

+100metre Wide Gold Intercepts at Northern Zone Project 25km ESE of Kalgoorlie

Highlights

- Diamond drilling of entire gold-mineralised central Cross-Section to 450m vertical depth has validated previous Exploration Model
- Previously announced Exploration Target of 200Mt 250Mt at a grade of 0.4 g/t Au 0.6 g/t Au for an exploration target of 2.5Moz 4.8Moz of gold¹
- High gold recovery of 92.9% (average) after 24-hour bottle roll cyanide extraction¹
- Drill program has:
 - Confirmed the gold mineralisation style
 - Confirmed gold mineralisation widths and gold grades; and
 - Structural orientation of the gold mineralisation
- Significant results from 2023 diamond drilling confirmation program include:
 - 110m at 0.60 g/t Au from 208m (RSDD02) incl
 - 2m at 2.64g/t Au from 208m
 - 5m at 3.03g/t Au from 221m
 - 1m at 4.77g/t Au from 248m
 - 1m at 5.26g/t Au from 262m
 - 13m at 1.29g/t Au from 274m
 - **16.4m** at **0.45g/t** Au from 83.6m (RSDD003)
 - 13m at 0.48g/t Au from 135m (RSDD003)
 - 11m at 0.49g/t Au from 197m (RSDD003)
 - **26m at 0.44g/t Au** from 231m (RSDD003)

- **47m at 0.48g/t Au** from 216m (RSDD01) incl
 - 1m at 4.74g/t Au from 244m
 - 1m at 4.04g/t Au from 262m
- 8m at 0.55g/t Au from 127m (RSDD02)
- 84m at 0.42g/t Au from 315m (RSDD003) incl
 - 3.32m at 2.73q/t Au from 332m
- 4m at 0.52g/t Au from 34m (RSDD04)
- 8m at 0.43g/t Au from 77m (RSDD04)
- 4m at 0.47g/t Au from 92m (RSDD04)
- Significant results from 2021 and prior RC drilling include:¹
 - **154m at 0.58g/t Au** from 98m (210PRC004) incl 4m at 5.39g/t Au from 182m
 - **142m** at **0.42g/t** Au from 62m (BNRC081)
 - **330m at 0.49 g/t Au** from 30m (BNRC066) incl 54.79m at 1.15g/t Au from 213m
- 117.7m at 0.35g/t Au from 120.3m (BNRC034)
- 66m at 0.89g/t Au from 30m (BNRC069)
- **38m at 0.47g/t Au** from 73m (BNRC084)
- **29m at 1.84g/t Au** from 33m (BNRC017)

The Northern Zone Project has an Exploration Target of 200 to 250 million tonnes at a grade of 0.4 g/t to 0.6 g/t Au for an exploration target of 2.5 to 4.8 million oz of Gold, as announced by RGL to the ASX on the 9 May 2023.

Cautionary Statement: The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The reader is advised that an Exploration Target is based on existing drill results and geological observations from drilling as well as interpretation of multiple available datasets. The exploration target is based on historical and Oracle drilling results. It uses data from 53 historical drillholes drilled between 1998 and 2012, and 7 drillholes drilled by Oracle in 2021. Refer to Appendix 1 for further information with respect to these exploration results.

.

¹ RGL ASX announcement 9 May 2023 "Farm into Significant Porphyry Hosted Gold Project"

Riversgold Limited (ASX: RGL, Riversgold or **the Company)** announces that it has received the assay results from its maiden diamond drilling program at the Northern Zone Intrusive Hosted Gold Project located 25 km east of Kalgoorlie in Western Australia. Refer to **Figure 1** for location.

On the 9 May 2023, RGL announced the 80% earn-in to the Northern Zone Gold Project with London listed Oracle Power Plc². RGL undertook a 4-hole diamond drill program for 1,379m (with orientated core) to specifically test the exploration model of +100m wide gold mineralisation. The drilling was completed on 21 August 2023 and all of the core was sent to ALS in Perth for core photographs, cutting and assaying. Assays results have now been received and interpreted and the work confirms the original mineralisation model, style, widths and grades.

Located 175km due north of Northern Zone, Saturn Metals Limited has released a Preliminary Economic Assessment on the Apollo Hill Gold project that has a resource of 105Mt at 0.54g/t_gold for 1.839Moz³. RGL views the Apollo Hill project as an example of what we are looking to achieve at Northern Zone, albeit with Northern Zone being a potentially larger project.

David Lenigas, Chairman of RGL, said: "With the Australian dollar gold price now pushing through \$3,100 an ounce, the commerciality of these types of large-scale lower grade gold deposits becomes significantly more viable. The potential scale of this project linked to its good indicative conventional gold recoveries and its great location, being so close to Kalgoorlie, makes Northern Zone a highly attractive project to drill out. The 4 diamond drill holes on this cross section absolutely confirmed the gold prospectivity of the Northern Zone Project and we look forward to drilling further along strike to start building a maiden JORC compliant resource early in the new year."

Figure 1: Northern Zone Project Map showing proximity to the Kalgoorlie "Super Pit".

_

 $^{^2}$ RGL ASX announcement 9 May 2023 "Farm into Significant Porphyry Hosted Gold Project"

³ STN ASX announcement 17 August 2023 "Updated Preliminary Economic Assessment"

About North Zone Gold Project

The Northern Zone Project is located 26km, east-south-east of the Kalgoorlie Super Pit and is readily accessed from the Bulong road, which is paved to within 9km of the prospect site. The last 9kms consists of 4km of a high-quality haul road with the last 5kms on a station road. The topography is flat lying, open scrub with several historical remnant gold and nickel excavation pits less than 5 kms from the prospect site.

Drilling Contractor DDH1 completed the drilling at Northern Zone using a combination of HQ3 and NQ2 diamond drilling. The core was logged by contract geologists in Kalgoorlie, with oversight from RGL geologists. The detailed logging has shown that a gold mineralisation event has introduced significant micro-fracturing and quartz veining, with significant thicknesses of alteration also observed. A central cross section completed as proof of model has validated (**Figure 2**) a portion of the project, with multiple untested areas.

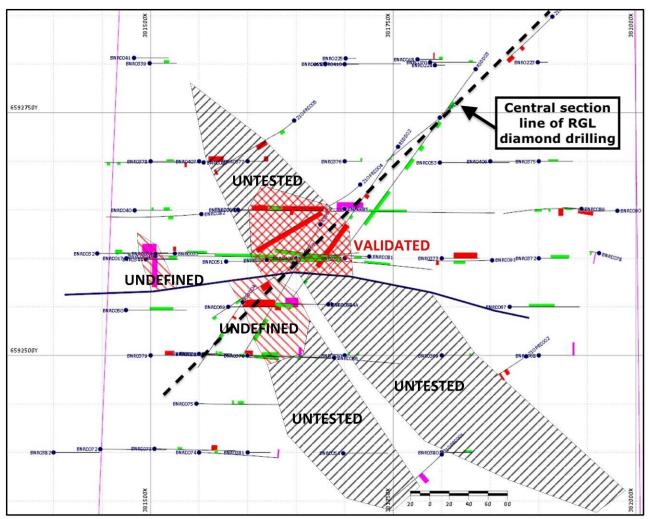


Figure 2: Northern Zone drill collar plan highlighting validated (red hatched) area, gold mineralised zones, central cross section with untested areas. Mineralisation remains open in all directions.

The diamond drilling mineralisation intersections (**Figure 3**) show a thick east dipping zone of mineralisation across 21OPRC004, RSDD002 and RSDD003. The hatched zones are the interpreted mineralisation zones, with the main zone approximately 100m wide and a vertical extent 375m and remaining open at depth. The plan view shows the hole deviations, due to this deviation; holes 21OPRC004 and RSDD002 indicate a minimum strike length of 70m to the zone of mineralisation.

The lack of mineralisation within the main zone in RSDD001 is inferred due to faulting. The intersection at depth in RSDD001 correlates with the lower zone.

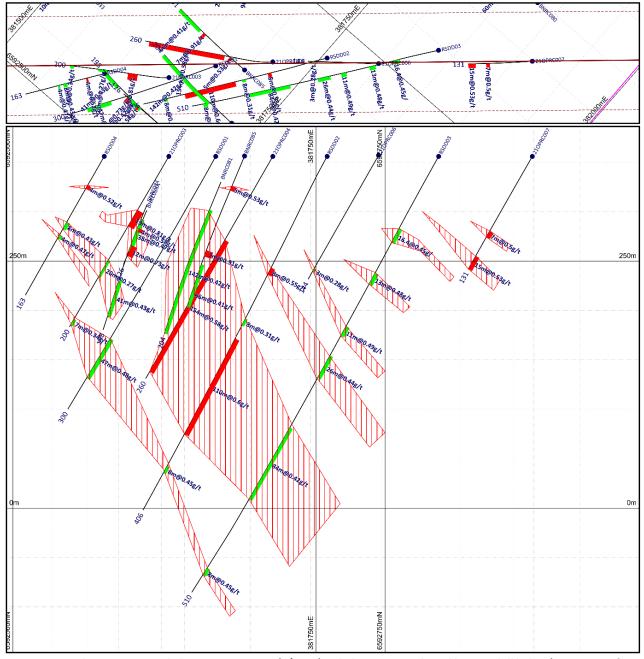


Figure 3: Northern Zone central Plan & Cross Section (+/-50m) including RGL, Oracle and historic drill holes. (See Figure 2 for section line)

Conceptually, the Company sees similarities between Northern Zone and Saturn Metals' Apollo Hill project based on the information in the PEA statement (ASX 7 August 2023) of a large low grade heap leach operation. To further develop the concept, the RGL plans to:

- Undertake further metallurgical test work to confirm the amenability of the mineralisation to leaching and develop initial estimates of reagent consumption; and
- Undertake further drilling towards defining a resource at Northern Zone, with step out drilling on 100m cross sections especially towards the untested southeast areas.

-ENDS-

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

Julian Ford Chief Executive Officer P: (08) 6143 6747

E: jford@riversgold.com.au

David Lenigas
Executive Chairman

P: +44 (0) 7881825378

E: <u>dlenigas@riversgold.com.au</u>

Ed Mead Director

P: 0407 445351

E: emead@riversgold.com.au

Competent Persons Statement

The Information in this report that relates to exploration results, exploration targets, mineral resources or ore reserves is based on information compiled by Mr Allan Younger, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Younger is a consultant to the company. Mr Younger has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Younger consents to the inclusion of this information in the form and context in which it appears in this report.

For further information please refer to previous ASX announcements:

9 May 2023 RGL to farm-in to Significant Porphyry Hosted Gold Deposit

21 August 2023 Northern Zone Diamond Drilling Completed-26km ESE Kalgoorlie

APPENDIX 1: Drilling Information

Table 1: Northern Zone Drill Collar Locations

Hole ID	Hole Type	MGA Easting	MGA Northing	NAT_RL	Max Depth	Dip	Azi
RSDD01	DD	31680.488	592633.049	56.733	06	0	15
RSDD02	DD	31755.926	592710.878	56.667	10.1	0	15
RSDD03	DD	31833.364	592794.438	56.193	52.6	0	15
RSDD04	DD	31593.727	592554.988	56.697	00.2	0	15

Table 2: Northern Zone Drill significant intercepts

Hole Id			Width	Ave Grade	From	То	Intercept
RSDD01			47	0.48	216	263	47m @ 0.48g/t Au
	Incl		1	4.74	244	245	
	Incl		1	4.04	262	263	
RSDD02			8	0.55	127	135	8m @ 0.55g/t Au
RSDD02			8	0.31	185	193	8m @ 0.31g/t Au
RSDD02			110	0.6	208	318	110m @ 0.6g/t Au
	Incl		2	2.64	208	210	
	Incl		5	3.03	221	226	
		Incl	1	9.41	225	226	
	Incl		1	4.77	248	249	
	Incl		1	5.26	262	263	
	Incl		13	1.29	274	287	
		Incl	1	6.43	277	278	
RSDD02			8	0.35	355	363	8m @ 0.35g/t Au
RSDD03			16.4	0.45	83.6	100	16.4m @ 0.45g/t Au
RSDD03			13.01	0.48	135	148.01	13m @ 0.48g/t Au
RSDD03			11	0.49	197	208	11m @ 0.49g/t Au
RSDD03			26	0.44	231	257	26m @ 0.44g/t Au
	Incl		1	5.44	332	333	
	Incl		1	5.28	352	353	
RSDD03			84	0.42	315	399	84m @ 0.42g/t Au
	Incl		3.32	2.73	332	335.32	
RSDD03			8	0.45	481	489	11m @ 0.45g/t Au
RSDD04			4	0.52	34	38	4m @ 0.52g/t Au
RSDD04			8	0.43	77	85	8m @ 0.43g/t Au
RSDD04			4	0.47	92	96	4m @ 0.47g/t Au

Table 3: Northern Zone Drill Assays >0.25g/t Au. (Values >1g/t Au in bold)

Hole ID	From	То	Width	Au	As	S%
RSDD01	40.2	41	0.8	1.64	1	0.03
RSDD01	42	43	1	0.773	1	0.1
RSDD01	73	74	1	2.08	2	0.03
RSDD01	74	75	1	0.946	1	0.03
RSDD01	112	113	1	0.648	2	0.66
RSDD01	117	118	1	2.89	2	2.26
RSDD01	128	129	1	0.279	1	0.69
RSDD01	173	174	1	0.281	2	0.31
RSDD01	174	175	1	0.362	3	0.34
RSDD01	177.5	178	0.5	0.354	2	0.17
RSDD01	195	196	1	0.269	3	0.08
RSDD01	197.53	198.5	0.97	0.262	1	0.55
RSDD01	198.5	199.5	1	0.333	2	0.51
RSDD01	216	217	1	0.72	3	0.81
RSDD01	217	218	1	1.63	4	0.32
RSDD01	224	225	1	2.6	2	0.81
RSDD01	230	231	1	1.92	3	0.25
RSDD01	238	239	1	0.727	4	0.79
RSDD01	240	241	1	0.274	3	0.23
RSDD01	244	245	1	4.74	2	0.85
RSDD01	248	249	1	0.386	4	0.55
RSDD01	249	250	1	0.412	2	0.34
RSDD01	252	253	1	0.371	4	0.43
RSDD01	254	255	1	1.67	1	0.49
RSDD01	258	259	1	0.379	1	0.33
RSDD01	259	260	1	0.316	1	0.13
RSDD01	260	261	1	0.278	1	0.32
RSDD01	262	263	1	4.04	1	1.03
RSDD01	273	274	1	0.696	1	0.1
RSDD01	280	281	1	1.78	1	1.02
RSDD01	281	282	1	0.478	1	0.46
RSDD01	284	285	1	0.531	2	0.62
RSDD02	77.7	79	1.3	0.327	2	0.005
RSDD02	122	123	1	0.423	1	0.09
RSDD02	127	128	1	0.386	2	0.31
RSDD02	128	129	1	1.02	1	0.37
RSDD02	131	132	1	1.37	2	0.66
RSDD02	132	133	1	0.281	2	0.37
RSDD02	134	135	1	1.005	1	0.15
RSDD02	138	139	1	0.274	2	0.14
RSDD02	165	166	1	1.51	1	0.23
RSDD02	176	177	1	1.265	1	0.28
RSDD02	185	186	1	0.347	1	0.29
RSDD02	186	187	1	0.333	1	0.15
RSDD02	190	191	1	1.015	1	0.1
RSDD02	192	193	1	0.401	1	0.04
RSDD02	208	209	1	4.92	1	0.1
RSDD02	209	210	1	0.364	1	0.33
RSDD02	214	215	1	0.887	2	0.28
RSDD02	221	222	1	2.03	2	0.28
RSDD02	222	223	1	0.59	1	0.4
RSDD02	223	224	1	0.326	1	0.47
RSDD02	224	225	1	2.81	2	0.47
RSDD02	225	226	1	9.41	1	0.34

Hole ID	From	То	Width	Au	As	S%
RSDD02	226	227	1	0.256	1	0.33
RSDD02	232	233	1	0.259	2	0.42
RSDD02	238	239	1	0.37	3	0.4
RSDD02	239	240	1	0.711	4	0.67
RSDD02	240	241	1	0.784	3	0.56
RSDD02	241	242	1	0.283	6	0.52
RSDD02	242	243	1	0.503	8	0.61
RSDD02	244	245	1	2.74	1	0.65
RSDD02	246	247	1	0.26	2	0.45
RSDD02	247	248	1	0.334	3	0.42
RSDD02	248	249	1	4.77	2	0.85
RSDD02	249	250	1	0.252	2	0.88
RSDD02	259	260	1	0.84	2	0.24
RSDD02	262	263	1	5.26	2	0.24
RSDD02	264	265	1	0.51	1	0.07
	270	271	1	0.31	3	0.19
RSDD02 RSDD02			1	1	3	
	271	272	1	0.689		0.16
RSDD02	273	274		0.73	3	0.47
RSDD02	274	275	1	1.095	4	0.57
RSDD02	275	276	1	2.21	3	0.65
RSDD02	276	277	1	0.733	4	0.67
RSDD02	277	278	1	6.43	4	0.96
RSDD02	278	279	1	0.356	2	0.27
RSDD02	280	281	1	0.532	2	0.27
RSDD02	281	282	1	0.735	2	0.38
RSDD02	282	283	1	1.395	4	0.56
RSDD02	285	286	1	2.49	1	0.45
RSDD02	286	287	1	0.447	1	0.29
RSDD02	289	290	1	0.376	2	0.53
RSDD02	297	298	1	0.29	2	0.24
RSDD02	298	299	1	0.532	3	0.31
RSDD02	301	302	1	0.72	4	0.62
RSDD02	306	307	1	0.423	1	1.88
RSDD02	307	308	1	0.589	1	1.22
RSDD02	315	316	1	0.605	2	1.12
RSDD02	316	317	1	0.423	1	1.15
RSDD02	346	347	1	1.26	1	0.4
RSDD02	356	357	1	0.311	3	0.67
RSDD02	357	358	1	0.314	1	0.45
RSDD02	359	360	1	1.015	1	0.16
RSDD02	362	363	1	0.811	1	0.21
RSDD02	365	366	1	0.33	1	0.17
RSDD02	388	389	1	0.268	1	0.66
RSDD03	83.6	85	1.4	0.431	2	0.02
RSDD03	85	86	1	0.306	1	0.03
RSDD03	86	87	1	0.312	2	0.04
RSDD03	88	89	1	1.87	1	0.15
RSDD03	89	90	1	0.309	1	0.06
RSDD03	91	92	1	0.397	2	0.03
RSDD03	92	93	1	0.592	3	0.09
RSDD03	96	97	1	0.459	2	0.03
RSDD03	97	98	1	0.477	1	0.1
RSDD03	98	99	1	0.556	2	0.14
RSDD03	99	100	1	0.796	1	0.28
RSDD03	105	106	1	0.254	1	0.16
RSDD03	112	113	1	0.909	2	1.02
RSDD03	113	114	1	0.271	1	0.36
	135	136.01	1.01	1.94	1	0.38

Hole ID	From	То	Width	Au	As	S%
RSDD03	136.01	137	0.99	1.795	1	0.35
RSDD03	138	138.98	0.98	0.362	1	0.24
RSDD03	141.98	143	1.02	0.302	1	0.24
RSDD03	144	145	1.02	0.949	1	0.14
RSDD03	147		1.01	0.338	1	0.10
		148.01	1.01		1	1
RSDD03	157	158	1	0.984	1	0.66
RSDD03 RSDD03	176	177	1	0.458	1	0.31
RSDD03	183	184	1	0.382	1	0.12
	197	198	1	1.37		
RSDD03	198	199		0.811	2	0.12
RSDD03	199	200	1	0.297	1	0.22
RSDD03	200	201	1	0.29	1	0.44
RSDD03	203	204	1	1.3	1	0.51
RSDD03	206	207	1	0.417	1	0.18
RSDD03	207	208	1	0.479	1	0.19
RSDD03	210	211	1	0.329	1	0.43
RSDD03	217	218	1	0.303	1	0.15
RSDD03	223	224	1	0.565	1	0.18
RSDD03	231	232	1	0.309	2	0.3
RSDD03	233	234	1	1.58	1	0.66
RSDD03	239	240	1	0.497	1	0.25
RSDD03	246	247	1	0.971	2	0.56
RSDD03	248	249	1	1.53	1	0.29
RSDD03	252	253	1	3.83	1	0.54
RSDD03	253	254	1	0.364	2	0.25
RSDD03	256	257	1	0.31	2	0.58
RSDD03	283	284	1	0.613	4	0.98
RSDD03	286	287	1	0.302	4	0.77
RSDD03	294.08	295	0.92	0.302	3	0.35
RSDD03	311	312	1	0.577	2	0.41
RSDD03	315	316	1	0.764	2	0.26
RSDD03	318	319	1	0.317	1	0.14
RSDD03	319	319.68	0.68	0.266	2	0.38
RSDD03	320.65	321.59	0.94	0.349	2	0.3
RSDD03	324	325	1	0.36	1	0.37
RSDD03	327	328	1	0.755	1	0.33
RSDD03	332	333	1	5.44	1	0.29
RSDD03	333.88	334.48	0.6	4.44	2	0.62
RSDD03	334.48	335.32	0.84	1.07	1	0.48
RSDD03	337	338	1	0.342	2	0.35
RSDD03	338	339	1	0.263	3	0.12
RSDD03	339	340	1	1.7	2	0.28
RSDD03	342	343	1	0.829	1	0.5
RSDD03	343	344	1	0.476	1	0.29
RSDD03	346	347	1	1.035	1	0.31
RSDD03	348	349	1	0.425	2	0.44
RSDD03	350	351	1	0.95	2	0.22
RSDD03	351	352	1	0.54	1	0.33
RSDD03	352	353	1	5.28	1	0.45
RSDD03	358	359.61	1.61	0.739	1	0.17
RSDD03	359.61	360	0.39	0.433	1	0.58
RSDD03	365	366	1	0.316	2	0.25
RSDD03	370	371	1	1.02	1	0.25
RSDD03	374	375	1	0.343	2	0.68
RSDD03	382	383	1	0.63	1	0.64
RSDD03	384.48	385	0.52	0.296	1	0.59
RSDD03	385.45	386.14	0.69	0.665	1	0.71
RSDD03	386.14	387	0.86	0.377	1	0.38

Hole ID	From	То	Width	Au	As	S%
RSDD03	393	394	1	0.483	2	0.43
RSDD03	395	396	1	0.277	1	0.96
RSDD03	398	399	1	1.54	1	0.76
RSDD03	399	400	1	0.253	2	0.53
RSDD03	408	408.68	0.68	0.374	2	0.49
RSDD03	413.78	414.37	0.59	0.279	1	0.62
RSDD03	441	442	1	0.332	2	0.46
RSDD03	443	444	1	0.293	1	0.33
RSDD03	446	447	1	0.354	1	0.23
RSDD03	447	448	1	0.349	2	0.26
RSDD03	454	455	1	2.72	1	0.57
RSDD03	471	472	1	0.402	1	0.13
RSDD03	472	473	1	0.374	1	0.3
RSDD03	475	476	1	0.656	1	0.1
RSDD03	481	482	1	0.45	1	0.27
RSDD03	486	487	1	1.285	1	0.52
RSDD03	487	488	1	0.386	1	0.32
RSDD03	488	489	1	0.372	1	0.43
RSDD04	34	35	1	0.756	10	0.02
RSDD04	35	36	1	0.536	1	0.01
RSDD04	36	37	1	0.374	3	0.04
RSDD04	37	38	1	0.394	1	0.03
RSDD04	77	78	1	2.18	2	0.01
RSDD04	81	82	1	0.33	4	0.21
RSDD04	84	85	1	0.277	3	0.1
RSDD04	92	93	1	0.692	5	1.2
RSDD04	93	94	1	0.499	2	1.62
RSDD04	95	96	1	0.67	2	1.9
RSDD04	104	105	1	0.661	1	0.32
RSDD04	124	125	1	0.509	1	0.21
RSDD04	136	137	1	0.762	1	0.41
RSDD04	146	147	1	0.376	3	0.3
RSDD04	152	153	1	0.656	6	3.15
RSDD04	157	158	1	0.353	1	0.25

APPENDIX 2.

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at Northern Zone.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	The samples were whole core HQ3 or NQ2 sized, with roller pre-collars.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond core HQ3 or NQ2 sized, with roller pre- collars. The core has been oriented with standard and modern down hole orientation techniques.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Recovery logs were recorded by the field geologist. Recovery was excellent even through broken ground.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The core has been professionally logged by Kalgoorlie based consultant and contract geologists with oversight from RGL geologists. 100% of the core has been logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The core has been sampled as half core at the completion of full geological and structural logging

12 December 2023

Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 ALS (Perth) were used for all analysis of drill samples submitted by RGL. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Northern Zone Project area: Pulverise to 95% passing 75 microns 4 Acid Digest (ME-ICP41) – Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, TI, U, V, W, Zn. Au-ICP22 - Au. Ore Grade 4 Acid Digest ICP-AES Finish (Au-GRA22) Standards were used for external laboratory checks by RGL. Duplicates were used for external laboratory checks by RGL.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Intercepts were reviewed by 2 company personnel.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	The collar position of each hole was recorded using handheld GPS. The down hole survey data was taken at 30m using standard down hole gyro tools.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The holes were drilled on a single section, between existing RC holes. This spacing is sufficient to establish grade and geological continuity of this particular drill section.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	RGL is yet to drill further sections. Based on logging of diamond core the section and drill holes appear to be orientated perpendicular to strike and dip of the main mineralised structures.
Sample security	The measures taken to ensure sample security.	The core was collected from the rig by BMGS contract geologists and stored securely in their Kalgoorlie yard where it was logged. The core was then strapped and wrapped and shipped via commercial transport to ALS in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data reviews will be conducted when all of the final assay results have been received from the lab.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Northern Zone Project is comprised of one granted prospecting licence (P25/2651) which covers an area of 82 hectares, and is held in the name of Oracle Gold (WA) Pty Ltd. RGL are farming into the Tenement and have committed to spend \$600,000 in exploration expenditure on the tenement 8 May 2025. After Riversgold achieves 80% ownership, Oracle will be required to contribute pro-rata or dilute.

12 December 2023

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	See reference in the body of the announcement. The majority of previous exploration in the area was by Northern Mining during 2007 to 2012 under the Blair North project, multiple small resource areas were identified at the George's Reward area to the south of P25/2651. Numerous intersections were made within the area of the PL including BNRC066 listed below.
Geology	Deposit type, geological setting and style of mineralisation.	The deposit sought is (Intrusion Related Gold System (IRGS) style of mineral deposit.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Tables and Figures within the body of the release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Intersections are weighted average grades based on a 0.001 g/t Au cut-off with unlimited waste zones but with a targeted grade of 0.4-0.6g/t Au.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The diamond drilling confirmed the apparent widths of mineralization intersection in the RC drilling. The true width of mineralization is still to be fully ascertained.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See body of the announcement for relevant diagrams and photos.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	See body of the announcement
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The initial aims of the first phase of diamond drilling exploration at Northern Zone has confirmed the mineralisation style, confirmed the very wide widths of mineralisation, and confirmed gold grades and gold distribution. Follow up phases to test strike to be undertaken. Core from phase 1 to allow for further metallurgical studies.