defines the reported mineralised interval. The
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	 stated intersections reliably reflect the nature of the mineralisation. Reported results will be restricted to Li₂O, Cs, Ta, and Sn as these are economically significant components.
		Metal equivalent values will not been reported.

Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The geometry of the mineralisation reported is not well understood and the pegmatite is not of uniform thickness. The intersected mineralisation appears to be bulbous rather than tabular and therefore the concept of "true thickness" is harder to define and less applicable. In the announcement to which this table is attached, there are clear statements given that clarify the nature of the intersections, stating that the reported interval is down-hole length.Not applicable as assay results from the drilling is not being reported.
Diagrams	□ Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• A drill plan and cross-section (with scales) will be included within the text of the subsequent reports when assay results from the drilling is reported.
Balanced reporting	□ Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Assay results for all samples will be validated to ensure they are reliable, and all assay results will be reported to ensure balanced reporting occurs.
Other substantive exploration data	□ Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All meaningful & material exploration data has been reported
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• At the time of reporting, drilling had been suspended but drilling will resume in January 2024 as most of the prospect remains untested. In the longer term, drilling to test extensions at depth, along with testing additional prospects will be required.