

ASX Announcement 20 February 2024

THREE COPPER-GOLD TARGETS FASTRACKED FOR DRILLING Collerina Geochemistry Update

Highlights

- Large-scale 'pathfinder' geochemical anomaly of antimony with anomalous arsenic (10x2km, open to south and west) discovered via auger sampling at the Collerina Trend.
- This anomaly correlates with gold-rich targets at Max's Folly and Aldebaran as well as the Widgelands copper target, which will be fast tracked for drill testing. Notably - Aldebaran and Widgelands have not been drilled before and anomalous gold results from Max's Folly has not been followed up.
- New rock chip sample assays from gossanous material at Aldebaran include:
 - 8.95g/t gold (Au), 0.10% copper (Cu), 461 ppm arsenic (As);
 - 1.59g/t Au, 0.16% Cu, 1420ppm As; and
 - 1.24g/t Au, 0.19% Cu, 727ppm As
- Copper in new rock chip assays from historical workings at Widgelands contain:
 - 9.16 % Cu, 0.1g/t Au, 74ppm As, and
 - 3.97% Cu, 0.06g/t Au, 1699ppm As.
- Broad coverage auger sampling in the prospective Collerina Trend is ongoing with ~1,700 assays pending and several thousand more first pass samples planned.
- New targets prioritised in the Company's upcoming 15,000 to 25,000 metre drill campaign across the Western and Eastern Group tenements planned to commence in March

BOARD & MANAGEMENT

Chair Mike Rosenstreich Executive Technical Director Kyle Prendergast Non-Executive Director Emmanuel Correia

CAPITAL STRUCTURE

Share 2,323M Market Cap. 7M Share Price \$0.003

CONTACT US

helix@helixresources.com.au Level 13 191 St Georges Terrace Perth, WA 6000 helixresources.com.au ASX: HLX

Helix Resources Ltd (**ASX:HLX**, Helix or the Company) is pleased to announce the discovery of a large-scale anomaly of copper-gold 'pathfinder elements' at the Company's Eastern Group Tenements (Eastern Group) located approximately 50km southeast of Nyngan in central, NSW (refer **Figure 1** – Eastern Group Tenements). Notably, this anomaly envelopes three copper-gold targets which returned high copper and gold assays from rock-chip samples.

The Eastern Group covers approximately 1,570km² of copper - prospective stratigraphy in the Girilambone Group, west and southwest of Nyngan (**Figure 1**). In 2023 the Company commenced a regional-scale exploration program in the Eastern Group, comprising auger geochemical sampling, geological prospecting, and reconnaissance rock chip sampling. The exploration program, subject to cropping and weather events, is ongoing, and this report provides an update on auger and rock chip assay results received to date.

Helix's Executive Technical Director, Kylie Prendergast commented:

"The Helix team are utilising a number of advanced exploration techniques across our tenements, allowing the Company to paint a much more refined picture of the high-grade copper-gold potential in the very prospective Collerina Trend.

It is always exciting when multi layered datasets highlight the potential of a target. In this case, a newly identified, large-scale pathfinder (antimony and arsenic) auger anomaly is aligned with a major regional structural position. This discovery is further supported by the identification of initial high-grade copper and gold results in rock chips from three target areas.

With further work, we expect these areas to feature within our upcoming, major drilling campaign, when Helix intends to test 20-30 prospects including 15-20 new undrilled targets.

Following significant regional exploration activity Helix is establishing a pipeline of very encouraging targets which have the potential to deliver a major copper-gold discovery. We are very active on our large, strategic land position in the highly endowed, Cobar copper-gold region. That's makes our upcoming tests of that target pipe line very exciting for our shareholders."

Auger Results

Assay results have been received for 1,417 auger samples in the Eastern Group in the area northwest of the CZ project (**Figure 1**). The latest results were combined and levelled with the reprocessed historical auger results to generate element maps for the primary economic metals such as copper (Cu) and a range of pathfinder elements such as arsenic (As) and antimony (Sb). Further details on the processing of the geochemical data are provided in **Attachment 1** (JORC Table 1).

A 10km x 2km anomalous zone of antimony has been defined west of CZ that is open to the south and west (**Figure 2**). This zone also contains several arsenic anomalies, including a 2km x 1km arsenic anomaly over the Aldebaran and Max's Folly prospects, where significant gold and copper results have also been returned from rock chip sampling (**Table 1**) and previous RC drilling.

Anomalous antimony is also present in previous auger sampling at the Widgelands prospect, which is located 13km to the northwest of Aldebaran (**Figure 2**).

Arsenic and antimony are common pathfinders for gold. Given the anomalous arsenic and antimony auger results, the pulps for all auger samples collected to date in the Eastern Group have been submitted for gold analysis, with results expected in March to April 2024. All future auger samples in the Eastern Group will also be analysed for gold.

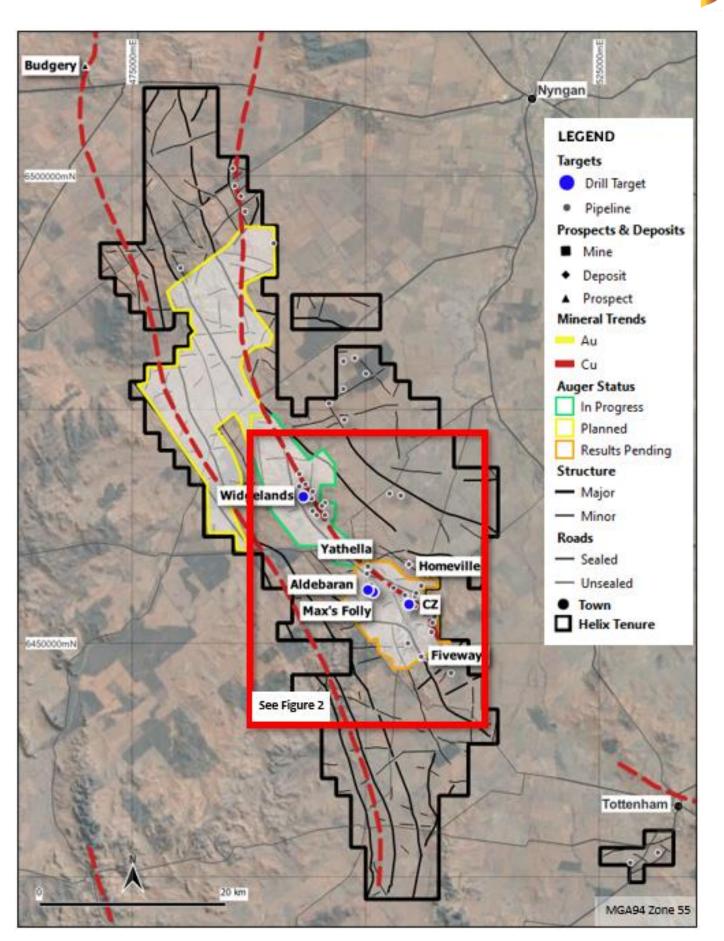


Figure 1 – Eastern Group tenements, targets, structure and auger sampling status

Rock Chip Results

Assay results have been received for 50 rock chip samples that were collected during regional reconnaissance in the Eastern Group. Several significant gold, copper and pathfinder results have been returned from the Aldebaran, Max's Folly and Widgelands prospects, as shown in **Table 1**. The Aldebaran and Widgelands prospects have not been drilled previously. A reverse-circulation (RC) hole (CORC072) drilled by Helix in 2017 at Max's Folly intersected historic mine stopes and 16m at 0.35g/t Au, 947ppm Cu, 639ppm As and 19ppm Sb from surface¹. This drill hole was never followed up. The RC and rock chip results support the anomalous arsenic and antimony auger results and the potential to find new gold-copper mineralisation.

Next Steps

- Auger drilling will continue in the Eastern Group into the next quarter. Helix presently has two auger rigs operating and is proposing to collect several thousand new samples along the Collerina Trend.
- Results are pending for 262 samples that extend the auger coverage in the area southwest of the CZ prospect. Auger sampling is currently in progress in the Widgelands area, where approximately 400 samples have been collected to date.
- In addition, 1,541 gold assays are pending for the Eastern Group auger samples, with those results expected in March to April 2024.
- The Widgelands, Aldebaran and Max's Folly prospects have been added to the upcoming major drill campaign which will test numerous priority targets over the next few months.

¹ Refer: 30 Oct 2017 HELIX RESOURCES LIMITED Quarterly Activities Report

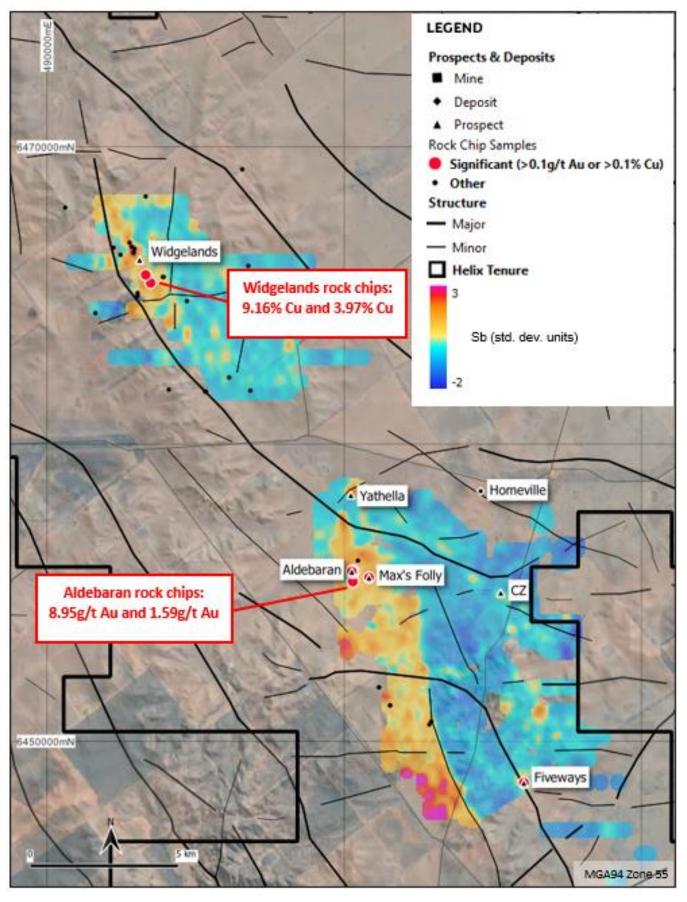


Figure 2 – Widgelands to Fiveways antimony auger anomaly and rock chip locations

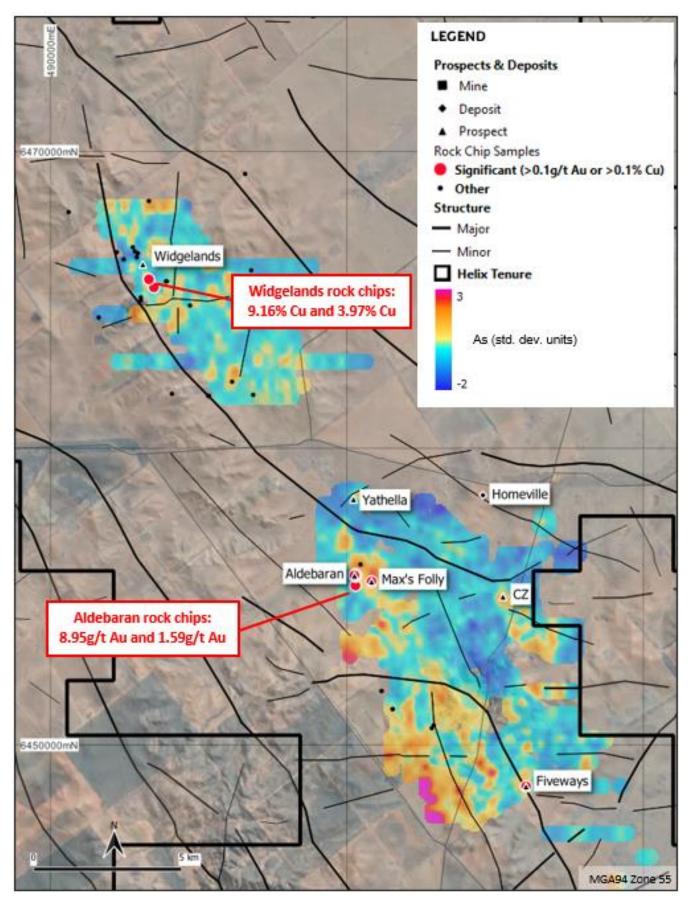


Figure 3 – Widgelands to Fiveways arsenic auger anomaly and rock chip locations

Sample ID	Prospect	Cu (%)	Au (g/t)	As (ppm)	Bi (ppm)	Pb (%)	Sb (ppm)	Notes
300000240	Widgelands	9.16	0.1	74	0.41	-	9.4	Gossanous serpentinite with malachite and ferruginous bands, outcrop in shallow pit
300000243	Widgelands	3.97	0.06	1699	0.1	-	3.81	Gossanous serpentinite with azurite and malachite, outcrop in 1.5m deep pit
300000057	Aldebaran	0.10	8.95	461	243	0.52	28.47	Gossanous quartz vein in float
300000154	Aldebaran	0.16	1.59	1420	21.4	6.26	59.52	Gossanous psammite with quartz vein, ferruginous bands with boxworks in float
300000155	Aldebaran	0.19	1.24	727	17.45	0.28	16.44	Ferruginous gossan with quartz with minor boxworks in float
300000058	Aldebaran	0.04	0.88	672	53.2	0.42	41.21	Gossanous quartz vein in float
300000059	Max's Folly	0.10	0.16	229	1.85	0.09	137	Siltstone, folded with trace malachite in float near historic diggings
300000145	Fiveways	-	0.72	3387	20.58	-	5.51	Gossan, red-brown with brecciated quartz in float
300000151	Aldebaran	0.02	0.57	365	31.87	0.76	31.61	Black green ultramafic in float

Table 1 – Recent rock chip results from the Eastern Group Tenements (>0.1% Cu or >0.1g/t Au)

Table 2 – Rock Chip Sample Coordinates (MGA94 Zone 55)

Sample ID	Prospect	Easting	Northing	Elevation
300000057	Aldebaran	500281	6455729	216
300000058	Aldebaran	500282	6455730	216
300000059	Max's Folly	500831	6455519	211
300000145	Fiveways	506031	6448592	216
300000151	Aldebaran	500284	6455361	219
300000154	Aldebaran	500285	6455679	216
300000155	Aldebaran	500263	6455705	216
300000240	Widgelands	493492	6465423	239
300000243	Widgelands	493317	6465684	252

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results, Mineral Resource estimates and geological data for the Cobar projects is based on information generated and compiled by Mr. Gordon Barnes and Dr. Kylie Prendergast who are both employees and shareholders of the Company. Mr. Barnes and Dr. Prendergast are Members of the Australian Institute of Geoscientists. They both have sufficient experience that is relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to each qualify as Competent Person(s) as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Barnes and Dr. Prendergast have consented to the inclusion of this information in the form and context in which it appears in this report.

This ASX release was authorised by the Board of Directors of Helix Resources Ltd.

ABN: 27 009 138 738 ASX: HLX

Contact Details: Helix Resources Limited Level 4, 225 St Georges Terrace, Perth, WA, 6000

PO Box 7237 Cloisters Square PO Perth, WA 6850

Email: helix@helixresources.com.au Web: www.helixresources.com.au Tel: +61 (0)8 9321 2644

Board of Directors: Mike Rosenstreich - Chair Kylie Prendergast - Executive Technical Director Emmanuel Correia – Non-executive Director

Company Secretary Ben Donovan

Investor Contact: Mike Rosenstreich Company Contacts

Media Contact: David Tasker Chapter One Advisers Email: <u>dtasker@chapteroneadvisors.com.au</u> Tel: 0433 112 936

About Helix Resources

Helix Resources is an ASX-listed resources company which is 'all-in on copper' exploration in the prolific copper producing region of Cobar, NSW.

The strategy is to generate new copper targets on its large, underexplored ground position and test them through drilling to make new discoveries.

The Company possesses a sizable ground position across three tenement groups which are largely untested despite being located within ~50km of significant copper producing operations. The western tenements consist of 30km of contiguous strike and the Company is advancing a pipeline of wholly owned copper opportunities, as well as the Canbelego JV Project (70% owned and operated by Helix and 30% owned by Aeris Resources) where a Mineral Resource of 32.8kt of contained copper has been estimated (refer Appendix A). The eastern tenement group encompasses more than 150km of prospective strike and includes the 100% owned high-grade CZ copper project.

Appendix A: Canbelego Main Lode Mineral Resource Estimate

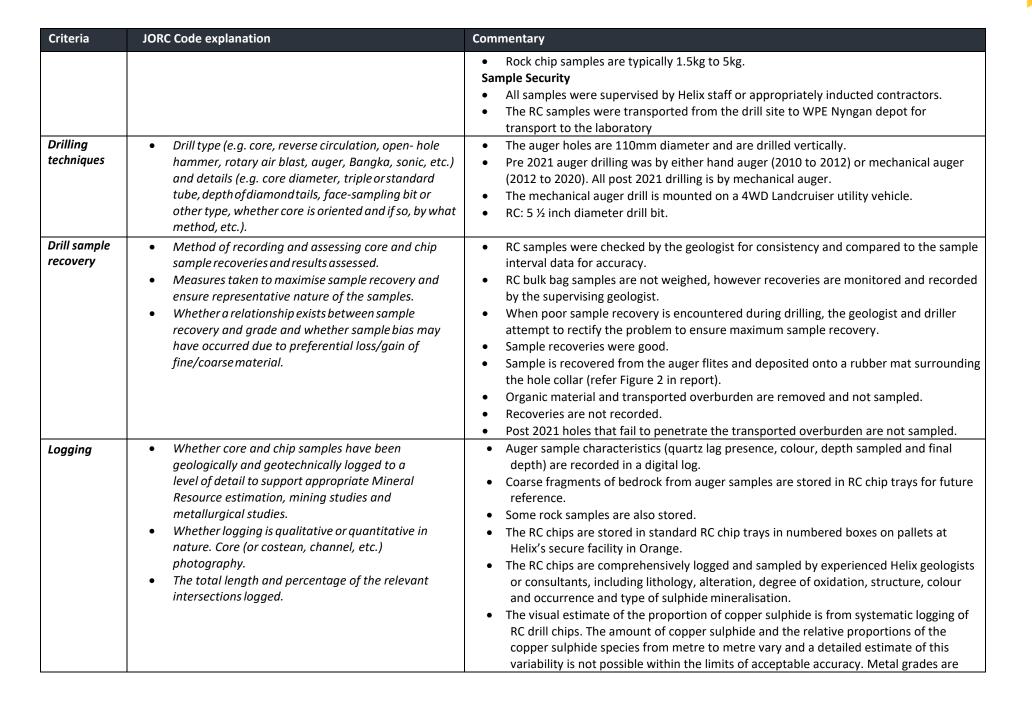
A Mineral Resource estimate for the Canbelego Main Lode was completed by MEC Mining. This was the first update of the Canbelego resource since the 2010 resource estimate.

The 2023 updated Mineral Resource Estimate for the Canbelego Main Lode is presented in **Table 1** below.

MRE Category	Tonnes	Grade (Cu%)	Cu-Metal (t)
Total opencut MRE, ≥240mRL; 0.3 Cu% cut-off grade	& underground MRE, <	<240mRL; 0.8 Cu%	6 cut-off grade
Indicated	340,600	1.65	5,620
Inferred	1,493,700	1.75	26,140
Total: Opencut & Underground	1,830,000	1.74	31,842
Comprising:			
MRE Category	Tonnes	Grade (Cu%)	Cu-Metal (t)
Potential opencut MRE, ≥24	10mRL; 0.3 Cu% cut-off	grade	
Indicated	99,700	1.28	1,276
Inferred	282,300	1.21	3,416
Total: potential opencut MRE	377,000	1.23	4,637
Potential underground MRE, <	240mRL; 0.8 Cu% cut-	off grade	
Indicated	240,900	1.81	4,360
Inferred	1,211,400	1.88	22,774
Total: potential underground MRE	1,453,000	1.87	27,171
* Numbers may not sum due to rounding			
* Numbers are rounded to reflect that they are estima	tes		
* A top-cut grade of Cu 12% was applied to the MRE			
* Stated MRE complies with Reasonable prospects of e	eventual economic extr	raction	

Table 1: 2023 Canbelego Main Lode Mineral Resource Estimate (MRE)

Helix Resources is not aware of any new information or data that materially affects the Mineral Resource Estimate announced on 14 June 2023.



ATTACHMENT 1: JORC Code Table 1

February 2024 – Eastern Group Tenements geochemistry results

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sounds, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation mayberequired, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation (RC) Drilling Commercial drilling contractor Resolution Drilling Pty Ltd conducted the RC drilling. The two holes were orientated between 050° to 060° or between 230° and 235° (UTM) and were drilled with starting dips of 60°. Drill hole locations were determined using a hand-held GPS. Downhole surveys were conducted using the Reflex multi-shot gyro system. Holes were sampled at 1m intervals in zones of mineralisation or significant alteration via a cyclone cone splitter into a numbered calico bag with weights typically from 1.5kg to 3.5kg for the lab sample. Outside of zones of mineralisation or significant alteration, holes were sampled in 4m composites from the large plastic bag holding the full 1m sample using a spear. The samples were placed into a numbered calico bag with weights typically from 1.5kg to 3.5kg for the lab sample. Auger and Rock Chip Sampling Auger sample spacing ranges from 200m x 200m to 100m x 50m. Pre 2021 auger samples were collected by Helix staff. Contractors, Anomaly Exploration & Mining Services and AMWD conducted the post 2021 auger drilling. Auger holes are 110mm diameter and are drilled vertically though the transported overburden. The base of the overburden is typically marked by a quartz-rich lag layer. The average hole depth for pre 2021 samples is 0.4m for hand auger holes and 1.5m for mechanical auger holes. The average hole depth for post 2021 samples is 1.9m. Soil, gravel and saprolite is recovered from the auger flites and deposited onto a rubber mat surrounding the hole collar. Material above the quart lag layer is removed to avoid mixing with the target horizon. Pre 2021 auger samples were passed through 0.42mm sieve and 0.5kg to 1kg sample is placed into a numbered calico bag. Coarse fragments of bedrock from auger drilling were placed into an RC chip tray for future reference. Rock chip samples were collected from o

2	5
2	

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 determined by laboratory assay. The copper sulphide typically occurs as disseminations, stringers, laminations, vein fill and semi-massive sulphide. Fine copper sulphide may be underestimated if present. Identification of the sulphide species and visual estimates of the proportions of those sulphide species present have been made by experienced geologists. RC chips are logged to an appropriate level of detail to increase the level of geological knowledge and increase the geological understanding of the prospect. RC Drilling The RC drilling rig is equipped with an in-built cyclone and cone splitting system, which
and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field, duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 provided one bulk sample of approximately 20kg to 30kg and a sub-sample of 1.5-3.5kg per metre drilled. All RC samples were split using the system described above to maximise and maintain consistent representivity. The samples were dry. Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags. For mineralised and/or significant altered intervals, the 1m sub-sample was submitted for analysis. All other intervals were sampled in 4m composites from the RC bulk bag using a spear. Field duplicates were collected by spear from green plastic bags. These duplicates were designed for laboratory checks. Certified Reference Material (CRM) standards and blanks are inserted into the sample stream at approximately 1:35. Laboratory duplicate samples are split with a riffle splitter. A 1.5kg to 3.5kg RC sample was collected from 1m intervals or from 4m composites and these are considered appropriate and representative for the grain size and style of
		mineralisation. Auger Drilling
		• Certified Reference Material (CRM) standards and blanks are inserted into the sample stream at approximately 1:50.
		 Organic material and transported overburden is removed and is not sampled. Auger holes that fail to penetrate the transported overburden are not sampled. For pre 2021 samples, a 200g to 250g sample was considered appropriate, however the minus 0.42mm fraction will concentrate finer-grained material (e.g. aeolian sand/dust), particularly for the shallow hand auger samples. Therefore this method was modified to that outlined below.
		• For post 2021 samples, a 0.5kg to 1kg sample is considered appropriate and representative for the style of mineralisation being targeted.

	Commentary	JORC Code explanation	Criteria
	 Rock Chips Rock chip samples were collected from outcrop using a hammer or from surface at irregular sample intervals. Float samples may not be representative of in situ material, particularly 		
cularly in ploughed ate for the style of les: th AAS finish ultielement suite of 9 2021 samples: 85% passing 75um. 1540Q20) and ICP-AES chip samples: nominal 85% passing 1540Q20) and ICP-AES imple t on 1m split RC bmitted to ALS and ck Range: samples) ecks.	 surface at irregular sample intervals. Float samples may not be representative of in situ material, particularly paddocks. The laboratory techniques described below are considered appropriate for the mineralisation targeted. Auger Drilling Bureau Veritas conducted the sample analysis for pre 2021 samples: Au was analysed by aqua regia digest of a 50g charge with AAS 4 acid digest followed by ICP-MS or ICP-AES finish for multielent to 20 elements. SGS Australia Pty Ltd conducted the samples analysis for the post 2021 samples: Samples are dried, weighed and pulverised to a nominal 85% pailor of the end of	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Quality of assay data and laboratory tests
85% pass (S40Q20) chip samp nominal (S40Q20) mple t on 1m sp bmitted to ck Range: samples) ecks. re sample	 Samples are dried, weighed and pulverised to a nominal 85% part of a cid digest (GE_DIG40Q20) followed by ICP-MS (GE_IMS40Q2 (GE_ICP40Q20) finish for a 59 element suite. Rock Chip SGS Australia Pty Ltd conducted the samples analysis for the rock chip sate are dried, weighed, crushed and pulverised to a nomine 75 um. 4 acid digest (GE_DIG40Q20) followed by ICP-MS (GE_IMS40Q2 (GE_ICP40Q20) finish for a 59 element suite. Au was analysed by ore grade Fire Assay / AAS on 50g sample RC Drilling ALS were used for Au and multi-element analysis work carried out on 1m samples. The laboratory techniques below are for all samples submitted are considered appropriate for the style of mineralisation at Black Rang Crush and pulverize sample. Au-AA25 Ore Grade Au 30g FA AA Finish (only on selected samples). ME-ICP61 48 element 4 acid digest ICP-AES. OG62 Ore Grade finish for non-Au over range samples. 	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been 	

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Assay results will be validated by standard database procedures and will be verified by Helix management and are not adjusted. Geological data is logged into laptop using Company logging templates that include validation procedures to ensure data integrity. Logged data includes detailed geology (weathering, structure, alteration, mineralisation), sample quality, sample interval and sample number. QA/QC inserts (standards, duplicates, blanks) are added to the sample stream. The auger assay data is statistically assessed, and if appropriate, the data are log- normal transformed and Z-Score levelling by sample type and analytical method is applied. The levelled data are then gridded to define anomalous trends. Magnetic susceptibility data is collected using a datalogger. All logged data, the assay data received from the laboratory, and survey data is loaded into a secure database and verified.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The RC collar, auger and rock chip positions were determined using a GPS (±5m). Grid system is MGA94 Zone 55. Surface RL data is collected using GPS and rectified by high-resolution publicly available digital elevation data (ELVIS 5m data).
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger ample spacing ranges from 400m x 200m to 100m x 50m, which is sufficient to determine anomalous zones for further investigation. Rock chip samples have an irregular sample pattern. The RC drilling has been conducted in a manner consistent with the procedures set out in this JORC table.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The surface sampling and analytical techniques are considered appropriate for the early exploration stage of the project. The structural trend of regional faults is determined by edge-detection algorithms applied to automatic gain control filters of reduced to pole airborne magnetic data with wavelengths of 100m to 800m. RC Drilling The position of the drill holes and the sampling techniques and intervals are considered appropriate for the early-phase exploration. Drilling is designed to intersect mineralisation as close to perpendicular as possible for the mineralised trends.

Criteria	JORC Code explanation	Commentary
		 Drill hole deviation will influence true width estimates of mineralisation. Further drilling is required to estimate the true width of mineralisation. Drill hole intersections of mineralisation are not considered to be biased. The drill collar positions are considered appropriate for the early exploration stage of the project.
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by Helix staff and its contractors.
Audits or reviews	The results of any audits or reviews of sample techniques and data.	No additional audits or reviews have been conducted to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overridingroyalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Company has 20 Exploration Licenses (EL's) in the Cobar-Nyngan region of NSW held by its 100% subsidiary company, Oxley Exploration Pty Ltd. 19 are held 100% by Oxley Exploration Pty Ltd, a wholly owned subsidiary of Helix Resources: EL6140, EL6501, EL6739, EL7438, EL7439, EL7432, EL8433, EL8608, EL8633, EL8710, EL8768, EL8845, EL8948, EL8703, EL9345, EL9385, EL9386, EL9387, EL9581. EL6105 is a joint venture with Aeris Resources Ltd (30% participating interest) and Oxley Resources Pty Ltd (70% participating interest and Manager). Native Title Claim NC2012/001 has been lodged by NTSCORP Ltd on behalf of the Ngemba, Ngiyampaa, Wangaaypuwan and Wayilwan traditional owners in the Cobar-Nyngan region which covers the Oxley Exploration Pty Ltd tenement portfolio. All tenements are in good standing and there are no known impediments to operating in this area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 All tenements have been the subject of previous exploration by numerous companies. Previous exploration data has been compiled, reviewed and assessed for all tenements held by the Company.
Geology	• Deposit type, geological setting and style of mineralisation.	• The tenements are prospective for structurally controlled base metal and gold deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 This report is focused on shallow auger drilling and surface rock chip sampling. RC Drilling refer to tables included with this report.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Assays included in intercept calculations are weighted by interval width. Mineralised intercepts for Cu are averaged within a contiguous interval above a specified Cu cut-off grade with a maximum of 2m of internal dilution. Cu intercepts were calculated for Cu cut-off grades of 0.1% Cu, 0.5% Cu and 1% Cu. No assay cut of high-grade material has been applied. No metal equivalent values have been calculated.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is designed to intersect mineralisation as close to perpendicular as possible. Drill hole deviation will influence true width estimates of mineralisation. The true width of mineralisation has not been estimated yet. True width will be further assessed on analysis of orientated structural data.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures in this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The reporting is balanced, and all material information has been disclosed.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further RC and/or diamond drilling and surface geophysical surveys are planned. Further auger sampling is in progress in the broader area. Confirmed geochemical anomalies will be followed-up with surface geophysics and/or initial RC drilling.