

FARABA PROSPECT DELIVERS A FURTHER 78m OF COMBINED INTERSECTIONS WITH HIGH GRADE RESULTS RECEIVED

HIGHLIGHTS

- High grade analytical results received for diamond drill holes FDD03 to FDD010
- Highlights include:
 - ✓ FDD05 12.90m total intersection including 5.97m @ 1.12% Li₂O (from 70.03m); and 2.72m @ 1.18% Li₂O (from 16.44m)
 - ✓ FDD04 12.73m total intersection including 3.70m @ 1.05% Li₂O (from 18.45m)
 - ✓ FDD09 6.88m total intersection including 2.93m @ 1.75% Li₂O (from 79.34m)
 - ✓ FDD03 11.85m total intersection including 2.00m @ 1.45% Li₂O (from 18.00m)
- Stage 1 drilling of c. 2,000m completed, with 13 diamond drill holes and 7 reverse circulation (RC) holes completed
- Awaiting analytical results for all drill holes and completion of mapping for planning of follow-up drilling

First Lithium Ltd ("FL1" or "the Company") is pleased to announce the receipt of assay results for 8 diamond drill holes FDD03 to FDD10 of the priority 2 lithium Faraba licence (Table 1), Mali. The high grade Li₂O results from holes FDD03 to FDD10 are seen in numerous pegmatites, with several of the pegmatite intersections at >2m in thickness (Figure 1 showing the better developed intersections), with the thickest intersection in diamond drill hole FDD05 with 5.97m intersection @ 1.12% Li2O (from 70.03m)(Figure 2)

Reporting Geologist, Kobus Badenhorst said:

"The aim of the recent program at Faraba was to identify wider intersections within the strike, which became evident as the results were delivered, particularly the FDD05 result of 5.97m. The combined smaller bands will contribute significantly in terms of volume when estimating the resource after compositing is completed".

DETAILS

The diamond holes FDD03 to FDD10 were drilled towards the northwest at an angle of -50°. Holes FDD03 to FDD09 were drilled in a line (Figure 1) to intersect the best developed pegmatites at Faraba according to current mapping, while hole FDD10 is a single hole drilled to test a separate mapped pegmatite.

Diamond hole FDD03 was drilled in the northeast of the licence and intersected several pegmatites, with several of these mineralised, the best developed returning results of 2.00m @ 1.45% Li₂O (from 18.00m)(Figure 1)(Table 1).

Diamond hole FDD04 intersected three well mineralised pegmatites, returning results of 3.70m @ 1.05% Li₂O (from 18.45m); 1.37m @ 1.11% Li₂O (from 75.00m); and 1.36m @ 1.25% Li₂O (from 79.50m) respectively (Figure 1)(Table 1).

Diamond hole FDD05 intersected several pegmatites, with several of these mineralised, with the two best developed pegmatites returning 2.72m @ 1.18% Li2O (from 16.44m) and 5.97m @ 1.12% Li2O (from 70.03m)(Figure 2) respectively (Figure 1)(Table 1).

Diamond hole FDD06 intersected several pegmatites, with three mineralised pegmatites returning results of 2.07m @ 1.40% Li₂O (from 10.25m); 0.92m @ 1.88% Li₂O (from 52.00m); and 1.22m @ 1.15% Li₂O (from 57.78m) respectively (Figure 1)(Table 1).

Diamond hole FDD07 intersected several pegmatites, with several of these mineralised, with the best developed pegmatite returning 3.17m @ 1.41% Li₂O (from 46.68m)(Figure 1)(Table 1).

Diamond hole FDD08 intersected several pegmatites, with one well mineralised returning results of 2.67m @ 0.95% Li₂O (from 99.80m)(Figure 1)(Table 1).

Diamond hole FDD09 was drilled in the northwest of the licence and intersected several pegmatites, with the better mineralised pegmatites returning results of 1.18m @ 1.24% Li₂O (from 76.44m) and 2.93m @ 1.75% Li₂O (from 79.34m)(Figure 1)(Table 1).

Diamond hole FDD10 intersected several pegmatites, with one well mineralised returning results of 1.35m @ 1.36% Li2O (from 86.59m)(Figure 1)(Table 1).

FL1 Managing Director, Venkat Padala said:

"Faraba is fast becoming a further significant prospect for FL1 with continued positive assays received. Whilst the intersections are not as significant as FL1's tier 1 Blakala prospect, the volume of intersections identified, particularly the wider intersections outlined in these results, is creating an interesting prospect for the Project's maiden resource estimate expected in mid-2024".

The results received are for 127 samples, which includes QC samples (14 samples of Duplicates, chip Blank and reference Standards). Good correlation was found on all QC samples.

Figure 1: Locality and analytical results of Faraba diamond drill holes FDD03 to FDD010

Table 1: Sampling and analytical results from diamond drill holes FDD03 to FDD010, as well as weighted intersections.

BHID	SAMP NO	FROM	то	Thick	LITH	Li	Li2O	Weighted Li2O%	Interval (m)
FDD03	K11501	17.00	18.00	1.00	GRD + thin Peg (3cm)	0.09	0.19		
FDD03	K11502	18.00	19.00	1.00	PEG	0.65	1.39		2.00
FDD03	K11503	19.00	20.00	1.00	PEG + Thin GRD (5cm)	0.70	1.52	1.45	2.00
FDD03	K11504	20.00	21.00	1.00	GRD + thin Peg (6cm)	0.10	0.21		
FDD03	NS	21.00	24.55	3.55					
FDD03	K11505	24.55	24.85	0.30	PEG + Thin GRD	0.02	0.05		
FDD03	NS	24.85	30.00	5.15					
FDD03	K11506	30.00	30.79	0.79	PEG + Thin GRD (17cm)	0.18	0.38		
FDD03	NS	30.79	48.00	17.21					
FDD03	K11507	48.00	48.85	0.85	GRD (granodiorite)	0.10	0.20		
FDD03	K11508	48.85	49.85	1.00	PEG	0.10	0.21		
FDD03	K11509	49.85	50.47	0.62	PEG	0.61	1.31	1.31	0.62
FDD03	K11510	50.47	51.00	0.53	GRD + thin Peg vein	0.12	0.26		
FDD03	NS	51.00	55.64	4.64					
FDD03	K11511	55.64	56.14	0.50	PEG	0.15	0.32		
FDD03	NS	56.14	61.36	5.22					
FDD03	K11512	61.36	62.00	0.64	PEG	0.05	0.11		
FDD03	NS	62.00	65.32	3.32					
FDD03	K11513	65.32	65.70	0.38	PEG	0.35	0.74	0.74	0.38
FDD03	NS	65.70	73.20	7.50					
FDD03	K11514	73.20	73.57	0.37	PEG	0.55	1.19	1.19	0.37
FDD03	NS	73.57	76.36	2.79					
FDD03	K11515	76.36	76.95	0.59	PEG	0.01	0.02		
FDD03	NS	76.95	78.95	2.00					
FDD03	K11516	78.95	79.32	0.37	PEG	0.04	0.08		
FDD03	K11517	79.95	80.26	0.31	PEG	0.03	0.06		
FDD03	NS	80.26	112.10	31.84					
FDD03	K11518	112.10	112.40	0.30	PEG	0.24	0.53	0.53	0.30
FDD03	NS	112.40	116.00	3.60					
FDD03	K11521	116.00	116.30	0.30	PEG	0.04	0.09		
BHID	SAMP NO	FROM	то	Thick	ЦТН	Li	Li2O	Weighted Li2O%	Interval (m)
FDD04	K11522	18.00	18.45	0.45	GRD	0.07	0.15		
FDD04	K11523	18.45	19.45	1.00	PEG	0.25	0.54		
FDD04	K11524	19.45	20.00	0.55	PEG	0.68	1.46	1.05	2 70
FDD04	K11525	20.00	21.00	1.00	PEG	0.60	1.30	1.05	3.70
FDD04	K11526	21.00	22.15	1.15	PEG	0.50	1.08		
FDD04	K11527	22.15	23.00	0.85	GRD	0.10	0.21		
FDD04	NS	23.00	32.83	9.83					
FDD04	K11528	32.83	33.22	0.39	PEG	0.01	0.02		
FDD04	NS	33.22	35.29	2.07					
FDD04	K11529	35.29	35.81	0.52	PEG	0.09	0.20		
FDD04	NS	35.81	50.50	14.69					
FDD04	K11531	50.50	51.00	0.50	PEG + Thin GRD (9cm)	0.06	0.14		
FDD04	NS	51.00	65.80	14.80					

ASX ANNOUNCEMENT

FDD04	K11532	65.80	67.00	1.20	PEG + Thin GRD (9cm)	0.11	0.24		
FDD04	NS	67.00	75.00	8.00					
FDD04	K11533	75.00	76.00	1.00	PEG + Thin GRD	0.50	1.08		
FDD04	K11534	76.00	76.37	0.37	PEG	0.55	1.19	1.11	1.37
FDD04	NS	76.37	79.00	2.63					<u> </u>
FDD04	K11535	79.00	79.50	0.50	GRD + thin Peg (5cm)	0.13	0.27		
FDD04	K11536	79.50	80.50	1.00	PEG	0.63	1.36		
FDD04	K11537	80.50	80.86	0.36	PEG + Thin GRD	0.44	0.96	1.25	1.36
FDD04	K11538	80.86	81.83	0.97	GRD	0.10	0.22		1
FDD04	NS	81.83	87.10	5.27					
FDD04	K11541	87.10	87.40	0.30	PEG	0.15	0.32		
EDD04	NS	87.40	111 02	24.52	120	0.10	0.02		
	NG	111.00	110.05	0.02	DEC.	0.01	0.02		
FDD04	N11542	111.92	112.25	0.33	PEG	0.01	0.03		
FDD04	INS	112.25	114.76	2.51					
FDD04	K11543	114.76	115.50	0.74	PEG	0.02	0.05		
BHID	SAMP NO	FROM	то	Thick	LITH	Li	Li2O	Weighted Li2O%	Interval (n
FDD05	K11544	15.90	16.44	0.54	GRD	0.09	0.19		
FDD05	K11545	16.44	17.44	1.00	PEG	0.56	1.21		
FDD05	K11546	17.44	18.44	1.00	PEG	0.75	1.61	1.18	2.72
FDD05	K11547	18.44	19.16	0.72	PEG	0.26	0.56		
FDD05	K11548	19.16	19.71	0.55	GRD	0.08	0.17		1
FDD05	NS	19.71	29.09	9.38					
FDD05	K11549	29.09	29.46	0.37	PEG	0.77	1.67	1.67	0.37
FDD05	NS	29.46	48.72	19.26					<u> </u>
FDD05	K11550	48.72	49.80	1.08	PEG	0.02	0.03		
FDD05	NS	49.80	70.03	20.23					
EDD05	K11551	70.03	70.44	0.41	PEG	0.41	0.88		1
FDD05	1(11001	70.03	70.44	0.47	000	0.41	0.00		
FDD05	K11552	70.44	70.91	0.47	GRD	0.13	0.29		
FDD05	K11553	70.91	71.53	0.62	PEG	0.71	1.54		
FDD05	к11554	71.53	72.00	0.47	GKD + thin Peg(1cm)	0.15	0.31	1.12	5.97
FDD05	к11555	72.00	73.00	1.00	PEG	0.54	1.16		
FDD05	K11556	73.00	74.00	1.00	PEG	0.70	1.51		
FDD05	K11557	74.00	75.00	1.00	PEG	0.47	1.02		
FDD05	K11558	75.00	76.00	1.00	PEG	0.64	1.38		
FDD05	K11561	76.00	77.00	1.00	GRD	0.11	0.24		
FDD05	NS	77.00	97.27	20.27					
FDD05	K11562	97.27	97.60	0.33	PEG	0.01	0.02		
FDD05	NS	97.60	98.76	1.16					1
FDD05	K11563	98.76	99.10	0.34	PEG	0.25	0.53	0.53	0.34
BHID	SAMP NO	FROM	то	Thick	ЦТН	Li	Li2O	Weighted Li2O%	Interval (n
FDD06	K11564	9.75	10.25	0.50	GRD	0.10	0.21		
FDD06	K11565	10.25	11.00	0.75	PEG	0.58	1.25		
FDD06	K11566	11.00	12.32	1.32	PEG	0.69	1.48	1.40	2.07
FDD06	K11567	12.32	13.00	0.68	GRD	0.09	0.20		1
FDD06	NS	13.00	50.63	37.63					
FDD06	K11568	50.63	51.25	0.62	GRD	0.12	0.25		
FDD06	K11569	51.25	52.00	0.75	PEG	0.11	0.23		
FDD06	K11571	52.00	53.00	1.00	PEG	0.41	0.87	0.92	1.88
FDD06	К11571	52.00	53.00	1.00	PEG	0.41	0.87	0.92	1.88

ASX ANNOUNCEMENT

FDD06	K11572	53.00	53.88	0.88	PEG	0.45	0.97		
FDD06	K11573	53.88	54.48	0.60	GRD	0.12	0.27		
FDD06	NS	54.48	56.00	1.52					
FDD06	K11574	56.00	56.71	0.71	PEG	0.09	0.19		
FDD06	NS	56.71	57.78	1.07					
FDD06	K11575	57.78	59.00	1.22	PEG	0.53	1.15	1.15	1.22
FDD06	NS	59.00	67.67	8.67					II
FDD06	K11576	67.67	68.78	1.11	PEG	0.15	0.33		
FDD06	NS	68.78	73.63	4.85					
FDD06	K11577	73.63	74.34	0.71	PEG	0.04	0.08		
BHID	SAMP NO	FROM	то	Thick	LITH	Li	Li2O	Weighted Li2O%	Interval (m)
FDD07	K11578	15.30	16.50	1.20	PEG	0.09	0.19		
FDD07	NS	16.50	30.36	13.86					
FDD07	K11581	30.36	31.60	1.24	PEG	0.00	0.01		
FDD07	NS	31.60	34.10	2.50					
FDD07	K11582	34.10	34.50	0.40	GRD	0.04	0.09		
FDD07	K11583	34.50	35.00	0.50	PEG	0.00	0.01		
FDD07	K11584	35.00	36.00	1.00	PEG	0.01	0.02		
FDD07	K11585	36.00	36.57	0.57	PEG	0.01	0.02		
FDD07	K11586	36.57	37.00	0.43	GRD	0.05	0.10		
FDD07	NS	37.00	46.00	9.00					
FDD07	K11587	46.00	46.68	0.68	GRD	0.11	0.24		
FDD07	K11588	46.68	47.00	0.32	PEG	0.46	0.98		
FDD07	K11589	47.00	47.30	0.30	PEG	0.21	0.46		
FDD07	K11590	47.30	48.00	0.70	PEG	1.08	2.32		
FDD07	K11591	48.00	48.50	0.50	PEG	0.72	1.54	1.41	3.17
FDD07	K11592	48.50	48.80	0.30	GRD	0.12	0.25		
FDD07	K11593	48.80	49.85	1.05	PEG	0.69	1.48		
FDD07	K11594	49.85	51.00	1.15	GRD	0.13	0.29		
FDD07	NS	51.00	52.29	1.29					
FDD07	K11595	52.29	52.87	0.58	PEG	0.51	1.09	1.09	0.58
FDD07	NS	52.87	54.25	1.38					
FDD07	K11596	54.25	55.25	1.00	PEG	0.67	1.43	1.43	1.00
FDD07	NS	55.25	57.25	2.00			-	-	
FDD07	K11597	57.25	57.55	0.30	PEG	0.03	0.07		
FDD07	NS	57.55	60.17	2.62					
FDD07	K11598	60.17	60.63	0.46	PEG	0.02	0.04		
FDD07	NS	60.63	88.08	27.45					
FDD07	K11601	88.08	88.48	0.40	PEG	0.02	0.03		
-									
BHID	SAMP NO	FROM	то	Thick	LITH	Li	Li2O	Weighted Li2O%	Interval (m)
FDD08	K11602	24.34	24.76	0.42	APLITE	0.01	0.02		
FDD08	NS	24.76	53.31	28.55					
FDD08	K11603	53.31	53.61	0.30	PEG+ GRD	0.02	0.03		
FDD08	NS	53.61	54.76	1.15					
FDD08	K11604	54.76	55.14	0.38	PEG	0.01	0.01		
FDD08	NS	55.14	71.23	16.09					
FDD08	K11605	71.23	71.66	0.43	PEG	0.49	1.05	1.05	0.43
FDD08	NS	71.66	90.78	19.12					

ASX ANNOUNCEMENT

FDD08	K11606	90.78	91.47	0.69	PEG	0.00	0.01		
FDD08	NS	91.47	97.13	5.66					
FDD08	K11607	97.13	97.45	0.32	PEG	0.01	0.03		
FDD08	NS	97.45	99.80	2.35					
FDD08	K11608	99.80	100.53	0.73	PEG	0.62	1.33		
FDD08	K11609	100.53	101.23	0.70	GRD	0.07	0.16	0.95	2.67
FDD08	K11610	101.23	102.47	1.24	PEG	0.55	1.17		
FDD08	NS	102.47	103.59	1.12					
FDD08	K11611	103.59	104.32	0.73	PEG	0.28	0.60	0.60	0.73
FDD08	NS	104.32	108.10	3.78					
FDD08	K11612	108.10	108.81	0.71	PEG	0.88	1.90	1.90	0.71
BHID	SAMP NO	FROM	то	Thick	LITH	Li	Li2O	Weighted Li2O%	Interval (m)
FDD09	K11613	50.32	50.72	0.40	PEG	0.02	0.03		
FDD09	NS	50.72	58.94	8.22					
FDD09	K11614	58.94	59.58	0.64	PEG	0.29	0.62	0.62	0.64
FDD09	NS	59.58	76.44	16.86					
FDD09	K11615	76.44	77.62	1.18	PEG	0.58	1.24	1.24	1.18
FDD09	NS	77.62	78.34	0.72					
FDD09	K11616	78.34	79.34	1.00	GRD	0.11	0.23		
FDD09	K11617	79.34	80.34	1.00	PEG	0.93	2.01		
FDD09	K11618	80.34	81.34	1.00	PEG	0.82	1.78	1.75	2.93
FDD09	K11621	81.34	82.27	0.93	PEG	0.68	1.46		
FDD09	K11622	82.27	83.00	0.73	GRD	0.11	0.24		
BHID	SAMP NO	FROM	то	Thick	ЦТН	Li	Li2O	Weighted Li2O%	Interval (m)
FDD10	K11623	20.10	20.76	0.66	PEG	0.01	0.02		
FDD10	NS	20.76	40.72	19.96					
FDD10	K11624	40.72	41.47	0.75	PEG	0.01	0.03		
FDD10	NS	41.47	86.59	45.12					
FDD10	K11625	86.59	87.00	0.41	PEG	0.32	0.69		
FDD10	K11626	87.00	87.94	0.94	PEG	0.77	1.66	1.36	1.35
FDD10	NS	87.94	103.21	15.27					
FDD10	K11627	103.21	103.65	0.44	PEG	0.01	0.02		

* Li% to Li₂O% conversion of 2.153 used

Figure 2: Section showing FDD05 with several mineralised intersected pegmatites

ABOUT FIRST LITHIUM

First Lithium (ASX code: FL1) is at the forefront of lithium exploration and sustainable development, focusing on pioneering projects like Blakala and Faraba in Mali. Our management team has significant in-country experience and specialist advisors with extensive lithium exploration and government relations expertise.

Our commitment goes beyond the pursuit of lithium riches; it's about powering tomorrow responsibly. We recognise the global demand for lithium and are dedicated to positively impacting local communities while ensuring environmentally sensitive practices.

Ends-

The Board of Directors of First Lithium Ltd authorised this announcement to be given to the ASX.

Further information contact:

Venkatesh Padala Managing Director

T: +61 8 9481 0389 E: info@firstlithium.com.au

Competent Persons Statement

Except where indicated, exploration results above have been reviewed and compiled by Mr Kobus Badenhorst, a Competent Person who is a Member of SACNASP and the South African Geological Society (GSSA), with over 26 years of experience in metallic and energy mineral exploration and development, and as such has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Badenhorst is the Managing Director of GeoActiv Dynamic Geological Services and consents to the inclusion of this technical information in the format and context in which it appears.

Cautionary Statement – Visual Estimates

This announcement contains references to visual results and visual estimates of mineralisation. FL1 advises there is uncertainty in reporting visual results. Visual estimates of mineral findings should not be considered a substitute for laboratory analysis where concentrations or grades are provided with scientific accuracy. Visual estimates also potentially provide no information regarding impurities or other factors relevant to mineral result valuations. The presence of pegmatite rock does not necessarily indicate the presence of Lithium mineralisation. Laboratory chemical assays are required to determine the grade of mineralisation.

Forward-Looking Statements

This announcement contains forward-looking statements which are identified by words such as 'may', 'could', 'believes', 'estimates', 'targets', 'expects', or 'intends' and other similar words that involve risks and uncertainties.

These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and the Company's management.

The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this announcement will actually occur, and investors are cautioned not to place undue reliance on these forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by law.

These forward-looking statements are subject to various risk factors that could cause the Company's actual results to differ materially from the results expressed or anticipated in these statements.

FIRST LITHIUM LIMITED ACN 009 081 770

Level 8, London House 216 St. Georges Terrace Perth Western Australia 6000

Tel: +61 (08) 9481 0389 Facsimile: +61 (08) 9463 6103

http://firstlithium.com.au

CONTACT:

Venkatesh Padala Managing Director

Tel: +61 8 9481 0389 info@firstlithium.com.au

DIRECTORS

Lee Christensen Venkatesh Padala Jason Ferris Andrew Law

CODE: ASX: FL1

Appendix 1

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 <u>Drilling at Faraba Prospect</u> Diamond drilling of two HQ core size holes was used to obtain core for sampling and analysis. All logging and sampling took place according to detailed Standard Procedure documents. The core was first accurately fitted to the orientation line (bottom of hole) of the orientated core accurately drawn with a permanent paint marker; logging took place using the orientation line, and sampling was then marked on the retention portion of the core. ½ core sampling took place, on the same side of the core from the orientation line and the other side (closest to the geologist) was kept as reference. Before and after sampling photos were taken of the core, with all the sample marks clearly visible. Sampling was done lithologically, in the thicker pegmatite veins the samples were generally of a 1m intersection width. Archimedes wet-dry bulk density measurements were done for each sample interval. Core samples were bagged, with an alpha-numerical sample ticket inserted for each sample.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Planned 2,000m drilling program at Faraba licence now completed. The drill core was downhole orientated using the electronic REFLEX ACT III tool; a core orientation line was marked for all geological and sampling depth information.

Criteria	a	JORC Code explanation	Commentary
			 Diamond drilling is considered a standard industry drilling technique for vein or pegmatite deposits. The drilling rig used was a YS1500 with a Cummins QSB 6.7 engine. Diamond drill rods used were 3m long. The first hole was inclined at -50°. The drilling onsite is governed by a Daimond Drilling Guideline to ensure consistency in application of the method between geologists and drillers.
Drill recove	sample ry	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure 	 RC drill chip recovery is measured by collecting the full weight of each 1m drill interval. Drill sample recovery is monitored by measuring and recording the total
		 representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 core recovery on a drill run basis for the entire hole. Core recovery data is entered into the project drillhole database. RQD data is collected and core recoveries and associated RQD % for runs studied, where 100% recovery not obtained. Very good recovery and generally solid core was found in the 8 drillholes.
Loggin	g	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Core logging took place only after careful fitting of all core, followed by the orientation of the core from the Reflex orientation data, followed by core recovery and RQD data collection.

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed and appropriate lithological, structural and weathering logging took place on the full core using the orientation line for interval measurements. All logging data is entered into the project drillhole database. Sampling still to take place.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 <u>Diamond and RC drilling at Faraba Prospect</u> All spodumene mineralised portions of the core was sampled in the 8 Diamond holes. Sampling takes place according to a sampling protocol document. HQ and NQ size core was ½ core sampled by a core cutter. Sampling is done lithologically, to a minimum sample lengyh of 30cm and an average size of 1.00m. The sampling interval is seen as representative Bulk Density via wet-dry Archimedes technique is still to take place.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples sent to the analytical laboratory (SGS in Johannesburg, South Africa), with assay results for drillholes FDD03 to FDD10 received. Analyses was via Na2O2 Fusion, HNO3, ICPAES. This is seen as an appropriate analytical technique with the suite of 27 elements covered. SGS is an accredited analytical laboratory. 6 AMIS reference standards (AMIS0603, AMIS0524 and AMIS0682 were used), 6 AMIS chip blanks and 2 pulp Duplicates were inserted by FL1 and analysed as part of this batch of results. SGS added internal standards (OREAS906 and AMIS0355), as well as repeat analyses. Good correlation were found from all QC reference material.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 On site logging took place with experienced geologists, and a senior company geologist checking all the logging being undertaken. A senior GeoActiv Pty Ltd geologist observed the logging and some of the pegmatite intersections. The geological field data is manually transcribed into a master Microsoft Excel spreadsheet which is appropriate for this stage in the exploration program. The raw field data is checked in the Microsoft Excel format first to identify any obvious errors or outlier data. The data is then imported into a Microsoft Access database where it is subjected to various

Criteria	JORC Code explanation	Commentary
		validation queries.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Dillhole locations were recorded using a hand held GPS, collars will be surveyed via DGPS. Down-hole verticality surveys are done on all holes by multishot survey. A Digital Terrain Model (DTM) will still be conducted on the project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling for the phase of drilling was done at relatively close spacing of 50m to 100m between holes. No sample compositing is taking place.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Intersection thicknesses are reported incorporating deeper intersections of the pegmatites confirming dip and thickness.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• Permits for the Mali Lithium project are in their first renewal period granted by the original Mali decree "Order No. 2022-0276/MMEE-SG" (Faraba permit) and "Order No. 2022-0275/MMEE-SG" (Gouna permit). Both permits are valid for the exploration of Group 3 elements (Li, Co, Cr, Nb, Ni, PGE, REE, Sn, Ta, Ti, V, W and Zr) and are considered early stage Li exploration projects.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historic exploration work was completed by Russian geologists during 1963-64. Geological prospecting was carried out in the central part of the Bougouni pegmatite field. The Company has obtained the digital data in relation to this historic information. The historic data comprises mapping, and 2 diamond drillholes on the Farba licence. The historic results have not been reported
Geology	• Deposit type, geological setting and style of mineralisation.	 Faraba licence The presence of vein quartz and quartzite occur as small lensoidal bodies in close proximity to pegmatite bodies. The pegmatites invariably had sinistral and dextral dislocations by both local small-scale faults and regional large-scale faults. The pegmatite veins are found predominantly emplaced within the granodioritic plutonic bodies within sheared zones parallel to the trend of N60°E. However, pegmatite emplacement is also found on N40°W direction within migmatitic-gneiss on the North-Eastern region of the Faraba prospect.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Summary drill hole information is presented in the body of the text in ASX:FL1 31/01/2024.

Criteria	JORC Code explanation	Commentary
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No upper or lower grade cut-offs have been used. The pegmatite in the drillhole intersections are mineralised throughout in the results received, no low grade or very low grade areas were aggregated in the intercepts. Intercepts are weighted and shown in Table 1 of the main body, all outcrop sampling results are shown in the table. The Li to Li₂O conversion of 2.153 has been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The pegmatites generally dip at -70° to the south-southeast. The holes are all drilled perpendicular to the general strike of the pegmatite bodies, at a dip of -50°. Downhole widths are reported.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figures are displayed in the main text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results are reported, with all Li results shown in the body of the Announcement in Table 1. Full analytical results shown in Appendix 1.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, 	 No other material exploration information has been gathered by the Company.

Criteria	JORC Code explanation	Commentary
exploration data	groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Faraba Project Mapping is currently taking place, with mapping to cover the entire Faraba licence. Further planning on Faraba will be done on receipt of results from the completed drilling program.