

13 December 2023

Kokoseb extended significantly at depth and along strike

Highlights

- Thick mineralised shoot and strong depth extensions confirmed at the North-West zone:
 - o 42.7m at 1.67 g/t Au from 155.9m in KDD015
 - 14.6m at 1.73 g/t Au from 366m in KDD015
 - o 29.7m at 1.70 g/t Au from 271.5m, inc. 7.6m at 4.17 g/t Au in KDD016
- Western zone extended significantly at depth with further strong intercepts, including:
 - o 7.1m at 3.76 g/t Au from 175m in KDD004
 - 13m at 2.02 g/t Au from 234m in KRC143
- The Gap zone, which is not part of the existing Mineral Resource, returned notable shallow intercepts:
 - 14m at 1.52 g/t Au from 81m in KRC137
 - o **30m at 1.22 g/t Au from 182m in KRC138**
- Current drilling focused on further extending the NW zone, on completing the regular pattern at the Gap zone and on adding definition at the high-grade zone near KRC086

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report assay results from ten (10) RC drillholes – **KRC134 to KRC143** – and four (4) diamond drillholes – **KDD004** and **KDD014 to KDD016** – completed at its Kokoseb Gold Deposit (**Kokoseb**) in Namibia.

Diamond drillholes **KDD015** and **KDD016** have targeted the North-West zone, confirming the thick plunging shoot and the depth extensions of mineralisation, with the best intercepts including **42.7m** at **1.67** g/t Au in KDD015 and **29.7m** at **1.70** g/t Au in KDD016.

The zone of high-grade mineralisation previously identified in KRC086 (37m at 9.46 g/t Au from 291m) also continues to return significant proximal intercepts, including **7.1m at 3.76 g/t Au** in **KDD004**.

The Western zone mineralisation, which was previously constrained at depth by limited drilling, has intersected **13m at 2.02 g/t Au** in **KRC143**, extending the mineralised shoot by a further 80m down-dip.

Shallow extensional drilling at the Gap zone has returned intercepts that are better than predicted within the Exploration Target model¹, with intercepts of **14m at 1.52 g/t Au** in **KRC137** and **30m at 1.22 g/t** Au in **KRC138**.

Five drill rigs are active at site, including two diamond rigs, two RC rigs and 1 RAB rig. Diamond drilling, including the diamond tails, is focused at the NW zone extensions, following-up today results while RC drilling is underway at the high-grade zone near KRC086 and extending the Gap zone drill pattern. The RAB drill rig is targeting broader regional exploration at Kokoseb.

Wia's Chairman, Andrew Pardey, commented: *"Kokoseb continues to return very encouraging growth drilling results in all directions and at depth. These latest results further demonstrate the scale extent of the deposit, which remains drill tested at a wide spaced pattern of 100m to date. The current Kokoseb Mineral Resource covers a cumulative 2.9 km strike; whilst the drilling completed to date confirms continuity along a 4.9 km strike length plus significant depth extension, highlighting the scope for substantial growth in the existing Mineral Resource."*

¹ See ASX announcements dated 15 May 2023 for further information on the Exploration Target.

Figure 1 – Drill section of diamond drill hole KDD015 which goes through the thick NW mineralised shoot (intercepts in black were previously reported)²

North-West (NW) zone: definition of the thick plunging shoot and confirmation of depth extensions

The NW zone is defined by the merging between the Central zone and the Northern zone, a complex structural area interpreted to be a fold hinge. Diamond drillhole **KDD015** was planned to intersect both these zones and to improve the structural understanding of their controls (Figure 1). Mineralisation was successfully intersected in both the zones, returning the following significant intercepts:

42.7m at 1.67 g/t Au from 155.9m (Northern zone)

25.3m at 1.04 g/t Au from 202.9m (Northern zone)

14.6m at 1.73 g/t Au from 366.0m (Central zone)

The thick mineralisation intersected in the Northern zone defines the core of a significant plunging shoot there, that was previously only conceptual in modelling.

The intersection at depth in the Central zone links directly to the intersection returned from diamond drillhole **KDD016**, located 230m towards the south (Figure 2). Hole **KDD016** has returned **29.7m at 1.70 g/t Au from 271.5m**, including a higher-grade portion of **7.6m at 4.17 g/t Au**. Further drilling between both these intersections is currently underway.

² See ASX announcements dated 17 October 2022, 15 March 2023, 5 April 2023 and 15 May 2023 for further information on previously reported results of RC drilling.

Figure 2 – Drill section including diamond drillhole KDD016 at the NW Zone (intercepts in black were previously reported)³

Other significant intercepts were returned from RC extensional drilling completed along the Northern zone, including the following:

14m at 0.70 g/t Au from 216m in KRC134

8m at 0.71 g/t Au from 235m in KRC134

4m at 1.37 g/t Au from 145m in KRC136

27m at 0.92 g/t Au from 160m in KRC136

A series of drillholes is also underway in the same area, as RC pre-collars to be followed with diamond drill tails – KRD132, KRD145, KRD146 and KRD148. The diamond tails are expected to be drilled in Q1 2024.

Mineralised area including KRC086 returns further significant results

The high-grade area defined by the very high-grade intercept previously returned by KRC086 (37m at 9.46 g/t Au from 291m) remains a priority target due to its positive impact on future resource definition. With the additional drilling to date since KRC086 and the drilling underway, our understanding of the structural controls of this high-grade shoot are continuing to advance. We continue to close up the broad drill spacing from the initial 100m pattern to assist with this process. A new high-grade intercept has been returned with the extension of diamond drillhole KDD004,

³ See ASX announcements dated 15 March 2023 and 5 April 2023 for further information on previously reported results of RC drilling.

intersecting **7.1m at 3.76 g/t Au from 175m**, located up dip of the intersections in KDD013 (Figure 3).

Diamond drillhole **KDD014** has also intersected the mineralised zone at 80m down dip to the north of KRC086, returning a significant intercept of **8.9m at 1.63 g/t from 392.2m**.

Figure 3 – Vertical long section of the Western Zone

Further strong mineralisation at the Western zone

The deepest mineralised intercepts previously returned at the Western zone are in the range of 140m vertical depth, constraining the current Mineral Resource Estimate. This latest RC drilling has significantly increased the depth of known mineralisation by a further 80m down dip with KRC143 returning an intercept of 13m at 2.02 g/t Au from 234m (Figure 3). Other significant intercepts include the following:

4m at 1.62 g/t Au from 399m (KRC139) 5m at 0.51 g/t Au from 413m (KRC139) 3m at 0.58 g/t Au from 424m (KRC139) 3m at 1.21 g/t Au from 197m (KRC140) 4m at 0.55 g/t Au from 249m (KRC141) 5m at 2.22 g/t Au from 258m (KRC141) 5m at 0.58 g/t Au from 233m (KRC142) 8m at 0.73 g/t Au from 223m (KRC143)

Figure 4 – Drill section including drillholes KRC137 and KRC138 in the Gap zone

Shallow extensional drilling at the Gap zone returns better intercepts than predicted by Exploration Target model

Two RC drillholes were completed on the same section, **KRC137** and **KRC138**, in the Gap zone. They have returned mineralised intercepts of grade and thickness that exceed that predicted by the Exploration Target model in this area. Drillhole **KRC137** has returned an intercept of **14m at 1.52 g/t Au from 81m** and **KRC138**, drilled beneath it, has returned **30m at 1.22 g/t Au from 182m**.

Further RC drilling is underway along strike from this section.

Figure 5 – 3D view of the Kokoseb deposit, looking down towards the NW, showing modelled mineralised zones; drillholes traces reported in this announcement are highlighted in red

Figure 6 – Drill holes location on Kokoseb geology and interpreted surface mineralisation footprint⁴, location of all cross sections of this announcement and significant intercepts on drill holes reported in this announcement⁵

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

Contact details

Andrew Pardey Chairman +61 8 9381 5686 Michael Vaughan Fivemark Partners +61 422 602 720

⁴ See ASX announcement dated 15 May 2023 for further information on previously reported Kokoseb MRE.

⁵ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade.

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Project located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of Wia Gold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

In relation to the information in this announcement that relates to the Mineral Resource Estimate for the Kokoseb Project that was first reported on 15 May 2023, other than subsequently released drilling results, WIA confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

About The Kokoseb Gold Deposit

The Kokoseb Gold Deposit is located in the north-west of Namibia, a country that is a well-recognised mining jurisdiction, with an established history as a significant producer of uranium, diamonds, gold and base metals. The Kokoseb gold deposit is situated 320km by road from the capital Windhoek.

Kokoseb lies in the Okombahe exploration licence, which is held under joint venture (Wia 80%) with the state-owed mining company Epangelo. The Okombahe licence is part of Wia's larger Damaran Project, which consist of 12 tenements with a total area of over 2,700km².

A maiden Mineral Resource Estimate of 1.3Moz at 1.0 g/t Au, at a cut-off grade of 0.5 g/t Au, including a higher-grade gold portion of 0.72 Moz at 1.5 g/t Au using a cut-off grade of 1.0 g/t Au, was first announced on 15 May 2023, 11 months after the discovery holes and at a discovery cost of US\$2/oz.

Otjikoto 2.6 Moz Eure 0.9 Mo Kokoseb Deposit 1.3 Moz Wia Gold Exploration Licences O Gold Project Lithologies Recent sediments, aeolian sand, calcrete Sediments: schist, quartzite, shale, siltstones, sandstones Limestone Marble & Dolomite Basalt, Gabbro Basalt, Gabbro & other mafic volcanics Rhyolite & Felsic volcanics Granites, Granodiorites Other Intrusive rocks win Hills Ortho- & Para-G 3.1 Moz Regional thrust Major Bounding Thrust

The location of Kokoseb and the Company's Namibian Projects is shown in Figure 7.

Figure 7 – Location of Wia's Namibia Projects

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KDD004	525751	7660194	1068	269.83	-55	120
KDD014	525709	7660341	1072	558.43	-60	117
KDD015	526564	7660969	1081	515.83	-60	250
KDD016	526154	7660741	1074	416.93	-60	90
KRC134	526866	7661019	1082	279	-60	200
KRC135	528202	7660454	1077	280	-60	200
KRC136	526743	7660990	1085	279	-60	200
KRC137	525537	7659273	1062	155	-55	80
KRC138	525457	7659259	1062	260	-60	80
KRC139	525498	7660115	1065	436	-60	120
KRC140	525616	7660142	1069	253	-60	120
KRC141	525482	7660014	1078	385	-60	120
KRC142	525437	7659925	1068	326	-60	120
KRC143	525388	7659831	1065	265	-60	120

Appendix 1. Kokoseb – Location of RC and diamond drillholes

Appendix 2. RC and diamond drill holes gold assays, using a cut-off grade of 0.2 g/t gold and max 2m consecutive internal waste material

Hole ID	From (m)	To (m)	Gold g/t
KDD004	175	176	2.17
KDD004	176	177.05	6.54
KDD004	177.05	178	3.59
KDD004	178	178.7	0.719
KDD004	178.7	179.2	7.54
KDD004	179.2	179.95	5.2
KDD004	179.95	180.95	2.21
KDD004	180.95	181.55	2.19
KDD004	181.55	182.05	4.75
KDD004	182.05	183.05	0.22
KDD004	183.05	183.8	0.044
KDD004	183.8	184.45	0.421
KDD014	253.65	254.65	1.09
KDD014	254.65	255.65	0.057
KDD014	255.65	256.65	0.641
KDD014	256.65	257.65	0.087
KDD014	257.65	258.65	0.506
KDD014	267.65	268.65	0.336
KDD014	268.65	269.45	1.515
KDD014	269.45	269.95	0.027
KDD014	269.95	270.95	1.81
KDD014	277.95	278.95	0.348
KDD014	278.95	279.95	0.157
KDD014	279.95	280.95	0.21
KDD014	280.95	281.95	0.161
KDD014	281.95	282.95	0.305
KDD014	282.95	283.95	0.373
KDD014	283.95	284.95	0.23
KDD014	376.9	377.9	0.841
KDD014	377.9	378.9	0.113
KDD014	378.9	379.8	0.37
KDD014	379.8	380.55	0.141
KDD014	380.55	381.1	0.173
KDD014	381.1	382.1	1.415
KDD014	382.1	383.1	0.916

Hole ID	From (m)	To (m)	Gold g/t
KDD014	385.5	386.5	0.782
KDD014	386.5	387.1	0.136
KDD014	387.1	387.6	0.063
KDD014	387.6	388.5	0.343
KDD014	392.2	393.2	0.752
KDD014	393.2	394.2	0.665
KDD014	394.2	395.2	0.423
KDD014	395.2	396.2	5.33
KDD014	396.2	397.2	3.33
KDD014	397.2	398.2	0.265
KDD014	398.2	399.2	1.955
KDD014	399.2	400.2	0.381
KDD014	400.2	401.1	1.55
KDD015	152.7	153.35	0.245
KDD015	153.35	153.95	0.736
KDD015	153.95	155.35	0.036
KDD015	155.35	155.85	0.057
KDD015	155.85	156.85	0.601
KDD015	156.85	157.85	0.947
KDD015	157.85	158.85	0.414
KDD015	158.85	159.8	1.18
KDD015	159.8	160.8	0.92
KDD015	160.8	161.8	3.15
KDD015	161.8	162.8	0.809
KDD015	162.8	163.6	0.901
KDD015	163.6	164.6	1.675
KDD015	164.6	165.6	0.803
KDD015	165.6	166.6	2.05
KDD015	166.6	167.6	0.567
KDD015	167.6	168.6	0.744
KDD015	168.6	169.6	2.41
KDD015	169.6	170.6	6.36
KDD015	170.6	171.6	1.005
KDD015	171.6	172.6	1.005
KDD015	172.6	173.4	0.627

Hole ID	From (m)	To (m)	Gold g/t
KDD015	173.4	174.15	0.166
KDD015	174.15	174.65	0.794
KDD015	174.65	175.65	1.52
KDD015	175.65	176.65	4.53
KDD015	176.65	177.4	0.171
KDD015	177.4	178.2	0.615
KDD015	178.2	178.9	1.035
KDD015	178.9	179.9	3.91
KDD015	179.9	180.9	5.54
KDD015	180.9	181.65	5
KDD015	181.65	182.65	1.095
KDD015	182.65	183.65	1.09
KDD015	183.65	184.15	5.57
KDD015	184.15	185.15	1.325
KDD015	185.15	185.65	0.023
KDD015	185.65	186.6	0.778
KDD015	186.6	187.5	2.71
KDD015	187.5	188.15	0.836
KDD015	188.15	189.1	1.075
KDD015	189.1	190.1	3.18
KDD015	190.1	191.1	1.98
KDD015	191.1	191.7	0.929
KDD015	191.7	192.7	2.47
KDD015	192.7	193.7	0.517
KDD015	193.7	194.65	0.973
KDD015	194.65	195.65	0.709
KDD015	195.65	196.65	0.909
KDD015	196.65	197.6	1.405
KDD015	197.6	198.55	0.938
KDD015	198.55	199.5	0.236
KDD015	199.5	200.25	0.431
KDD015	200.25	201.25	0.391
KDD015	201.25	201.9	0.113
KDD015	201.9	202.9	0.394
KDD015	202.9	203.9	2.51
	203.9	204.9	0.302
	204.9	205.9	1 525
	205.9	200.9	2.55
	200.9	207.9	2.50
KDD015	207.5	208.5	3.88
KDD015	208.5	200.0	0.361
KDD015	210.9	210.5	0.727
KDD015	210.5	211.5	0.675
KDD015	212.9	213.9	0.719
KDD015	213.9	214.9	1.435
KDD015	214.9	215.8	0.545
KDD015	215.8	216.65	0.824
KDD015	216.65	217.4	0.039
KDD015	217.4	218.4	0.861
KDD015	218.4	219.4	0.939
KDD015	219.4	220.4	0.993
KDD015	220.4	221.4	0.369
KDD015	221.4	221.9	0.676
KDD015	221.9	222.9	0.01
KDD015	222.9	224.22	0.01
KDD015	224.22	225.2	0.925
KDD015	225.2	225.8	2.5
KDD015	225.8	226.7	0.153
KDD015	226.7	227.2	0.465

Hole ID	From (m)	To (m)	Gold g/t
KDD015	227.2	228.2	0.801
KDD015	360.55	361.5	0.806
KDD015	361.5	362.5	0.273
KDD015	362.5	363	0.258
KDD015	363	364	0.302
KDD015	364	365	0.188
KDD015	365	366	0.168
KDD015	366	366.7	0.589
KDD015	366.7	367.7	1.37
KDD015	367.7	368.2	0.065
KDD015	368.2	369.2	0.204
KDD015	369.2	370.2	>10
KDD015	370.2	370.7	2.9
KDD015	370.7	371.7	1.015
KDD015	371.7	372.7	0.173
KDD015	372.7	373.7	1.325
KDD015	373.7	374.7	0.672
KDD015	374.7	375.7	2.15
KDD015	375.7	376.7	1.725
KDD015	376.7	377.7	0.772
KDD015	377.7	378.7	2.5
KDD015	378.7	379.55	0.554
KDD015	379.55	380.55	0.756
KDD015	380.55	381.6	0.303
KDD015	381.6	383.1	0.014
KDD015	383.1	384	0.007
KDD015	384	385	0.382
KDD015	385	386	0.092
KDD015	386	386.85	0.237
KDD015	386.85	388.35	0.007
KDD015	388.35	389.85	0.0025
KDD015	389.85	390.6	0.596
KDD015	390.6	391.4	0.278
KDD015	391.4	392.45	0.083
KDD015	392.45	393	0.021
KDD015	393	394	0.362
KDD015	394	395	0.248
KDD016	267.3	268.3	1.35
KDD016	268.3	269.3	0.254
	209.3	270	0.150
	270	270.5	0.71
	270.5	271.5	0.020
KDD010	271.5	272.4	1.04
KDD010	272.4	273.05	3 36
KDD016	273.8	274.85	0.043
KDD016	274.85	275.8	1.4
KDD016	275.8	276.8	2.56
KDD016	276.8	277.8	2.3
KDD016	277.8	278.4	5.85
KDD016	278.4	279.4	4.78
KDD016	279.4	280.4	2.47
KDD016	280.4	281.4	3.24
KDD016	281.4	282.4	>10
KDD016	282.4	283.4	2.74
KDD016	283.4	284.4	1.04
KDD016	284.4	285.4	0.588
KDD016	285.4	286.4	1.365
KDD016	286.4	287.4	0.413
KDD016	287.4	288.4	0.54

Hole ID	From (m)	To (m)	Gold g/t
KDD016	288.4	289.4	0.486
KDD016	289.4	290.4	0.81
KDD016	290.4	291.4	0.63
KDD016	291.4	292	2.82
KDD016	292	293	0.422
KDD016	293	294	0.755
KDD016	294	295	0.208
KDD016	295	296	0.367
KDD016	296	297	1.495
KDD016	297	297.6	1.915
KDD016	297.6	298.6	0.529
KDD016	298.6	299.2	0.247
KDD016	299.2	300.2	0.257
KDD016	300.2	301.2	0.561
KRC134	203	204	0.33
KRC134	204	205	0.201
KRC134	205	206	0.073
KRC134	206	207	0.239
KRC134	207	208	0.011
KRC134	208	209	0.007
KRC134	209	210	0.271
KRC134	210	211	0.456
KRC134	211	212	0.438
KRC134	212	213	0.321
KRC134	213	214	0.284
KRC134	214	215	0.286
KRC134	215	216	0.436
KRC134	216	217	1.15
KRC134	217	210	0.055
KRC134	218	219	0.24
KRC134	215	220	0.07
KRC134	220	221	0.431
KRC134	221	222	0.519
KRC134	223	224	0.805
KRC134	224	225	1.045
KRC134	225	226	0.417
KRC134	226	227	1.105
KRC134	227	228	0.867
KRC134	228	229	0.549
KRC134	229	230	0.578
KRC134	230	231	0.275
KRC134	231	232	0.074
KRC134	232	233	0.448
KRC134	233	234	0.075
KRC134	234	235	0.113
KRC134	235	236	1.88
KRC134	236	237	1.105
KRC134	237	238	0.291
KRC134	238	239	0.552
KRC134	239	240	0.608
KRC134	240	241	0.375
KRC134	241	242	0.298
KRC134	242	243	0.553
KRC134	243	244	0.288
KRC134	244	245	0.47
KRC134	245	246	0.319
KRC134	246	247	0.255
KRC136	145	146	0.749
KRC136	146	147	2.74

Hole ID	From (m)	To (m)	Gold g/t
KRC136	147	148	0.947
KRC136	148	149	1.025
KRC136	149	150	0.278
KRC136	150	151	0.123
KRC136	151	152	0.179
KRC136	152	153	0.672
KRC136	153	154	0.219
KRC136	154	155	0.43
KRC136	155	156	0.405
KRC136	156	157	0.238
KRC136	157	158	0.199
KRC136	158	159	0.188
KRC136	159	160	0.256
KRC136	160	161	1.215
KRC136	161	162	1.67
KRC136	162	163	0.531
KRC136	163	164	0.712
KRC136	164	165	1.175
KRC136	165	166	1.19
KRC136	166	167	2.27
KRC136	167	168	0.791
KRC136	168	169	0.987
KRC136	169	170	0.532
KRC136	170	171	0.623
KRC136	171	172	1.185
KRC136	172	173	1.26
KRC136	173	174	0.818
KRC136	174	175	0.832
KRC136	175	176	1
KRC136	176	177	0.915
KRC136	1//	178	2.01
KRC136	178	179	0.466
KRC136	179	180	0.905
KRC136	180	181	0.973
KRC136	181	182	0.183
KRC136	182	183	0.185
KRC136	183	195	0.770
KRC136	185	185	0.205
KRC136	185	187	0.682
KRC136	187	188	0.334
KRC136	188	189	0.435
KRC136	189	190	0.052
KRC136	190	191	0.191
KRC136	191	192	0.555
KRC136	192	193	0.295
KRC136	193	194	0.615
KRC136	194	195	0.274
KRC136	195	196	0.128
KRC136	196	197	0.225
KRC137	71	72	0.825
KRC137	72	73	0.174
KRC137	73	74	0.196
KRC137	74	75	0.2
KRC137	75	76	0.692
KRC137	76	77	0.724
KRC137	77	78	0.133
KRC137	78	79	0.491
KRC137	79	80	0.177
KRC137	80	81	0.255

Hole ID	From (m)	To (m)	Gold g/t
KRC137	81	82	0.968
KRC137	82	83	0.246
KRC137	83	84	0.165
KRC137	84	85	1.305
KRC137	85	86	1.42
KRC137	86	87	1.475
KRC137	87	88	2.36
KRC137	88	89	3.25
KRC137	89	90	2.72
KRC137	90	91	1.1
KRC137	91	92	3.47
KRC137	92	93	0.843
KRC137	93	94	0.521
KRC137	94	95	1.43
KRC137	95	96	0.406
KRC137	96	97	0.38
KRC138	177	178	0.416
KRC138	178	179	0.307
KRC138	179	180	0.377
KRC138	180	181	0.458
KRC138	181	182	0.275
KRC138	182	183	0.532
KRC138	183	184	0.521
KRC138	184	185	0.201
KRC138	185	186	0.869
KRC138	186	187	0.804
KRC138	187	188	0.89
KRC138	188	189	0.216
KRC138	189	190	1.42
KRC138	190	191	5.29
KRC138	191	192	0.092
KRC138	192	193	0.409
KRC138	193	194	1.35
KRC138	194	195	0.879
KRC138	195	196	1.85
KRC138	196	197	1.63
KRC138	197	198	1.98
KRC138	198	199	1.895
KRC138	199	200	0.889
KRC138	200	201	0.328
KRC138	201	202	0.402
KRC138	202	203	1.075
KRC138	203	204	1.6
KRC138	204	205	0.784
	205	200	2.29
	200	207	3.21
KRC138	207	208	2.36
KRC138	208	209	1.005
KRC130	209	210	0.8/1
KRC130	210	211	0.207
KRC120	211	212	
KRC139	204	200	0.043
KRC139	200	200	0.100
KRC139	280 207	20/	0.4
KRC139	207 200	200 200	0.490
KRC139	200	209	0.042
KRC139	203	290	0.211
KRC139	237	298	0.70
KBC139	298 200	299	0.421
VUCT22	233	500	0.30

Hole ID	From (m)	To (m)	Gold g/t
KRC139	300	301	0.317
KRC139	305	306	0.37
KRC139	306	307	0.495
KRC139	307	308	0.442
KRC139	308	309	0.513
KRC139	313	314	0.206
KRC139	314	315	0.094
KRC139	315	316	0.291
KRC139	316	317	0.348
KRC139	317	318	1.48
KRC139	318	319	0.25
KRC139	399	400	2.3
KRC139	400	401	0.66
KRC139	401	402	1.925
KRC139	402	403	1.605
KRC139	403	404	0.156
KRC139	404	405	0.155
KRC139	405	406	0.34
KRC139	406	407	0.324
KRC139	412	413	0.217
KRC139	413	414	0.502
KRC139	414	415	0.974
KRC139	415	416	0.048
KRC139	416	417	0.265
KRC139	417	418	0.751
KRC139	424	425	0.717
KRC139	425	426	0.068
KRC139	426	427	0.969
KRC139	427	428	0.091
KRC139	428	429	0.44
KRC139	429	430	0.323
KRC140	192	193	0.229
KRC140	193	194	0.514
KRC140	194	195	0.337
KRC140	195	190	0.139
KRC140	190	198	0.41
KRC140	198	199	0.419
KRC140	199	200	2.37
KRC140	203	204	0.378
KRC140	204	205	0.4
KRC140	205	206	0.446
KRC140	206	207	0.078
KRC140	207	208	0.309
KRC140	208	209	0.079
KRC140	209	210	0.376
KRC140	210	211	0.65
KRC140	211	212	0.198
KRC140	212	213	0.193
KRC140	213	214	0.434
KRC140	214	215	0.969
KRC140	218	219	5.72
KRC140	219	220	0.076
KRC140	220	221	0.311
KRC140	221	222	0.044
KRC140	222	223	1.23
KRC140	238	239	0.499
KRC140	239	240	0.108
KRC140	240	241	1.005
KRC140	241	242	1.355

Hole ID	From (m)	To (m)	Gold g/t
KRC141	229	230	0.338
KRC141	230	231	0.376
KRC141	231	232	0.641
KRC141	232	233	1.23
KRC141	236	237	0.207
KRC141	237	238	0.211
KRC141	238	239	0.178
KRC141	239	240	0.227
KRC141	240	241	0.253
KRC141	241	242	1.125
KRC141	247	248	0.286
KRC141	248	249	0.182
KRC141	249	250	0.525
KRC141	250	251	0.717
KRC141	251	252	0.275
KRC141	252	253	0.702
KRC141	253	254	0.318
KRC141	257	258	0.378
KRC141	258	259	2.06
KRC141	259	260	0.913
KRC141	260	261	5.52
KRC141	261	262	1.695
KRC141	262	263	0.89
KRC141	263	264	0.216
KRC142	224	225	0.449
KRC142	225	226	0.243
KRC142	226	227	0.389
KRC142	227	228	0.671
KRC142	228	229	0.432
KRC142	229	230	0.165
KRC142	230	231	0.017
KRC142	231	232	0.429
KRC142	232	233	0.391
KRC142	233	234	1.025

Hole ID	From (m)	To (m)	Gold g/t
KRC142	234	235	0.599
KRC142	235	236	0.548
KRC142	236	237	0.158
KRC142	237	238	0.574
KRC142	242	243	0.558
KRC142	243	244	1.22
KRC142	244	245	0.49
KRC143	222	223	0.309
KRC143	223	224	0.611
KRC143	224	225	0.748
KRC143	225	226	1.06
KRC143	226	227	0.972
KRC143	227	228	0.787
KRC143	228	229	0.53
KRC143	229	230	0.612
KRC143	230	231	0.522
KRC143	231	232	0.434
KRC143	232	233	0.21
KRC143	233	234	0.122
KRC143	234	235	0.952
KRC143	235	236	0.958
KRC143	236	237	1.145
KRC143	237	238	1.065
KRC143	238	239	4.82
KRC143	239	240	1.57
KRC143	240	241	3.28
KRC143	241	242	1.815
KRC143	242	243	4.15
KRC143	243	244	3.57
KRC143	244	245	1.19
KRC143	245	246	0.534
KRC143	246	247	1.205
KRC143	247	248	0.257

Appendix 3. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was completed using a dedicated RC rig. RC samples were collected from the drill rig cyclone over 1 m down-hole intervals and subsampled by cone-splitting; full length of the drill holes was sampled. Samples are typically circa 2-4kg weight. A duplicate sample was retained on site for future reference. Diamond drilling was completed using a dedicated diamond rig. Drillholes were angled between -60° and -55° from surface. Diamond core was cut in half using a core saw. Sampling intervals are decided by a Company Geologist, based on the lithological contacts and on any change in alteration or mineralisation style. Core sample length vary between 0.5m and 1.4m. The half core sampling is done by a Company Geologist.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was carried out using a 140mm (5.5 inch) face sampling hammer. Coring was completed using HQ size from surface. All core is oriented using Reflex digital system
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded. RC samples quality and recovery was excellent, with dry samples and consistent weight obtained. Drill core recoveries were recorded at the drill rig. Core recoveries were excellent for all the drill program. Sample bias is not expected with the cut core.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and 	 All drill holes were logged in the field by Company Geologists. On the RC holes, lithologies, alteration, minerals were recorded. Samples chips are collected and sorted into chip trays for future

Criteria	JORC Code explanation	Commentary
	 metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 geological references. On the diamond holes, lithologies, alteration, minerals geotechnical measurements and structural data were recorded and uploaded into the Company database. Photography was taken on dry and wet core and on plain and cut core for further references. Drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg. The sampling technique is considered industry standard and effective for this style of drilling. Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. RC samples were assayed using method Au-AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples. The diamond core was cut longitudinally using a core saw. Half core samples were collected by a Company Geologist and sent off to the laboratory for assay. Half core samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. Drilling samples were assayed using methods Au-AA24 for gold and ME-MS61 for the multi element suite. The sample preparation procedures carried out are considered acceptable. Blanks and standards (CRM) are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC samples and half core samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Multielement were assayed using a 4-acid digest followed by ICPMS-AES Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drill holes and diamond drill holes reported here were planned on a set grid with spacing of 100m in plan view and 50m between holes on sections. The data spacing and distribution of sampling is sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	The measures taken to ensure sample security.	 Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No reviews or audits have been conducted on the drilling reported in this announcement.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by Wia Gold in the name of Aloe Investments One Hundred and

Criteria	JORC Code explanation	Commentary
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the tenements.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Kokoseb Gold Project lies withing the Northern Central Zone of the Pan-African Damaran Orogenic Belt. The project area is underlain by neo-Proterozoic metasediments, including the Kuiseb schist formation, host of most of the known gold mineralisation in Namibia. Known gold deposits, including Kokoseb, are orogenic type deposits by nature. Kokoseb gold mineralisation is hosted by the Kuiseb schist formation, biotite-schists (metasediments) which have been intruded by several granitic phases. The gold mineralised zone appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction. Gold mineralisation is present as native gold grains and lesser silver bearing gold grains been spacially associated with sulphides dominated by pyrrhotite, löllingite and arsenopyrite. Gold grains have developed at the contact between löllingite and arsenopyrite following a retrograde reaction.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) 	see tables in the appendix.

Criteria	JORC Code explanation	Commentary
	 of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material.
Relationshi p between mineralisati on widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, 	• Drill holes are inclined at around 55 to 60 degrees, with azimuths generally perpendicular to local mineralisation trends, implying a true thickness around half the down-hole intercept lengths.
Intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Intercepts are reported as they appear from the sampling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All samples with assays have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk	 No other exploration data is being reported at this time.

Criteria	JORC Code explanation	Commentary
	density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Refer to the text in the announcement for information on follow-up and/or next work programs.