

Further metallurgical testing of gold at Edleston Main Zone achieves up to 93.3% recovery

Key Highlights

- SGS Lakefield performed 9 individual gravity and cyanide leachability tests on 4 composite core samples from the Edleston Main Zone Gold Resource¹
- Testing represents first material from Edleston Main Zone to undergo leaching analysis and further optimisation potential identified
- Recoveries for gravity and leach processing ranged between 89.1% and 93.3%
- Head grades ranged between 0.92g/t and 1.21g/t Au

Figure 1: Historical and recent drill hole locations around Edleston and Sirola

¹ ASX Announcement 19 January 2023: Indicated 14.0Mt at 0.90 g/t Au for 400,200oz; Inferred 34.1Mt at 1.00 g/t Au for 1,099,800oz; Global 48.1Mt at 1.00 g/t Au for 1,500,100oz

Aston Minerals Limited (**ASX: ASO**, '**Aston Minerals**' or 'the **Company**') is pleased to provide an update on the results received from SGS Lakefield on four individual composites from its Edleston Main Resource at the Edleston Gold Project, Canada.

A total of 11 gold bearing cores taken from previous drilling at Edleston Main and included in the current 1.5Moz gold Resource were selected to be used in a metallurgical test program to be conducted at SGS Lakefield, an industry leader in metallurgical and mineralogical testing based in Ontario. Composites were put together based on depth in increments of 50 metres. SGS created four composites which were then used for the metallurgical head assays, gravity work and cyanide leach. These four samples were split for duplicate testing which allowed eight tests to be performed. See Appendix 1 for sample weights.

Mill grind for the tests was P_{80} 75_{um} and leach time 48 hours. Air sparging was used on three composites and oxygen addition on one composite. Oxygen addition improved the leach time as well as the recovery by 4%. From the results, leaching was completed after 24 hours.

Managing Director, Russell Bradford, commented: "This standard gold metallurgical test program has clearly demonstrated the gold associated with our deposit is susceptible to a particularly high rate of recovery. The testing utilised was aimed at modulating conventional gold recovery methods and industry standard reagent additions and residence times.

"This exercise has now demonstrated that we have a significant gold deposit that can be recovered through conventional mill gravity circuit and a carbon-in-leach plant at a energy efficient grind size. These results now allow the Aston Board to consider options on the deposit which may include development or potential sale which will be value accretive to shareholders."

The Company also advises that nickel assay results from the short hole Bardwell drilling are expected to be delivered in mid-February. Once all assays have been received an exercise to composite samples for continued flowsheet development will commence. This work is estimated to take 2 months from mid-February. The assays will also be used to re-run the current block model on the Boomerang nickel deposit and assess the reserve status using modifying factors developed from metallurgical testwork and recent published studies of similar style deposits.

Sample Composites

A total of four composite samples were prepared with the following head grades:

Sample	Au grade g/t
Master Comp 1	1.10
Master Comp 2	0.92
Master Comp 3	1.12
Master Comp 4	1.21

Table 1:Composite Sample Head Grades

Gravity Testing

A total of four gravity tests were conducted on four composite samples. The tests were devised to simulate the gravity recovery stage as part of the milling circuit. To approximate this, the sample was ground using a laboratory rod mill then product was processed through a Knelson Concentrator with that concentrate then upgraded further on a Mozley Table. The Mozley Table tails were combined with the Knelson tails as the final tails product.

Table 2: Gravity Testing Results

Sample	Grind P80µm	Gravity Concentrate Au g/t	Au Gravity Recovery %
Master Comp 1	68	311	37.2
Master Comp 2	72	113	11.4
Master Comp 3	79	384	33.1
Master Comp 4	83	534	42.2

Cyanide Leach

A total of nine cyanide leach tests were conducted on four composite samples. The tests were devised to simulate the leaching circuit of a conventional CIL plant. Bottle roll tests at constant cyanide concentrations were utilised. Sample material was sourced from the tails produced by the Knelson Concentrator. Air sparging was utilised in tests 1, 2, and 4 and oxygen addion was used in test 3.

				Au Extraction %					Overall Recovery
Composite	Leach Test	Grind Size	2hr	6hr	12hr	24hr	36hr	48 hr	Gravity & Leach
	CN1							83.5	89.6
Master Comp 1	CN2	68	59	77	81	83	84	82.6	89.1
	CN3		81	83	82	83	85	84.5	90.3
Master Comp 2	CN4	72						87.6	89.0
	CN5		74	83	86	88	84	87.7	89.1
Master CN6 Comp 3 CN7	CN6	79						90.0	93.3
	CN7			84	88	90	90	89.3	92.8
Master Comp 4	CN8	83						85.0	91.3
	CN9		66	81	85	86	86	87.2	92.6

This announcement has been authorised for release by the Board of Aston Minerals Limited.

Contacts

For more information, please contact:

Russell Bradford Managing Director Russell@astonminerals.com Alex Cowie NWR Communications alexc@nwrcommunications.com.au

Competent Person's Statements

The information in this announcement that relates to the Exploration Results for Edleston Project is based on information compiled and fairly represented by Mr Robert Jewson, who is a Member of the Australian Institute of Geoscientists and Non-Executive Director of Aston Minerals Limited. Mr Jewson has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he has undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Jewson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The mineral resource estimate in this announcement was reported by the Company in accordance with listing rule 5.8 on 19 January 2023. The Company confirms it is not aware of any new information or data that materially affects the information included in the previous announcement and that all material assumptions and technical parameters underpinning the estimate in the previous announcement continue to apply and have not materially changed.

ASX ANNOUNCEMENT

Appendix 1: Drill hole information

Hole	Size	Easting	Northing	Elevation	Azimuth	Dip	From	Interval	Au g/t
DDED21-015	NQ	477378	5307393	358	65	45	88	5.5	0.91
DDED21-035	NQ	477102	5307624	358	0	50	93.46	6.0	1.00
DDED21-035	NQ	477102	5307624	358	0	50	126.24	5.3	0.93
DDED21-036	NQ	477353	5307433	360	0	53	247.25	4.8	1.24
DDED21-041	NQ	477104	5307687	359	0	50	47.94	5.1	1.06
DDED21-044	NQ	477449	5307425	360	360	70	360.02	5.5	1.22
DDED21-051	NQ	477124	5307527	378	0	70	120.5	4.5	1.45

Drill hole weights received at SGS Lakefield

Bag	Drill Hole ID	Sample ID	From_m	To_m	Mass_g
1	DDED21-053	ED053-104	127	128	0
		ED053-105	128	129.01	2548.6
		ED053-107	129.01	129.77	1903.2
		ED053-108	129.77	130.56	1859.8
		ED053-109	130.56	131.5	2210.7
		ED053-110	131.5	132.5	2512.8
2	2 DDED21-051	ED051-110	120.5	122	3811.9
		ED051-113	122	123.5	2463.5
		ED051-114	123.5	125	3341
3	DDED21-044	ED044-298	360.02	360.55	1276
		ED044-302	360.55	361.53	2148.8
		ED044-303	361.53	362.52	2010.1
		ED044-304	362.52	363.48	2039.8
		ED044-305	363.48	364.5	2154.8

Bag	Drill Hole ID	Sample ID	From_m	To_m	Mass_g
		ED044-306	364.5	365.5	2239.2
4	DDED21-041	ED041-027	47.94	48.82	1660.6
		ED041-028	48.82	49.88	2587.7
		ED041-029	49.88	51	2627.6
		ED041-030	51	52.03	2530.8
		ED041-032	52.03	53	2215.1
5	DDED21-035 - A	ED035-064	93.46	95	4093.2
		ED035-065	95	96.5	4084.8
		ED035-066	96.5	97.97	3837.2
		ED035-067	97.97	99.48	3584
6	DDED21-035 - B	ED035-094	126.24	127.02	1835.7
		ED035-095	127.02	128.47	3611.7
		ED035-096	128.47	130	3724
		ED035-097	130	130.5	1059
		ED035-097D	130.5	131.5	2305.6
7	DDED21-036	ED036-170	247.25	249	3775
		ED036-171	249	250.5	3436.1
		ED036-172	250.5	252.03	3461.5
8	DDED21-033 - A	ED033-100	147	148.47	2913
		ED033-101	148.47	149.96	2921.2
		ED033-102	149.96	151.47	2912.4
		ED033-103	151.47	152.96	2866.2
		ED033-104	152.96	154.5	2974.5
9	DDED21-033 - B	ED033-114	163.49	165.07	3058.2
		ED033-115	165.07	166.56	2856.3
		ED033-116	166.56	167.95	2937.2
		ED033-117	167.95	169.49	3024.4
		ED033-119	169.49	170.96	2677
		ED033-120	170.96	172.5	3120.4
10	DDED21-018	ED018-151	184	185.5	2537.1

Bag	Drill Hole ID	Sample ID	From_m	To_m	Mass_g
		ED018-152	185.5	187	2003.6
		ED018-153	187	188	2126.7
		ED018-154	188	189.5	3043.1
11	11 DDED21-015	ED015-040	88	89.04	2871.4
		ED015-041	89.04	90.08	2927.4
		ED015-042	90.08	91.32	3200.8
	ED015-044	91.32	92.48	3447.8	
		ED015-045	92.48	93.49	2911.9

Master composites made up by SGS for head grade and metallurgical testwork

Sample Name	Drill Hole Composite
Master Composite 1	DDED21-053
	DDED21-051
	DDED21-035-B
	DDED21-033-A
Master Composite 2	DDED21-044
	DDED21-036
Master Composite 3	DDED21-041
	DDED21-035-A
	DDED21-015
Master Composite 4	DDED21-033-B
	DDED21-018

Appendix 2: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Comments
Sampling techniques	· Nature and quality of sampling (eg cut channels, random chips, or	Half NQ diamond drill core was submitted to SGS Lakefield Laboratory
	specific specialised industry standard measurement tools appropriate to	Ontario for metallurgical gold testing .
	the minerals under investigation, such as down hole gamma sondes, or	
	handheld XRF instruments, etc.). These examples should not be taken	
	as limiting the broad meaning of sampling.	
	· Include reference to measures taken to ensure sample representivity	Core was cut into two equal halves with one submitted for metallurgical
	and the appropriate calibration of any measurement tools or systems	testing.
	used.	
	· Aspects of the determination of mineralisation that are Material to	A composite sample based in deposit depth was generated based on
	the Public Report. In cases where 'industry standard' work has been done	available diamond drill core within Edleston Main in order to represent
	this would be relatively simple (eg 'reverse circulation drilling was used	the respective grade domains of the resource. Samples from
	to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g	mineralisation within Edleston Main were prepared and sent to SGS
	charge for fire assay'). In other cases more explanation may be required,	Lakefield for metallurgical testing using standard gravity and leaching of
	such as where there is coarse gold that has inherent sampling problems.	the tails material.
	Unusual commodities or mineralisation types (eg submarine nodules)	
	may warrant disclosure of detailed information.	
Drilling techniques	· Drill type (eg core, reverse circulation, open-hole hammer, rotary air	Core used in metallurgical testing was from standard tube NQ diamond
	blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or	drilling.
	standard tube, depth of diamond tails, face-sampling bit or other type,	
	whether core is oriented and if so, by what method, etc).	
Drill sample recovery	· Method of recording and assessing core and chip sample recoveries	Field geologists measure core recoveries for every drill run completed.
	and results assessed.	The core recovered is physically measured by tape measure and the
		length is recorded for every "run". Core recovery is calculated as a

Criteria	JORC Code explanation	Comments
		percentage recovery. Core recovery is logged and recorded into the
		database.
	· Measures taken to maximise sample recovery and ensure	Diamond drilling by nature collects relatively uncontaminated core
	representative nature of the samples.	samples. These are cleaned at the drill site to remove drilling fluids and
		cuttings to present clean core for logging and sampling.
	· Whether a relationship exists between sample recovery and grade	There was no significant loss of material reported in the mineralised parts
	and whether sample bias may have occurred due to preferential loss/gain	of the diamond core.
	of fine/coarse material.	
Logging	· Whether core and chip samples have been geologically and	Drill holes were logged for lithology, alteration, mineralisation, structure
	geotechnically logged to a level of detail to support appropriate Mineral	and weathering by a geologist. Data is then captured in a database
	Resource estimation, mining studies and metallurgical studies.	appropriate for mineral resource estimation.
		Metallurgical testing has been reported in the body of this release.
	· Whether logging is qualitative or quantitative in nature. Core (or	All cores are photographed in the core tray, with individual photographs
	costean, channel, etc) photography.	taken of each tray both dry and wet. Logging conducted is both qualitative
		and quantitative.
	• The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Out a multime		
Sub-sampling	• If core, whether cut or sawn and whether quarter, half or all core	Diamond drill core was cut in nair. Hair the core was submitted for
techniques and sample	taken.	metallurgical testing and the remaining half was stored securely for future
preparation		reference and potentially further analysis if ever required.
	If non-core, whether riffled, tube sampled, rotary split, etc and	Only diamond core drilling utilised.
	whether sampled wet or dry.	
	For all sample types, the nature, quality and appropriateness of the	Four composite samples weighing approximately 30kg each from the
	sample preparation technique.	Edleston gold deposit in Timmins were submitted to SGS Lakefield in
		Ontario. For head characteristics a ~500 g subsample was crushed down
		to 80% 2mm and was riffled out and submitted for gold analysis by the
		screened metallics method. The sample was stage pulverized and
		screened at 150 mesh to produce 20 to 30 g of plus 150 mesh fractions

Criteria	JORC Code explanation	Comments
		for gold assay to completion. The minus 150 mesh fraction was assayed
		for gold in duplicate and the overall gold grade of the composite was
		calculated. A smaller subsample was riffled out for carbon speciation and
		a multi-element ICP scan. For Knelson gravity work a 2 kg sample was
		riffled and prepared in the same manor as the head sample. For the gold
		leach work, cyanidation was applied to the tail from the Knelson and
		Mozley tail.
	· Quality control procedures adopted for all sub-sampling stages to	Standard preparation procedure inclusive of internal laboratory internal
	maximise representivity of samples.	crushing and pulverizing tests were utilised.
	· Measures taken to ensure that the sampling is representative of the	Gold head assays were conducted on riffled received material as well as
	in situ material collected, including for instance results for field	riffled sub-samples for gravity and leach test work. Head assays were
	duplicate/second-half sampling.	compared for sample preparation quality control. Head assays were all
		compared with original assays conducted at time of drilling to ensure
		representative samples were used in the metallurgical testing based on
		gold grade comparable to the resource.
	\cdot Whether sample sizes are appropriate to the grain size of the	Sample sizes are considered appropriate to the mineralisation style and
	material being sampled.	grain size of the material.
Quality of assay data and	· The nature, quality and appropriateness of the assaying and	Samples were submitted for gold assay by fire assay and ICP (atomic
laboratory tests	laboratory procedures used and whether the technique is considered	absorption) of a 50g pulverized sample. If gold grains of a size larger than
	partial or total.	the grind size are present, the method can be considered partial
		digestion.
		Samples with logged visible gold or reporting over 10g/t Au were
		analysed by fire assay metallic screen. A representative 500g split is
		sieved at 100 mesh with assays with assays performed on the entire
		>100 mesh and 2 splits of the -100 mesh fraction. A final assay is
		calculated based on the weight of each fraction.
	· For geophysical tools, spectrometers, handheld XRF instruments,	No geophysical tools, spectrometers or handheld XRF instruments were
	etc, the parameters used in determining the analysis including instrument	utilized on the selection of samples tested

Criteria	JORC Code explanation	Comments
	make and model, reading times, calibrations factors applied and their	
	derivation, etc.	
	• Nature of quality control procedures adopted (eg standards, blanks,	Standard quality control procedures as per SGS Lakefield and head
	duplicates, external laboratory checks) and whether acceptable levels of	assay comparisons as noted above.
	accuracy (ie lack of bias) and precision have been established.	
Verification of sampling	• The verification of significant intersections by either independent or	Results were reviewed by the chief geologist, managing director and
and assaying	alternative company personnel.	competent person.
	• The use of twinned holes.	No core used in metallurgical testing was from twinned holes.
	· Documentation of primary data, data entry procedures, data	All data was recorded in field logging sheets, digitised then imported into
	verification, data storage (physical and electronic) protocols.	a validated database.
	· Discuss any adjustment to assay data.	No adjustments were performed to assay data.
Location of data points	· Accuracy and quality of surveys used to locate drill holes (collar and	Drill collar locations were surveyed using a differential GPS.
	down-hole surveys), trenches, mine workings and other locations used in	
	Mineral Resource estimation.	
	Specification of the grid system used.	All collar locations are reported in NAD83- 17N grid system.
	· Quality and adequacy of topographic control.	Topographic control on collars was derived from a LIDAR survey
		completed across the Project. LIDAR is considered to be industry best
		practice for this stage of exploration.
Data spacing and	 Data spacing for reporting of Exploration Results. 	Diamond drill holes are drilled selectively directly targeting mineralisation
distribution		based on regional orientations known along strike.
	· Whether the data spacing and distribution is sufficient to establish	The spacing across Edleston Main is sufficient to establish geological and
	the degree of geological and grade continuity appropriate for the Mineral	grade continuity appropriate for estimation of a Mineral Resource.
	Resource and Ore Reserve estimation procedure(s) and classifications	
	applied.	The remaining prospects drilled by the Company are on too broad of a
		spacing to define a mineral resource at present.
	Whether sample compositing has been applied.	Sample compositing has been applied.

Criteria	JORC Code explanation	Comments
Orientation of data in	· Whether the orientation of sampling achieves unbiased sampling of	Based on the logging of the drilling and interpretation of the geology the
relation to geological	possible structures and the extent to which this is known, considering the	drilling completed is interpreted to be perpendicular to the trend of
structure	deposit type.	mineralisation.
	· If the relationship between the drilling orientation and the orientation	The drilling intercept reported is downhole. Further drilling is required to
	of key mineralised structures is considered to have introduced a sampling	confirm the geometry of mineralisation.
	bias, this should be assessed and reported if material.	
Sample security	· The measures taken to ensure sample security.	Diamond drill core is transported from site by contractors to a secured
		core processing facility for logging and sampling. Samples are
		subsequently sent by a contractor to the assay laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits are documented to have occurred in relation to sampling
		techniques or data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	· Type, reference name/number, location and ownership including	The Edleston Project is 100% owned by a wholly owned subsidiary of
land tenure status	agreements or material issues with third parties such as joint ventures,	Aston Minerals Ltd.
	partnerships, overriding royalties, native title interests, historical sites,	
	wilderness or national park and environmental settings.	A 2% net smelter return royalty applies across the Project. 1% of the net
		smelter return royalty can be purchased for \$1,000,000 across the mining
		claims and 1% of the net smelter return royalty can be purchased for
		\$1,000,000 across the Leased Claim.
	• The security of the tenure held at the time of reporting along with any	Open file verification has been conducted to confirm licenses are in full
	known impediments to obtaining a licence to operate in the area.	force.
Exploration done by	· Acknowledgment and appraisal of exploration by other parties.	Exploration reported was completed by 55 North Mining Inc (Formerly
other parties		SGX Resources Inc.). Activities completed include magnetic surveys,
		VLF/IP surveys, extensive diamond drilling.

Criteria	JORC Code explanation	Commentary
Geology	• Deposit type, geological setting and style of mineralisation.	Regionally, Edleston appears to lie along the potential western extension
		of the Cadillac-Larder fault zone along which a number of major gold
		deposits are located. Geophysical and geological work has demonstrated
		that the Edleston Zone sits within the north limb of the host unit/horizon
		that stretches over 10 km to the east. This unit is broadly folded back
		toward the south and east immediately to the west of the deposit
		continuing under and near the contact with shallow sedimentary cover.
		The host rock is an altered and sheared ultramafic that exhibits extensive
		silicification and contains quartz-carbonate in veins, veinlets and fracture
		fill.
		A revised geological interpretation based on the information obtained
		from recent drilling and reprocessed magnetics coverages was
		undertaken. Through this process the extent and intense magnetic
		response of the Boomerang Target was recognised. Magnetic inversion
		modelling of the Boomerang Target was undertaken to further constrain
		the geometry and extent of the dunite/peridotite complex. It is interpreted
		that this dunite/peridotite body extends for a strike of 5km, is 500 to
		>1,500m wide and extends to depths of well over 500m.
		The exploration model applied to conduct targeting of this body is
		analogous to Dumont and Crawford Nickel-PGE-Cobalt Deposits. Nickel
		sulphide mineralisation at these deposits was formed through the
		serpentinisation of a dunite unit (rock composed of >90% olivine).
		Through the reaction of olivine with water, extensive magnetite is
		developed hence providing such a strong magnetic response and
		potentially allowing for a direct exploration targeting method to be
		applied. Through this process of serpentinisation nickel is liberated from

Criteria	JORC Code explanation	Commentary
		olivine within a strongly reducing environment and the liberated nickel is
		partitioned into low sulphur nickel sulphide minerals.
Drill hole Information	· A summary of all information material to the understanding of the	The drill hole location information is set out in the appendix.
	exploration results including a tabulation of the following information for	
	all Material drill holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in	
	metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	· If the exclusion of this information is justified on the basis that the	All information has been reported.
	information is not Material and this exclusion does not detract from the	
	understanding of the report, the Competent Person should clearly explain	
	why this is the case.	
Data aggregation	· In reporting Exploration Results, weighting averaging techniques,	Samples selected for metallurgical testing had a minimum grade of 0.7
methods	maximum and/or minimum grade truncations (eg cutting of high grades)	g/t Au and a maximum of 1.5 g/t Au.
	and cut-off grades are usually Material and should be stated.	
	Where appreciate intercents incorporate short lengths of high grade	Samples selected for motollurgical testing had a minimum grade of 0.7
	volute and langer langths of law grade results, the presedure used for	samples selected for metallurgical testing had a minimum grade of 0.7
	results and longer lengths of low grade results, the procedure used for	g/t Au and a maximum of 1.5 g/t Au.
	such aggregation should be stated and some typical examples of such	
	The accumptions wood for any reporting of matel acuivalant values	No motol oquivolance are reported
	. The assumptions used for any reporting of metal equivalent values	No metal equivalence are reported.
Deletienshin hetween	Should be clearly stated.	No drilling regults reported in this opposite anoth
Relationship between	Furlese relationships are particularly important in the reporting of	no uning results reported in this announcement.
mineralisation widths		
and intercept lengths	respect to the arili hole angle is known, its nature should be reported.	

Criteria	JORC Code explanation	Commentary
	· If it is not known and only the down hole lengths are reported, there	
	should be a clear statement to this effect (eg 'down hole length, true width	
	not known').	
Diagrams	· Appropriate maps and sections (with scales) and tabulations of	There is no significant discovery being reported in this announcement.
	intercepts should be included for any significant discovery being reported	
	These should include, but not be limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced reporting	· Where comprehensive reporting of all Exploration Results is not	All information has been reported.
	practicable, representative reporting of both low and high grades and/or	
	widths should be practiced to avoid misleading reporting of Exploration	
	Results.	
Other substantive	· Other exploration data, if meaningful and material, should be	No other exploration data is considered meaningful and material to this
exploration data	reported including (but not limited to): geological observations;	announcement.
	geophysical survey results; geochemical survey results; bulk samples –	
	size and method of treatment; metallurgical test results; bulk density,	
	groundwater, geotechnical and rock characteristics; potential deleterious	
	or contaminating substances.	
Further work	· The nature and scale of planned further work (eg tests for lateral	Further exploration will be planned by the Company in due course.
	extensions or depth extensions or large-scale step-out drilling).	
	· Diagrams clearly highlighting the areas of possible extensions,	A map including the location of all gold collars drilled on the Project is
	including the main geological interpretations and future drilling areas,	included in the body of this release.
	provided this information is not commercially sensitive.	

