

ASX Announcement

01 February 2024

MAKUUTU PHASE 5 INFILL TRANCHE 2 DRILL ASSAY RESULTS

- Clay hosted rare earth intersections achieved in all 20 infill core drill holes received, including;
 - 5.3 metres at 1,044 ppm TREO from 2.7 metres in RRMDD784
 - o 17.1 metres at 1,003 ppm TREO from 4.8 metres in RRMDD778
 - 16.2 metres at 713 ppm TREO from 4.0 metres in RRMDD771
 - 11.0 metres at 691 ppm TREO from 4.0 metres in RRMDD770
 - 14.6 metres at 684 ppm TREO from 6.1 metres in RRMDD772
- Samples for the remaining 52 holes are being analysed; and
- Makuutu's basket contains 71% magnet and heavy rare earths content, and is one
 of the most advanced heavy rare earth projects globally available as a source for
 new supply chains emerging across Europe, the US, and Asia.

lonic Rare Earths Limited ("lonicRE" or "the Company") (ASX: IXR) is pleased to advise Tranche 2 drill results from the Phase 5 resource infill and extension drilling at its 60 per cent owned Makuutu Heavy Rare Earths Project ("Makuutu" or "the Project") in Uganda. The results reported are for 20 core drillholes drilled as infill and extension holes to Area A of the current Makuutu 2022 Mineral Resource Estimate (MRE) (ASX: 3 May 2022, see Table 4).

The Company is progressing the development at the Makuutu Heavy Rare Earths Project through local Ugandan operating entity Rwenzori Rare Metals Limited ("RRM"). IonicRE has agreed terms with partners in RRM on moving to 94% ownership which is expected to occur in H1 2024.

Assay results for 76 holes of the 128-hole Phase 5 resource infill and extension drilling program completed on Retention Licence (RL) 00007 have now been received. The program is intended to increase resource estimation confidence from inferred to indicated status on resource Areas A and B, and to test extensions of those areas to expand the mineral resource area. Figure 1 is a plan of the Makuutu MRE and exploration target areas with MRE Areas A and B located on the western end of the deposit located within RL00007.

Intersections compiled above the MRE lower cut-off of 200ppm Total Rare Earth Oxide less Cerium Oxide (TREO-CeO₂) are listed in Table 1 and shown diagrammatically in plan view in Figure 2.

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia

Phone: +61 3 9776 3434
Email: <u>investors@ionicre.com</u>

Web: <u>www.ionicre.com</u>

Figure 1: Makuutu project drill status plan showing location of infill and extension drilling results on licence RL00007, MRE Areas A and B.

Drilling was on a 200-metre spaced pattern with eleven (11) of the drill holes being extensions to the MRE and nine (9) are MRE Area A infill holes. Figure 2 shows the core hole locations (diamond shape) with intersection thickness (point size) and TREO grade (point colour) with the reported 200 metre spaced holes with bold hole numbers and the previously reported drill holes in italic hole numbers. Previously reported regional exploration RAB drill holes are also shown (round points).

The 11 extension holes were drilled up to 500 metres south and southwest the boundary of MRE Area A, mostly within the Makuutu mineralised trend. This extension drilling shows mineralisation continues beyond the MRE.

The infill holes to date continued zones of thicker and often higher-grade intervals than the original 400 metre spaced drill holes used to estimate the inferred resource. Best intersections include;

- RRMDD778, with 17.1 metres at 1,003ppm TREO from 4.8 metres depth; and
- RRMDD771, with 16.2 metres at 713ppm TREO from 4.0 metres depth.

The remaining 52 drill holes are currently at the laboratory in Perth being analysed. Following the receipt of results, an updated resource estimation will be completed.

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia Phone: +61 3 9776 3434 Email: <u>investors@ionicre.com</u> Web: <u>www.ionicre.com</u>

Table 1 Phase 5 resource infill and extension results above MRE cut-off grade of 200ppm TREO-CeO₂.

Drill Hole ID	Depth From (metres)	Length (metres)	TREO (ppm)	TREO- CeO ₂ (ppm)	HREO (ppm)	CREO (ppm)	Hole Purpose
RRMDD768	3.8	13.7	558	361	135	183	Infill Area A
RRMDD769	3.3	9.7	638	421	186	228	Infill Area A
RRMDD770	4.0	11.0	691	452	167	231	Infill Area A
RRMDD771	4.0	16.2	713	495	242	281	Infill Area A
RRMDD772	6.1	14.6	684	508	230	282	Infill Area A
RRMDD773	8.3	3.3	312	217	87	108	Infill Area A
RRMDD773	15.6	3.7	265	207	92	111	Infill Area A
RRMDD774	4.7	8.6	295	215	84	107	Extension
RRMDD774	20.5	4.3	485	407	215	245	Extension
RRMDD775	5.3	8.1	478	323	135	172	Extension
RRMDD776	3.3	13.6	591	390	171	208	Infill Area A
RRMDD777	3.7	12.1	297	216	80	104	Extension
RRMDD777	23.8	1.9	293	206	98	117	Extension
RRMDD778	4.8	17.1	1003	823	550	556	Extension
RRMDD779	3.9	6.9	565	396	173	217	Infill Area A
RRMDD780	3.5	11.4	517	369	148	196	Extension
RRMDD781	3.8	11.5	591	469	191	256	Extension
RRMDD782	17.1	2.8	259	201	95	110	Extension
RRMDD783	3.4	8.1	678	559	245	305	Extension
RRMDD784	2.7	5.3	1044	739	301	402	Extension
RRMDD785	0.7	3.9	416	256	95	130	Extension
RRMDD786	5.9	5.6	416	313	116	164	Extension
RRMDD787	1.6	9.7	495	377	159	208	Extension

NSI=No significant intercept above cut-off grade

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia Phone: +61 3 9776 3434 Email: <u>investors@ionicre.com</u> Web: <u>www.ionicre.com</u>

Figure 2: Drilling results Phase 5 resource infill and extension on RL00007. Results this announcement black hole number annotation.

Authorised for release by the Board.

For enquiries, contact:

For Company
Tim Harrison
Ionic Rare Earths Limited
investors@ionicre.com
+61 (3) 9776 3434

For Investor Relations
Peter Taylor
NWR Communications
peter@nwrcommunications.com.au
+61 (0) 412 036 231

Phone: +61 3 9776 3434
Email: investors@ionicre.com

Web: <u>www.ionicre.com</u>

Table 2: Makuutu Rare Earth Project Resource Tabulation of REO Reporting Groups at 200ppm TREO-CeO₂ Cut-off Grade (ASX: 3 May 2022).

Resource Classification	Tonnes (millions)	TREO (ppm)	TREO- CeO ₂ (ppm)	LREO (ppm)	HREO (ppm)	CREO (ppm)	Sc₂O₃ (ppm)
Indicated	404	670	450	500	170	230	30
Inferred	127	540	360	400	140	180	30
Total	532	640	430	480	160	220	30

Notes: Tonnes are dry tonnes rounded to the nearest 1.0Mt.

All ppm rounded from original estimate to the nearest 10 ppm which may lead to differences in averages.

TREO = Total Rare Earth Oxide

Table 3: Mineral Resources by Area (ASX: 3 May 2022), RL00007 Resource Areas shaded.

Classification	Indicat	ed Reso	urce	Inferr	ed Resou	ırce	Tota	l Resour	се
Area	Tonnes (millions)	TREO (ppm)	TREO- CeO ₂ (ppm)	Tonnes (millions)	TREO (ppm)	TREO- CeO ₂ (ppm)	Tonnes (millions)	TREO (ppm)	TREO- CeO ₂ (ppm)
Α				13	580	390	13	580	390
В				26	410	290	26	410	290
С	31	580	400	3	490	350	35	570	400
D				6	560	400	6	560	400
E				18	430	280	18	430	280
Central Zone	151	780	540	12	670	460	163	770	530
Central Zone East	59	750	490	12	650	430	72	730	480
F	18	630	420	7	590	400	25	620	410
G	9	750	500	5	710	450	14	730	480
Н	6	800	550	7	680	480	13	740	510
I	129	540	350	19	530	350	148	540	350
Total Resource	404	670	450	127	540	360	532	640	430

Rounding has been applied to 1Mt and 10ppm which may influence averaging calculations.

About Ionic Rare Earths Ltd

lonic Rare Earths Limited (ASX: IXR or lonicRE) is set to become a miner, refiner and recycler of sustainable and traceable magnet and heavy rare earths needed to develop net-zero carbon technologies.

The Makuutu Rare Earths Project in Uganda, 60% owned by IonicRE, moving to 94% ownership in H1 2024, is well-supported by existing tier-one infrastructure and is on track to become a long-life, low Capex, scalable and sustainable supplier of high-value magnet and heavy rare earths oxides (REO). In March 2023, IonicRE announced a positive stage 1 Definitive Feasibility Study (DFS) for the first of six (6) tenements to progress to mining licence which was awarded in January 2024. The

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia Phone: +61 3 9776 3434
Email: investors@ionicre.com

Web: <u>www.ionicre.com</u>

Makuutu Stage 1 DFS defined a 35-year life initial project producing a 71% rich magnet and heavy rare earth carbonate (MREC) product basket and the potential for significant potential and scale up through additional tenements.

lonic Technologies International Limited ("lonic Technologies"), a 100% owned UK subsidiary acquired in 2022, has developed processes for the separation and recovery of rare earth elements (REE) from mining ore concentrates and recycled permanent magnets. Ionic Technologies is focusing on the commercialisation of the technology to achieve near complete extraction from end of life / spent magnets and waste (swarf) to high value, separated and traceable magnet rare earth products with grades exceeding 99.9% rare earth oxide (REO). In June 2023, Ionic Technologies announced initial production of high purity magnet REOs from its newly commissioned Demonstration Plant. This technology and operating Demonstration Plant provides first mover advantage in the industrial elemental extraction of REEs from recycling, enabling near term magnet REO production capability to support demand for early-stage alternative supply chains.

As part of an integrated strategy to create downstream supply chain value, lonicRE is also evaluating the development of its own magnet and heavy rare earth refinery, or hub, to separate the unique and high value magnet and heavy rare earths dominant Makuutu basket into the full spectrum of REOs plus scandium.

This three-pillar strategy completes the circular economy of sustainable and traceable magnet and heavy rare earth products needed to supply applications critical to electric vehicles, offshore wind turbines, communication, and key defence initiatives.

lonicRE is a Participant of the UN Global Compact and adheres to its principles-based approach to responsible business.

Competent Persons Statement

The information in this Report that relates to Exploration Results for the Makuutu Project is based on information compiled by Mr. Geoff Chapman, who is a Fellow of the Australian Institute of Mining and Metallurgy (AuslMM). Mr. Chapman is a Director of geological consultancy GJ Exploration Pty Ltd that is engaged by Ionic Rare Earths Ltd. Mr. Chapman has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Chapman consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Information in this report that relates to previously reported Exploration Targets and Exploration Results has been cross-referenced in this report to the date that it was originally reported to ASX. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcements.

The information in this report that relates to Mineral Resources for the Makuutu Rare Earths deposit was first released to the ASX on 3 May 2022 and is available to view on www.asx.com.au. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcement, and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia Phone: +61 3 9776 3434 Email: <u>investors@ionicre.com</u>

Web: <u>www.ionicre.com</u>

The information in this report that relates to Ore Reserves for the Makuutu Rare Earths deposit was first released to the ASX on 20 March 2023 and is available to view on www.asx.com.au. Ionic Rare Earths Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcement, and that all material assumptions and technical parameters underpinning the estimates in the announcement continue to apply and have not materially changed.

The information in this report that relates to Production Targets or forecast financial information derived from production the production target for the Makuutu Rare Earths deposit was first released to the ASX on 20 March 2023 and is available to view on www.asx.com.au. Ionic Rare Earths Limited confirms that all material assumptions and technical parameters underpinning the Production Targets or forecast financial estimates in the announcement continue to apply and have not materially changed.

Forward Looking Statements

This announcement has been prepared by lonic Rare Earths Limited and may include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of lonic Rare Earths Limited. Actual values, results or events may be materially different to those expressed or implied in this document. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this document speak only at the date of issue of this document. Subject to any continuing obligations under applicable law and the ASX Listing Rules, lonic Rare Earths Limited does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions, or circumstances on which any such forward looking statement is based.

Appendix 1: Drill Hole Details This Announcement (Datum UTM WGS84 Zone 36N)

Drill Hole ID	UTM East (m.)	UTM North (m.)	Elevation (m.a.s.l.)	Drill Type	Hole Length EOH (m.)	Azimuth	Inclination
RRMDD768	552203	57206	1158	DD	19.2	000	-90
RRMDD769	552300	57395	1159	DD	15.0	000	-90
RRMDD770	552501	57402	1157	DD	17.0	000	-90
RRMDD771	552580	57198	1155	DD	22.5	000	-90
RRMDD772	552684	57000	1151	DD	23.6	000	-90
RRMDD773	552878	56999	1147	DD	28.5	000	-90
RRMDD774	552821	56806	1150	DD	28.6	000	-90
RRMDD775	552507	56983	1153	DD	23.7	000	-90
RRMDD776	552296	56991	1154	DD	20.0	000	-90
RRMDD777	552590	56812	1150	DD	32.2	000	-90
RRMDD778	552401	56784	1148	DD	24.7	000	-90
RRMDD779	552217	56796	1148	DD	15.2	000	-90
RRMDD780	552015	56788	1147	DD	17.1	000	-90
RRMDD781	551905	56596	1142	DD	27.0	000	-90
RRMDD782	551713	56605	1136	DD	21.7	000	-90
RRMDD783	551803	56406	1139	DD	18.0	000	-90
RRMDD784	552002	56405	1138	DD	10.7	000	-90
RRMDD785	552179	56440	1133	DD	6.3	000	-90
RRMDD786	552093	56603	1143	DD	19.8	000	-90
RRMDD787	552298	56601	1138	DD	15.0	000	-90

Ionic Rare Earths Limited Level 5 South 459 Collins Street Melbourne Vic 3000 Australia Phone: +61 3 9776 3434 Email: <u>investors@ionicre.com</u> Web: <u>www.ionicre.com</u>

Appendix 2: RAB Drilling Analytical Results RRMDD712 to RRMDD767 including highlighted Intersections >200 ppm TREO-CeO2.

(Note: Rounding will cause minor value differences)

																					>200 TREO-	ppm -CeO₂
																					Inter	rval
Hole ID	From m	To m	Int. m	La₂O₃ ppm	CeO₂ ppm	Pr₂O₃ ppm	Nd₂O₃ ppm	Sm₂O₃ ppm	Eu₂O₃ ppm	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho₂O₃ ppm	Er₂O₃ ppm	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu₂O₃ ppm	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
RRMDD768	0.00	1.56	1.56	104.7	171.4	18.1	57.2	10.4	1.7	7.3	1.1	6.4	1.2	3.8	0.7	3.8	0.6	35.8	424	Hardcap	(111)	ppiii
RRMDD768	1.56	3.15	1.59	123.7	533.1	21.0	64.2	10.4	1.6	6.7	1.1	6.5	1.2	3.4	0.6	3.6	0.6	31.2	809	Hardcap	1	
RRMDD768	3.15	3.80	0.65	132.5	523.3	27.1	87.2	15.0	2.6	11.4	1.6	9.3	1.7	5.1	0.7	5.6	0.7	41.4	865	Transition	1	
RRMDD768	3.80	4.63	0.83	229.3	294.8	54.2	206.5	36.9	5.8	21.8	2.5	12.6	1.9	5.1	1.1	4.5	0.7	44.2	922	Mottled	1	
RRMDD768	4.63	5.45	0.82	138.4	211.9	32.0	114.1	20.2	3.5	13.4	1.6	9.3	1.5	4.4	1.1	4.0	0.5	36.3	592	Mottled	1	
RRMDD768	5.45	6.19	0.74	133.7	223.6	36.1	123.1	20.6	3.7	15.4	2.0	12.2	2.2	6.4	1.2	5.5	0.8	60.3	647	Mottled	1	
RRMDD768	6.19	6.93	0.74	120.8	203.3	33.6	125.4	23.3	4.3	18.6	2.4	14.8	2.7	7.3	1.1	5.9	1.0	67.6	632	Mottled	1	
RRMDD768	6.93	7.71	0.78	119.0	216.8	35.4	144.1	26.2	4.7	20.1	2.8	14.7	2.6	6.8	1.1	5.2	0.8	71.6	672	Clay	1	
RRMDD768	7.71	8.49	0.78	103.9	213.1	32.3	119.6	23.1	4.6	20.2	3.1	15.6	2.7	7.0	1.0	6.1	0.9	69.8	623	Clay	Ī	
RRMDD768	8.49	9.40	0.91	80.2	173.8	23.1	91.6	18.8	4.2	21.6	3.0	19.6	3.8	10.2	0.8	9.2	1.3	102.7	564	Upper Saprolite	1	
RRMDD768	9.40	10.30	0.90	77.6	173.8	22.1	87.6	18.5	3.9	19.9	2.9	18.8	3.5	9.6	0.7	8.8	1.2	98.9	548	Upper Saprolite	1	
RRMDD768	10.30	11.14	0.84	82.3	183.6	22.0	87.7	17.6	3.8	21.0	2.6	16.6	3.2	9.1	0.7	7.3	1.0	85.6	544	Lower Saprolite		
RRMDD768	11.14	11.98	0.84	76.7	167.1	18.7	77.0	18.9	3.6	21.2	2.5	16.9	3.1	8.0	0.5	6.4	8.0	81.3	503	Lower Saprolite		
RRMDD768	11.98	12.82	0.84	77.8	166.4	19.0	71.2	15.1	2.5	14.7	2.0	12.2	2.3	6.0	0.6	4.2	0.7	66.4	461	Lower Saprolite]	
RRMDD768	12.82	13.66	0.84	89.7	186.7	20.5	71.7	11.5	1.9	10.5	1.4	8.5	1.6	4.8	0.7	3.8	0.6	67.2	481	Lower Saprolite]	
RRMDD768	13.66	14.62	0.96	85.5	189.8	20.8	68.8	11.7	1.8	9.5	1.5	7.6	1.6	4.6	0.7	4.1	0.7	60.6	469	Lower Saprolite		
RRMDD768	14.62	15.58	0.96	83.4	187.9	20.5	71.6	13.1	2.2	10.5	1.4	7.7	1.5	4.4	0.6	3.6	0.5	53.7	463	Lower Saprolite		
RRMDD768	15.58	16.54	0.96	74.8	167.7	18.1	64.5	11.6	2.0	10.0	1.3	7.6	1.7	4.7	0.6	3.8	0.6	55.9	425	Lower Saprolite		
RRMDD768	16.54	17.50	0.96	91.5	203.9	21.9	73.2	12.1	2.0	10.4	1.3	7.5	1.4	4.3	0.8	3.6	0.5	45.1	479	Lower Saprolite	13.70	558
RRMDD768	17.50	19.20	1.70	74.6	164.6	18.1	62.9	10.7	1.9	8.9	1.3	7.8	1.4	4.6	0.6	3.8	0.5	43.0	405	Saprock		
RRMDD769	0.00	1.25	1.25	140.1	296.0	29.0	99.1	18.0	3.1	13.8	2.1	10.8	1.9	4.9	0.7	4.8	0.7	46.2	671	Hardcap		
RRMDD769	1.25	2.50	1.25	141.9	380.8	29.2	94.5	16.7	2.6	10.4	1.5	8.6	1.4	4.2	8.0	4.1	0.6	39.4	737	Hardcap		
RRMDD769	2.50	3.30	0.80	117.2	177.5	25.5	85.6	14.0	2.4	9.2	1.3	7.1	1.3	4.0	0.7	3.7	0.6	32.6	483	Transition		
RRMDD769	3.30	4.27	0.97	114.0	223.6	31.5	119.0	23.7	4.7	21.6	2.8	17.6	3.3	9.3	0.9	8.2	1.1	93.8	675	Clay		
RRMDD769	4.27	5.23	0.96	106.6	216.8	30.0	112.9	23.8	4.7	22.0	3.0	17.8	3.4	9.7	0.9	8.3	1.2	99.8	661	Clay	<u> </u>	
RRMDD769	5.23	6.23	1.00	120.8	238.3	33.3	120.1	21.9	4.3	18.8	2.6	16.4	2.9	8.0	0.7	6.0	0.9	74.9	670	Clay		
RRMDD769	6.23	7.23	1.00	111.3	226.0	30.0	114.8	20.0	3.6	16.9	2.3	13.6	2.4	6.8	0.8	5.2	0.7	61.1	616	Clay		
RRMDD769	7.23	8.14	0.91	98.5	221.1	27.1	101.8	20.5	3.5	18.8	2.5	15.1	2.8	7.9	0.7	6.7	0.9	70.4	598	Upper Saprolite	_	
RRMDD769	8.14	9.05	0.91	104.1	218.0	27.2	108.6	20.9	3.6	17.5	2.7	15.4	2.6	7.0	0.8	6.3	8.0	78.6	614	Upper Saprolite	4	
RRMDD769	9.05	9.96	0.91	93.9	205.1	25.0	97.0	17.3	3.3	15.9	2.2	12.9	2.4	6.6	0.6	5.4	0.6	60.3	549	Upper Saprolite	4	
RRMDD769	9.96	10.85	0.89	101.7	220.5	25.5	95.3	17.7	3.2	16.5	2.2	13.8	2.6	7.0	0.7	5.8	0.8	66.2	580	Upper Saprolite	4	
RRMDD769	10.85	11.57	0.72	96.4	215.6	24.8	91.0	18.4	3.0	16.0	2.1	12.5	2.5	7.5	0.7	6.5	0.8	65.1	563	Lower Saprolite	4	
RRMDD769	11.57	12.29	0.72	89.8	196.5	21.3	75.9	14.4	3.0	18.7	2.8	20.0	4.7	15.0	0.8	12.8	1.9	167.6	645	Lower Saprolite		222
RRMDD769	12.29	13.00	0.71	95.9	194.7	21.5	81.3	19.1	3.8	27.9	4.3	30.6	7.2	21.4	0.9	17.8	2.6	350.5	880	Lower Saprolite	9.70	638
RRMDD769	13.00	15.00	2.00	80.8	178.1	18.8	66.0	11.3	2.0	10.1	1.4	8.4	1.6	5.1	0.6	4.7	0.7	52.7	442	Saprock		
RRMDD770	0.00	1.79	1.79	267.4	633.9	52.3	161.5	24.8	4.0	16.6	2.5	13.5	2.4	6.2	0.7	5.8	0.8	63.5	1256	Hardcap	4	
RRMDD770	1.79	3.58	1.79	186.5	515.9	41.3	140.6	23.4	3.6	14.8	2.3	11.7	2.1	5.8	0.7	5.2	0.7	51.4	1006	Hardcap	4	1
RRMDD770	3.58	4.00	0.42	82.2	189.8	17.9	65.6	10.9	2.0	8.8	1.5	8.8	1.7	5.0	0.7	5.1	0.8	47.1	448	Transition	-	
RRMDD770	4.00	4.95	0.95	118.5	175.0	25.1	82.2	12.1	2.0	9.1	1.4	7.7	1.5	4.3	0.9	4.4	0.7	42.7	487	Mottled	-	
RRMDD770	4.95	5.90	0.95	144.8	262.9	30.9	102.1	17.7	3.3	13.0	2.0	10.0	1.9	5.5	1.1	4.9	0.8	51.7	652	Mottled	-	
RRMDD770	5.90	6.85	0.95	40.9	69.3	9.2	32.7	5.9	1.0	5.8	1.0	6.1	1.3	4.2	0.9	3.9	0.6	42.0	225	Mottled	-	
RRMDD770	6.85	7.80	0.95	59.1	109.9	12.4	43.3	7.7	1.3	6.8	1.1	6.9	1.4	4.8	0.9	4.1	0.7	49.7	310	Mottled	-	
RRMDD770	7.80	8.40	0.60	86.7	181.8	19.6	70.3	12.6	2.4	11.9	1.9	10.8	2.2	6.4	0.9	6.1	0.9	75.7	490	Clay	-	
RRMDD770	8.40	9.39	0.99	143.1	294.8	32.3	109.9	19.0	3.0	15.3	2.0	10.9	2.1	6.3	1.1	5.5	0.7	70.0	716	Clay	-	
RRMDD770	9.39	10.27	0.88	506.6	906.6	171.0	635.7	112.8	18.8	87.1	11.7	60.7	10.8	28.2	1.0	21.5	3.0	332.7	2908	Upper Saprolite	-	
RRMDD770 RRMDD770	10.27 11.21	11.21 12.15	0.94 0.94	107.0 78.0	206.4 163.4	26.9 20.8	106.5 78.4	20.7 16.0	3.5 2.7	17.3 14.2	2.6	13.5 10.5	2.5 2.0	6.9 5.5	1.0 1.0	6.1 5.0	0.9 0.6	73.4 58.2	595 458	Lower Saprolite	-	
			0.94			20.8	78.4 90.4	20.2	-			10.5			1.0	10.0	1.4			Lower Saprolite	1	
RRMDD770	12.15	13.09	0.94	82.0	167.7	۷۱.۵	90.4	∠∪.∠	3.8	21.6	3.2	19.2	3.9	11.1	1.0	10.0	1.4	124.6	582	Lower Saprolite		

																					>200p TREO- Inter	CeO ₂
Hole ID	From m	To m	Int. m	La ₂ O ₃ ppm	CeO ₂	Pr ₂ O ₃	Nd₂O₃ ppm	Sm₂O₃ ppm	Eu ₂ O ₃	Gd₂O₃ ppm	Tb₂O₃ ppm	Dy₂O₃ ppm	Ho ₂ O ₃	Er ₂ O ₃	Tm₂O₃ ppm	Yb₂O₃ ppm	Lu ₂ O ₃	Y₂O₃ ppm	TREO ppm	Regolith Zone	Length (m)	TREO ppm
RRMDD770	13.09	14.03	0.94	87.4	181.8	21.1	81.2	14.1	2.5	13.6	1.7	9.5	2.0	6.0	1.0	5.0	0.8	77.0	505	Lower Saprolite	(111)	ррш
RRMDD770	14.03	14.96	0.93	78.5	175.0	19.8	69.3	13.0	2.6	10.4	1.5	7.8	1.5	4.2	1.0	3.6	0.6	56.1	445	Lower Saprolite	10.96	691
RRMDD770	14.96	15.98	1.02	68.7	154.8	17.7	61.1	11.4	2.3	9.9	1.6	8.7	1.7	4.8	1.0	4.5	0.7	55.9	405	Saprock		
RRMDD770	15.98	17.00	1.02	66.7	142.5	16.1	59.1	11.2	1.9	10.0	1.4	8.1	1.6	4.7	0.8	4.3	0.6	52.8	382	Saprock		
RRMDD771	0.00 1.82	1.82 3.64	1.82	111.1 178.9	633.9 864.8	18.1 32.5	52.8 94.0	8.7 13.9	1.4 2.4	6.1	1.0 1.6	6.1 8.5	1.2	3.6	0.5	3.7 5.2	0.6 0.7	30.0 40.4	879 1259	Hardcap		
RRMDD771 RRMDD771	3.64	3.96	1.82 0.32	136.6	732.1	32.5 24.6	77.9	11.8	1.9	9.6 9.4	1.6	8.1	1.6 1.6	4.6 4.7	0.5 0.8	4.6	0.7	46.1	1063	Hardcap Transition		
RRMDD771	3.96	4.88	0.92	181.8	221.7	34.8	106.7	15.9	2.2	11.3	1.6	8.9	1.8	5.2	1.0	5.6	0.8	55.6	655	Clay		
RRMDD771	4.88	5.79	0.91	148.4	211.3	32.3	103.1	15.4	2.1	10.8	1.5	8.6	1.6	4.3	1.0	4.4	0.7	46.0	591	Clay		
RRMDD771	5.79	6.35	0.56	140.7	254.3	33.8	112.0	18.7	2.9	11.2	1.6	7.8	1.5	4.2	1.1	4.5	0.7	41.9	637	Clay		
RRMDD771	6.35	6.90	0.55	126.1	202.1	29.4	102.1	17.7	2.6	11.2	1.6	7.7	1.4	4.3	1.0	4.1	0.6	40.3	552	Clay	_	
RRMDD771	6.90 7.86	7.86	0.96	123.1	218.7 250.6	29.4 34.8	94.7 122.5	14.4 19.1	2.4	9.0	1.4 1.8	6.7 8.5	1.2	3.5	1.2	3.6 3.9	0.5 0.5	33.5	543 649	Clay		
RRMDD771 RRMDD771	8.46	8.46 9.05	0.60	141.3 134.3	222.3	31.2	106.8	16.6	2.7	11.3 11.6	1.7	8.8	1.6 1.5	4.3 4.7	1.4 1.3	4.1	0.5	44.3 46.7	595	Clay Clay		
RRMDD771	9.05	9.97	0.92	155.4	292.4	47.7	181.4	30.0	4.8	21.3	2.9	14.3	2.4	6.2	1.1	5.0	0.7	65.5	831	Clay	_	
RRMDD771	9.97	10.88	0.91	108.8	207.0	29.0	109.9	20.4	3.5	17.7	2.7	14.8	2.8	7.8	1.0	6.7	1.0	78.5	612	Clay		
RRMDD771	10.88	11.37	0.49	113.8	215.6	29.0	105.6	18.7	3.3	17.0	2.7	15.1	2.7	8.0	1.0	6.6	1.0	90.9	631	Clay		
RRMDD771	11.37	12.17	0.80	103.7	219.9	28.6	113.4	22.5	3.6	20.7	2.9	16.7	3.2	9.1	1.0	7.5	1.1	102.9	657	Upper Saprolite		
RRMDD771 RRMDD771	12.17 12.97	12.97 13.77	0.80	92.8 93.1	183.6 190.4	21.9 24.0	79.4 90.5	15.2 18.7	3.0 3.7	16.9 21.6	2.6 3.4	15.2 19.7	2.9 3.9	8.3 11.6	1.0 0.8	6.5 9.8	1.0 1.4	99.1 139.1	549 632	Upper Saprolite Upper Saprolite		
RRMDD771	13.77	14.68	0.80	75.9	169.5	21.6	84.4	18.4	3.7	17.8	2.9	15.3	3.9	8.7	0.8	7.6	1.4	91.8	523	Upper Saprolite		
RRMDD771	14.68	15.59	0.91	114.0	260.4	40.1	211.1	44.2	7.1	37.1	4.8	23.1	3.9	9.4	0.8	6.7	0.9	101.3	865	Upper Saprolite	_	
RRMDD771	15.59	16.50	0.91	87.4	191.6	22.9	89.3	18.4	3.5	17.6	2.7	13.7	2.5	6.3	0.7	5.4	0.8	67.1	530	Upper Saprolite		
RRMDD771	16.50	17.40	0.90	82.0	180.6	18.8	63.5	12.0	1.9	10.9	1.7	10.1	1.9	5.1	0.6	4.6	0.6	55.7	450	Upper Saprolite		
RRMDD771	17.40	18.30	0.90	98.3	210.1	21.4	70.6	11.9	2.2	14.3	2.3	14.7	3.0	8.8	8.0	8.5	1.2	97.8	566	Lower Saprolite		
RRMDD771 RRMDD771	18.30 19.20	19.20 20.11	0.90 0.91	97.6 107.4	204.5 258.0	20.7 32.6	73.9 150.5	12.5 49.5	2.5 11.5	17.2 98.3	2.5 15.9	16.1 114.2	3.4 29.0	10.4 87.0	0.8	9.6 81.0	1.4 12.6	118.2 1320.7	591 2369	Lower Saprolite Lower Saprolite	16.15	713
RRMDD771	20.11	21.31	1.20	99.7	218.7	24.5	82.6	14.5	2.7	12.1	1.8	9.4	2.0	5.6	0.8	5.2	0.8	64.6	545	Saprock	10.13	7 13
RRMDD771	21.31	22.50	1.19	60.5	138.8	15.3	58.8	11.6	2.1	8.9	1.2	8.5	1.8	4.5	0.6	4.6	0.7	51.3	369	Saprock		
RRMDD772	0.00	1.76	1.76	92.8	175.7	20.7	70.5	12.9	2.0	11.0	1.8	10.0	2.0	5.7	0.9	5.9	0.9	60.2	473	Soil		
RRMDD772	1.76	3.49	1.73	86.8	341.5	16.1	51.0	9.3	1.5	6.5	1.0	6.2	1.3	3.5	0.6	3.9	0.6	32.4	562	Soil		
RRMDD772	3.49	5.21	1.72	92.9	696.5	20.4	72.9	13.7	2.2	9.8	1.8	10.0	1.9	5.1	0.4	5.7	8.0	45.7	980	Hardcap		
RRMDD772 RRMDD772	5.21 6.06	6.06 6.48	0.85 0.42	148.9 157.7	275.2 173.8	28.9 35.5	86.8 123.6	13.5 19.9	2.2 3.2	9.2	1.4 1.9	8.0 10.2	1.5 1.9	4.4 4.6	0.8	4.6 4.8	0.8 0.7	42.5 49.3	629 601	Transition Clay		
RRMDD772	6.48	7.28	0.42	316.7	398.0	88.4	339.4	60.8	10.5	43.5	5.4	26.4	4.1	9.0	0.9	6.1	0.7	90.5	1400	Clay		
RRMDD772	7.28	8.08	0.80	73.1	108.7	17.8	62.2	10.9	2.0	8.6	1.2	8.0	1.6	4.8	0.9	4.8	0.7	49.9	355	Clay	_	
RRMDD772	8.08	8.89	0.81	89.5	130.8	21.1	73.0	12.9	2.5	12.2	2.0	13.8	3.0	9.2	0.8	9.2	1.4	112.3	494	Clay		
RRMDD772	8.89	9.66	0.77	74.0	135.1	21.3	81.3	14.3	2.6	14.1	2.2	14.4	3.2	9.8	0.7	9.3	1.5	119.2	503	Clay		
RRMDD772	9.66	10.43	0.77	67.1	142.5	20.4	81.5	13.7	2.5	11.9	1.8	11.4	2.3	6.9	0.7	6.7	1.0	74.7	445	Clay		
RRMDD772 RRMDD772	10.43 11.20	11.20 11.94	0.77 0.74	75.2 74.9	149.3 132.1	23.6 25.6	93.0 104.0	16.9 20.4	3.0	13.5 14.9	1.9 2.2	11.8 13.0	2.5 2.7	7.2 7.6	0.7 0.6	6.9 7.0	1.0 1.0	81.7 80.5	488 490	Clay Clay		
RRMDD772	11.94	12.68	0.74	95.8	154.8	35.2	143.5	27.9	4.9	20.0	2.2	16.9	3.3	8.3	0.6	7.0	1.0	90.0	613	Clay		
RRMDD772	12.68	13.42	0.74	54.7	101.2	15.5	58.9	10.8	1.9	9.2	1.4	9.0	1.8	5.4	0.6	5.6	0.8	58.9	336	Clay		
RRMDD772	13.42	14.00	0.58	770.5	746.9	145.0	542.4	94.4	18.6	81.0	10.5	53.1	8.6	18.6	0.7	12.4	1.6	199.4	2704	Clay		
RRMDD772		14.37	0.37	54.8	99.4	14.1	52.4	9.0	1.8	7.6	1.1	7.2	1.5	4.4	0.7	4.5	0.7	52.6	312	Clay		
RRMDD772	14.37	15.31	0.94	62.4	119.2	19.1	75.1	13.6	2.5	10.9	1.5	9.3	1.9	5.5	0.6	5.3	0.8	62.1	390	Upper Saprolite		
RRMDD772 RRMDD772	15.31 16.25	16.25 17.17	0.94	81.2 97.7	146.8 191.6	25.9 38.1	110.1 160.4	21.9 40.8	4.5 10.4	21.8 57.6	3.2 10.6	20.7 66.2	4.2 14.4	11.7 43.7	0.6 0.7	10.7 38.7	1.5 5.6	130.8 467.3	596 1244	Upper Saprolite Upper Saprolite		
RRMDD772	17.17	18.09	0.92	85.0	158.5	29.8	132.4	28.5	6.7	36.7	6.2	42.8	9.6	28.5	0.6	26.3	4.0	298.4	894	Upper Saprolite		
RRMDD772	18.09	19.02	0.93	78.3	142.5	24.8	109.5	22.7	4.8	24.6	3.4	20.9	4.4	12.9	0.6	11.4	1.6	141.0	603	Upper Saprolite		
RRMDD772	19.02	19.85	0.83	70.4	125.3	19.9	86.7	16.4	3.1	14.7	1.9	10.8	2.1	5.5	0.6	5.4	0.7	58.5	422	Lower Saprolite		
RRMDD772	19.85	20.68	0.83	58.6	116.2	15.0	58.7	10.6	1.9	8.7	1.3	7.4	1.6	4.6	0.6	4.6	0.7	53.8	344	Lower Saprolite	14.62	684
RRMDD772	20.68	22.14	1.46	59.5	126.5	15.1	60.3	11.2	2.2	11.3	1.5	9.6	2.3	6.5	0.7	6.0	0.9	86.1	400	Saprock	_	
RRMDD772	22.14	23.60	1.46	61.3	129.6	15.5	55.1	9.9	2.0	8.4	1.3	7.3	1.5	4.3	0.7	3.9	0.7	52.7	354	Saprock		

From																						TREO-	
PRINCESTED No. Prince		From	To	Int.	La ₂ O ₂	CeO ₂	Pr ₂ O ₂	Nd ₂ O ₂	Sm ₂ O ₂	Eu ₂ O ₂	Gd ₂ O ₂	Th ₂ O ₂	Dv ₂ O ₂	Ho ₂ O ₂	Er ₂ O ₂	Tm ₂ O ₂	Yb ₂ O ₂	Lu ₂ O ₂	Y ₂ O ₂	TREO	Regolith		
REMOLOTI 3 0.00	Hole ID												-	1									
RMMODP773 270 3,50 1,35 88-1 1,91 193, 193	RRMDD773	0.00	1.35	1.35	78.7	141.3	15.9	54.9	9.5	1.6	7.8	1.2	7.4	1.5	4.4	0.8	4.2	0.7	45.1	375	Soil		
RRMODOTS 405	RRMDD773																				Hardcap		
RRMODYT 467 568 094 752 4400 140 560 94 15 73 111 66 13 40 08 41 06 370 395 Cyw	RRMDD773	2.70	4.05	1.35	86.1	481.5	19.4	69.2	11.5	2.0	8.6	1.3	8.1	1.5	4.4	0.5	4.9	0.7	40.0	740	Hardcap		
RNDD0773 561 646 738 044 595 622 113 384 66 11 56 68 64 10 31 07 36 05 310 231 10 10 10 10 10 10 10	RRMDD773	4.05	4.57	0.52	126.1	146.8	26.2	89.1	15.5	2.5	12.3	1.8	10.5	2.2	6.6	1.2	6.4	1.0	62.7	511	Transition		
RNBOD773 646 7.79	RRMDD773	4.57	5.51	0.94	75.2	140.0	14.9	51.6	9.4	1.5	7.3	1.1	6.6	1.3	4.0	0.8	4.1	0.6	37.0	355	Clay		
RMBOD0773 7.39 8.28 0.89 31.4 38.3 6.5 22.8 4.4 0.8 4.2 0.6 4.0 0.9 2.6 0.7 2.8 0.4 27.6 149 Clay																					,		
RMBOD0773 8.28																					,		
RINDOT77 9-6																					,	_	
RRMDOPT3 156 1576 0.80 684 1271 118 688 618 118 23 100 14 8.4 6.5 7.5 0.6 4.4 0.6 69.4 408 Upper Saproline 188MODT3 1156 1154 1232 0.70 2.49 117 115 303 7.2 115																					,	4	
RRMODY73 1076																						4	
RRNDOT73 11-94 12-32 0.78 2.49 11-97 6.77 24-5 4.77 1.0 4.77 0.7 4.4 1.0 3.0 0.4 3.2 0.5 3.2 2.29 Usper Saprolite RRNDOT73 12-32 13-10 0.78 2.59 2.002 0.8 2.45 4.9 1.0 4.6 0.7 4.4 1.0 3.1 0.5 3.4 0.6 3.10 3.1 0.4 2.77 2.15 Usper Saprolite RRNDOT73 1.10 1.188 0.78 2.26 1.130 5.9 2.15 4.5 0.8 4.3 0.6 4.4 0.9 3.0 0.5 3.1 0.4 2.77 2.15 Usper Saprolite RRNDOT73 1.10 1.189 0.76 2.26 1.130 0.5 3.1 0.																						2.06	242
RRNDOPTS 12.92 13.10 1.78																					· · · · · ·	3.20	312
RRMDD773 13:0																						1	
RRNDOT73 13.89 14.74 0.85 26.99 145.0 6.8 26.2 5.2 0.9 5.0 0.7 4.8 1.0 2.8 0.5 3.3 0.5 30.9 261 Upper Sepreitle RRNDOT73 15.59 16.44 0.85 40.0 64.6 12.3 43.9 8.4 1.7 6.9 1.0 6.4 1.3 41.1 0.5 4.6 0.7 44.4 241 Upper Sepreitle RRNDOT73 15.59 16.44 17.40 0.95 50.2 56.6 14.4 5.51 10.2 2.2 8.4 1.2 7.4 1.5 9.5 0.5 3.6 0.7 44.4 241 Upper Sepreitle RRNDOT73 17.40 13.30 0.95 50.2 56.6 14.4 5.51 10.2 2.4 10.1 1.4 8.9 18.5 5.3 0.5 5.4 0.8 53.0 288 Lower Sepreitle RRNDOT73 17.40 13.30 0.95 50.2 56.5 14.9 57.4 10.2 2.4 10.1 1.4 8.9 18.5 5.3 0.5 5.4 0.8 53.0 288 Lower Sepreitle RRNDOT73 17.40 13.30 0.95 50.2 56.5 14.9 57.4 10.2 2.4 10.1 1.4 8.9 18.5 5.3 0.5 5.4 0.8 53.0 288 Lower Sepreitle RRNDOT73 17.40 13.00 0.9 50.2 50.0 1.0 1.4																						1	
RRMODOT3 14.74 15.99 0.85 34.94 0.85 34.90 0.86 34.91 0.85 34.94 0.85 34.90 0.86 34.93 84.91 84.1 7. 66.9 1.00 64.91 1.3 41.1 0.5 46.8 0.7 44.4 24.1 Upper Sagrotile RRMODOT3 16.44 17.40 18.36 0.86 68.0 50.2 58.6 14.4 53.1 10.2 2.2 8.4 1.1 2.7 7.4 1.6 4.5 0.5 4.6 0.7 44.1 24.1 Upper Sagrotile RRMODOT3 17.40 18.36 0.86 68.0 56.6 14.8 57.4 10.2 2.2 8.4 1.1 1.2 7.4 1.6 4.5 0.5 4.6 0.7 44.1 24.1 Upper Sagrotile RRMODOT3 18.36 19.31 0.95 55.0 55.6 11.4 46.7 9.3 2.1 9.6 1.3 8.8 1.7 5.4 0.5 5.0 6.8 55.0 268 Lower Sagrotile RRMODOT3 18.36 19.31 0.95 53.0 55.6 11.4 46.7 9.3 2.1 9.6 1.3 8.8 1.7 5.4 0.5 5.0 6.8 55.0 268 Lower Sagrotile RRMODOT3 2.1																						1	
RRNDOT73 5.59 6.44 0.85 40.0 64.6 12.3 43.9 8.4 1.7 6.9 1.0 6.4 1.3 4.1 0.5 4.6 0.7 44.4 241 Upper Saproite																						1	
RRNDD773 64.44 17.40 0.96 50.2 58.6 14.4 53.3 10.2 2.2 8.4 1.2 7.4 1.6 4.5 0.5 5.4 6.8 0.7 46.1 26.4 Lower Saprolite RRNDD773 18.36 19.31 0.95 53.0 55.6 11.4 46.7 9.3 2.1 9.6 1.3 8.8 1.7 5.4 0.5 5.0 0.8 55.0 26.0 Lower Saprolite RRNDD773 19.31 20.26 0.95 39.6 6.33 8.8 32.2 6.4 1.6 7.0 0.9 5.9 1.2 3.8 0.5 5.0 0.8 55.0 26.0 Lower Saprolite RRNDD773 20.26 21.21 0.95 37.6 0.95 2.8 6.7 22.2 5.8 1.4 5.8 0.8 4.6 0.9 2.9 0.4 2.6 0.3 30.9 198 Lower Saprolite RRNDD773 2.12 22.16 0.95 23.1 4.5 6.7 23.3 4.0 0.9 3.7 0.4 3.3 0.6 2.0 0.5 1.9 0.3 20.4 14.3 Lower Saprolite RRNDD773 2.16 23.11 0.95 2.3 0.5 3.1 0.95 2.3 0.5 1.9 0.3 2.2 1.6 3.1 1.0																						1	
RRMOD773 17.40 18.36 19.31 0.95 53.0 55.6 14.9 57.4 10.2 2.4 10.1 1.4 8.9 1.8 53.0 5.5 5.4 0.8 55.0 2.8 55.0 2.8 55.0 2.8 5.5 1.4 5.7 2.5 1.																						1	
RRNDO773 19.31 20.26 0.95 39.6 63.3 8.8 32.2 6.4 1.6 7.0 0.9 6.9 1.2 3.8 0.5 3.6 0.5 3.6 0.5 42.3 218 Lower Sarrolle RRNDO773 20.26 12.1 0.95 3.6 6.29 3.6 3.2 2.5 8.1 4.4 5.8 0.8 4.6 0.9 2.9 0.4 2.6 0.3 30.9 198 Lower Sarrolle RRNDO773 21.21 22.16 0.95 28.1 46.2 6.7 23.3 4.0 0.9 3.7 0.4 3.3 0.6 2.0 0.5 1.9 0.4 1.9 0.3 20.4 11.3 Lower Sarrolle RRNDO773 22.16 23.1 0.95 23.0 43.1 5.8 20.3 3.5 0.9 3.1 0.5 2.8 0.5 1.9 0.4 1.9 0.2 16.3 124 Lower Sarrolle RRNDO773 23.11 24.06 0.95 28.7 5.7 7.0 26.1 4.7 1.1 4.0 0.6 3.4 0.7 1.9 0.4 1.9 0.4 2.1 0.3 22.1 134 Lower Sarrolle RRNDO773 24.09 24.09 1.7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	RRMDD773	17.40	18.36	0.96	60.8	55.6	14.9	57.4			10.1		8.9		5.3	0.5	5.4	8.0	53.0	288		Ī	
RRNDD773	RRMDD773	18.36	19.31	0.95	53.0	55.6	11.4	46.7	9.3	2.1	9.6	1.3	8.8	1.7	5.4	0.5	5.0	0.8	55.0	266	Lower Saprolite	ĺ	
RRMDD773 21:16 21:16 0.95 28:1 46:2 6.7 23:3 4.0 0.9 3.7 0.4 33:0 0.6 2.0 0.5 1.9 0.3 20:4 143 Lower Saprolite RRMDD773 22:16 23:11 0.95 23:0 43:1 5.8 2.03 35:0 0.9 3.1 0.6 2.8 0.5 1.9 0.4 1.9 0.2 15:3 124 Lower Saprolite RRMDD773 23:11 24:06 24:8 0.95 28:7 5.27 7.0 26:1 4.7 1.1 4.0 0.6 3.4 0.7 1.9 0.4 2.1 0.3 22:1 156 Lower Saprolite RRMDD773 24:06 24:8 0.92 26:9 45:2 6.1 21:2 4.3 0.9 3.0 0.4 2.8 0.5 1.8 0.4 1.8 0.3 122 134 Lower Saprolite RRMDD773 24:98 26:74 1.76 28:9 55:8 7.0 24:5 5.1 1.0 4.0 0.6 3.5 0.7 2.1 0.4 2.1 0.3 22:1 158 Lower Saprolite RRMDD774 24:0 0.1 1.79 1.79 78.0 33:2 9 15:8 7.0 24:5 1.1 1.0 4.0 0.6 3.5 0.7 2.1 0.4 2.1 0.3 22:1 137 Saprock RRMDD774 0.00 1.79 1.79 78.0 33:2 9 15:8 52.7 8.9 1.5 7.6 1.2 7.6 1.5 4.4 0.6 4.3 0.7 41:5 559 Hardcap RRMDD774 1.79 3.58 1.79 559 44:0 20.2 67.0 11.1 1.8 9.1 1.5 8.6 1.8 5.1 0.7 5.5 0.8 50.2 623 Hardcap RRMDD774 1.79 3.58 1.79 559 44:0 20.2 67.0 11.1 1.8 9.1 1.5 8.6 1.8 51 0.7 5.5 0.8 50.2 623 Hardcap RRMDD774 4.66 5.20 5.73 0.53 79.2 10:2 1.67 57.4 9.4 13.0 1.6 10.3 2.0 6.1 0.8 6.4 0.8 57.3 555 Timshton RRMDD774 5.70 6.50 0.53 0.9 6.3 1.0 6.6 4.7 7 0.8 4.9 0.8 4.1 1.0 6.4 0.8 6.5 2.0 5.8 1.3 351 Clay RRMDD774 5.70 6.56 0.83 70.3 91.1 15.9 52.6 8.7 1.7 7.5 1.3 7.9 1.6 4.7 7.0 8.4 9.0 8.4 4.4 318 Clay RRMDD774 5.73 6.56 0.83 70.3 91.1 15.9 52.6 8.7 1.7 7.5 1.3 7.9 1.6 4.7 7.8 4.9 0.8 4.9 0.8 4.4 1.0 1.0 6.6 4.0 2.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	RRMDD773	19.31	20.26	0.95	39.6	63.3	8.8	32.2	6.4	1.6	7.0	0.9	5.9	1.2	3.8	0.5	3.6	0.5	42.3	218	Lower Saprolite	3.72	265
RRMDD773 22-16 23-11 24-06 0.95 23-0 43-1 5.8 20.3 3.5 0.9 3.1 0.5 2.8 0.5 1.9 0.4 1.9 0.2 16.3 124 Lower Saprolite RRMDD773 24-06 24-98 0.92 26.9 45-2 6.1 21-2 4.3 0.9 3.0 0.4 2.8 0.5 1.8 0.4 1.8 0.3 18.2 134 Lower Saprolite RRMDD773 24-06 24-98 0.95 2.69 45-2 6.1 21-2 4.3 0.9 3.0 0.4 2.8 0.5 1.8 0.4 1.8 0.3 18.2 134 Lower Saprolite RRMDD773 26-74 1.76 2.95 5.8 7.0 24-5 5.1 1.0 4.0 0.6 3.5 0.7 2.1 0.4 2.1 0.3 2.21 1.98 Saprock 2.76 2	RRMDD773	20.26	21.21	0.95	37.6	62.9	8.6	32.2	5.8	1.4	5.8	0.8	4.6	0.9	2.9	0.4	2.6	0.3	30.9	198	Lower Saprolite		
RRNDD773 23.11 24.06 0.95 28.7 8.27 7.0 26.1 4.7 1.1 4.0 0.6 3.4 0.7 1.9 0.4 2.1 0.3 22.1 156 Lower Saprolite RRNDD773 24.98 0.92 26.9 45.2 45.2 6.1 21.2 4.3 0.9 3.0 0.9 3.0 0.5 1.8 0.5 1.8 0.4 1.8 0.3 22.1 158 Lower Saprolite RRNDD773 24.98 26.74 1.76 28.9 55.8 7.0 24.5 5.1 1.0 4.0 0.6 3.5 0.7 2.1 0.4 2.1 0.3 22.1 158 Saprock RRNDD774 26.74 1.79 78.0 33.29 15.8 52.7 8.9 1.5 7.6 1.2 7.6 1.5 4.4 0.6 4.3 0.7 41.5 559 Hardsap RRNDD774 1.79 3.58 1.78 95.9 344.0 20.2 67.0 11.1 1.8 9.1 1.5 6.6 1.8 5.1 0.7 5.5 0.8 50.2 62.3 Hardsap RRNDD774 4.66 5.20 0.54 3.5 2.7 9.4 1.5 5.4 1.0 4.1 1.5 1.5 4.6 1.8 1.8 5.1 0.7 5.5 0.8 50.2 62.3 Hardsap RRNDD774 4.66 5.20 0.54 3.5 0.5 3.1 1.0 4.1 1.5 1.5 4.6 1.8	RRMDD773	21.21	22.16	0.95	28.1	46.2	6.7	23.3		0.9	3.7	0.4	3.3	0.6	2.0	0.5	1.9	0.3	20.4	143	Lower Saprolite		
RRNIDD773 24.98 24.98 24.98 24.98 1.76 24.99 55.8 61. 21.2 4.3 0.9 3.0 0.4 2.8 0.5 1.8 0.4 1.8 0.3 18.2 134 Lower Saproitle RRNIDD773 26.74 28.50 1.76 25.1 45.5 6.2 22.6 4.1 1.0 3.6 0.5 3.1 0.6 1.8 0.4 1.8 0.3 22.1 137 Saprock RRNIDD774 1.79 78.0 33.29 18.5 62 22.6 4.1 1.0 3.6 0.5 3.1 0.6 1.8 0.4 1.9 0.3 22.1 137 Saprock RRNIDD774 1.79 78.0 33.29 18.5 5.7 0.7 24.5 5.1 1.0 4.0 0.6 3.5 1.0 0.6 1.8 0.4 1.9 0.3 20.2 137 Saprock RRNIDD774 1.79 78.0 33.29 18.5 5.7 8.9 1.5 7.6 1.5 7.6 1.2 7.6 1.5 4.4 0.6 4.3 0.7 41.5 559 Hardcap RRNIDD774 3.58 1.79 95.9 34.0 20.2 67.0 11.1 18 9.1 1.5 8.6 1.8 5.1 0.7 5.5 0.8 50.2 62.3 Hardcap RRNIDD774 3.58 4.66 1.08 94.2 259.2 20.4 69.4 13.0 2.2 11.2 1.7 10.3 2.0 6.1 0.8 6.4 0.8 57.3 555 Transition RRNIDD774 5.20 5.73 0.53 79.2 102.2 16.7 57.4 9.4 1.8 8.7 1.4 1.8 5.1 1.8 5.5 0.8 5.5 0.8 5.5 0.8 4.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1				0.95			5.8			0.9	3.1			0.5	1.9	0.4		0.2		124	Lower Saprolite		
RRMIDD774 24.98 26.74 1.76 28.9 55.8 7.0 24.5 5.1 1.0 4.0 0.6 3.5 0.7 2.1 0.4 2.1 0.3 22.1 15.8 Saprock RRMIDD774 26.74 25.0 1.76 1.25 1 45.5 6.2 22.6 4.1 1.0 3.6 0.5 3.1 0.6 1.8 0.4 1.9 0.3 20.2 137 Saprock RRMIDD774 0.00 1.79 1.79 78.0 332.9 15.8 52.7 8.9 1.5 7.6 1.2 7.6 1.5 4.4 0.6 4.3 0.7 41.5 559 Hardcap RRMIDD774 1.79 3.58 1.79 95.9 344.0 2.2 67.0 11.1 1.8 9.1 1.5 8.6 1.8 5.1 0.7 5.5 0.8 50.2 62.3 Hardcap RRMIDD774 4.66 5.20 0.54 33.5 143.1 19.6 66.7 11.5 2.1 10.4 1.6 10.3 2.0 6.1 0.8 6.4 0.8 57.3 555 Transition RRMIDD774 5.20 5.73 0.53 79.2 10.2 16.7 57.4 9.4 1.8 8.7 1.4 8.5 1.8 5.5 1.8 5.5 1.8 5.5 0.8 5.5 0.8 51.3 351 Clay RRMIDD774 5.73 6.56 0.8 30.2 62.2 16.7 57.4 9.4 1.8 8.7 1.4 8.5 1.8 5.5 1.8 5.5 0.8 5.5 0.8 151.3 351 Clay RRMIDD774 5.73 6.56 0.8 30.0 6.4.5 75.3 13.7 50.3 9.3 1.5 7.0 12.2 6.8 1.3 7.9 1.6 4.7 0.8 4.9 0.8 48.4 318 Clay RRMIDD774 7.38 8.18 0.80 6.4 5.2 6.6 7.5 1.3 1.3 59.3 1.5 7.0 12.2 6.8 1.5 4.4 0.7 4.0 0.7 44.7 266 Clay RRMIDD774 8.88 9.79 0.81 6.6 7.73 13.7 50.3 9.3 1.5 7.0 12.2 6.8 1.5 4.4 0.7 4.0 0.7 44.7 266 Clay RRMIDD774 8.88 9.79 0.81 67.8 77.9 16.2 56.7 10.1 1.9 8.1 1.4 7.6 1.6 4.3 9.0 7.4 4.1 0.6 47.0 259 Clay RRMIDD774 1.0 4 1.4 1.4 9.0 8.8 4.7 0.7 4.9 310 Clay RRMIDD774 1.4 9.79 1.0 4 0.8 56.6 77.4 1.4 9.8 8.9 1.1 1.4 7.6 1.6 4.9 0.7 4.1 0.6 47.0 259 Clay RRMIDD774 1.4 1.4 1.4 7.6 1.6 4.9 0.7 4.1 0.6 47.0 259 Clay RRMIDD774 1.4 1.4 1.4 7.6 1.6 4.1 3.9 0.6 3.3 0.6 33.4 0.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2																							
RRMDD774 0.00 1.79 1.78 25.1 45.5 6.2 22.6 4.1 1.0 3.6 0.5 3.1 0.6 1.8 0.4 1.9 0.3 20.2 137 Saprock RRMDD774 0.00 1.79 1.79 78.0 332.9 15.8 52.7 8.9 1.5 7.6 1.2 7.6 1.5 4.4 0.6 4.3 0.7 41.5 559 Hardcap RRMDD774 1.79 3.58 1.78 95.9 34.0 20.2 67.0 11.1 1.8 9.1 1.5 8.6 1.8 5.1 0.7 5.5 0.8 50.2 623 Hardcap RRMDD774 3.58 4.66 1.08 94.2 259.2 20.4 69.4 13.0 2.2 11.2 1.7 10.3 2.0 6.1 0.8 6.4 0.8 57.3 555 Transition RRMDD774 5.20 5.73 0.53 79.2 10.2 16.7 57.4 9.4 1.8 8.7 1.4 8.5 1.8 5.5 0.8 5.5 0.8 50.2 50.5 17 Saprock RRMDD774 5.73 6.56 0.83 70.3 91.1 15.9 52.6 8.7 1.7 7.5 1.3 7.9 1.6 4.7 0.8 4.9 0.8 48.4 318 Clay RRMDD774 6.56 7.38 0.82 76.9 10.39 17.4 59.7 10.8 1.9 8.6 1.3 7.9 1.6 4.7 0.8 4.9 0.8 48.4 318 Clay RRMDD774 7.38 8.18 0.80 64.5 75.3 13.7 50.3 9.3 1.5 7.0 1.2 6.8 1.4 7.0 7.4 1.0 0.7 44.7 28.6 Clay RRMDD774 8.98 9.79 0.81 6.78 7.79 16.2 68.7 10.1 1.9 8.1 1.4 7.6 1.8 4.9 0.8 4.4 0.7 4.0 0.7 4.47 22.6 Clay RRMDD774 9.79 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 47.0 259 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.1 7.0 1.5 4.7 0.7 4.1 0.6 4.0 4.3 283 Clay RRMDD774 1.99 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.5 1.4 3.9 0.6 3.6 0.6 4.0 0.6 45.0 248 Clay RRMD0774 1.99 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.																						_	
RRMDD774																					•	_	
RRMDD774																					<u>'</u>		
RRMDD774																					•	_	
RRMDD774																						1	
RRMDD774 5.20 5.73 0.53 79.2 102.2 16.7 57.4 9.4 1.8 8.7 1.4 8.5 1.8 5.5 0.8 5.5 0.8 51.3 351 Clay																						1	
RRMDD774 5.73 6.56 0.83 70.3 91.1 15.9 52.6 8.7 1.7 7.5 1.3 7.9 1.6 4.7 0.8 4.9 0.8 48.4 318 Clay RRMDD774 6.56 7.38 0.82 76.9 103.9 17.4 59.7 10.8 1.9 8.6 1.3 7.9 1.6 4.9 0.8 4.7 0.7 44.8 351 Clay RRMDD774 7.38 8.18 0.80 64.5 75.3 13.7 50.3 9.3 1.5 7.0 1.2 6.8 1.5 4.4 0.7 4.0 0.7 44.7 286 Clay RRMDD774 8.18 8.98 0.80 54.2 62.0 13.2 46.5 8.5 1.6 6.7 1.1 7.0 1.5 4.7 0.7 4.1 0.6 47.0 259 Clay RRMDD774 8.98 9.79 0.81 67.8 7.79 16.2 56.7 10.1 19 8.1 1.4 7.6 1.6 4.9 0.7 4.3 0.7 4.9 310 Clay RRMDD774 10.64 11.49 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.3 3.9 0.6 3.6 0.6 40.3 283 Clay RRMDD774 11.49 12.35 0.86 38.5 44.7 9.7 35.3 6.5 1.2 52 1.0 5.6 1.2 3.6 0.5 3.2 0.5 36.7 193 Clay RRMDD774 12.35 13.27 0.92 42.0 79.2 11.0 38.6 6.6 1.4 6.2 1.0 6.3 1.4 4.0 0.5 4.0 0.6 45.0 248 Clay RRMDD774 13.27 14.19 0.92 27.2 25.4 7.5 27.1 4.6 1.1 4.6 0.8 50.7 1.1 6.5 1.4 4.3 0.5 37.0 0.5 35.2 148 Clay RRMDD774 15.11 16.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 11.7 Clay RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 11.7 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.9 0.4 27.8 11.7 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.9 0.4 27.8 11.7 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.9 0.4 28.6 183 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.9 0.4 28.6 183 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.5 2.7 0.4 2.5 4.1 3.5 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.5 2.9 0.4 20.5 16.7 0.4 2.5 5.0 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.8 0.5 0.7 4.1 0.9 2.8 0.5 2.9 0.4 20.5 13.5 Clay RRMDD774 18.94 17.89 0.95 19.8 87.6 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.5 0.5 2.9 0.4 20.5 13.5 Clay RRMDD774 18.94 0.90 0.90 33.4 3.5 0.8 0.7 1.0 5.8 2.9 0.5 2.9 0.4 2.0 5.0 5.0 0.4 2.0 5 0.4 2.0 5 0.4 2.0 5 0.4 2.0																						1	
RRMDD774 6.56 7.38 0.82 76.9 103.9 17.4 59.7 10.8 1.9 8.6 1.3 7.9 1.6 4.9 0.8 4.7 0.7 49.8 351 Clay RRMDD774 7.38 8.18 0.80 64.5 75.3 13.7 50.3 9.3 1.5 7.0 1.2 6.8 1.5 4.4 0.7 4.0 0.7 44.7 286 Clay RRMDD774 8.18 8.98 0.80 54.2 62.0 13.2 46.5 8.5 1.6 6.7 1.1 7.0 1.5 4.7 0.7 4.1 0.6 47.0 259 Clay RRMDD774 8.98 9.79 0.81 67.8 77.9 16.2 56.7 10.1 1.9 8.1 1.4 7.6 1.6 4.9 0.7 4.3 0.7 49.9 310 Clay RRMDD774 10.64 11.49 0.85 84.6 56.9 16.3 53.9 9.7 1.8 7.2 1.1 6.5 1.4 3.9 0.6 3.6 0.6 40.3 283 Clay RRMDD774 11.49 12.35 0.86 38.5 44.7 9.7 353 6.5 1.2 5.2 1.0 5.6 1.2 3.6 0.5 3.2 0.5 38.7 193 Clay RRMDD774 13.27 14.19 0.92 27.2 25.4 7.5 27.1 4.6 1.1 4.6 0.8 50.1 1.1 3.4 0.5 3.7 0.5 35.2 148 Clay RRMDD774 15.11 10.03 0.92 49.6 43.6 11.9 43.9 7.8 1.6 6.7 1.1 6.5 1.4 4.3 0.5 3.7 0.5 35.2 148 Clay RRMDD774 15.11 10.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 117 Clay RRMDD774 17.89 18.84 0.95 18.8 71.0 58 23.9 4.5 1.2 3.8 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 18.8 71.0 58 23.9 4.7 1.1 3.9 0.9 3.0 0.6 3.5 0.8 2.4 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 19.80 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite RRMDD774 19.80 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						1	
RRMDD774 7.38 8.18 0.80 64.5 75.3 13.7 50.3 9.3 1.5 7.0 1.2 6.8 1.5 4.4 0.7 4.0 0.7 44.7 286 Clay RRMDD774 8.98 9.79 0.81 67.8 77.9 16.2 56.7 10.1 1.9 8.1 1.4 7.6 1.6 4.9 0.7 4.1 0.6 47.0 259 Clay RRMDD774 9.79 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.3 3.9 0.6 3.6 0.6 40.3 283 Clay RRMDD774 11.49 12.35 0.86 38.5 44.7 9.7 35.3 6.5 1.2 5.2 1.0 5.6 1.2 3.6 0.5 3.2 0.5 36.7 193 Clay RRMDD774 12.35 13.27 0.92 42.0 79.2 11.0 38.6 6.6 1.4 6.2 1.0 6.3 1.4 4.0 0.5 4.0 0.6 45.0 248 Clay RRMDD774 12.35 13.27 0.92 42.0 79.2 11.0 38.6 6.6 1.4 6.2 1.0 6.3 1.4 4.0 0.5 4.0 0.6 45.0 248 Clay RRMDD774 15.11 6.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 26.5 106 Clay RRMDD774 17.89 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 34.3 176 Lower Saprolite RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 11.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 34.3 176 Lower Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																					,	1	
RRMDD774 8.18 8.98 0.80 54.2 62.0 13.2 46.5 8.5 1.6 6.7 1.1 7.0 1.5 4.7 0.7 4.1 0.6 47.0 259 Clay RRMDD774 9.79 10.64 0.85 66.6 77.4 14.9 49.8 8.2 1.8 6.9 1.1 6.4 1.3 3.9 0.6 3.6 0.6 40.3 283 Clay RRMDD774 10.64 11.49 0.85 84.6 56.9 16.3 53.9 9.7 1.8 7.2 1.1 6.5 1.4 3.9 0.6 3.3 0.6 39.4 287 Clay RRMDD774 11.49 12.55 0.86 38.5 44.7 9.7 35.3 6.5 1.2 5.2 1.0 5.6 1.2 3.6 0.5 3.2 0.5 3.8 7 193 Clay RRMDD774 13.27 14.19 0.92 27.2 25.4 7.5 27.1 4.6 1.1 4.6 0.8 5.0 1.1 3.4 0.5 3.7 0.5 35.2 148 Clay RRMDD774 14.19 15.11 0.92 49.6 43.6 11.9 43.9 7.8 1.6 6.7 1.1 6.5 1.4 4.3 0.5 4.1 0.6 46.2 230 Clay RRMDD774 15.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 2.6 106 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 2.9 0.4 28.6 183 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 2.8 0.5 3.2 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 22.04 0.90 33.4 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 24.0 18 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 33.4 39.1 9.0 33.9 0.6 2.1 2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 24.0 18 Upper Saprolite																					,	1	
RRMDD774	RRMDD774	8.18	8.98	0.80	54.2	62.0	13.2	46.5	8.5		6.7		7.0		4.7	0.7	4.1	0.6	47.0	259	Clay	1	
RRMDD774	RRMDD774	8.98	9.79	0.81	67.8	77.9	16.2	56.7	10.1	1.9	8.1	1.4	7.6	1.6	4.9	0.7	4.3	0.7	49.9	310	Clay	ĺ	
RRMDD774	RRMDD774	9.79	10.64	0.85	66.6	77.4	14.9	49.8	8.2	1.8	6.9	1.1	6.4	1.3	3.9	0.6	3.6	0.6	40.3	283	Clay]	
RRMDD774 12.35 13.27 0.92 42.0 79.2 11.0 38.6 6.6 1.4 6.2 1.0 6.3 1.4 4.0 0.5 4.0 0.6 45.0 248 Clay RRMDD774 13.27 14.19 0.92 27.2 25.4 7.5 27.1 4.6 1.1 4.6 0.8 5.0 1.1 3.4 0.5 3.7 0.5 35.2 148 Clay RRMDD774 14.19 15.11 0.92 49.6 43.6 11.9 43.9 7.8 1.6 6.7 1.1 6.5 1.4 4.3 0.5 4.1 0.6 46.2 230 Clay RRMDD774 15.11 16.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 117 Clay RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 26.5 106 Clay RRMDD774 17.89 18.84 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.9 0.4 34.3 176 Lower Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite	RRMDD774	10.64	11.49	0.85	84.6	56.9	16.3	53.9	9.7	1.8	7.2	1.1	6.5	1.4	3.9	0.6	3.3	0.6	39.4	287	Clay		
RRMDD774 13.27 14.19 0.92 27.2 25.4 7.5 27.1 4.6 1.1 4.6 0.8 5.0 1.1 3.4 0.5 3.7 0.5 35.2 148 Clay RRMDD774 14.19 15.11 0.92 49.6 43.6 11.9 43.9 7.8 1.6 6.7 1.1 6.5 1.4 4.3 0.5 4.1 0.6 46.2 230 Clay RRMDD774 15.11 16.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 117 Clay RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 26.5 106 Clay RRMDD774 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite	RRMDD774	11.49	12.35	0.86	38.5	44.7	9.7	35.3	6.5	1.2	5.2	1.0	5.6	1.2	3.6	0.5	3.2	0.5	36.7	193	Clay		
RRMDD774 14.19 15.11 0.92 49.6 43.6 11.9 43.9 7.8 1.6 6.7 1.1 6.5 1.4 4.3 0.5 4.1 0.6 46.2 230 Clay RRMDD774 15.11 16.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 117 Clay RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 26.5 106 Clay RRMDD774 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																					,	8.61	295
RRMDD774 15.11 16.03 0.92 20.4 20.5 5.6 21.6 4.9 0.9 3.7 0.7 3.9 0.9 2.8 0.5 2.9 0.4 27.8 117 Clay RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 26.5 106 Clay RRMDD774 16.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																					,	4	
RRMDD774 16.03 16.94 0.91 18.6 15.2 5.4 20.2 4.0 0.9 3.9 0.5 3.8 0.8 2.7 0.4 2.7 0.4 26.5 106 Clay RRMDD774 16.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																					,	4	
RRMDD774 16.94 17.89 0.95 19.8 87.6 5.4 21.1 3.9 0.9 3.6 0.7 4.1 0.9 2.8 0.5 2.8 0.4 28.6 183 Clay RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite											_										,	4	
RRMDD774 17.89 18.84 0.95 16.7 52.3 4.5 18.4 3.2 0.7 3.0 0.6 3.5 0.8 2.4 0.5 2.7 0.4 25.4 135 Clay RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						+	
RRMDD774 18.84 19.80 0.96 22.8 71.0 5.8 23.9 4.5 1.2 3.8 0.7 5.1 1.1 3.3 0.5 3.4 0.5 36.4 184 Clay RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						1	
RRMDD774 19.80 20.47 0.67 24.2 30.8 6.5 23.9 4.7 1.1 4.4 0.7 4.5 1.0 2.9 0.5 2.9 0.4 30.9 139 Upper Saprolite RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						1	
RRMDD774 20.47 21.14 0.67 17.6 26.8 4.7 17.7 3.6 0.7 2.8 0.5 3.2 0.7 2.2 0.5 2.6 0.4 24.0 108 Upper Saprolite RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						1	
RRMDD774 21.14 22.04 0.90 33.4 39.1 9.0 33.9 6.2 1.2 5.0 0.8 4.6 1.1 3.4 0.5 2.9 0.4 34.3 176 Lower Saprolite																						1	
																						1	
																						1	

																					TREO-	
	From	То	Int.	La₂O₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu₂O₃	Y_2O_3	TREO	Regolith	Inter Length	TREO
Hole ID	m	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Zone	(m)	ppm
RRMDD774	22.94	23.84	0.90	25.3	34.8	7.4	27.4	4.9	1.0	3.7	0.6	3.9	0.7	2.2	0.5	2.2	0.3	23.4	138	Lower Saprolite		
RRMDD774	23.84	24.75	0.91	213.4	192.9	73.2	306.8	65.4	15.6	72.4	11.5	68.4	14.6	43.3	0.5	36.2	5.4	473.7	1593	Lower Saprolite	4.28	485
RRMDD774	24.75	25.61	0.86	170.1	64.0	35.5	142.3	25.6	6.3	31.2	4.7	27.9	6.3	18.2	0.4	15.0	2.2	222.9	773	Saprock		
RRMDD774	25.61	26.85	1.24	36.5	44.5	7.5	28.1	4.8	1.1	5.4	0.8	4.8	1.3	3.7	0.4	3.1	0.5	56.8	199	Saprock		
RRMDD774	26.85	28.08	1.23	30.1	58.3	7.2	27.6	5.9	1.3	4.9	0.8	5.0	1.2	3.3	0.4	3.3	0.5	45.3	195	Saprock		
RRMDD774	28.08	28.60	0.52	28.4	62.6	6.1	22.4	4.3	1.0	3.5	0.5	3.5	0.7	2.5	0.5	2.6	0.4	22.6	162	Saprock		
RRMDD775	0.00	1.43	1.43	89.5	166.4	19.0	65.0	11.8	2.0	9.7	1.5	8.9	1.7	5.3	0.8	5.3	0.8	53.1	441	Soil		
RRMDD775	1.43	3.13	1.70	100.5	968.0	18.1	57.6	10.1	1.6	7.0	1.2	6.7	1.4	4.2	0.5	4.6	0.6	36.2	1218	Hardcap		
RRMDD775	3.13	4.83	1.70	128.4	1437.2	24.8	78.6	13.6	2.2	9.4	1.8	8.9	1.7	4.6	0.5	4.7	0.7	41.7	1759	Hardcap	_	
RRMDD775	4.83	5.26	0.43	208.2	543.0	38.8	123.6	18.9	3.4	13.6	2.0	10.9	2.1	5.9	0.7	5.6	0.9	54.5	1032	Transition	_	
RRMDD775	5.26 6.03	6.03	0.77 0.77	49.3	130.8 76.7	13.4 13.2	50.0 47.1	8.7 9.0	1.6	7.8 7.5	1.3	7.7	1.7	4.9	0.9	4.8	0.7	52.3 51.7	336	Clay	_	
RRMDD775 RRMDD775	6.80	6.80 7.57	0.77	52.3 48.8	84.3	14.6	58.1	11.6	1.6 2.2	11.2	1.2 1.9	7.4 10.7	1.6 2.4	5.2 7.2	1.0 1.0	4.8 6.5	0.7 1.0	76.7	281 338	Clay	_	
RRMDD775	7.57	8.33	0.77	72.7	135.7	21.7	82.5	15.4	3.1	15.6	2.6	14.5	3.1	9.0	1.2	8.1	1.3	104.3	491	Clay	-	
RRMDD775	8.33	9.37	1.04	140.1	216.2	34.0	130.1	24.1	4.5	19.7	3.0	18.6	3.5	10.3	1.0	8.9	1.5	115.7	731	Clay	-	
RRMDD775	9.37	10.30	0.93	178.3	323.1	40.1	148.1	25.6	5.1	20.7	3.0	18.7	3.4	9.4	0.8	8.0	1.2	102.1	888	Clay	_	
RRMDD775	10.30	11.22	0.92	139.0	223.6	34.9	121.3	22.3	4.5	19.1	3.0	16.8	3.4	9.9	1.0	9.0	1.4	109.0	718	Clay	_	
RRMDD775	11.22	11.81	0.59	44.9	111.7	16.5	68.5	13.9	2.5	9.0	1.4	7.8	1.5	4.3	0.5	3.4	0.5	40.1	326	Clay		
RRMDD775	11.81	12.40	0.59	35.1	110.6	10.6	41.3	7.7	1.5	5.2	0.9	5.3	1.0	2.8	0.5	3.1	0.4	28.2	254	Clay		
RRMDD775	12.40	13.37	0.97	28.3	65.5	7.9	35.2	6.1	1.2	4.9	0.7	4.2	0.8	2.4	0.5	2.4	0.4	23.1	184	Clay	8.11	478
RRMDD775	13.37	14.34	0.97	31.5	73.1	8.4	31.1	5.7	1.3	4.5	0.5	4.1	0.8	2.4	0.5	2.5	0.4	23.1	190	Clay		
RRMDD775	14.34	15.31	0.97	105.2	164.6	16.6	56.6	9.7	2.2	7.6	1.2	5.8	1.0	2.5	0.5	2.8	0.3	27.0	404	Clay		
RRMDD775	15.31	16.28	0.97	41.5	67.2	9.3	35.0	7.0	1.6	4.9	0.7	4.6	0.9	2.4	0.5	2.0	0.4	22.4	200	Clay		
RRMDD775	16.28	17.27	0.99	43.0	95.8	12.4	50.0	9.1	2.2	7.0	1.2	6.1	1.3	3.3	0.5	3.1	0.5	32.6	268	Clay		
RRMDD775	17.27	17.93	0.66	49.1	92.0	12.1	47.1	9.8	2.3	8.1	1.2	7.7	1.7	4.7	0.5	4.0	0.6	47.1	288	Upper Saprolite		
RRMDD775	17.93	18.59	0.66	42.2	66.3	10.0	40.8	8.1	1.8	6.7	1.1	6.6	1.4	3.4	0.5	3.5	0.5	40.4	233	Upper Saprolite		
RRMDD775	18.59	19.39	0.80	31.8	53.4	7.5	30.1	5.5	1.5	5.5	0.9	5.5	1.2	3.3	0.4	3.2	0.5	37.6	188	Lower Saprolite		
RRMDD775	19.39	20.83	1.44	28.1	58.3	7.1	27.4	5.5	1.2	4.5	0.7	4.1	0.9	2.7	0.5	2.7	0.4	27.6	172	Saprock		
RRMDD775	20.83	22.27 23.70	1.44	34.8 27.9	106.3 59.9	9.7 7.4	37.7 29.3	7.4 5.9	1.8	6.4	1.1 0.7	6.9 4.0	1.3	3.5	0.4	3.3 2.2	0.5 0.4	38.9 25.9	260	Saprock		
RRMDD775			1.43						1.3	4.8			0.9	2.2	0.4		_		173	Saprock		
RRMDD776 RRMDD776	0.00	1.39 2.77	1.39	88.8 116.0	329.2 799.7	17.9 22.1	59.4 67.5	11.2 11.8	1.9 1.9	7.6 8.1	1.2 1.2	7.4 7.2	1.4	3.9	0.5	4.3	0.6	36.1 34.3	571	Hardcap		
RRMDD776	1.39 2.77	3.34	1.38 0.57	323.7	461.9	67.1	227.4	35.7	5.3	21.0	2.9	17.1	1.4 2.9	3.9 8.3	0.5 0.8	4.4 7.7	0.6 1.3	77.0	1081 1260	Hardcap Transition	_	
RRMDD776	3.34	4.15	0.81	184.7	254.3	41.8	149.9	25.2	4.4	19.2	2.7	16.1	2.9	7.8	0.8	7.6	1.1	80.6	799	Mottled		
RRMDD776	4.15	5.10	0.95	62.5	112.2	15.8	63.0	11.1	2.0	10.6	1.9	11.3	2.5	7.0	0.8	7.0	1.0	74.8	384	Mottled	_	
RRMDD776	5.10	6.05	0.95	124.9	206.4	28.5	96.7	19.0	3.6	16.9	2.8	14.6	2.8	7.4	0.8	6.8	1.1	77.2	609	Mottled	_	
RRMDD776	6.05	7.00	0.95	97.0	203.9	24.8	89.1	17.2	3.3	15.5	2.6	13.7	2.8	7.4	0.9	7.1	1.0	82.7	569	Mottled		
RRMDD776	7.00	7.95	0.95	60.8	89.9	16.3	61.4	10.5	2.1	10.6	1.7	11.1	2.3	6.6	0.8	6.5	0.9	75.2	357	Mottled		
RRMDD776	7.95	8.89	0.94	256.8	418.9	44.9	131.2	21.3	3.9	17.6	2.8	16.1	3.1	8.7	0.8	8.7	1.3	96.9	1033	Mottled		
RRMDD776	8.89	9.79	0.90	52.2	194.1	13.8	54.4	10.7	2.0	10.4	1.8	11.9	2.5	7.5	0.7	7.3	1.0	77.0	447	Clay		
RRMDD776	9.79	10.70	0.91	55.5	180.6	14.3	54.9	11.2	2.1	10.2	1.9	11.8	2.5	7.4	0.7	7.2	1.1	75.4	437	Clay		
RRMDD776	10.70	11.20	0.50	69.2	123.5	19.6	80.9	15.0	3.0	14.7	2.4	15.5	3.1	9.4	8.0	7.9	1.3	107.2	473	Clay		
RRMDD776	11.20	11.90	0.70	206.4	344.0	48.9	186.6	32.9	6.2	28.7	4.1	24.4	4.5	12.2	0.7	8.6	1.4	139.1	1049	Clay		
RRMDD776	11.90	12.60	0.70	101.0	183.6	26.1	105.9	20.4	4.0	19.8	2.9	19.6	4.1	10.6	0.7	8.7	1.4	128.9	638	Clay		
RRMDD776	12.60	13.30	0.70	64.5	154.8	19.6	77.7	14.9	3.1	14.8	2.3	15.7	3.6	9.4	0.7	8.9	1.2	112.4	503	Clay		
RRMDD776	13.30	14.02	0.72	111.8	355.0	29.5	101.9	19.7	4.2	19.4	3.4	18.9	3.9	11.3	0.7	9.6	1.4	134.0	825	Clay		
RRMDD776	14.02	14.74	0.72	64.7	171.4	18.9	67.8	13.5	2.8	14.2	2.4	14.5	3.1	9.1	0.7	7.9	1.3	101.3	494	Clay		
RRMDD776	14.74	15.45	0.71	65.1	120.0	19.5	74.6	14.2	2.9	14.6	2.0	13.5	3.0	8.7	0.7	7.8	1.1	98.0	446	Clay		
RRMDD776 RRMDD776	15.45 15.85	15.85	0.40	127.2 65.4	185.5 116.9	29.0	94.5 75.6	17.5	3.3 3.3	15.5 16.0	2.4 2.5	15.3	3.2	9.6	0.5	7.7 7.3	1.1	105.1 112.3	618 465	Upper Saprolite Lower Saprolite	13.55	591
RRMDD776	16.89	16.89 18.45	1.04 1.56	62.5	118.4	19.4 17.9	71.9	15.4 13.6	2.9	15.5	2.5	16.4 13.7	3.4 3.1	9.8 9.6	0.5 0.5	6.9	1.1 1.1	12.3	462	Saprock	13.33	381
RRMDD776	18.45	20.00	1.55	64.5	123.5	14.9	50.4	8.6	1.6	6.8	0.9	4.9	1.0	2.7	0.6	2.1	0.4	39.5	322	Saprock	=	
RRMDD777	0.00	1.23	1.23	74.9	182.4	15.9	54.7	10.7	1.7	8.0	1.3	7.6	1.6	4.6	0.6	5.0	0.4	43.6	413	Soil		
RRMDD777	1.23	2.46	1.23	73.9	297.3	15.9	55.5	10.7	1.7	7.8	1.2	7.6	1.5	4.5	0.5	5.0	0.6	39.1	523	Hardcap	-	
MANDOTTI	1.20	۷.۲۰	1.20	10.0	201.0	10.0	00.0	10.0	1.7	7.0	1.4	7.0	1.0	7.∪	0.0	0.0	0.7	JJ. I	J2J	Tial doap		

																					TREO-	
	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd₂O₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3	TREO	Regolith	Inter Length	TREO
Hole ID	m	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Zone	(m)	ppm
RRMDD777	2.46	3.72	1.26	158.3	207.6	28.9	89.1	14.3	2.4	11.3	1.7	10.0	2.0	5.8	0.8	5.4	0.9	58.8	597	Transition		
RRMDD777	3.72	4.70	0.98	93.1	121.4	18.4	62.3	10.5	2.2	9.6	1.4	8.8	1.8	5.7	0.9	5.1	0.9	57.5	400	Clay]	
RRMDD777	4.70	5.68	0.98	78.2	103.1	15.6	52.5	9.2	1.6	7.1	1.1	6.9	1.5	4.8	0.8	4.3	0.7	46.1	334	Clay		
RRMDD777	5.68	6.66	0.98	81.4	96.9	16.6	55.1	9.4	1.6	7.3	1.2	7.4	1.5	4.8	0.9	4.3	0.6	48.1	337	Clay	4	
RRMDD777	6.66	7.64	0.98	69.4	71.7	13.3	44.3	7.7	1.4	6.3	1.0	6.0	1.3	4.0	0.7	3.8	0.6	42.3	274	Clay	4	
RRMDD777 RRMDD777	7.64 8.62	8.62 9.57	0.98	68.7 69.7	69.5 70.9	13.8 13.7	46.0 43.2	7.6 7.4	1.5 1.4	6.7 6.5	1.0 0.9	6.4 6.0	1.4	4.1 3.9	0.7 0.7	3.8 3.8	0.6 0.6	42.2 41.3	274 271	Clay Clay	┨	
RRMDD777	9.57	10.41	0.95	83.4	70.9 86.4	16.5	52.1	8.2	1.4	5.9	0.9	5.4	1.3	3.7	0.7	3.7	0.6	34.2	304	Clay	1	
RRMDD777	10.41	11.25	0.84	86.1	93.8	17.7	56.5	8.6	1.4	6.0	1.0	5.9	1.2	3.6	0.6	3.5	0.6	34.5	321	Clay	1	
RRMDD777	11.25	12.10	0.85	71.2	76.2	15.5	52.6	8.0	1.5	6.6	1.0	6.0	1.2	3.6	0.6	3.6	0.6	35.3	283	Clay	1	
RRMDD777	12.10	13.03	0.93	66.0	76.9	15.2	53.7	8.9	1.7	6.5	1.1	6.3	1.4	4.1	0.5	4.3	0.6	42.2	289	Clay	1	
RRMDD777	13.03	13.96	0.93	55.1	74.9	15.8	59.4	10.7	2.1	7.8	1.2	7.1	1.6	4.4	0.5	4.2	0.7	45.6	291	Clay	İ	
RRMDD777	13.96	14.88	0.92	42.0	62.5	11.8	47.8	9.2	1.8	7.3	1.2	6.8	1.4	4.3	0.5	4.3	0.6	46.6	248	Clay	j	
RRMDD777	14.88	15.85	0.97	44.0	55.6	11.7	46.1	8.5	1.7	7.7	1.1	6.9	1.4	4.3	0.6	4.1	0.5	43.2	238	Clay	12.13	297
RRMDD777	15.85	16.82	0.97	47.1	67.8	13.1	52.0	10.0	2.1	8.0	1.2	6.8	1.3	3.6	0.5	3.6	0.6	38.4	256	Clay		
RRMDD777	16.82	17.79	0.97	49.8	63.9	12.1	45.4	8.7	1.8	7.5	1.1	6.7	1.4	3.9	0.6	3.9	0.6	41.7	249	Clay	4	
RRMDD777	17.79	18.76	0.97	32.4	48.6	8.5	30.6	6.2	1.3	4.9	0.8	4.4	0.9	2.8	0.5	2.5	0.4	26.5	171	Clay	4	
RRMDD777 RRMDD777	18.76 19.73	19.73 20.68	0.97 0.95	35.3 37.4	61.2 57.6	9.5 9.7	35.7 37.6	6.6 6.9	1.6 1.3	5.6 5.0	0.9	4.4 4.8	1.0 1.0	3.0 3.1	0.5 0.5	2.9 2.8	0.5 0.4	29.7 31.1	198 200	Clay Clav	-	
RRMDD777	20.68	21.71	1.03	38.0	58.8	10.1	37.6	7.2	1.5	5.0	0.8	5.0	1.0	2.9	0.5	3.1	0.4	32.3	200	Clay	+	
RRMDD777	21.71	22.74	1.03	38.6	66.2	10.1	39.3	7.7	1.7	6.1	0.8	5.7	1.1	3.1	0.4	3.1	0.5	33.0	218	Clay	-	
RRMDD777	22.74	23.77	1.03	35.4	52.1	8.7	32.4	6.3	1.2	4.8	0.8	4.5	0.9	2.6	0.5	2.7	0.3	28.2	182	Clay	1	
RRMDD777	23.77	24.41	0.64	35.9	68.9	9.1	35.9	7.3	1.5	6.7	1.0	5.9	1.1	3.4	0.4	3.2	0.5	39.9	221	Clay		
RRMDD777	24.41	25.05	0.64	70.8	136.4	19.6	80.8	17.3	4.0	16.0	2.6	14.5	2.9	7.7	0.5	6.1	0.9	91.7	472	Clay	1	
RRMDD777	25.05	25.63	0.58	31.0	50.0	7.6	29.3	5.4	1.2	4.9	0.8	4.8	1.0	2.9	0.4	2.8	0.4	31.4	174	Upper Saprolite	1.86	293
RRMDD777	25.63	26.20	0.57	37.8	64.9	9.2	35.2	6.3	1.4	6.1	0.8	5.3	1.1	3.0	0.4	2.7	0.4	35.7	210	Upper Saprolite		
RRMDD777	26.20	27.20	1.00	26.9	51.8	6.8	26.4	5.0	1.1	5.0	0.7	4.7	0.9	2.7	0.4	2.5	0.3	27.7	163	Lower Saprolite		
RRMDD777	27.20	28.20	1.00	34.1	66.9	8.4	31.4	6.3	1.4	5.2	0.8	5.3	1.1	3.1	0.4	2.8	0.4	33.8	201	Lower Saprolite		
RRMDD777	28.20	29.20	1.00	31.5	57.2	7.0	25.5	5.0	1.2	4.3	0.7	4.1	0.9	2.5	0.4	2.3	0.3	25.5	169	Lower Saprolite	4	
RRMDD777	29.20	30.70	1.50	32.3	56.6	8.2	30.7	6.3	1.4	5.2	0.9	5.4	1.2	3.2	0.4	3.0	0.5	33.7	189	Saprock	4	
RRMDD777	30.70	32.20	1.50	31.7	65.4	7.5	28.3	5.6	1.2	4.6	0.7	3.9	0.8	2.4	0.4	2.3	0.4	24.5	180	Saprock		
RRMDD778	0.00	1.45	1.45	77.2	212.5	16.9	57.2	10.7	1.6	7.8	1.3	7.5	1.5	4.4	0.7	4.5	0.7	44.3	449	Hardcap	_	
RRMDD778 RRMDD778	1.45 2.90	2.90 4.36	1.45 1.46	102.9 214.0	627.7 1072.4	19.8 37.9	63.5 131.2	11.3 23.0	1.8 3.7	7.5 14.8	1.3 2.0	7.3 10.3	1.4 1.9	4.1 4.8	0.5 0.5	4.2 5.0	0.6 0.7	35.7 43.9	889 1566	Hardcap	4	
RRMDD778	4.36	4.36	0.42	129.0	240.2	23.3	79.8	14.0	2.3	8.9	1.3	6.8	1.9	3.6	0.5	3.9	0.7	32.8	548	Hardcap Transition	+	
RRMDD778	4.78	5.73	0.42	76.3	125.9	16.1	57.2	9.4	1.7	7.4	1.1	6.6	1.3	3.7	1.0	3.6	0.6	39.5	351	Clav		
RRMDD778	5.73	6.68	0.95	260.4	272.7	49.8	159.8	24.5	4.1	17.1	2.4	12.3	2.3	6.0	0.9	4.9	0.7	68.6	886	Clav	1	
RRMDD778	6.68	7.62	0.94	84.9	125.9	19.8	74.2	11.8	2.0	10.1	1.5	9.2	1.9	5.9	0.9	5.6	0.8	65.7	420	Clay	İ	
RRMDD778	7.62	8.65	1.03	91.4	142.5	24.0	87.2	15.0	2.4	11.8	1.8	11.0	2.5	7.0	0.8	6.4	1.0	81.5	486	Clay		
RRMDD778	8.65	9.68	1.03	97.7	141.3	26.9	104.3	18.7	3.2	14.5	2.4	14.5	2.9	9.6	0.7	8.3	1.3	108.2	554	Clay		
RRMDD778	9.68	10.72	1.04	87.7	135.1	22.8	84.3	14.1	2.8	11.3	1.9	11.4	2.4	7.8	0.7	6.2	0.9	83.6	473	Clay		
RRMDD778	10.72	11.68	0.96	122.6	170.1	37.0	136.5	25.5	4.3	19.0	3.1	18.4	3.7	10.7	8.0	9.4	1.4	126.9	689	Upper Saprolite	_	
RRMDD778	11.68	12.64	0.96	105.0	179.3	33.7	129.5	24.2	4.4	20.8	3.4	21.0	4.6	13.8	0.9	12.5	1.9	155.6	711	Upper Saprolite	1	
RRMDD778	12.64	13.61	0.97	266.2	400.5	68.0	267.1	48.0	8.8	38.7	5.8	33.5	6.2	16.9	0.7	13.6	2.0	194.9	1371	Upper Saprolite	4	
RRMDD778	13.61	14.51	0.90	88.7	173.8	27.2	113.7	21.3	4.1	19.8	3.3	19.2	4.3	13.1	0.9	12.8	1.7	147.3	651	Upper Saprolite	4	
RRMDD778	14.51	15.41	0.90	131.4	206.4	36.7	149.3	26.8	5.1	23.6	4.0	24.8	5.4	16.2	0.9	14.4	2.1	180.3	827	Upper Saprolite	-	
RRMDD778 RRMDD778	15.41 15.92	15.92 16.80	0.51 0.88	85.4 76.7	199.0 170.7	32.3 26.7	142.3 123.6	29.8 27.5	5.9 5.7	29.3 27.3	4.8	29.5 25.9	6.5 5.1	20.1 15.1	0.7 0.8	17.6 12.1	2.6 1.9	226.0 174.6	832 698	Upper Saprolite	-	
RRMDD778	16.80	17.68	0.88	89.8	170.7	29.2	132.4	28.1	6.5	38.2	6.7	25.9 44.6	11.1	35.6	0.8	29.6	4.7	482.6	1112	Upper Saprolite Upper Saprolite	1	
RRMDD778	17.68	18.56	0.88	86.4	168.9	30.2	154.0	40.6	10.5	71.6	12.3	84.2	20.1	62.3	0.9	45.8	7.3	882.6	1678	Upper Saprolite	1	
RRMDD778	18.56	19.44	0.88	88.7	156.0	27.9	138.2	36.9	9.6	79.3	13.1	93.4	21.6	66.9	0.9	56.1	8.4	872.4	1670	Upper Saprolite		
RRMDD778	19.44	20.30	0.86	118.5	215.6	45.1	267.1	81.9	23.9	199.4	32.8	241.0	61.5	196.1	0.7	142.3	25.2	3124.0	4775	Upper Saprolite	1	
RRMDD778	20.30	21.91	1.61	72.6	140.0	17.5	76.6	15.6	3.4	23.1	3.0	19.3	4.5	13.4	0.9	10.4	1.6	206.4	608	Lower Saprolite	17.13	1003
RRMDD778	21.91	23.64	1.73	59.3	128.4	13.7	53.7	10.6	2.3	9.3	1.3	7.2	1.4	3.6	0.7	2.7	0.4	52.8	347	Saprock		

																					TREO-	_
	From	То	Int.	La₂O₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy_2O_3	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3	TREO	Regolith	Length	TREO
Hole ID	m	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Zone	(m)	ppm
RRMDD778	23.64	24.70	1.06	43.2	87.2	10.4	37.3	7.2	1.4	5.6	0.8	4.6	1.0	2.6	0.6	2.6	0.4	29.0	234	Saprock		
RRMDD779	0.00	1.71	1.71	245.1	1082.2	43.9	150.5	20.4	3.2	15.5	2.0	10.7	1.9	5.2	0.6	5.3	0.8	48.5	1635	Hardcap		
RRMDD779	1.71	3.41	1.70	234.6	1510.9	52.3	161.5	25.3	3.9	16.4	2.4	11.8	2.2	5.6	0.5	5.4	0.8	50.9	2084	Hardcap	1	
RRMDD779	3.41	3.87	0.46	166.5	240.2	35.0	110.3	17.3	2.8	11.1	1.6	8.7	1.6	5.0	0.8	4.4	0.7	45.7	652	Transition		
RRMDD779	3.87	4.62	0.75	97.7	103.3	20.7	73.0	11.6	2.3	9.3	1.4	7.7	1.5	4.7	1.0	4.3	0.6	44.2	383	Mottled]	
RRMDD779	4.62	5.36	0.74	59.8	106.1	12.3	41.1	6.8	1.3	6.6	1.1	6.8	1.4	4.2	0.9	4.4	0.6	44.3	298	Mottled		
RRMDD779	5.36	6.22	0.86	67.1	111.8	13.5	44.1	6.8	1.0	5.3	0.9	5.4	1.2	3.7	1.0	3.8	0.6	38.5	305	Mottled	_	
RRMDD779	6.22	7.08	0.86	93.1	149.3	18.2	60.8	8.8	1.6	7.1	1.2	6.9	1.5	4.5	0.9	4.3	0.6	49.5	408	Mottled		
RRMDD779	7.08	7.95	0.87	102.6	153.6	21.6	77.8	12.1	2.0	9.7	1.5	8.7	1.8	5.8	0.9	5.3	0.8	62.9	467	Mottled	<u> </u>	
RRMDD779	7.95	8.56	0.61	104.0	168.9	29.5	111.9	21.1	3.7	14.5	2.2	12.7	2.6	7.7	0.9	6.4	1.0	83.7	571	Clay	_	
RRMDD779	8.56	9.17	0.61	130.2	234.0	44.6	179.6	35.0	6.5	26.4	3.8	20.7	3.8	10.3	0.7	8.8	1.2	112.1	818	Upper Saprolite	4	
RRMDD779	9.17	9.78	0.61	96.4	183.6	33.6	138.2	26.3	4.7	19.8	2.9	15.2	2.8	7.4	0.7	6.4	0.8	72.1	611	Upper Saprolite	∤	
RRMDD779	9.78	10.72	0.94	126.7	303.4	44.6	190.7	41.6	8.6	45.5	7.5	44.0	9.4	26.9	0.7	21.4	3.2	322.6	1197	Lower Saprolite	6.85	565
RRMDD779	10.72	11.68	0.96	99.3	132.1	26.6	114.5	21.6	4.6	27.7	4.1	26.2	5.7	16.8	0.7	14.7	2.1	197.5	694	Saprock	4	
RRMDD779 RRMDD779	11.68 12.25	12.25 13.46	0.57	54.3 57.5	81.1 105.2	10.7 12.6	42.2 48.1	8.1 7.5	1.7 1.4	9.7 7.1	1.8 0.8	13.4	3.1 0.9	11.3	0.7 0.6	11.0 2.8	1.6 0.4	118.9 35.9	370 288	Saprock	-	
RRMDD779	13.46	15.46	1.21 1.54	57.5	114.4	12.0	44.9	6.9	1.4	5.2	0.6	4.6 3.2	0.9	2.8 1.8	0.6	1.6	0.4	18.9	270	Saprock Saprock	-	
RRMDD780 RRMDD780	0.00 1.77	1.77	1.77 1.76	103.3 108.8	545.4 963.1	20.8 22.7	64.2 76.9	12.0 13.3	1.8 2.2	7.9 10.0	1.4 1.7	7.8 8.8	1.5 1.7	4.1 4.9	0.6 0.5	4.7 5.2	0.7 0.8	40.8 44.4	817 1265	Hardcap	4	
RRMDD780	3.53	3.53 4.28	0.75	99.5	99.3	19.2	61.2	10.1	1.7	7.6	1.1	6.6	1.7	4.9	1.0	4.1	0.6	44.4	358	Hardcap Mottled		
RRMDD780	4.28	5.03	0.75	126.7	118.3	24.2	80.5	12.4	2.2	9.5	1.5	8.2	1.4	4.6	1.0	4.1	0.0	48.4	445	Mottled	1	
RRMDD780	5.03	5.79	0.76	64.6	83.3	14.5	47.9	7.4	1.4	6.4	1.0	6.8	1.5	4.8	0.8	4.9	0.7	50.4	297	Mottled	1	
RRMDD780	5.79	6.65	0.86	89.6	138.8	19.7	64.4	9.4	1.7	8.0	1.3	8.0	1.8	5.4	0.7	5.4	0.8	55.6	411	Mottled	1	
RRMDD780	6.65	7.50	0.85	135.5	168.3	31.7	109.3	17.4	3.2	13.8	1.9	10.9	2.5	6.3	0.6	5.9	0.9	74.9	583	Mottled	1	
RRMDD780	7.50	8.53	1.03	93.1	160.3	27.2	98.8	18.7	3.4	14.5	2.3	12.5	2.5	7.0	0.6	6.5	1.0	74.2	522	Clay	1	
RRMDD780	8.53	9.56	1.03	91.8	144.3	30.8	118.4	19.7	3.6	14.8	2.2	13.0	2.5	6.7	0.6	6.7	1.0	75.6	532	Clay	1	
RRMDD780	9.56	10.14	0.58	158.9	434.9	64.2	256.6	50.9	9.9	43.3	6.5	33.9	6.3	15.9	0.5	14.1	1.9	165.7	1263	Upper Saprolite	Ī	
RRMDD780	10.14	10.71	0.57	83.4	130.8	31.5	124.2	22.7	4.2	15.7	2.4	13.3	2.5	6.7	0.6	6.0	0.9	74.2	519	Upper Saprolite	ĺ	
RRMDD780	10.71	11.56	0.85	174.7	168.9	41.3	148.7	26.3	5.1	22.5	3.3	17.3	3.4	9.1	0.7	7.8	1.1	90.3	721	Upper Saprolite		
RRMDD780	11.56	12.41	0.85	95.8	143.7	29.4	119.0	23.4	4.9	25.6	4.0	25.7	6.2	17.5	0.6	14.5	2.3	241.3	754	Upper Saprolite]	
RRMDD780	12.41	13.18	0.77	69.0	119.2	18.7	69.5	12.2	2.4	12.4	1.9	10.7	2.5	7.0	0.6	6.1	1.0	92.1	425	Lower Saprolite]	
RRMDD780	13.18	13.94	0.76	57.7	108.8	13.7	53.7	8.1	1.7	6.5	0.9	4.3	1.1	3.4	0.6	2.9	0.4	53.6	317	Lower Saprolite	_	
RRMDD780	13.94	14.97	1.03	55.7	116.9	13.5	48.6	8.3	1.6	6.9	0.9	4.4	0.9	2.3	0.6	1.9	0.3	28.4	291	Lower Saprolite	11.44	517
RRMDD780	14.97	16.00	1.03	59.7	120.0	14.2	48.9	9.1	1.7	7.4	0.9	4.8	0.9	2.3	0.6	1.9	0.3	25.8	299	Lower Saprolite		
RRMDD780	16.00	17.10	1.10	51.7	113.4	13.4	45.6	7.3	1.4	5.6	8.0	4.0	0.8	1.9	0.6	1.7	0.2	23.6	272	Saprock		
RRMDD781	0.00	1.47	1.47	99.0	195.9	18.2	57.2	10.0	1.7	8.0	1.3	7.4	1.6	4.5	0.6	4.4	0.6	45.7	456	Soil		
RRMDD781	1.47	2.93	1.46	114.3	297.3	18.7	55.5	9.0	1.6	6.6	1.1	6.8	1.3	3.9	0.6	4.1	0.6	34.5	556	Hardcap		
RRMDD781	2.93	3.81	0.88	61.5	133.9	14.7	50.9	8.9	1.5	7.2	1.1	6.9	1.6	4.5	0.7	4.6	0.7	47.7	346	Transition	_	
RRMDD781	3.81	4.58	0.77	58.8	88.1	13.5	46.3	7.6	1.6	6.8	1.1	6.8	1.6	4.2	0.8	4.5	0.7	46.9	289	Mottled	4	
RRMDD781	4.58	5.35	0.77	47.6	74.3	11.9	40.8	6.7	1.3	6.2	1.0	6.2	1.3	3.8	0.5	3.8	0.6	43.9	250	Mottled	-	
RRMDD781	5.35	6.11	0.76	56.8	87.2	13.4	47.4	7.6	1.5	7.4	1.1	7.2	1.6	4.7	0.5	4.4	0.6	55.1	296	Mottled	-	
RRMDD781 RRMDD781	6.11	6.93 7.75	0.82	113.4 124.3	157.2 141.9	38.2 38.9	133.6 133.0	21.2 22.0	3.9 4.1	15.8 15.4	2.3	13.5 13.2	3.0 2.7	7.8 6.8	0.5 0.5	7.1 6.4	1.1 0.9	104.0 83.2	623 595	Clay Clay	1	
RRMDD781	7.75	8.57	0.82	62.2	218.7	15.8	54.2	9.9	2.0	9.5	1.4	8.8	2.1	5.7	0.5	5.2	0.9	74.8	472	Clay	1	
RRMDD781	8.57	9.39	0.82	67.2	150.5	17.5	60.8	10.5	2.0	9.5	1.4	8.3	1.9	5.0	0.5	4.5	0.8	74.6 59.6	400	Clay	1	
RRMDD781	9.39	10.28	0.89	357.7	245.7	106.4	404.7	67.6	14.1	60.7	8.2	48.1	9.7	25.5	0.3	21.4	2.9	337.8	1711	Upper Saprolite	1	
RRMDD781	10.28	11.16	0.88	255.7	163.4	82.0	307.9	54.2	10.9	46.0	6.6	37.5	7.5	19.8	0.4	16.0	2.3	242.6	1253	Upper Saprolite		
RRMDD781	11.16	12.20	1.04	91.5	87.5	27.7	104.5	17.0	3.4	13.8	2.0	11.4	2.5	6.8	0.4	5.9	0.9	83.1	458	Lower Saprolite	1	
RRMDD781	12.20	13.24	1.04	141.9	95.8	40.7	152.8	28.8	5.6	25.0	3.8	21.1	4.1	10.0	0.4	8.8	1.2	122.0	662	Lower Saprolite	1	
RRMDD781	13.24	14.28	1.04	91.6	63.1	24.1	93.2	16.9	3.7	16.1	2.3	13.8	2.7	7.3	0.4	5.8	0.8	84.2	426	Lower Saprolite	1	
RRMDD781	14.28	15.32	1.04	43.7	42.1	8.7	36.6	6.4	1.4	6.2	0.9	5.4	1.2	3.8	0.5	3.3	0.4	43.4	204	Lower Saprolite	11.51	591
RRMDD781	15.32	16.36	1.04	32.7	45.3	7.2	27.9	4.4	1.1	4.8	0.7	4.3	0.9	2.8	0.4	2.4	0.4	33.9	169	Lower Saprolite		
RRMDD781	16.36	17.40	1.04	30.1	47.7	6.5	24.7	4.2	1.0	4.8	0.7	3.7	0.8	2.3	0.4	2.4	0.4	28.3	158	Lower Saprolite	1	
RRMDD781	17.40	18.44	1.04	32.8	67.3	8.4	30.7	6.2	1.4	5.5	0.7	4.4	0.9	2.6	0.4	2.3	0.3	32.3	196	Lower Saprolite		

																					>200 ₁ TREO- Inter	CeO ₂
Hole ID	From m	To m	Int. m	La₂O₃	CeO ₂	Pr ₂ O ₃	Nd ₂ O ₃	Sm ₂ O ₃	Eu ₂ O ₃	Gd₂O₃	Tb₂O₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu₂O₃	Y ₂ O ₃	TREO	Regolith Zone	Length	TREO
RRMDD781	18.44	19.48	1.04	22.5	9pm 36.7	ppm 5.6	21.0	ppm 4.0	9pm 0.8	ppm 3.6	9pm 0.5	ppm 2.9	9pm 0.6	ppm 1.7	9pm 0.4	ppm 1.8	0.3	20.1	9pm 123	Lower Saprolite	(m)	ppm
RRMDD781	19.48	20.52	1.04	28.4	59.6	7.2	26.8	4.9	1.2	4.3	0.7	4.0	0.8	2.4	0.4	2.1	0.3	26.3	169	Lower Saprolite		
RRMDD781	20.52	21.56	1.04	27.1	53.4	6.9	26.4	5.3	1.1	4.1	0.6	3.8	0.7	2.4	0.4	2.0	0.3	22.9	157	Lower Saprolite	1	
RRMDD781	21.56	22.60	1.04	22.6	58.0	5.9	21.5	4.4	0.9	3.3	0.5	3.1	0.7	1.9	0.4	1.7	0.3	18.0	143	Lower Saprolite		
RRMDD781	22.60	23.68	1.08	28.1	62.3	7.3	27.4	5.0	1.0	4.3	0.6	3.6	0.7	2.1	0.4	2.1	0.3	23.1	168	Lower Saprolite	1	
RRMDD781	23.68	25.33	1.65	25.0	61.9	6.5	23.7	4.7	1.1	3.8	0.6	3.5	0.6	2.1	0.4	2.1	0.3	19.7	156	Saprock		
RRMDD781	25.33	27.00	1.67	22.3	50.2	6.1	24.6	4.6	1.1	3.7	0.5	3.5	0.7	1.9	0.3	1.8	0.3	20.7	142	Saprock		
RRMDD782	0.00	1.31	1.31	54.2	358.7	11.6	41.6	8.1	1.3	6.7	1.0	6.5	1.3	4.5	0.6	4.3	8.0	38.6	540	Hardcap	4	
RRMDD782	1.31 2.57	2.57	1.26	45.5	134.5	10.0	36.0	6.7	1.2	5.5 5.9	0.8	6.1	1.2	4.2	0.7	4.6	0.6	40.8	298	Transition	4	
RRMDD782 RRMDD782	3.26	3.26 3.95	0.69	48.6 50.9	138.2 200.2	10.4 11.5	37.9 41.8	7.0 7.1	1.2 1.2	7.0	0.9 1.1	6.2 6.9	1.3 1.5	3.7 4.6	0.7 0.7	4.3 4.8	0.6 0.7	41.4 47.7	308 388	Clay Clay	+	
RRMDD782	3.95	4.90	0.05	36.6	90.3	8.3	29.3	5.7	1.1	5.4	0.8	5.5	1.1	3.4	0.6	3.4	0.7	38.9	231	Clay		
RRMDD782	4.90	5.85	0.95	32.7	99.7	7.7	28.7	5.2	1.1	4.9	0.8	4.8	1.1	3.1	0.5	3.2	0.5	35.7	230	Clay	1	
RRMDD782	5.85	6.80	0.95	38.7	130.8	9.7	34.5	6.5	1.4	5.9	1.0	6.1	1.2	4.0	0.5	3.8	0.5	42.5	287	Clay	1	
RRMDD782	6.80	7.75	0.95	46.1	92.4	11.0	40.1	7.0	1.4	6.8	1.0	6.9	1.4	4.0	0.5	3.5	0.6	46.6	269	Clay]	
RRMDD782	7.75	8.64	0.89	30.0	43.7	7.6	27.8	5.7	1.1	5.2	0.8	5.1	1.1	3.1	0.6	3.2	0.4	38.1	174	Clay		
RRMDD782	8.64	9.53	0.89	40.1	121.5	10.1	37.8	6.4	1.6	6.4	0.9	6.3	1.3	4.1	0.4	3.9	0.5	45.3	287	Clay		
RRMDD782	9.53	10.42	0.89	18.5	24.8	5.0	19.1	4.3	8.0	3.7	0.6	4.1	0.8	2.7	0.5	2.8	0.4	27.3	115	Clay		
RRMDD782	10.42	11.31	0.89	19.5	258.0	5.3	20.9	4.3	0.9	4.3	0.7	4.4	0.9	2.7	0.5	2.6	0.4	26.9	352	Clay		
RRMDD782	11.31	12.26	0.95	27.6	89.1	6.3	23.8	4.6	1.0	4.3	0.7	4.4	0.9	3.0	0.4	2.5	0.3	33.1	202	Clay	4	
RRMDD782	12.26	13.21	0.95	31.3	81.3	7.7	28.3	5.9	1.2	4.8	0.7	4.6	0.9	2.7	0.5	2.6	0.4	32.1	205	Clay	4	
RRMDD782 RRMDD782	13.21 14.15	14.15 14.75	0.94	30.3 28.5	99.6 79.0	7.6 7.2	28.2 26.9	6.1 5.1	1.2	5.3	0.8	4.9 4.8	1.0 1.0	2.8 3.0	0.4 0.5	2.6 2.5	0.3	33.5 34.4	225 200	Clay	4	
RRMDD782	14.15	15.34	0.59	43.9	115.0	11.3	43.5	8.4	1.1 1.7	4.9 7.6	1.0	5.9	1.0	3.2	0.5	2.5	0.4	35.0	281	Upper Saprolite Upper Saprolite	-	
RRMDD782	15.34	16.23	0.89	51.8	64.0	13.2	49.3	9.4	1.8	8.1	1.2	6.9	1.4	3.8	0.7	3.5	0.4	48.4	264	Lower Saprolite	1	
RRMDD782	16.23	17.11	0.88	46.6	191.0	12.1	43.9	9.3	1.8	7.1	1.1	5.2	1.0	2.8	0.3	2.3	0.4	29.6	355	Lower Saprolite		
RRMDD782	17.11	18.03	0.92	31.0	56.3	7.1	25.9	4.9	1.0	4.1	0.5	3.5	0.7	2.0	0.4	2.0	0.3	24.6	164	Lower Saprolite		
RRMDD782	18.03	18.95	0.92	23.6	52.7	5.2	19.1	4.3	0.9	4.3	0.6	3.8	8.0	2.2	0.3	2.3	0.4	29.8	150	Lower Saprolite	j	
RRMDD782	18.95	19.87	0.92	93.9	66.7	22.5	89.3	17.8	4.5	21.0	2.9	16.1	3.2	8.2	0.4	6.7	0.9	108.4	463	Lower Saprolite	2.76	259
RRMDD782	19.87	20.79	0.92	25.9	39.3	6.2	21.7	4.3	0.9	3.8	0.5	3.1	0.6	1.9	0.4	1.8	0.3	21.6	132	Lower Saprolite	1	
RRMDD782	20.79	21.70	0.91	20.1	43.1	4.1	16.2	2.7	0.7	3.1	0.4	2.9	0.6	1.9	0.5	1.8	0.3	19.9	118	Lower Saprolite		
RRMDD783	0.00	1.45	1.45	70.0	208.2	12.7	39.9	7.2	1.3	5.9	0.9	5.8	1.2	3.4	0.5	3.4	0.5	31.1	392	Hardcap	4	
RRMDD783	1.45	2.36	0.91	59.5	170.7	11.7	39.1	6.9	1.3	5.2	0.9	5.2	1.2	3.2	0.6	3.7	0.5	31.1	341	Transition	4	
RRMDD783 RRMDD783	2.36 3.36	3.36 4.35	1.00 0.99	54.8 49.0	145.6 108.0	11.7 11.3	41.6 42.6	7.4 7.9	1.2 1.4	7.1 6.9	1.1 1.1	5.9 6.7	1.3 1.4	3.6 4.6	0.7 0.7	3.8 4.2	0.6	41.8 44.2	328 291	Clay	4	
RRMDD783	4.35	5.23	0.99	52.3	104.9	12.6	45.5	8.3	1.4	7.4	1.1	8.0	1.4	5.1	0.7	4.2	0.8	48.6	303	Clay Clay	4	
RRMDD783	5.23	6.10	0.87	64.2	90.3	15.8	59.4	10.5	2.0	9.7	1.6	9.9	2.1	6.1	0.7	5.0	0.7	61.2	339	Clay	┪	
RRMDD783	6.10	7.06	0.96	74.8	89.1	19.6	73.5	12.2	2.5	11.2	1.8	10.5	2.2	6.6	0.5	5.0	0.8	67.1	377	Clay	1	
RRMDD783	7.06	8.02	0.96	222.8	141.3	66.2	232.1	37.8	7.2	30.1	4.3	23.8	4.6	13.0	0.5	9.3	1.5	144.8	939	Clay		
RRMDD783	8.02	8.73	0.71	446.8	201.5	111.8	412.9	75.4	14.3	67.5	10.0	56.0	11.6	32.1	0.5	24.3	3.2	359.4	1827	Upper Saprolite	j	
RRMDD783	8.73	9.63	0.90	195.3	140.7	45.9	170.3	29.7	6.4	27.0	4.0	21.7	4.0	10.9	0.5	8.5	1.3	117.5	783	Lower Saprolite		
RRMDD783	9.63	10.53	0.90	192.9	149.3	48.1	208.8	40.8	8.7	49.8	7.6	51.0	10.6	31.9	0.4	24.6	4.1	405.1	1234	Lower Saprolite		
RRMDD783	10.53	11.43	0.90	49.3	64.7	10.6	40.2	8.2	1.7	8.2	1.4	8.1	1.8	5.8	0.5	4.7	0.6	70.7	276	Lower Saprolite	8.07	678
RRMDD783	11.43	12.33	0.90	31.0	59.8	7.8	28.9	5.8	1.1	4.8	0.7	4.1	0.7	2.2	0.4	1.8	0.3	24.4	174	Lower Saprolite	4	
RRMDD783	12.33	14.22	1.89	28.1	57.6	7.3	26.7	5.0	1.0	3.7	0.6	3.7	0.7	2.1	0.5	1.8	0.3	21.8	161	Saprock	4	
RRMDD783 RRMDD783	14.22 16.11	16.11 18.00	1.89 1.89	31.4 30.7	62.4 68.1	8.0 8.6	29.3 34.6	5.8 7.1	1.5 1.9	4.4 6.6	0.7 1.0	4.0 5.4	0.7 0.9	2.1 3.0	0.5 0.4	2.2 2.3	0.3	25.9 30.2	179 201	Saprock Saprock	+	
RRMDD784	0.00	1.35	1.35	75.6	167.7	14.0	43.5	7.1	1.3	5.7	0.9	5.5		3.1	0.4		0.3	31.5	362	•		
RRMDD784	1.35	2.70	1.35	73.4	837.8	16.9	55.6	9.4	1.3	6.8	1.0	6.3	1.1 1.2	3.1	0.5	3.6 3.7	0.4	33.0	1052	Hardcap Hardcap	1	
RRMDD784	2.70	3.80	1.10	171.2	592.1	35.3	125.4	19.1	3.6	14.3	2.2	11.9	2.3	6.6	0.5	5.4	0.8	73.9	1065	Clay	1	
RRMDD784	3.80	4.66	0.86	120.2	385.7	25.6	92.5	14.9	2.7	12.0	1.7	9.6	1.9	5.2	0.4	4.3	0.6	60.7	738	Upper Saprolite	1	
RRMDD784	4.66	5.52	0.86	202.9	145.0	67.7	249.6	43.1	7.7	30.8	4.2	23.1	3.7	10.0	0.5	7.0	1.0	96.5	893	Upper Saprolite		
RRMDD784	5.52	6.38	0.86	134.9	122.1	42.5	160.4	29.7	4.8	20.5	2.8	15.5	2.6	7.5	0.5	5.5	0.7	79.4	629	Upper Saprolite	j	
RRMDD784	6.38	7.17	0.79	383.5	400.5	119.5	464.2	84.5	17.1	82.6	11.9	71.3	13.8	40.3	0.4	30.6	4.8	500.3	2225	Lower Saprolite		

																					>200 ₁ TREO- Inter	CeO₂
Hole ID	From	То	Int.	La ₂ O ₃	CeO ₂	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Eu ₂ O ₃	Gd_2O_3	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃	Y_2O_3	TREO	Regolith	Length	TREO
	m	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Zone	(m)	ppm
RRMDD784	7.17	7.95	0.78	134.9	94.0	30.7	126.0	22.7	5.2	28.8	4.4	26.6	6.1	20.0	0.4	14.1	2.3	262.9	779	Lower Saprolite	5.25	1044
RRMDD784	7.95	9.33	1.38	32.5	57.2	8.2	30.0	5.4	1.3	5.0	0.8	5.0	1.1	3.0	0.4	2.6	0.4	32.9	186	Saprock	_	
RRMDD784	9.33	10.70	1.37	26.9	64.4	6.7	25.1	5.1	1.1	4.6	8.0	5.5	1.1	3.5	0.4	2.9	0.5	36.3	185	Saprock		
RRMDD785	0.00	0.70	0.70	27.0	59.2	5.5	18.0	3.7	0.7	3.3	0.5	3.4	0.7	2.4	0.5	2.6	0.4	22.9	151	Soil	_	
RRMDD785	0.70	1.38	0.68	44.3	82.5	10.5	34.3	6.6	1.2	5.0	0.9	5.2	1.1	3.3	0.6	2.9	0.5	32.3	231	Clay	_	
RRMDD785	1.38	2.22	0.84	69.2	156.6	17.8	61.9	10.2	1.9	8.6	1.2	7.5	1.4	4.4	0.6	4.0	0.6	47.1	393	Upper Saprolite	_	
RRMDD785	2.22	3.06	0.84	129.0	292.4	33.3	120.1	19.1	3.8	15.6	2.2	11.5	2.2	6.1	0.5	4.5	0.7	64.0	705	Upper Saprolite	_	
RRMDD785	3.06	3.90	0.84	80.1	153.6	17.6	65.8	11.5	2.5	10.2	1.4	8.7	1.8	5.4	0.4	4.1	0.6	64.4	428	Upper Saprolite		440
RRMDD785	3.90	4.56	0.66	47.3	79.7	9.3	37.9	6.4	1.4	6.4	0.9	5.8	1.2	3.9	0.4	2.8	0.5	45.8	250	Lower Saprolite	3.86	416
RRMDD785	4.56	6.30	1.74	33.9	67.2	8.2	31.1	5.9	1.3	5.2	0.8	4.4	0.9	2.7	0.5	2.1	0.3	29.7	194	Saprock	+	
RRMDD786	0.00	1.25	1.25	67.3	119.4	12.6	40.0	7.6	1.4	6.1	0.9	5.9	1.2	3.3	0.5	3.7	0.6	32.8	303	Hardcap	-	
RRMDD786	1.25	2.49	1.24	57.0	708.8	12.3	40.6	8.1	1.5	5.7	1.0	6.5	1.2	3.9	0.6	4.2	0.6	32.6	885	Hardcap	-	
RRMDD786	2.49	3.52	1.03	65.2	155.4	14.3	48.8	9.0	1.6	7.2	1.2	6.8	1.4	4.4	0.8	4.5	0.6	41.4	362	Transition	4	
RRMDD786	3.52	4.31	0.79	62.9	147.4	14.0	46.4	8.7	1.5	7.1	1.2	6.9	1.5	4.3	8.0	4.5	0.6	45.6	353	Mottled	_	
RRMDD786	4.31	5.10	0.79	50.8	95.3	11.1	37.3	6.7	1.3	6.0	0.9	5.6	1.3	4.2	0.8	3.9	0.7	40.3	266	Mottled		
RRMDD786 RRMDD786	5.10	5.90	0.80	43.0	55.3	9.3	33.7	5.3	1.1	5.3	0.9	6.2	1.2	3.8	0.7	3.7	0.5	35.0	205	Mottled	_	
	5.90	6.81	0.91	43.7	45.8	10.1	36.0	6.3	1.2	5.9	1.0	6.2	1.4	4.2	0.6	3.9	0.6	41.7	209	Mottled	4	
RRMDD786 RRMDD786	6.81 7.51	7.51 8.20	0.70 0.69	51.3 85.6	46.3 64.5	12.1 21.9	42.7 82.8	7.3 13.6	1.6 2.5	7.3 11.8	1.2 1.5	7.7 9.8	1.6 1.8	5.2 5.5	0.5 0.4	3.8 4.9	0.6 0.7	52.3 66.5	241 374	Clay	4	
RRMDD786	8.20	8.84		111.2	192.9	31.5	116.5	19.1	3.5	15.4	2.0	12.5		6.7	0.4	5.9	0.7	78.5	599	/	_	
RRMDD786	8.84	9.48	0.64 0.64	129.6	240.2	38.2	144.1	23.5	4.1	16.4	2.0	12.5	2.3 2.3	6.5	0.4	5.5	0.8	73.3	700	Upper Saprolite Upper Saprolite	4	
RRMDD786	9.48	10.48	1.00	110.7	93.1	29.7	112.3	18.4	3.7	15.1	2.0	11.9	2.3	6.1	0.4	5.0	0.7	71.2	483	Lower Saprolite	4	
RRMDD786	10.48	11.48	1.00	82.9	82.8	22.9	88.3	15.0	2.9	11.6	1.6	9.7	1.8	4.8	0.4	4.3	0.7	58.9	388	Lower Saprolite	5.58	416
RRMDD786	11.48	13.14	1.66	62.7	54.7	16.4	62.4	11.0	2.5	10.2	1.4	9.4	1.9	5.4	0.4	5.1	0.7	64.5	309	Saprock	3.30	410
RRMDD786	13.14	14.80	1.66	43.0	52.0	10.4	39.5	7.5	1.5	6.0	0.9	5.4	1.0	2.6	0.4	2.4	0.3	31.2	204	Saprock		
RRMDD786	14.80	16.46	1.66	35.7	65.8	8.4	33.0	5.8	1.3	5.5	0.8	5.2	1.0	3.0	0.4	2.4	0.3	34.3	203	Saprock	_	
RRMDD786	16.46	18.12	1.66	27.2	51.5	6.6	23.8	4.6	1.1	4.1	0.6	3.6	0.7	2.0	0.4	1.8	0.3	22.2	150	Saprock	-	
RRMDD786	18.12	19.80	1.68	28.0	59.7	7.0	28.5	5.4	1.1	4.5	0.6	3.9	0.8	2.2	0.4	2.3	0.2	24.1	169	Saprock		
RRMDD787	0.00	1.57	1.57	58.8	256.7	12.2	39.7	8.0	1.4	6.4	1.0	6.6	1.3	4.0	0.6	4.1	0.6	35.9	437	Hardcap		
RRMDD787	1.57	2.28	0.71	56.3	100.4	12.3	42.5	7.8	1.5	6.4	1.0	6.5	1.4	3.9	0.7	4.2	0.7	39.4	285	Clav		
RRMDD787	2.28	3.09	0.81	62.4	78.6	15.0	57.2	10.0	1.7	9.0	1.3	8.7	1.8	5.5	0.6	5.5	0.8	57.1	315	Clay	╡	
RRMDD787	3.09	3.90	0.81	57.7	68.7	14.7	56.7	8.9	1.9	9.0	1.4	8.4	1.8	5.3	0.6	5.2	0.7	56.8	298	Clay	7	
RRMDD787	3.90	4.70	0.80	59.7	88.9	15.2	60.2	10.6	1.9	9.0	1.3	8.4	1.7	5.3	0.5	5.4	0.8	57.7	327	Clav	7	
RRMDD787	4.70	5.63	0.93	106.0	230.3	33.7	130.1	20.1	3.7	16.1	2.3	13.4	2.4	7.1	0.4	6.7	0.8	84.3	658	Upper Saprolite	7	
RRMDD787	5.63	6.56	0.93	174.2	179.3	55.1	216.4	36.8	6.7	29.4	3.9	22.3	4.2	11.7	0.5	10.3	1.3	127.6	880	Upper Saprolite		
RRMDD787	6.56	7.50	0.94	108.6	105.5	29.8	116.4	19.5	3.8	16.5	2.2	13.0	2.6	7.7	0.4	6.6	0.9	93.2	527	Upper Saprolite		
RRMDD787	7.50	8.43	0.93	218.1	253.1	56.1	235.6	40.1	8.4	39.6	5.2	32.6	6.4	17.4	0.4	15.1	2.0	231.8	1162	Lower Saprolite		
RRMDD787	8.43	9.36	0.93	104.1	68.7	20.5	86.2	14.6	3.5	19.2	2.6	16.4	3.5	10.4	0.4	9.0	1.3	150.5	511	Lower Saprolite		
RRMDD787	9.36	10.29	0.93	31.2	52.5	6.8	26.4	4.9	1.1	4.8	0.7	4.4	0.9	2.6	0.5	2.5	0.4	34.8	174	Lower Saprolite		
RRMDD787	10.29	11.22	0.93	33.1	57.6	8.3	32.0	6.1	1.3	5.4	0.6	4.5	0.9	2.7	0.4	2.7	0.4	33.7	190	Lower Saprolite	9.65	495
RRMDD787	11.22	12.16	0.94	31.2	56.6	7.6	30.8	5.7	1.3	5.1	0.7	4.1	8.0	2.4	0.5	2.3	0.3	26.9	176	Lower Saprolite		
RRMDD787	12.16	13.58	1.42	21.2	39.3	5.0	19.4	3.7	0.6	2.8	0.4	2.4	0.5	1.6	0.5	1.5	0.2	16.5	116	Saprock		
RRMDD787	13.58	15.00	1.42	20.1	38.8	4.6	18.9	3.2	0.7	2.8	0.4	2.7	0.5	1.6	0.4	1.8	0.3	16.5	113	Saprock		

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Drill core was collected from a core barrel and placed in appropriately marked core trays. Down hole core run depths were measured and marked with core blocks. Core was measured for core loss and core photography and geological logging completed. Sample lengths were determined by geological boundaries with a maximum sample length of 1 metre applied in clay zones and up to 2 metres in laterite zones where core recovery was occasionally low. Where the core contained continuous lengths of soft clay a carving knife was used to cut the core. When the core was too hard to knife cut, it was cut using an electric core saw. Using either method core was initial cut in half then one half was further cut in half to give quarter core. Quarter core was submitted to ALS for chemical analysis using industry standard sample preparation and analytical techniques.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Core size was HQ triple tube. The core was not oriented (vertical)
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery 	Core recovery was calculated by measuring actual core length versus drillers core run lengths. Core recovery ranged from 25% to 100% and averaged 95.6%. Core loss I most common in the hardcap and transition regolith types which are not reported as resource or in exploration results. No relationship exists between core recovery and grade.

Criteria	JORC Code explanation	Commentary			
	and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.				
Logging	Whether core and chip samples have been geologically	All (100%) drill core has been geolog	ically logged and core photographs taken.		
	and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.		on of colour, weathering status, alteration, major and , regolith zone, presence of kaolinite, hematite, veins where further observation is made.		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Additional non-geological qualitative logging includes comments for sample rehamidity, and hardness for each logged interval.			
	The total length and percentage of the relevant intersections logged.				
Sub- sampling	If core, whether cut or sawn and whether quarter, half or all core taken.		s lengths of soft clay a carving knife was used to cut d to knife cut it was cut using an electric core saw.		
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	of 1 metre applied in clay zones and	geological boundaries with a maximum sample length up to 2 metres in laterite zones where core recovery		
proparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.		ays by hand and placed in individually numbered bags.		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	These bags were dispatched to ALS	for analysis with no further field preparation.		
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.		or to sample dispatch. Sample mass is considered aterial being sampled that is generally very fine grained		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	by lengthways halving the 1/4 core	ted at a ratio of 1:25 samples. Duplicates were created primary sample into 2 identical portions. Duplicate nple numbers and submitted with the same analytical		
Quality of	The nature, quality and appropriateness of the assaying	Assay and Laboratory Procedures	- All Samples		
assay data and laboratory	technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	Samples were dispatched by air freig preparation and analysis protocol use	tht direct to ALS laboratory Perth Australia. The ed is as follows:		
tests		ALS Code	Description		
		WEI-21	Received sample weight		
	times, calibrations factors applied and their derivation, etc.	LOG-22	Sample Login w/o Barcode		
	Nature of quality control procedures adopted (eg				

Criteria	JORC Code explanation	Commentary									
	standards, blanks, duplicates, external laboratory checks)	DRY-21				High to	empera	ature dr	ying		
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	CRU-21	CRU-21			Crush	entire	sample	;		1
		CRU-31			Fine crushing – 70% <2mm			1			
		SPL-22Y				Split sample – Boyd Rotary Splitter					
		PUL-31h				Pulverise 750g to 85% passing 75 micron			1		
		CRU-QC				Crush	ing QC	Test			1
		PUL-QC				Pulver	ising Q	C test			_
			Ba Gd Rb U	Ce Hf Sm V	Cr Ho Sn W	Cs La Sr Y	Dy Lu Ta Yb	Er Nb Tb Zr	Eu Nd Th	Ga Pr Tm	
		Analysis for scandium (Sc) was by Lithium Borate Fusion ICP-AES (ALS code Sc-ICP06). The sample preparation and assay techniques used are industry standard and provide a total analysis. All laboratories used are ISO 17025 accredited. QAQC Diamond Drill Core Samples • Analytical Standards						•			
		CRM AMIS0275 in sample batche The assay results and precision an	s at a r	atio of e stand	1:25 to ards w	drill sa	amples	submit	ted. Th	is is an	acceptable ratio.

Criteria	JORC Code explanation	Commentary
		Blanks
		CRM blanks AMIS0681 and OREAS22e were included in sample batches at a ratio of 1:25 to drill samples submitted for analysis. This is an acceptable ratio.
		Both CRM blanks contain some REE, with elements critical elements Ce, Nd, Dy and Y present in small quantities. The analysis results were consistent with the certified values for the blanks. No laboratory contamination or bias is evident from these results.
		Duplicates
		Field duplicate sampling was conducted at a ratio of 1:25 samples. Duplicates were created by lengthways halving the ¼ core primary sample into 2 identical portions. Duplicate samples were allocated separate sample numbers and submitted with the same analytical batch as the primary sample. Variability between duplicate results is considered acceptable and no sampling bias is evident.
		Laboratory inserted standards, blanks and duplicates were analysed as per industry standard practice. There is no evidence of bias from these results.
		Laboratory inserted standards, blanks and duplicates were analysed as per industry standard practice. There is no evidence of bias from these results.
Verification of sampling	The verification of significant intersections by either	No independent verification of significant intersection undertaken.
and assaying	 independent or alternative company personnel. The use of twinned holes. 	No twinning of diamond core drill holes was undertaken.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic)	Sampling protocols for diamond core sampling and QAQC were documented and held on site by the responsible geologist. No procedures for data storage and management have been compiled as yet.
	 protocols. Discuss any adjustment to assay data. 	Data were collected in the field by hand and entered into Excel spreadsheet. Data are then compiled with assay results compiled and stored in Access database. Data verification is conducted on data entry including hole depths, sample intervals and sample numbers. Sample numbers from assay data are verified by algorithm in spreadsheet prior to entry int the database.
		Assay data was received in digital format from the laboratory and merged with the sampling data into an Excel spreadsheet format for QAQC analysis and review against field data. Once finalised and validated data is stored in a protected Access database.
		Data validation of assay data and sampling data have been conducted to ensure data entry is correct.
		All assay data is received from the laboratory in element form is unadjusted for data entry.

Criteria	JORC Code explanation	Commentary				
		spreadsheet usin	g defined convers services-and-resc	REE) to stoichiometric sion factors.(Source:		

Criteria	JORC Code explanation	Commentary
		CREO (Critical Rare Earth Oxide) = Nd ₂ O ₃₊ Eu ₂ O ₃₊ Tb ₄ O ₇₊ Dy ₂ O ₃₊ Y ₂ O ₃
		(From U.S. Department of Energy, Critical Materials Strategy, December 2011)
		LREO (Light Rare Earth Oxide) = La ₂ O ₃ + CeO ₂ + Pr ₆ O ₁₁ + Nd ₂ O ₃
		$NdPr = Nd_2O_3 + Pr_6O_{11}$
		HREO% of TREO= HREO/TREO x 100
		In elemental form the classifications are:
		Note that Y is included in the TREE, HREE and CREE calculation.
		TREE: La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y
		HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Y+Lu
		CREE: Nd+Eu+Tb+Dy+Y
		LREE: La+Ce+Pr+Nd
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collar locations were surveyed using handheld GPS. For this type of instrument, the general accuracy in x and y coordinates is + 5m. The elevation component of coordinates is variable and may be low accuracy using this type of device.
	Specification of the grid system used.Quality and adequacy of topographic control.	Datum WGS84 Zone 36 North was used for location data collection and storage. This is the appropriate datum for the project area. No grid transformations were applied to the data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RAB reconnaissance drill holes have been drilled on a broad spacing, generally >1km, based on testing radiometric anomalies over a large area
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Orientation of potential mineralisation unknown in this area but assumed to be horizontal as seen in the Makuutu deposit

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	After collection, the samples were transported by Company representatives to Entebbe airport and dispatched via airfreight to Perth Australia. Samples were received by Australian customs authorities in Perth within 48 hours of dispatch and were still contained in the sealed shipment bags.
		Samples were subsequently transported from Australian customs to ALS Perth via road freight and inspected on arrival by a Company representative
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, 	The Makuutu Project is located in the Republic of Uganda. The mineral tenements comprise one mining licence (LML00334), two (2) granted Retention Licences (RL00007 and RL00234), three (3) Exploration Licences (EL00147, EL00148 and EL00257).
status	nark and environmental certings	All granted licences are in good standing with no known impediments. TN03573 is pending grant with all application requirements met.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Makuutu Rare Earths Project is 100% owned by Rwenzori Rare Metals Limited ("RRM"), a Ugandan registered company. IonicRE currently has earned a 60% shareholding in RRM and has agreed terms to move to 94% ownership in 2024. IonicRE also continues discussions on the remaining 6% ownership.
	 IonicRE to fund to completion of a Bankable Feasibility Study (BFS) to earn an additional 9% interest for a cumulative 60% interest in RRM (Completed) Milestone payments, payable in cash or IonicRE shares at the election of the Vendor, as follows: US\$375,000 on production of 10 kg of mixed rare-earth product from pilot 	
		or demonstration plant activities (Completed); and b. US\$375,000 on conversion of existing licences to mining licences (Pending).
		At any time should lonicRE not continue to invest in the project and project development ceases for at least two months RRM has the right to return the capital sunk by lonicRE and reclaim all interest earnt by lonicRE.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration includes:

Criteria	JORC Code explanation	Commentary
		1980: Country wide airborne geophysical survey identifying uranium anomalies in the Project area.
		1990s: French BRGM and Ugandan DGSM undertook geochemical and geological survey over South-Eastern Uganda including the Project area. Anomalous Au, Zn, Cu, Sn, Nb and V identified.
		2006-2009: Country wide high resolution airborne magnetic and radiometric survey identified U anomalism in the Project area.
		2009: Finland GTK reprocessed radiometric data and refined the Project anomalies.
		2010: Kweri Ltd undertook field verification of radiometric anomalies including scout sampling of existing community pits. Samples showed an enrichment of REE and Sc.
		2011: Kweri Ltd conducted ground radiometric survey and evaluated historic groundwater borehole logs.
		2012: Kweri Ltd and partner Berkley Reef Ltd conducted prospect wide pit excavation and sampling of 48 pits and a ground gravity traverse. Pit samples showed enrichment of REE weathered profile. Five (5) samples sent to Toronto Aqueous Research Laboratory for REE leach testwork.
		2016 – 2017: Rwenzori Rare Metals conduct excavation of 11 pits, ground gravity survey, RAB drilling (109 drill holes) and one (1) diamond drill hole.
		The historic exploration has been conducted to a professional standard and is appropriate for the exploration stage of the prospect.
		2019-2022: Ionic Rare Earths under agreement with RRM completed 711 core drill holes and processing testwork leading to compilation of a DFS and statement of an ore reserve.
Geology	Deposit type, geological setting and style of mineralisation.	The Makuutu deposit is interpreted to be an ionic adsorption REE clay-type deposits similar to those in South China, Chile, Madagascar and Brazil.
		The mineralisation is contained within the tropical lateritic weathering profile of a basin filled with sedimentary rocks including shales, mudstones and sandstones potentially derived from the surrounding granitic and mafic rocks. These rocks are considered the original source of the REE which were then accumulated in the sediments (via ionic bonds with the clays) of the basin as the surrounding rocks have degraded. These sediments then form the protolith that was subjected to prolonged tropical weathering.
		The weathering developed a lateritic regolith with a surface indurated hardcap, followed downward by clay rich zones that grade down through saprolite and saprock to unweathered sediments. The thickness of the regolith is between 10 and 20 metres from surface.

Criteria	JORC Code explanation	Commentary
		The REE mineralisation is concentrated in the weathered profile where it has dissolved from its primary mineral form, such as monazite and xenotime, then ionically bonded (adsorbed) or colloidally bonded on to fine particles of aluminosilicate clays (e.g. kaolinite, illite, smectite). The adsorbed and colloidal REE is the target for extraction and production of REO at Makuutu.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	The material information for drill holes relating to this announcement are contained in Appendix 1.
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	A lower cut-off of 200 ppm TREO-Ce ₂ O ₃ was used for data aggregation of significant intervals with a maximum of 2 metres of internal dilution and no top-cuts applied. This lower cut-off is consistent with the marginal cut-off grade estimated and applied in the resource statements on the Makuutu Project
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Significant intervals were tabulated downhole for reporting. All individual samples were included in length weighted averaging over the entire tabulated range. No metal equivalents values are used.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Criteria	JORC Code explanation	Commentary
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Down hole lengths, true widths are not known.
mineralisation widths and intercept	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
lengths	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to diagrams in body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This report contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive	be reported including (but not limited to): geological observations; geophysical survey results; bulk samples - size and method of	Metallurgical leach testing was previously conducted on samples derived from exploration pits, RAB drilling, and one 8.5 tonne bulk pit sample.
exploration data		In 2012, 5 pit samples were sent to the Toronto Aqueous Research Laboratory at the University of Toronto for leachability tests.
	groundwater, geotechnical and rock characteristics;	In 2017, 2 pit samples were sent to SGS Laboratory Toronto for leachability tests.
		2017/18, 29 samples were collected from 7 RAB drill holes. 20 of these were consigned to SGS Canada and 4 to Aqueous Process Research (APR) in Ontario Canada. The remaining 5 samples were consigned to Bio Lantanidos in Chile.
		2018/19, 8.5 tonne bulk sample was consigned to Mintek, South Africa, to evaluate using Resin-in-leach (RIL) technology for the recovery of REE.
		2019: 118 samples from 31 holes from the 2019 diamond drilling program had preliminary variation testwork conducted TREE-Ce extraction ranged from 3% to 75%.
		2020: Testing of composite samples with lower extractions from the 2019 variation testing using increasing rates of acid addition and leach time. Significant increases in extractions were achieved.
		2020: Testing of composited samples from two exploration holes east of the Makuutu Central Zone provided an average extraction of TREE-Ce recovery of 41% @ pH1
		2021-2023 extensive metallurgical testwork.

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).	Future work programs include demonstration plant testwork
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	