ASX Announcement 19 December 2023 # **Extensive Aircore Programme Completed at the Firebird Gold Project** ### **Highlights** - An extensive ~8,000 metre phase 2 aircore drilling programme has been completed at the Firebird Gold Project, following-up significant results from the maiden RC drilling at Firebird earlier in 2023. - This second phase aircore drilling campaign marks a crucial phase in defining potentially major gold mineralisation at Firebird, which aimed to extend mineralisation defined by the maiden RC drilling programme at the Project. - The maiden RC Drilling programme earlier in 2023 tested a large Ultrafine+ soil anomaly with an extent of 3.7km x 450m and anomalous reconnaissance aircore results. Drilling returned significant RC results which were open up to 2km south along strike and were interpreted to have tested the fringes of a potentially major gold system. - As anticipated, geological logging of the phase 2 aircore drilling programme recorded basalt, volcaniclastic sediment, mafic/sedimentary schist, and banded iron formation rocks within an Archean Greenstones sequence, consistent with the geological units intersected in the maiden RC programme. - The phase 2 aircore drilling programme composed 83 drill-holes for 8,021m, with assay results anticipated in February 2024. Great Western Exploration Limited (ASX: GTE) ("Great Western" or "the Company") is pleased to announce the completion of an extensive 8,000 metre aircore drilling campaign at the Company's Firebird Gold Project. The programme marks a crucial phase in defining potentially major gold mineralisation potential at this location. #### **Firebird Gold Project** GTE 100% (E53/2027, E53/1894), GTE earning 80% (E53/2129) The Firebird Gold Project ("Firebird") is located within the Youanmi Greenstone Belt, comprised of 100% owned GTE tenure and the adjacent Great Western-Dynamic Metals (ASX:DYM) Joint Venture (Great Western earning 80%). Firebird is 2.5km west of Western Gold Resources' Gold Duke Project which contains several Mineral Resources reported to JORC 2012 standard (Figure 1), demonstrating the fertility and economic potential of the Archean Greenstone sequence. Figure 1: Location of the Firebird Project, with the location of the Gold Juke JORC 2012 standard resources located east of the Firebird Project. Great Western has completed an extensive 8,000 metre aircore drilling campaign, infilling and extending significant results returned from the maiden RC Programme completed at Firebird (GTE ASX Announcement 19 September 2023¹). The RC programme earlier in 2023 tested a previously defined large, 3.4km x 450m soil anomaly and reconnaissance aircore drilling results at this location (GTE ASX Announcement 5 July 2023²). Drill-hole 23FBRC008 of the maiden RC drilling campaign recorded multiple mineralised intercepts, clustered at the southern extent of the higher tenor soil anomalism and included: 1m @ 16.8g/t Au from 50m, 2m @ 1.95g/t Au from 125m, and 1m @ 1.38g/t Au from 70m. These results were interpreted to have tested the fringes of a major gold mineralised system and open to the south for up to two kilometres following the soil anomalism trend. The aircore drilling programmed was designed to test the southern strike extent, and infill to the north of this zone, with 83 aircore drill-holes for 8,021m, shown in Figure 2. As anticipated, geological logging of the aircore holes recorded basalt, volcanic sediment, mafic/sedimentary schists, and banded iron formation rocks within an Archean Greenstone sequence, consistent with the geological units logged in the maiden RC programme. This drilling programme is considered by the Company to be a crucial phase in defining potentially major gold mineralisation at the Firebird Gold Project, with assay results anticipated in February 2024. Figure 2: Plan section of completed aircore holes on the anomalous soil sample contours and significant RC assay results. ### **About Great Western Exploration** Great Western Exploration (GTE.ASX) is a copper, gold and nickel explorer with a world class, large land position in prolific regions of Western Australia. Great Western's tenements have been under or virtually unexplored (Figure 3). Numerous field work programmes across multiple projects are currently underway and the Company is well-funded with a tight capital structure, providing leverage upon exploration success. Figure 3: Location of Great Western's Exploration Tenure. Authorised for release by the board of directors of Great Western Exploration Limited. Shane Pike **Managing Director** **Great Western Exploration Limited** Tel: 08 6311 2852 Email: enquiries@greatwestern.net.au Previous ASX Releases - GTE.ASX 1. 19 September 2023 Maiden RC Drilling Upgrades Firebird. 2. 5 July 2023 Encouraging Assays Received From Aircore Drilling at Firebird. 3. 21 November 2023 Extensive Phase 2 Aircore Drilling Programme Commences at Firebird. 4. 19 May 2023 Phase 1 Drilling Completed at the Firebird Project. 5. 12 January 2023 Broad Gold Anomalies Confirmed and Extended at Firebird. 6. 22 August 2021 Large Strong Gold Anomaly at Firebird Gold Project. 7. 7 February 2023 Geological Interpretation Significantly Enhances Firebird. 8. 9 May 2023 Drilling Commences at the Firebird Gold Project. #### **Competent Person Statement** The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr. Shane Pike who is a member of the Australian Institute of Mining and Metallurgy. Mr. Pike is an employee of Great Western Exploration Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Pike consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information in this report that relates to the Company's Exploration Results is a compilation of Results previously released to ASX by Great Western Exploration (12/01/2023, 5/07/2023, 22/08/2023, and 19/09/2023) Mr. Shane Pike consents to the inclusion of these Results in this report. Mr. Pike has advised that this consent remains in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements. ### Appendix 1 #### Attributes of the reported drill-holes at the Firebird Gold Project | Hole ID | Easting | Northing | Elevation | Dip | Magnetic
Azimuth | Hole
Depth | |----------|-------------|-------------|-----------|-----------|---------------------|---------------| | 110.0.12 | (GDA94 Z50) | (GDA94 Z50) | RL | (degrees) | (degrees) | (m) | | GFB067 | 790,190 | 7,039,600 | 581 | -60 | 90 | 105 | | GFB068 | 790,140 | 7,039,600 | 581 | -60 | 90 | 112 | | GFB069 | 790,090 | 7,039,600 | 580 | -60 | 90 | 96 | | GFB070 | 790,040 | 7,039,600 | 580 | -60 | 90 | 117 | | GFB071 | 789,990 | 7,039,600 | 580 | -60 | 90 | 100 | | GFB072 | 790,340 | 7,039,200 | 585 | -60 | 90 | 100 | | GFB073 | 790,290 | 7,039,200 | 585 | -60 | 90 | 103 | | GFB074 | 790,240 | 7,039,200 | 584 | -60 | 90 | 100 | | GFB075 | 790,190 | 7,039,200 | 584 | -60 | 90 | 94 | | GFB076 | 790,140 | 7,039,200 | 584 | -60 | 90 | 100 | | GFB077 | 790,090 | 7,039,200 | 584 | -60 | 90 | 100 | | GFB078 | 790,390 | 7,039,100 | 584 | -60 | 90 | 102 | | GFB079 | 790,340 | 7,039,100 | 584 | -60 | 90 | 100 | | GFB080 | 790,290 | 7,039,100 | 585 | -60 | 90 | 130 | | GFB081 | 790,240 | 7,039,100 | 584 | -60 | 90 | 140 | | GFB082 | 790,190 | 7,039,100 | 584 | -60 | 90 | 100 | | GFB083 | 790,140 | 7,039,100 | 584 | -60 | 90 | 100 | | GFB084 | 790,440 | 7,038,900 | 590 | -60 | 90 | 100 | | GFB085 | 790,390 | 7,038,900 | 590 | -60 | 90 | 100 | | GFB086 | 790,340 | 7,038,900 | 590 | -60 | 90 | 110 | | GFB087 | 790,290 | 7,038,900 | 591 | -60 | 90 | 140 | | GFB088 | 790,240 | 7,038,900 | 591 | -60 | 90 | 121 | | GFB089 | 790,190 | 7,038,900 | 591 | -60 | 90 | 100 | | GFB090 | 790,490 | 7,038,800 | 589 | -60 | 90 | 100 | | GFB091 | 790,440 | 7,038,800 | 589 | -60 | 90 | 100 | | GFB092 | 790,390 | 7,038,800 | 590 | -60 | 90 | 100 | | GFB093 | 790,290 | 7,038,800 | 590 | -60 | 90 | 82 | | GFB094 | 790,290 | 7,038,800 | 591 | -60 | 90 | 80 | | GFB095 | 790,240 | 7,038,800 | 951 | -60 | 90 | 100 | | GFB096 | 790,890 | 7,037,000 | 597 | -60 | 90 | 100 | | GFB097 | 790,640 | 7,037,000 | 600 | -60 | 90 | 130 | | GFB098 | 790,890 | 7,037,200 | 597 | -60 | 90 | 100 | | GFB099 | 790,840 | 7,037,200 | 598 | -60 | 90 | 100 | | GFB100 | 790,791 | 7,037,205 | 599 | -60 | 90 | 100 | |--------|---------|-----------|-----|-----|----|-----| | GFB101 | 790,750 | 7,037,201 | 599 | -60 | 90 | 100 | | GFB102 | 790,698 | 7,037,201 | 600 | -60 | 90 | 100 | | GFB103 | 790,645 | 7,037,199 | 601 | -60 | 90 | 106 | | GFB104 | 790,590 | 7,037,200 | 602 | -60 | 90 | 64 | | GFB105 | 790,890 | 7,036,800 | 600 | -60 | 90 | 100 | | GFB106 | 790,840 | 7,036,800 | 600 | -60 | 90 | 100 | | GFB107 | 790,794 | 7,036,796 | 601 | -60 | 90 | 100 | | GFB108 | 790,740 | 7,036,800 | 601 | -60 | 90 | 104 | | GFB109 | 790,690 | 7,036,800 | 602 | -60 | 90 | 102 | | GFB110 | 790,640 | 7,036,800 | 602 | -60 | 90 | 100 | | GFB111 | 790,790 | 7,037,800 | 595 | -60 | 90 | 140 | | GFB112 | 790,740 | 7,037,800 | 595 | -60 | 90 | 100 | | GFB113 | 790,690 | 7,037,800 | 595 | -60 | 90 | 100 | | GFB114 | 790,640 | 7,037,800 | 596 | -60 | 90 | 104 | | GFB115 | 790,590 | 7,037,800 | 596 | -60 | 90 | 104 | | GFB116 | 790,540 | 7,037,800 | 597 | -60 | 90 | 89 | | GFB117 | 790,490 | 7,037,800 | 597 | -60 | 90 | 120 | | GFB118 | 790,440 | 7,037,800 | 598 | -60 | 90 | 102 | | GFB119 | 790,390 | 7,037,800 | 598 | -60 | 90 | 117 | | GFB120 | 790,290 | 7,040,200 | 581 | -60 | 90 | 100 | | GFB121 | 790,240 | 7,040,200 | 581 | -60 | 90 | 103 | | GFB122 | 790,190 | 7,040,200 | 581 | -60 | 90 | 100 | | GFB123 | 790,140 | 7,040,200 | 580 | -60 | 90 | 100 | | GFB124 | 790,090 | 7,040,200 | 580 | -60 | 90 | 100 | | GFB125 | 790,040 | 7,040,200 | 580 | -60 | 90 | 100 | | GFB126 | 789,990 | 7,040,200 | 580 | -60 | 90 | 81 | | GFB127 | 789,940 | 7,040,200 | 580 | -60 | 90 | 108 | | GFB128 | 790,540 | 7,038,600 | 159 | -60 | 90 | 100 | | GFB129 | 790,490 | 7,038,600 | 589 | -60 | 90 | 100 | | GFB130 | 790,440 | 7,038,600 | 590 | -60 | 90 | 90 | | GFB131 | 790,390 | 7,038,600 | 590 | -60 | 90 | 100 | | GFB132 | 790,340 | 7,038,600 | 591 | -60 | 90 | 100 | | GFB133 | 790,290 | 7,038,600 | 591 | -60 | 90 | 96 | | GFB134 | 790,690 | 7,038,200 | 590 | -60 | 90 | 73 | | GFB135 | 790,640 | 7,038,200 | 591 | -60 | 90 | 59 | | GFB136 | 790,590 | 7,038,200 | 591 | -60 | 90 | 82 | | GFB137 | 790,540 | 7,038,200 | 592 | -60 | 90 | 75 | | GFB138 | 790,490 | 7,038,200 | 592 | -60 | 90 | 80 | | GFB139 | 790,440 | 7,038,200 | 593 | -60 | 90 | 92 | |--------|---------|-----------|-----|-----|-----|----| | GFB140 | 790,390 | 7,038,200 | 593 | -60 | 90 | 90 | | GFB141 | 790,890 | 7,037,400 | 597 | -60 | 90 | 91 | | GFB142 | 790,840 | 7,037,400 | 598 | -60 | 90 | 78 | | GFB143 | 790,790 | 7,037,400 | 598 | -60 | 90 | 69 | | GFB144 | 790,740 | 7,037,400 | 599 | -60 | 90 | 57 | | GFB145 | 790,690 | 7,037,400 | 600 | -60 | 90 | 46 | | GFB146 | 790,640 | 7,037,400 | 600 | -60 | 90 | 58 | | GFB147 | 790,590 | 7,037,400 | 601 | -60 | 90 | 67 | | GFB148 | 790,540 | 7,037,400 | 601 | -60 | 90 | 62 | | GFB149 | 790,103 | 7,039,197 | 584 | -60 | 270 | 50 | ## Appendix 2. JORC Code, 2012 Edition (Table 1) – Firebird Gold Project Aircore Drilling #### Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Drill samples have been obtained from aircore (AC) holes. The collar details and depths of these holes are summarised in Appendix 1. AC samples were collected at 1m intervals in buckets and laid upon the ground in lines of 10-15. 2m sample composites have been collected directly from a rig mounted cone splitter for laboratory analysis. The site geologist recorded collar locations with a handheld GPS (+/-5m accuracy) and drill azimuth/dip using a compass/clinometer. Drillholes were sampled in their entirety. Sample weight averaged 2kg. Samples were delivered to the laboratory (ALS Perth). No assay results have been received. | | Drilling techniques | Drill type (eg core, reverse circulation, open-
hole hammer, rotary air blast, auger, Bangka,
sonic, etc) and details (eg core diameter, triple | GTE contracted Gyro Drilling Australia to compete the drill
programme utilising a Challenger 150 truck-mounted aircore rig. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | or standard tube, depth of diamond tails, face-
sampling bit or other type, whether core is
oriented and if so, by what method, etc). | Drilling was completed using a 3.5" bladed bit. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | AC sample recovery, moisture and contamination was visually assessed on a per metre basis and recorded by the site geologist. Drilling was conducted to maximise sample recovery. Sample recovery was high. No assays have been received, therefore no relationship between sample recovery, grade, or sample bias can be made. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Each AC sample was sieved (wet and dry) and logged on a 1 metre scale. Regolith, lithology, veining, alteration, and mineralisation was recorded. Drillhole logging data was recorded within a database. Logging is qualitative. Chip-trays have been stored and photos taken for future reference. All drillholes (100%) were geologically logged on site by a qualified geologist. | | Sub-sampling
techniques and
sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field | Representative sub-samples were produced using a rig mounted cyclone and cone splitter. Samples were mostly dry. AC sampling is an appropriate first-pass drill exploration method for gold and base metal exploration. Before each drillhole the cyclone and riffle splitter were inspected for damage, cleanliness, and correct set-up. The cyclone was cleaned with compressed air between (3m) drill runs. No field duplicates were taken. Target sub-sample weight for AC samples was 2kg. This sample size is appropriate for the Archaean gold and base metal mineralisation. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | | | Quality of assay
data and laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | No assay results have been returned and but will be reported once
received. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | No assay results have been returned and but will be reported once received. No twin holes were completed. Field data was recorded electronically and backed up in secure offsite servers. Once checked, field data was loaded to an SQL database which is operated and maintained by Geobase Australia. All database processes are logged and time stamped. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | A handheld GPS with +/- 5m accuracy was used for marking drill collar locations. This accuracy is acceptable for exploration drilling. No downhole surveys were completed. All data recorded and reported using grid system GDA94, MGA zone 50S. Drill hole collar elevations was assigned from the publicly available, SRTM derived, DEM (digital elevation model). | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Data spacing and distribution | Data spacing for reporting of Exploration
Results. Whether the data spacing and distribution is
sufficient to establish the degree of geological
and grade continuity appropriate for the
Mineral Resource and Ore Reserve estimation
procedure(s) and classifications applied. Whether sample compositing has been applied. | On section spacing between drill collars was 25m, with line spacing between 400m – 1,200m (Figure 2) Drill spacing was for exploration purposes and not sufficient to for Mineral Resource and Ore Reserve Estimation. Samples were composited to 2m directly from the rig mounted cone splitter. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling was planned near-perpendicular to the modelled mineralised structures to achieve unbiased sampling. The drill orientation did not introduce any sample bias, and no assay results have been returned. | | Sample security | The measures taken to ensure sample security. | Drill samples are securely packed on site and delivered to the
laboratory (ALS Perth, WA) by the commercial freight carrier,
McMahon Burnett Transport, or by GTE employees. | | Audits or reviews | The results of any audits or reviews of sampling
techniques and data. | No external audits or reviews were undertaken on sampling
techniques and data. Drill data was reviewed internally by the Senior
Exploration Geologist. | ### Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | | |---|--|---|--| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Tenement No: E 53/2027 Tenement Type: Exploration License, Western Australia Status: Granted – 10/01/2019 Location: Wiluna District Size (km2) 31 | | | | | Tenement No: Tenement Type: Status: Location: Size (km2) Ownership: | E 53/2129 Exploration License, Western Australia Granted 26/05/2021 Wiluna District 20.7 GTE Earning up to 80%. JV in place between GTE and tenement holder Jindalee Resources (ASX: JRL). | | | | Native Title: | Partially covered by Determined Native Title Claim. A land access agreement is currently being negotiated with TMPAC. | | Criteria | JORC Code explanation | Commentary | | |-----------------------------------|---|--|--| | | | Other Agreements: details see GTE ASX | enture in place between GTE and JRL. For
announcement: 22/08/2021 <i>Large</i>
Bly at Firebird Gold Project. | | | | Non-State Royalties: None | | | | | Other Encumbrances: None | | | | | Historical Sites: None | | | | | National Parks: None | | | | | Environment: None | | | Exploration done by other parties | Acknowledgment and appraisal of exploration
by other parties. | Acknowledgement and appraisal of
previous parties disclosed in GTE A
Large Strong Gold Anomaly at Fire | SX announcement: 22/08/2021 – | | Geology | Deposit type, geological setting and style of
mineralisation. | GTE have targeted Archaean lode-
geochemistry. Additional explorati
setting and style. | _ | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | See Appendix 1 for drill hole detail All material information has been | | | Criteria | JORC Code explanation | Commentary | |--|---|---| | Data aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No assay results have been returned and but will be reported once received. | | Relationship between mineralisation widths and intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | All drillholes were drilled at -60 degrees dip to the east. Field mapping indicated steep north-striking and west dipping structures. The targeted gold-in-soil geochemical anomaly trends north-northwest. Downhole lengths were reported, and true widths are not known. Flat-lying regolith-related Au mineralisation has been noted. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Relevant maps and sections are available in the body of the announcement (Figures 2). No assay results have been returned and but will be reported once received. | | Balanced reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and high
grades and/or widths should be practiced to
avoid misleading reporting of Exploration
Results. | All completed drill holes, and no assay results have been returned and
but will be reported once received. | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|--| | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | The exploration drilling was targeting a gold-in-soil geochemical anomaly. This was previously made public is the following ASX announcements: 22/08/2021 – Large Strong Gold Anomaly at Firebird Gold Project; 12/01/2023 – Broad Gold Anomalies Confirmed and Significantly Extended at Firebird; 7/02/2023 – Geological Interpretation Significantly Enhances Firebird; 9/05/2023 – Drilling Commences at the Firebird Gold Project; and 19/05/2023 – Phase 1 Drilling Completed at the Firebird Gold Project. 5/7/2023 - Encouraging Assays Received From Aircore Drilling at Firebird 19/09/2023 - 19 September 2023 Maiden RC Drilling Upgrades Firebird. | | Further work | The nature and scale of planned further work
(eg tests for lateral extensions or depth
extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of
possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | Further exploration work could include Reverse Circulation (RC) and/or Diamond Drilling to confirm and extend anomalous drill intersections. Aircore drilling is considered a first pass reconnaissance technique, and therefore geological interpretation of grade continuality and extensions of defined anomalous results is at an early stage. However, grade continuity and mineralisation extension is supported in part by previously completed soil sampling at the same locations. |