

January 4, 2024

More high- grade gold results from RAS RC drilling expands potential at CIT Permit extension granted and new permit added

Santana Minerals Limited (ASX: SMI) ("Santana" or "the Company") is pleased to advise that it has received further results from resource estimation drilling at its Rise & Shine (RAS) Prospect within its 100% owned Bendigo-Ophir Project ("the Project").

Rise and Shine (RAS) deposit

The latest batch of assays from infill drilling of the previously defined inferred resource at RAS continues to deliver strong outcomes especially within the now predictable and continuous high-grade core which carries the bulk of the metal content within the deposit.

The infill drilling continues to increase density to approximately 30m east-west spacing on 40m north-south sections over the upper 1km of plunge of the defined ore system.

Highlighted below are exceptional results (in excess of 100-gram x metres, with 100 g/t Au top cut applied). These holes lie within a 50 gram x metre projection of all holes within the RAS deposit as illustrated in Figure 1.

ł,	MDD187R	 15m @ 6.0 g/t Au from 124m (true width estimate of 14.2m).
ł	MDD212	 24.3m @ 5.7 g/t Au from 260.7m (true width estimate of 23.2m); and 13m @ 1.3 g/t Au from 286m (true width estimate of 12.4m).
ł	MDD239	 25.1m @ 6.2 g/t Au from 174.9m (true width estimate of 21.1m); and 15m @ 1.5 g/t Au from 202m (true width estimate of 12.6m).
÷	MDD243	 17.9m @ 5.7 g/t Au from 256.1m (true width estimate of 17.3m).
•	MDD244	 32.9m @ 3.9 g/t Au from 165.2m (true width estimate of 31.2m); and 7m @ 5.7 g/t Au from 199m (true width estimate of 6.6m); and 4m @ 7.1 g/t Au from 211m (true width estimate of 3.8m); and 9m @ 2.0 g/t Au from 237m (true width estimate of 8.5m); and 7m @ 2.2 g/t Au from 253m (true width estimate of 6.6m).
•	MDD256	 19.6m @ 7.6 g/t Au from 217.4m (true width estimate of 18.5m).

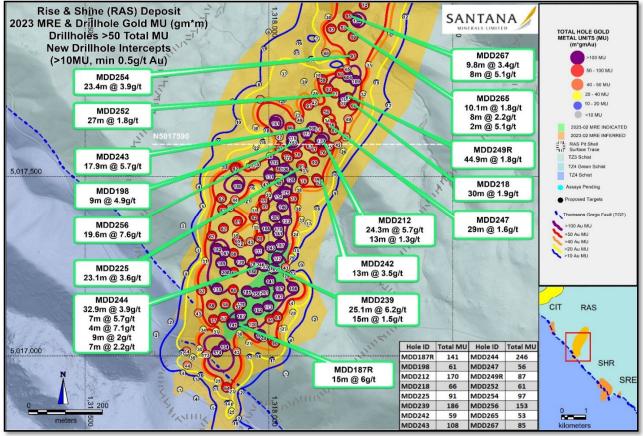


Fig 1: Latest results from infill drilling of the high-grade core at RAS showing the consistent thickness and gold grade.

The section through 5017950N illustrated below in Figure 2 illustrates the typical impact of infill drilling, with repeating results in the high-grade core and the quick drop off of grade and thickness away from it, suggesting structural controls on the mineralisation in defining the higher-grade core.

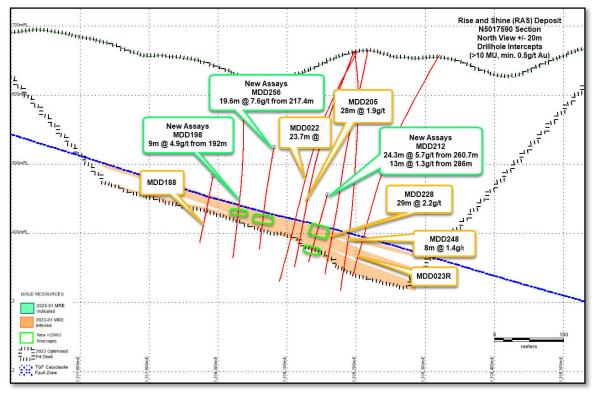


Figure 2 Cross Section 5017590N, showing three newly released results with continued high-grade intercepts in the northern part of RAS.

As part of the infill drilling numerous fringe holes designed to close out the high-grade core have been necessarily drilled. These too continue to deliver consistent results, albeit not carrying the density of metal of the high-grade core. They sit mainly on the east-west edges as stacked lodes proximal to the core zone. (See Figure 3). The latest results from nine of these diamond holes include:

- **MDD211** 15m @ 1.5 g/t Au from 289m (true width estimate of 14.2m)
 - 18.8m @ 2.1 g/t Au from 264.2m (true width estimate of 17.6m) **MDD233**
 - 24.5m @ 1.4 g/t Au from 265.5m (true width estimate of 22.3m)
- **MDD251 MDD255**

MDD263

12.2m @ 2.2 g/t Au from 280.8m (true width estimate of 11.1m) 14m @ 1.6 g/t Au from 283m (true width estimate of 13.4m)

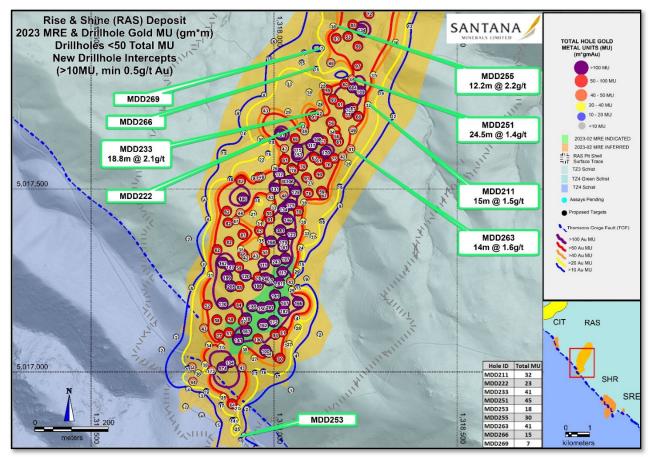


Figure 3 – Latest RAS drill holes around the exterior of the main RAS shoot.

There remains one last batch of infill drill results from RAS still to be compiled, reported and added to the database. When finalised, these will be reported and the revised mineral resource estimate can be completed and released to the market.

RC drilling expands the potential at Come-In-Time (CIT)

The last batch of results from the reverse circulation drilling campaign at CIT (1.3km northwest of RAS) completed in 2023 have been received. The previous total mineral resource estimate from 2021 was estimated by Wildfire Resources Pty Ltd, Perth WA at 1.2Mt at 1.5 g/t for 59,000oz (at 0.5g/t Au cut-off) and all in the Inferred Resource category (ASX announcement on 28 September 2021).

In this last campaign, 17 new RC holes were drilled (876 metres), targeting the down-plunge extension of outcropping mineralisation. The data is still being evaluated however a modest core of higher-grade mineralisation is taking shape.

The CIT results continue to show elevated gold grades (min 0.5g/t) in the NNE plunging axis from the RSSZ outcrop to 260 metres down-plunge, including:

- MRC174
 13m @ 2.7 g/t Au from 29m (true width estimate of 11.7m)
- MRC173
 12m @ 1.6 g/t Au from 29m (true width estimate of 10.8mm)
- MRC168
 9m @ 1.5 g/t Au from 0m (true width estimate of 8m); and
 9m @ 0.5 g/t from 16m (true width estimate of 8m); and
 - 6m @ 1.1 g/t from 27m (true width estimate of X5m)
- MRC166 13m @ 0.5 g/t Au from 12m (true width estimate of 11m); and
 - 6m @ 0.8 g/t from 26m (true width estimate of 5m)
- MRC165
 12m @ 0.5 g/t Au from 15m (true width estimate of 11m); and
 13m @ 3.4 g/t from 28m (true width estimate of X11.7m)
- MRC164
- 15m @ 1.5 g/t from 35m (true width estimate of 13.5mm)

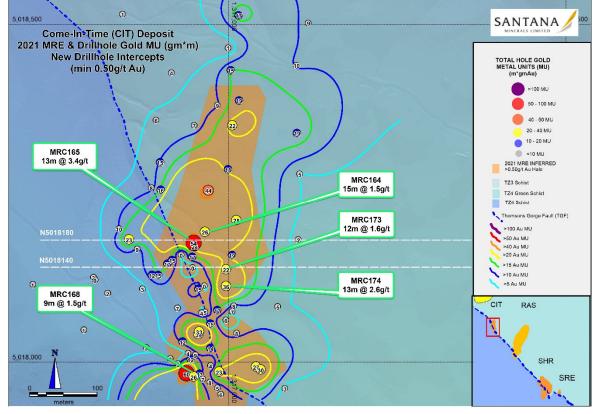


Figure 4 Plan of Come-In-Time (CIT) with new results and the 2021 MRE Inferred Resource Boundary

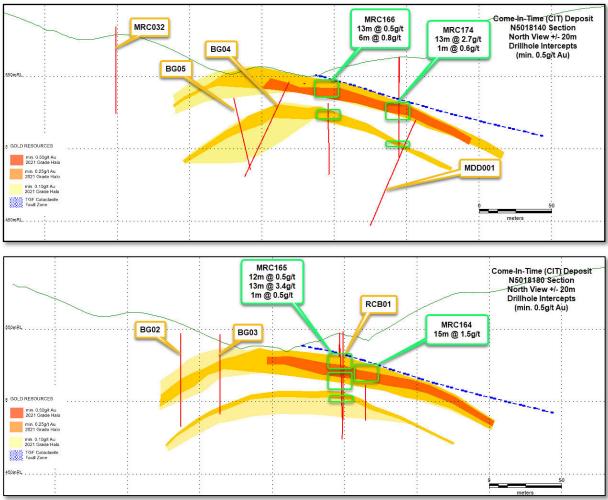


Figure 5 – Two East-West Sections (5018020N & 5018060N) from Come-In-Time (CIT) showing deeper mineralisation.

RC drilling at Shreks (SHR) deposit

A campaign of reverse circulation drilling was completed at Shreks (SHR) /Shreks East (SRE) in 2023. In this last campaign, 29 new RC holes were drilled (1,953 metres), targeting resource definition infill and the down-plunge extension of outcropping mineralisation.

The previous total mineral resources from 2021 were estimated by Wildfire Resources Pty Ltd, Perth WA at 4.1Mt at 1.1 g/t for 174,000oz (SHR) and 0.3Mt at 1.3 g/t for 11,000oz (SRE) at 0.5g/t Au cutoff, and all categorised as Inferred Resource (ASX announcement on 28 September 2021).

The results from this drilling are still being compiled and currently unavailable for release.

Extension of Duration to Mineral Exploration Permit and New Prospecting Permit Granted

The granting of the extension of duration to permit MEP60311 and granting of MPP60822 in December 2023 provides the foundation for the continued development of the Bendigo-Ophir Gold Project (See Figure 6).

MEP60311 is the original permit that extends from Bendigo in the NNW 30km to Ophir to the SSE, within which the RAS, CIT, SHR and SRE deposits are located. New Zealand Petroleum and Minerals granted an extension of duration of another five years. As the project advances to a prefeasibility study an application will be lodged to convert this to a mining permit.

MPP60882 covers potential northerly extensions of the mineralisation demonstrated by the 1.7km down-plunge continuous length of RAS that remains open. The granting of this permit allows fieldwork to occur this summer as part of our planned regional exploration strategy.

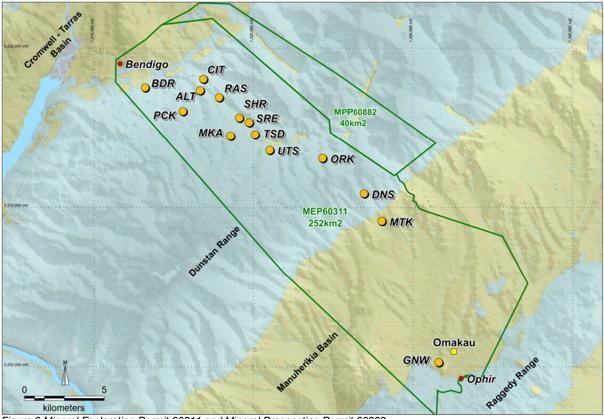


Figure 6 Mineral Exploration Permit 60311 and Mineral Prospecting Permit 60822

This announcement has been authorised for release by the Board.

Ends.

Enquiries:

Damian Spring Exec. Director & CEO dspring@santanaminerals.com Sam Smith Exec. Director Corp Affairs & IR ssmith@santanaminerals.com

Bendigo-Ophir Project Mineral Resource Estimate

The Project contains a Mineral Resource Estimate (MRE) calculated at a cutoff grade of 0.5 g/t Au with top cuts applied, as at February 2023:

Deposit	Category	tonnes (Mt)	Au grade (g/t)	Contained Gold (koz)
RAS ¹	Inferred	31.5	2.4	2,383
RA3	Indicated	2.0	4.3	279
RAS Total	Indicated and Inferred	33.5	2.5	2,662
CIT ²	Inferred	1.2	1.5	59
SHR ²	Inferred	4.7	1.1	174
SRE ²	Inferred	0.3	1.3	11
RSSZ	Inferred	37.7	2.2	2,628
Total	Indicated	2.0	4.3	279
RSSZ Total	Indicated and Inferred	39.7	2.3	2,909

Notes:

- 1. The Feb 2023 RAS Mineral Resource Estimates (MRE) is based on work completed by Mr Kerrin Allwood, a Competent Person (CP) who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Allwood is a Principal Geologist of GeoModelling Limited, Petone, New Zealand and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Refer to ASX announcement on 2 February 2023 for further detail.
- The information in this report that relates to prior 2021 Mineral Resource Estimates (2021 MRE) for CIT, SHR and SRE deposits completed by Ms Michelle Wild (CP) continue to apply and have not materially changed. Refer to ASX announcement on 28 September 2021 for further detail.

Previous Disclosure - 2012 JORC Code

Information relating to Mineral Resources, Exploration Targets and Exploration Data associated with the Company's projects in this announcement is extracted from the following ASX Announcements:

- ASX announcement titled "RAS Resource Upgrade 1 Million Ounces added at Higher Gold Grades" dated 2 February 2023
- ASX announcement titled "More high grades from RAS Infill drilling" dated 4 April 2023
- ASX announcement titled "New Gold assays and metallurgical results from RAS" dated 24 April 2023
- ASX announcement titled "High grade intercept from infill drilling south of RAS ridge" 2 June 2023
- ASX announcement titled "RAS high grade zones expand with drilling results" dated 22 June 2023
- ASX announcement titled "Infill drilling at RAS continues to grow confidence" dated 13 July 2023
- ASX announcement titled "High grade zones strengthen ahead of RAS MRE Update" dated 27 July 2023
- ASX announcement titled "New results extend potential for upcoming RAS MRE" dated 30 August 2023
- ASX announcement titled "Drill results confirm and extend high grade mineralisation" dated 8th September 2023
 ASX announcement titled "Strong RAS and again and extend high grade mineralisation" dated 20 October 2022
- ASX announcement titled "Strong RAS and regional drill results" dated 23 October 2023
- ASX announcement titled "More High Grade Gold from Rise and Shine Prospect" dated 23 November 2023

A copy of such announcement is available to view on the Santana Minerals Limited website <u>www.santanaminerals.com</u>. The reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Current Disclosure - Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Kim Bunting and Mr Hamish McLauchlan who are Fellows of The Australasian Institute of Mining and Metallurgy (AusIMM). Mr Bunting is a Director and Mr McLauchlan is a consultant and both have sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which thay are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Bunting and Mr McLauchlan consent to the inclusion in this report of the matters based on their information in the form and context in which it appears. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified.

Forward Looking Statements

Forward-looking statements in this announcement include, but are not limited to, statements with respect to Santana's plans, strategy, activities, events or developments the Company believes, expects or anticipates will or may occur. By their very nature, forward-looking statements require Santana to make assumptions that maynot materialize or that may not be accurate. Although Santana believes that the expectations reflected in the forward-looking statements in this announcement are reasonable, no assurance can be given that these expectations will prove to have been correct, as actual results and future events could differ materially from those anticipated in the forward-looking statements. Accordingly, viewers are cautioned not to place undue reliance on forward-looking statements. Santana does not undertake to update publicly or to revise any of the included forward-looking statements, except as may be required under applicable securities laws.

Appendix 1 - New Drillholes – New Mineralised Intercepts (top-cut to 100 g/t and at a 0.5 g/t lower cut-off grade)

Deposit	Drillhole	From (m)	Drill Intercept (m)	Estimated True Width (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
		117.6	0.4	17.6	0.4	6.7
		124.0	15.0	6.0	14.2	89.6
		141.0	4.0	2.2	3.8	8.8
		151.0	3.0	2.2	2.8	6.5
	MDD187	167.0	1.0	0.6	0.9	0.6
	R	171.0	1.0	0.8	0.9	0.8
		194.0	1.0	0.7	0.9	0.7
		209.0	1.0	0.8	0.9	0.8
		227.0	3.0	1.9	2.8	5.8
		235.0	2.0	1.8	1.9	3.6
		180.1	9.9	0.8	9.6	8.2
		192.0	9.0	4.9	8.7	44.1
	MDD198	209.0	1.0	1.0	1.0	1.0
	WIDD 130	215.0	1.0	1.0	1.0	1.0
		222.0	1.0	1.1	1.0	1.1
		252.0	1.0	0.6	1.0	0.6
		281.0	1.0	0.8	0.9	0.8
RAS	MDD211	289.0	15.0	1.5	14.2	22.8
		306.0	5.0	0.8	4.7	4.1
	MDD212	260.7	24.3	5.7	23.2	139.6
		286.0	13.0	1.3	12.4	17.1
		272.4	1.6	0.5	1.5	0.8
	MDD218	280.0	8.0	0.5	7.4	4.3
		291.0	30.0	1.9	27.6	57.8
		226.0	6.0	1.1	5.6	6.8
	MDD222	235.0	3.0	1.1	2.8	3.3
		249.0	3.0	2.5	2.8	7.6
	MDD225	219.9	23.1	3.6	19.8	83.1
		246.0	1.0	1.4	0.9	1.4
	MDD233	264.2	18.8	2.1	17.6	38.9
		174.9	25.1	6.2	21.1	155.8
	MDD239	202.0	15.0	1.5	12.6	22.4
		225.0	3.0	1.1	2.5	3.4
		228.0	13.0	3.5	12.2	45.4
	MDD242	242.0	9.0	0.7	8.5	6.7
		268.0	1.0	1.1	0.9	1.1

Deposit	Drillhole	From (m)	Drill Intercept (m)	Estimated True Width (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
		256.1	17.9	5.7	17.3	101.5
	MDD243	285.0	1.0	0.8	1.0	0.8
		300.0	1.0	1.8	1.0	1.8
	MDD244	165.2	32.9	3.9	31.2	128.9
		199.0	7.0	5.7	6.6	39.9
		211.0	4.0	7.1	3.8	28.4
		220.0	4.0	2.4	3.8	9.9
		237.0	9.0	2.0	8.5	18.3
		253.0	7.0	2.2	6.6	15.1
	MDD247	267.0	29.0	1.6	27.6	47.4
		298.0	5.0	0.6	4.8	3.2
		309.0	1.0	0.7	1.0	0.7
		313.0	1.0	0.7	1.0	0.7
	MDD249 R	266.1	44.9	1.8	42.3	79.3
		313.0	6.0	0.8	5.7	4.9
	MDD251	265.5	24.5	1.4	22.3	34.5
		292.0	7.0	1.0	6.4	6.7
		302.0	2.0	0.8	1.8	1.6
RAS	MDD252	266.0	27.0	1.8	24.6	47.7
		296.0	7.0	0.9	6.4	6.4
		315.0	1.0	1.7	0.9	1.7
	MDD253	35.0	5.0	1.2	3.6	5.8
		55.0	1.0	3.5	0.7	3.5
	MDD254	274.6	23.4	3.9	20.0	91.1
		302.0	3.0	1.5	2.6	4.4
		313.0	2.0	1.0	1.7	2.0
		323.0	1.0	0.6	0.9	0.6
	MDD255	280.8	12.2	2.2	11.1	27.3
	MDD256	217.4	19.6	7.6	18.5	149.3
		246.0	2.0	1.9	1.9	3.7
		258.0	1.0	1.0	0.9	1.0
	MDD265	269.9	10.1	1.8	9.3	18.2
		282.0	8.0	2.2	7.4	17.5
		294.0	1.0	5.4	0.9	5.4
		301.0	2.0	5.1	1.8	10.2
	MDD266	236.8	4.3	1.1	3.9	4.7
		254.0	9.0	0.8	8.3	7.2

Deposit	Drillhole	From (m)	Drill Intercept (m)	Estimated True Width (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
		273.0	7.0	1.1	6.7	7.5
		283.0	14.0	1.6	13.4	23.1
	MDD263	305.0	4.0	0.8	3.8	3.2
		313.0	3.0	0.7	2.9	2.0
		319.0	1.3	0.7	1.2	0.9
RAS		282.3	9.8	3.4	9.2	33.2
INA5		296.0	8.0	5.1	7.5	41.0
	MDD267	306.0	6.0	0.6	5.6	3.6
		318.0	1.0	1.3	0.9	1.3
		325.0	1.0	2.1	0.9	(metre x gram/tonne) 7.5 23.1 3.2 2.0 0.9 33.2 41.0 3.6
	MDD269	257.3	4.7	0.6	4.4	2.8
	100203	275.0	1.0	1.4	0.9	1.4

Deposit	Drillhole	From (m)	Drill Intercept (m)	Estimated True Width (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
		31.0	1.0	-	0.3	0.3
		38.0	2.0	-	0.7	1.4
	MRC131	54.0	1.0	-	0.4	0.4
		58.0	1.0	-	0.4	0.4
		64.0	3.0	-	0.7	2.2
		27.0	7.0	-	1.0	6.7
		40.0	1.0	-	0.3	0.3
	MRC132	45.0	3.0	-	0.4	1.1
		59.0	1.0	-	0.3	0.3
		65.0	1.0	-	5.1	5.1
	MRC160	20.0	24.0	-	0.6	14.4
CIT		19.0	18.0	-	0.6	10.2
		38.0	4.0	-	0.3	1.1
	MRC162	47.0	1.0	-	0.3	0.3
		55.0	3.0	-	0.6	1.8
		68.0	3.0	-	0.3	0.8
		35.0	15.0	-	1.5	23.0
	MRC164	52.0	1.0	-	0.3	0.3
		58.0	1.0	-	0.3	0.3
		15.0	12.0	-	0.5	6.3
	MRC165	28.0	13.0	-	3.4	43.8
		51.0	1.0	-	0.5	0.5
		64.0	2.0	-	0.4	0.8

Deposit	Drillhole	From (m)	Drill Intercept (m)	Estimated True Width (m)	Average Gold Grade (g/t) (min 0.5g/t Au)	Metal Units (metre x gram/tonne)
	MRC166	12.0	13.0	-	0.46	6.0
		26.0	6.0	-	0.84	5.0
		38.0	8.0	-	0.35	2.8
	MRC167	11.0	1.0	-	2.9	2.9
		25.0	1.0	-	0.7	0.7
	MRC168	0.0	9.0	-	1.51	13.6
		16.0	9.0	-	0.49	4.4
		27.0	6.0	-	1.09	6.6
	MRC169	1.0	11.0	-	0.41	4.5
СІТ		16.0	1.0	-	0.26	0.3
		20.0	3.0	-	0.31	0.9
	MRC170	10.0	9.0	-	0.4	3.7
		21.0	1.0	-	2.3	2.3
	MRC171	0.0	2.0	-	0.4	0.7
	MRC172	9.0	1.0	-	0.29	0.3
		15.0	1.0	-	1.32	1.3
	MRC173	29.0	12.0	-	1.56	18.7
		44.0	7.0	-	0.30	2.1
	MRC174	29.0	13.0	-	2.65	34.5
		51.0	1.0	-	0.63	0.6

Appendix 2 - New Drillholes Reported (in bold)

-ppoint					í í	Dia				
Deposit	Hole No	East NZTM	North NZTM	RL	Azimuth (T Avg)	Dip (Avg)	Length	Method	Status	Results
RAS	MDD187R	1317929.9	5017102.0	765.9	247.2	-76	250.0	OHD	Completed	Reported
RAS	MDD188	1318002.7	5017668.5	619.9	196.8	-67	251.9	OHD	Completed	Reported
RAS	MDD189	1317978.5	5017421.5	683.1	259.8	-63	299.1	OHD	Completed	Reported
RAS	MDD190	1317818.3	5017009.3	704.0	270.6	-50	93.9	OHD	Completed	Reported
RAS	MDD191	1318089.6	5017511.2	655.5	161.9	-82	290.5	OHD	Completed	Reported
RAS	MDD192	1317915.6	5016915.1	705.5	329.7	-49	197.9	DD	Completed	Reported
RAS	MDD193	1318003.9	5017667.7	619.9	142.3	-82	254.9	OHD	Completed	Reported
RAS	MDD194	1318091.6	5017505.5	655.5	240.1	-74	298.0	OHD	Completed	Reported
RAS	MDD195	1317978.3	5017427.9	683.0	150.6	-83	272.4	DD	Completed	Reported
RAS	MDD196	1318004.7	5017670.9	620.0	124.9	-73	242.0	OHD	Completed	Reported
RAS	MDD197	1318100.4	5017468.9	657.0	308.2	-67	275.7	OHD	Completed	Reported
RAS	MDD198	1318033.8	5017611.0	619.8	179.3	-81	288.1	OHD	Completed	Reported
RAS	MDD199	1317951.8	5017541.9	670.1	95.5	-72	274.9	OHD	Completed	Reported
RAS	MDD200	1318085.4	5017412.9	676.0	270.9	-75	274.8	OHD	Completed	Reported
RAS	MDD201	1318198.2	5017606.0	664.2	233.6	-76	311.5	OHD	Completed	Reported
RAS	MDD202	1318164.9	5017839.8	582.1	48.3	-73	235.7	OHD	Re-Drilled	No assays
RAS	MDD202R	1318166.6	5017840.7	582.2	45.8	-74	367.3	OHD	Completed	Reported
RAS	MDD203	1318072.9	5017713.0	597.8	262.9	-80	237.0	DD	Completed	Reported
RAS	MDD204	1317916.2	5016916.1	705.5	263.8	-46	102.8	OHD	Completed	Reported
RAS	MDD205	1318197.1	5017606.1	664.1	243.4	-73	327.4	OHD	Completed	Reported
RAS	MDD206	1318239.6	5017773.8	609.8	248.0	-72	314.5	OHD	Completed	Reported
RAS	MDD207	1317981.7	5017427.5	683.0	272.0	-76	261.9	OHD	Completed	Reported
RAS	MDD208	1318184.7	5017670.0	645.4	238.1	-76	302.6	OHD	Completed	Reported
RAS	MDD209	1318282.9	5017694.8	618.9	242.5	-74	316.9	OHD	Completed	Reported
RAS	MDD210	1317923.1	5017453.4	695.2	250.4	-71	275.0	OHD	Completed	Reported
RAS	MDD211	1318348.3	5017756.1	593.0	253.4	-71	332.0	OHD	Completed	Reported
RAS	MDD212	1318233.5	5017637.5	648.4	246.8	-68	311.0	OHD	Completed	Reported
RAS	MDD213	1317890.2	5017479.9	696.5	165.5	-76	299.9	OHD	Completed	Reported
RAS	MDD214	1318285.1	5017692.8	619.1	305.0	-61	22.6	OHD	Re-Drilled	No assays
RAS	MDD214R	1318285.8	5017692.3	619.1	273.6	-72	329.9	OHD	Completed	Reported
RAS	MDD215	1318291.1	5017782.4	592.5	266.2	-74	323.8	OHD	Completed	Reported
RAS	MDD216	1318190.2	5017667.7	645.5	254.7	-82	320.8	OHD	Completed	Reported
RAS	MDD217	1318079.3	5017210.8	722.5	293.0	-80	248.9	OHD	Completed	Reported
RAS	MDD218	1318286.1	5017692.3	619.1	273.8	-79	332.9	OHD	Completed	Reported
RAS	MDD219	1318290.1	5017782.1	592.5	256.7	-79	333.7	OHD	Completed	Reported
RAS	MDD220	1318097.0	5017634.4	640.5	231.3	-79	277.3	OHD	Completed	Reported
RAS	MDD221	1318098.0	5017471.3	656.8	249.7	-73	267.0	OHD	Completed	Reported
RAS	MDD222	1318029.7	5017705.0	614.6	125.3	-76	269.8	OHD	Completed	Reported
RAS	MDD223	1318091.8	5017235.4	714.6	263.2	-82	250.0	OHD	Completed	Reported
RAS	MDD224	1318189.6	5017667.0	645.4	289.2	-80	320.0	OHD	Completed	Reported
RAS	MDD225	1318093.8	5017472.4	656.7	223.3	-74	291.0	OHD	Completed	Reported
RAS	MDD226	1317951.5	5017306.4	721.9	95.9	-73	255.0	OHD	Completed	Reported
RAS	MDD227	1318029.7	5017701.9	614.7	54.2	-69	50.9	OHD	Re-Drilled	No assays
RAS	MDD228	1318217.1	5017580.4	665.8	269.5	-77	332.6	OHD	Completed	Reported
RAS	MDD220 MDD229	1317958.9	5017533.1	670.3	40.7	-67	308.1	OHD	Completed	Reported
RAS	MDD230	1318094.6	5017470.5	656.8	103.7	-79	296.9	OHD	Completed	Reported

Deposit	Hole No	East NZTM	North NZTM	RL	Azimuth (T Avg)	Dip (Avg)	Length	Method	Status	Results
RAS	MDD231	1317868.0	5017305.8	739.6	78.3	-75	290.0	DD	Completed	Reported
RAS	MDD232	1317977.2	5017425.5	683.0	66.3	-76	289.3	OHD	Completed	Reported
RAS	MDD233	1318196.1	5017715.5	632.7	261.9	-74	308.4	OHD	Completed	Reported
RAS	MDD234	1318028.3	5017334.2	706.6	259.4	-62	273.0	OHD	Completed	Reported
RAS	MDD235	1317936.6	5017317.9	723.9	250.1	-61	269.3	OHD	Completed	Reported
RAS	MDD236	1317959.4	5017484.8	675.6	69.1	-77	275.9	OHD	Completed	Reported
RAS	MDD237	1318076.1	5017715.3	597.8	18.5	-77	276.0	OHD	Completed	Reported
RAS	MDD238	1318088.2	5017506.5	655.6	318.8	-74	280.1	OHD	Completed	Reported
RAS	MDD239	1317939.2	5017238.7	742.4	72.2	-77	280.0	OHD	Completed	Reported
RAS	MDD240	1317958.1	5017533.3	670.3	56.7	-78	299.8	OHD	Completed	Reported
RAS	MDD241	1318070.5	5017716.6	597.8	70.6	-76	280.0	OHD	Completed	Reported
RAS	MDD242	1318089.8	5017512.4	655.4	122.5	-78	280.0	OHD	Completed	Reported
RAS	MDD243	1318190.7	5017667.2	645.5	243.3	-72	307.9	OHD	Completed	Reported
RAS	MDD244	1318012.9	5017266.5	732.7	251.9	-78	265.2	OHD	Completed	Reported
RAS	MDD245	1318239.9	5017772.2	609.8	268.9	-70	325.0	OHD	Completed	Reported
RAS	MDD246	1318029.9	5017774.8	606.8	127.0	-73	269.5	OHD	Completed	Reported
RAS	MDD247	1318250.2	5017663.1	635.9	255.2	-72	336.3	OHD	Completed	Reported
RAS	MDD248	1318198.0	5017605.2	664.0	181.0	-83	349.1	OHD	Completed	Reported
RAS	MDD249	1318287.2	5017727.1	606.4	288.0	-68	9.5	OHD	Re-Drilled	No assays
RAS	MDD249R	1318287.6	5017726.8	606.5	263.2	-75	329.5	OHD	Completed	Reported
RAS	MDD250	1317935.2	5016807.9	709.8	310.0	-48	159.6	DD	Completed	Assays pending
RAS	MDD251	1318167.0	5017835.0	581.0	137.6	-78	329.1	OHD	Completed	Reported
RAS	MDD252	1318240.5	5017773.2	609.8	234.9	-75	323.5	OHD	Completed	Reported
RAS	MDD253	1317932.7	5016807.8	709.8	285.0	-50	156.9	OHD	Completed	Reported
RAS	MDD254	1318167.0	5017835.0	581.0	86.1	-77	330.1	OHD	Completed	Reported
RAS	MDD255	1318252.0	5017905.0	570.0	290.9	-69	322.9	OHD	Completed	Reported
RAS	MDD256	1318098.7	5017634.2	640.4	223.3	-78	269.6	OHD	Completed	Reported
RAS	MDD257	1317816.7	5017011.5	703.9	134.3	-49	175.0	OHD	Completed	Assays pending
RAS	MDD258	1317875.7	5016944.2	702.9	140.9	-50	143.2	DD	Completed	Assays pending
RAS	MDD259	1318167.0	5017835.0	581.0	106.5	-83	332.8	OHD	Completed	Assays pending
RAS	MDD260	1318252.0	5017905.0	570.0	293.7	-61	57.0	OHD	Re-Drilled	No assays
RAS	MDD260R	1318252.0	5017905.0	570.0	283.4	-67	310.0	OHD	Completed	Assays pending
RAS	MDD261	1318198.6	5017709.4	632.7	247.8	-80	332.8	OHD	Completed	Assays pending
RAS	MDD262	1318167.0	5017835.0	581.0	211.3	-77	306.6	OHD	Completed	Assays pending
RAS	MDD263	1318290.4	5017654.0	631.1	237.6	-69	320.3	OHD	Completed	Reported
RAS	MDD264	1318252.0	5017905.0	570.0	179.1	-85	330.2	OHD	Completed	Assays pending
RAS	MDD265	1318254.0	5017905.0	569.5	278.3	-78	316.0	OHD	Completed	Reported
RAS	MDD266	1318167.0	5017835.0	581.0	260.0	-77	270.0	OHD	Completed	Reported
RAS	MDD267	1318252.0	5017905.0	570.0	312.7	-77	336.9	OHD	Completed	Reported
RAS	MDD268	1318228.3	5017563.3	668.6	262.2	-69	314.5	OHD	Completed	Assays pending
RAS	MDD269	1318167.0	5017841.0	582.0	318.5	-77	288.0	OHD	Completed	Reported

Deposit	Hole No	East NZTM	North NZTM	RL	Azimuth (T Avg)	Dip (Avg)	Length	Method	Status	Results
CIT	MRC131	1317005.0	5018076.7	583.0	157.3	-82	72.0	RC	Completed	Reported
CIT	MRC132	1317002.7	5018076.7	583.0	263.7	-61	72.0	RC	Completed	Reported
CIT	MRC160	1316897.9	5018296.0	512.1	180.0	-90	44.0	RC	Re-Drilled	Reported
CIT	MRC161	1316901.3	5018298.6	512.2	180.0	-90	20.0	RC	Re-Drilled	No assays
CIT	MRC162	1316898.9	5018291.2	511.9	180.0	-50	72.0	RC	Completed	Reported
CIT	MRC163	1316968.0	5018237.1	543.5	0.0	-90	41.0	RC	Completed	Reported
CIT	MRC164	1316964.1	5018226.1	543.7	179.4	-51	73.0	RC	Completed	Reported
CIT	MRC165	1316946.3	5018176.7	546.9	153.6	-85	73.0	RC	Completed	Reported
CIT	MRC166	1316946.8	5018171.7	547.2	181.4	-64	73.0	RC	Completed	Reported
CIT	MRC167	1316983.0	5017961.9	604.0	22.5	-90	43.0	RC	Completed	Reported
CIT	MRC168	1316948.5	5017978.7	603.0	228.9	-86	39.0	RC	Completed	Reported
CIT	MRC169	1316961.0	5017975.4	603.3	160.6	-88	31.0	RC	Completed	Reported
CIT	MRC170	1316972.6	5017970.3	602.8	274.8	-88	34.0	RC	Completed	Reported
CIT	MRC171	1316924.3	5017999.9	596.8	161.4	-81	37.0	RC	Completed	Reported
CIT	MRC172	1316913.6	5018006.8	594.4	157.4	-82	31.0	RC	Completed	Reported
CIT	MRC173	1316995.0	5018136.8	563.2	0.0	-90	69.0	RC	Completed	Reported
CIT	MRC174	1316995.3	5018134.4	563.2	180.0	-50	52.0	RC	Completed	Reported

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Diamond drill (DD) core samples for laboratory assay are typically 1 metre samples of diamond saw cut ½ diameter core. Where distinct mineralisation boundaries are logged, sample lengths are adjusted to the respective geological contact. RC samples were sub-sampled at 1.0 m intervals using a rotary splitter yielding a 30% sub-sample.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are crushed at the receiving laboratory to minus 2mm (85% passing) and split to provide 1kg for pulverising to -75um. Pulps are fire
	Aspects of the determination of mineralisation that are Material to the	assayed (FAA) using a 50g charge with AAS finish.
	Public Report. In cases where 'industry standard' work has been done this would be	Certified standards, blanks and field replicates are inserted with the original batches at a frequency of $\sim 4\%$ for QAQC purposes.
	relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	All pulps and crush reject (CREJ) are returned from the laboratory for further ~4% QAQC checks which involve pulp FAA re-assays by the original and an umpire laboratory and CREJ re-assayed by 500-gram (+ & -75mu) screen fire assay (SFA), 1kg BLEG (LeachWELL) and 2*500- gram Photon analysis (PHA) for gold.
		Where multiple assays exist for a single sample interval, larger samples are ranked in the database: PHA > BLEG > SFA > FAA.
		All returned pulps are analysed for a suite of 31 elements by portable XRF (pXRF).

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Current drilling techniques are diamond coring (DD) PQ3 and HQ3 size triple tube. Where PQ3 core size (83mm diameter) is commenced this is maintained throughout the DD hole until drilling conditions dictate reduction in size to HQ3 core (61mm diameter).
		RC drilling used a face sample bit with sample collected in a cyclone mounted over a rotary splitter producing 2 x 30% splits and 1 x 40% split. The two 30% splits were used as primary sample and field duplicate (if submitted) with the 40% split used for logging and then stored at the MGL core yard.
		Drillholes are oriented to intersect known mineralised features in a nominally perpendicular orientation as much as is practicable.
		All drill core is oriented to assist with interpretation of mineralisation and structure using a Trucore orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	DD core sample recoveries are recorded by the drillers at the time of drilling by measuring the actual distance of the drill run against the actual core recovered. The measurements are checked by the site geologist. When poor core recoveries are recorded the site geologist and driller endeavour to immediately rectify any problems to maintain maximum core recoveries. DD core logging to date indicate ~95% recoveries. RC sample recovery is measured as sample weight recovered. The drilling contract used states for any given run, a level of recovery is required otherwise financial penalties are applied to the drill contractor to ensure sample recovery priority along with production performance.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.The total length and percentage of the relevant intersections logged	All DD holes have been logged for their entire sampled length below upper open hole drilling (nominally 0-450 metres below collar). Data is recorded directly into digital spreadsheets and then uploaded into a PostgreSQL cloud database with sufficient detail that supports Mineral Resource estimations (MRE). Logging is mostly qualitative but there are estimations of quartz and
	<i>The total length and percentage of the relevant intersections logged.</i>	sulphide content and quantitative records of geological / structural unit, oxidation state and water table boundaries.
		Oriented DD core allows alpha / beta measurements to determine structural element detail (dip / dip direction) to supplement routine recording of lithologies / alteration / mineralisation / structure / oxidation / colour and other features for MRE reporting.
		RC chips were sieved and logged for lithology, colour, oxidation, weathering, vein percentage and sulphide minerals.
		All core is photographed wet and dry before cutting. Sieved RC chips are also photographed.

Sub-sampling techniques and sample preparation		Industry standard laboratory sample preparation methods are suitable for the mineralisation style and involve, oven drying, crushing and splitting of samples to 1kg for pulverising to -75um. Pulps are fire assayed (FAA) using a 50g charge.
		50g charge is considered minimum requirement for the coarse nature of the gold. Larger screen fire assays (SFA), 1kg BLEG (LeachWELL) and 2*500gm Photon Analyses (PHA) are conducted periodically as a QAQC check.
		RC samples were sub-sampled by a rotary splitter as described above. Large diameter (83mm) PQ3 core was maintained (where conditions allow) for DD holes to MDD016 and subsequently HQ3 (61mm) for drillholes MDD017 onwards.
		DD core drill samples are sawn in ½ along the length of the core on cut lines marked by geologists' perpendicular to structure / foliation or to bisect vein mineralisation for representative samples whilst preserving the orientation line. Intervals required for QAQC checks are ¼ core from ½ sections of core to be sent for assay.
		QAQC procedures include field replicates, standards, and blanks at a frequency of $\sim 4\%$ and also cross-lab assay checks at an umpire laboratory. Field duplicates of RC samples are taken at the time of sampling.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	DD core and RC chip samples for gold assays undergo sample preparation by SGS laboratory Westport and 50g fire assay with an AAS finish (SGS method FAA505 DDL 0.01ppm Au or FAD505 DDL 1ppm Au & FAD52V DDL 500ppm Au) by SGS laboratory Waihi. Other SGS laboratories at Macraes and Townsville are used from time to time and follow the same processes.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Portable XRF (pXRF) instrumentation is used onsite (Olympus Innov-X Delta Professional Series model DPO-4000 equipped with a 4 W 40kV X-Ray tube) primarily to identify arsenical samples (arsenic correlates well with gold grade in these orogenic deposits). The pXRF analyses a 31-element suite (Ag, As, Bi, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Nb, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, V, W, Y, Zn, Zr) utilising 3 beam Soil mode, each beam set for 30 secs (90 secs total).
		pXRF QAQC checks involve 2x daily calibration and QAQC analyses of SiO2 blank, NIST standards (NIST 2710a & NIST 2711a), & OREAS standards (238, 235 & 211).
		For laboratory QAQC, samples (3*certified standards, blanks and field replicates) are inserted into laboratory batches at a frequency of \sim 4% and \sim 5% respectively. Once 1,000 samples have been assayed a \sim 5% selection of retained lab pulps across a range of grades are sent for reassay and to an umpire laboratory for cross-lab check assays.

Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Significant gold assays and pXRF arsenic analyses are checked by alternative senior company personnel. Original lab assays are initially reported and where replicate assays and other QAQC work require re- assay or screen fire assays, the larger sample results are adopted. To date results are accurate and fit well with the mineralisation model. Twinned data is available where DD core holes have been sited adjacent to previous RC drillholes and where DD redrills have occurred.
		pXRF multi-element analyses are directly downloaded from the pXRF analyser as csv electronic files. These and laboratory assay csv files are imported into the database, appended and merged with previous data. The database master is stored off-site and periodically updated and verified by an independent qualified person. There have been no adjustments to analytical data presented.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used.	All drillhole collar locations are accurate (+/- 50mm) xyz coordinates when captured by an experienced surveyor using RTK-GPS equipment.
		All drill holes reference the NZTM map projection and collar RLs the NZVD2016 vertical datum.
	Quality and adequacy of topographic control.	DD down hole surveys are recorded continuously with a Precision North- seeking Gyro downhole survey tool. RC holes are surveyed at 12m intervals using a Reflex multi-shot camera.
Data spacing and distribution	Data spacing for reporting of Exploration Results.Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drillhole collar spacing is variable and considered appropriate for determination of geological and grade continuity during this phase of the drilling programme. Site locations in steep terrain are dictated by best access allowed by contour tracks with gentle gradients to allow safe working drill pad excavations.
	Whether sample compositing has been applied.	No compositing of samples is being undertaken for analysis. Sampling and assaying are in one metre intervals or truncated to logged features.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The majority of drillholes in this campaign are inclined -60° or -75° to an azimuth between 180°T and 270°T to intercept mineralisation at a reasonable angle and facilitate core orientation measurements. However, due to topographical constraints and the nature of infill drilling where intercepts are being targeted with some accuracy, some drillholes will be drilled at other azimuths and inclinations as noted. True widths are estimated perpendicular to mineralisation boundaries where these limits are known. As the deposits are tabular and lie at low angles, there is not anticipated to be any introduced bias for resource estimates.
		Most RC holes were drilled either vertically or at -60° towards 228°.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	Company personnel manage the chain of custody from sampling site to laboratory. DD drill core samples are transported daily from DD rig by the drilling contractor in numbered core boxes to the Company secure storage facility for logging and sample preparation. After core cutting, the core for assay is bagged, securely tied, and weighed before being placed in polyweave bags which are securely tied. Retained core is stored on racks in secure locked containers. RC samples are also place in polyweave bags and secured with zip ties. Polyweave bags with the calico bagged samples for assay are placed in steel cage pallets, sealed with a wire-tied tarpaulin cover, photographed, and transported to local freight distributer for delivery to the laboratory. Apple AirTags TM are currently being trialled to GPS-track pallets. On arrival at the laboratory photographs taken of the consignment are checked against despatch condition to ensure no tampering has occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An independent Competent Person (CP) conducted a site audit in January 2021 and December 2022 of all sampling techniques and data management. No major issues were identified, and recommendations have been followed. Snowdon Optiro completed a desktop review of the assay methods and QC sample results and in its report concluded that the sampling and assaying methods are in line with standard industry procedures.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration is being currently conducted within Mineral Exploration Permit (MEP) 60311 (252km²) registered to Matakanui Gold Ltd (MGL) issued on 13th April 2018 for 5 years with renewal date on 12th April 2023. An application to extend the period of duration has been accepted for processing by NZ Petroleum and Minerals. MEP 60311 continues in force in accordance with section 36 (5A) of the Crown Minerals Act 1991. There are no material issues with third parties. MGL applied for a Minerals Prospecting Permit (MPPA) in March 2022, and this is in process with the Government Ministerial Authority (NZPAM) for issue under MPP 60882. The tenure of the Permits is secure and there are no known impediments to obtaining a licence to operate. The Project is subject to a 1.5% Net Smelter Royalty (NSR) on all production from MEP 60311 (and successor permits) payable to an incorporated, private company (Rise and Shine Holdings Limited) which is owned by the prior shareholders of MGL (NSRW Agreement) before acquisition of 100% of MGL shares by Santana Minerals Limited.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Early exploration in the late 1800's and early 1900's included small pits, adits and cross-cuts and alluvial mining. Exploration has included soil and rock chip sampling by numerous companies since 1983 with drilling starting in 1986. Exploration in the 1990's commenced with a search for Macraes style gold deposits along the RSSZ. Drilling included 13 RC holes by Homestake NZ Exploration Ltd in 1986, 20 RC holes by BHP Gold Mines NZ Ltd in 1988 (10 of these holes were in the Bendigo Reefs area which is not part of the MRE area), 5 RC holes by Macraes Mining Company Ltd in 1991, 22 shallow (probably blasthole) holes by Aurum Reef Resources (NZ) Ltd in 1996, 30 RC holes by CanAlaska Ventures Ltd from 2005-2007, 35 RC holes by MGL in 2018 and a further 18 RC holes by MGL in 2019.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The RSSZ is a low-angle late-metamorphic shear-zone, presently known to be up to 120m thick. It is sub-parallel to the metamorphic foliation and dips gently to the north- east. It occurs within psammitic, pelitic and meta- volcanic rocks. Gold mineralisation is concentrated in multiple deposits along the RSSZ. In the Project area there are 4 deposits with Mineral Resource Estimates (MRE) – Come-in-Time (CIT), Rise and Shine (RAS), Shreks (SHR) and Shreks-East (SRE). The gold and associated pyrite/arsenopyrite mineralisation at all deposits occur along micro- shears, and in brecciated / laminar quartz veinlets within the highly- sheared schist. There are several controls on mineralisation with apparent NNW, N and NNE trending structures all influencing gold distribution. Shear dominated mineralisation within the top 20-40m of the shear zone is in a unit termed the "Hanging Wall Shear" (HWS) which lies immediately below the Thomsons Gorge Fault (TGF). The TGF is a regional low-angle fault that separates upper barren chlorite (TZ3) schist from underlying mineralised biotite (TZ4) schists. Stacked stockwork vein swarms (SVS) occur deeper in the RSSZ. Unlike Macraes, the gold mineralisation in the oxide, transition and fresh zones is characterised by coarse free gold and silica-poor but extensive ankerite alteration.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to the body of text. No material information has been excluded.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Significant gold intercepts are reported using 0.25g/t Au and 0.50g/t Au lower grade cut-offs with 4m of internal dilution included. Broad zonation is: 0.10g/t Au cut-off defines the wider low-grade halo of mineralisation, 0.25g/t Au cut-off represents possible economic mineralisation, with 0.50g/t Au defining high-grade axes / envelopes. 1.50g/t Au cut-off is possible economically underground exploitable Metal unit (MU) distribution, where shown on maps and in tables are calculated from total drill hole Au * associated drill hole interval metres. pXRF analytical results reported for laboratory pulp returns are considered accurate for the suite of elements analysed. Where gold assays are pending, minimum 1,000 ppm composited arsenic values provide a preliminary representation of potential mineralised zones and include 4m <1,000 ppm internal dilution.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All intercepts quoted are downhole widths. True widths are estimated perpendicular to mineralisation boundaries where these limits are known. Intercepts are associated with a major 20-120m thick low-angle mineralised shear that is largely perpendicular to the drillhole traces. Aggregate widths of mineralisation reported up until 2 nd June 2023 are drillhole intervals >0.50g/t Au occurring in apparent low angle stacked zones. Subsequent reporting is on a continuous basis. There are steeply dipping narrow (1-5m) structures deeper in the footwall and the appropriateness of the current drillhole orientation will become evident and modified as additional drill results dictate.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the body of the text.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant intercepts have been reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable; meaningful and material results are reported in the body of the text.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	DD infill drilling of existing inferred resources is continuing at RAS on 60*40m metre spacing.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further extensional drilling is about to recommence at CIT, SHR and SRE deposits followed by target definition drilling elsewhere in the project area.
		A 2021 MRE update (to JORC Code 2012) completed in September 2021 increased Inferred Resources 155% to 643Koz from the 252Koz 2019 MRE (uncut & 0.25g/t lower cut-off).
		A 2022 MRE upgrade of RAS was completed in early July 2022 which increased the Global Inferred resources 3-fold to 2.1Moz (top-cut & 0.25g/t lower cut-off).
		A 2023 MRE upgrade of RAS was completed in early February 2023 which increased the total resources to 2.9Moz (top-cut & 0.5g/t lower cut-off) including the maiden report of Indicated Resources at RAS of 0.3Moz as well as increasing Inferred Resources at RAS to 2.4Moz for total RAS resources of 2.7Moz.
		Potential extensions to mineralisation and resources currently being drill tested are shown in figures in the body of the text.