RESOURCES LIM

<u>Great Bou</u>der

HIGHLIGHTS

- Air-core (AC) drilling intersects gold north and south of Saltbush extending mineralisation for more than 300m, and remaining open in both directions
 - 14m @ 1.15g/t Au from 72m to end of hole, including 4m @ 3.43g/t Au from 72m in 24SWAC018 (50m north of Saltbush workings)
 - o 4m @ 2.08g/t Au from 64m in 24SWAC029 (100m south of Saltbush workings)
- The Saltbush Prospect has now been extended over a +300m mineralised strike length remaining open in both directions and continues to show similarities to the nearby Ironbark deposit (100koz Au @ 3.3g/t)
- > Priority target identified northeast of Saltbush with extremely high pathfinder anomalism
 - Rock chip samples from a 100m-long zone of gossanous and strongly laminated quartz veins returned assays up to 0.6g/t Au and 81g/t Ag with extremely high pathfinder elements supported by recent AC drilling along strike
- > Drilling to resume at Saltbush and other targets along the Ironbark corridor in March

Great Boulder Resources ("**Great Boulder**" or the "**Company**") (ASX: **GBR**) is pleased to announce recent exploration results from the Company's flagship Side Well Gold Project ("**Side Well**") near Meekatharra in Western Australia.

Great Boulder's Managing Director, Andrew Paterson commented:

"Our early-stage exploration within the Ironbark corridor is looking very exciting as we start to fill in the gaps. Firstly, air-core drilling has extended the known gold mineralisation at Saltbush along strike in both directions. These results will be followed up in the next drill campaign starting in March."

"Secondly we've identified a new target 400m away with extremely high levels of Mulga Bill-style pathfinder elements. The surface outcrop is a zone of gossanous alteration with strongly laminated quartz veins. The peak bismuth value is approximately <u>ten times higher</u> than anything we've seen at Side Well before, with elevated gold, silver, molybdenum and copper which are characteristic of Mulga Bill. This suggests we have both styles of mineralisation within the Ironbark corridor target area which is an exciting development."

"We'll be drilling both areas during March and I look forward to reporting the results as soon as possible."

Cautionary Statement

Historical RAB drilling data contained within this release have been reported by a previous owner, Esso Exploration and Production Australia Inc in 1986. Further exploration and evaluation may reduce confidence in these results under the JORC 2012 standards. Nothing has come to the attention of Great Boulder or its competent person that cause them to question the accuracy or reliability of the previously reported drill results and work. The company has undertaken desktop and some field evaluation of the work completed however has not comprehensively validated the results and therefore is not to be regarded as reporting, adopting or endorsing these results.

AC drilling targeting geochemical anomalies around the Saltbush prospect has extended the known strike, with gold mineralisation intersected to the northwest and southeast of previous drilling implying a strike length of more than 300m, open in both directions. This data compares favourably to the Ironbark deposit (100koz Au @ 3.3g/t) at a similar stage in its discovery history.

FIGURE 1: DRILLING AT SALTBUSH HAS EXTENDED STRIKE TO OVER 300M, OPEN IN BOTH DIRECTIONS

In addition, rock chip sampling approximately 400m northeast of Saltbush has identified a new target. 13 samples from a 100m-long zone of gossanous and strongly laminated quartz veins have returned assay values of up to **0.6g/t Au** (628ppb) Au, **81g/t Ag**, **2,865ppm Bi**, **17ppm Mo**, **11ppm Te** and **951ppm Cu**. This chemical association is similar to that at Mulga Bill, suggesting that intrusiverelated and orogenic styles of mineralisation are both present within the Ironbark Corridor and validating the Company's belief that this is a significant, large-scale mineralised system with excellent potential for additional gold discoveries.

FIGURE 2: THE MINERALISED OUTCROP AT THE NEW TARGET HAS BEEN IDENTIFIED IN TWO LINES OF REGIONAL AC DRILLING TO THE SOUTHEAST, INDICATING A POTENTIAL STRIKE LENGTH IN EXCESS OF 400M

FIGURE 3: SALTBUSH IS THE FIRST NEW TARGET TO BE TESTED WITHIN THE 14KM IRONBARK CORRIDOR

93 AC holes were drilled during January and February 2024 for 3,727m with hole depths ranging from 4m to 98m within three target areas: Saltbush, Saltbush East and an unnamed geochemical anomaly to the southeast near the southern tenement boundary. The drilling was designed as a first-pass test on lines 200m apart with an average 50m spacing between holes.

Holes along strike from previous drilling at Saltbush intersected gold mineralisation with a best result of **14m @ 1.15g/t Au from 72m**, including **4m @ 3.43g/t Au from 72m**, in hole 24SWAC018. Significant intersection details are listed in Table 3 below. Saltbush has now been drilled over 300m of strike and these latest results confirm mineralisation to be open in both directions.

As mentioned previously Saltbush appears to be a close analogue to Ironbark in terms of geochemistry and geological setting. The typical pathfinder assemblage for Ironbark-style mineralisation as seen in soil geochemistry is an elevated Sb + As signature, which can be seen as a strong bullseye target at Saltbush and Ironbark North (Figure 4). Ironbark itself appears as a second-order anomaly on this dataset.

The new target, approximately 400m northeast of Saltbush first identified in field reconnaissance and confirmed by rock chip sampling, has a characteristic Mulga Bill-style pathfinder assemblage including Bi and Mo associated with Ag and Cu. These pathfinders are extremely elevated in the rock chip assays, particularly Bi (bismuth) with a peak assay of 2,865ppm. **This value is approximately ten times higher than any previous bismuth assay at Side Well**. Bismuth, a stable oxyanion which remains in-situ in the rock mass during weathering, was the most important targeting element used in early work by GBR to unlock the complex Mulga Bill deposit.

The same pathfinder assemblage has been identified in two regional AC lines southeast of the new target on the same strike, as shown in Figure 1, indicating a potentially mineralised feature with a strike of over 500m. With surface mineralisation including assays of up to 0.6g/t Au and 81g/t Ag the Company is keen to follow up and drill test this new area as soon as possible.

Regional plans of the two styles of mineralisation as seen in pathfinder geochemistry are shown in Figure 4. One striking feature of the relative abundance of the two styles in the southern area of Side Well is the close proximity of the hotter elements, such as Bi and Mo, highlighting the new target trend between Saltbush and the granite contact to the east, with the cooler elements As and Sb along the Saltbush trend slightly further west and away from the granite contact.

Next Steps

The next phase of drilling will include additional AC and RC drilling at Saltbush, a small program of AC holes testing the new target north of Saltbush and a series of lines testing the broad pathfinder anomalies north of Ironbark.

The Company is compiling geological mapping from Side Well down to Polelle in preparation for extending and infilling auger soils coverage over the whole area. This will enable GBR to complete a wholistic geochemical analysis of all target opportunities. Given the strength of mineralised indicators at the southern end of the Ironbark corridor the Company considers these southern tenements to be highly prospective and relatively under-explored.

FIGURE 4: HEAT MAPS OF AUGER GEOCHEMISTRY OVER THE IRONBARK CORRIDOR SHOWING IRONBARK-STYLE AS-SB ABUNDANCE (LEFT) AND MULGA BILL-STYLE AG-BI-CU-MO-W (RIGHT). NOTE THAT THERE IS NO AUGER DATA OVER THE MULGA BILL CORRIDOR ITSELF DUE TO ALLUVIAL COVER. This announcement has been approved by the Great Boulder Board.

For further information contact:

Andrew Paterson Managing Director Great Boulder Resources Limited admin@greatboulder.com.au www.greatboulder.com.au

in Follow GBR on LinkedIn

Media Lucas Robinson Corporate Storytime +61 408 228 889 lucas@corporatestorytime.com 7

COMPETENT PERSON'S STATEMENT

Exploration information in this Announcement is based upon work undertaken by Mr Andrew Paterson who is a Member of the Australasian Institute of Geoscientists (AIG). Mr Paterson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Paterson is an employee of Great Boulder Resources and consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

The information that relates to Mineral Resources was first reported by the Company in its announcement to the ASX on 16 November 2023. The Company is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not material changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FIGURE 5: GBR'S MEEKATHARRA PROJECTS

			h	ndicate	d	h	nferre	d		Total	
Deposit	Туре	Cut-off	Tonnes (kt)	Au (g/t)	Ounces	Tonnes (kt)	Au (g/t)	Ounces	Tonnes (kt)	Au (g/t)	Ounces
Mulga Bill	Open Pit	0.5	1,667	3.1	169,000	2,982	1.9	183,000	4,649	2.4	352,000
	U/ground	1.0	733	3.5	83,000	1,130	3.6	132,000	1,863	3.6	216,000
	Subtotal		2,399	3.3	252,000	4,112	2.4	316,000	6,511	2.7	568,000
Ironbark	Open Pit	0.5	753	3.7	88,000	186	1.9	11,000	938	3.3	100,000
	U/ground	1.0	0	0.0	0	0	0.0	0	0	0.0	0
	Subtotal		753	3.7	88,000	186	1.9	11,000	938	3.3	100,000
	Total		3,152	3.4	340,000	4,298	2.4	327,000	7,450	2.8	668,000

TABLE 1: SIDE WELL MINERAL RESOURCE SUMMARY, NOVEMBER 2023

Subtotals are rounded for reporting purposes. Rounding errors may occur.

ASX Code: GBR P: +61 8 9321 6037

ABOUT GREAT BOULDER RESOURCES

Great Boulder is a mineral exploration company with a portfolio of highly prospective gold and base metals assets in Western Australia ranging from greenfields through advanced to exploration. The Company's core focus is the Side Well Gold Project at Meekatharra in the Murchison gold field, where exploration has defined a Mineral Resource of 7.45Mt @ 2.8g/t Au for 668,000oz Au. The Company is also progressing early-stage exploration at Wellington Base Metal Project located in an emerging MVT province. With a portfolio of highly prospective assets plus the backing of a strong technical team, the Company is well positioned for future success.

Sample ID	Easting	Northing	Ag	As	Au	Bi	Cu	Мо	Pb	Те	W
			ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm
24SWG004	660475	7053291	0.39	259.7	16	16.1	268	3.1	209.7	Х	1.7
23SWG003	660477	7053285	2.1	196.1	29	75.6	711	9.0	389.3	0.5	2.2
24SWG002	660478	7053278	13.7	86.7	61	138.4	361	6.1	289.5	0.6	1.2
24SWG001	660479	7053276	0.97	99.5	37	101.2	583	17.1	191.4	0.7	2.6
24SWG009	660462	7053327	19.34	45	90	261.5	566	1.8	259.8	1.0	1.9
24SWG008	660456	7053336	20.05	22.1	46	194.6	295	1	64.2	0.8	0.6
24SWG007	660453	7053323	8.54	29.5	23	143.1	135	1.8	103.6	0.7	0.9
24SWG006	660459	7053331	81.17	30.8	628	2864.6	298	1.7	261	10.6	0.5
24SWG005	660469	7053298	0.11	54.9	8	3.0	88	1.6	29.9	Х	9.0
23SWG200	660449	7053281	Х	3.9	6	0.0	88	1.7	5.5	Х	0.4
23SWG199	660472	7053284	0.07	109.2	10	0.8	409	10.0	109.3	Х	1.0
23SWG190	660470	7053302	0.08	284.9	8	1.0	202	2.4	39.6	Х	0.9
23SWG189	660479	7053275	3.12	183.5	20	96.1	951	16.0	320.3	0.4	2.6

TABLE 2: ROCK CHIP SAMPLE DETAILS

Coordinates are in GDA94, Zone 50 projection. X denotes a result below the limit of detection. Peak values highlighted in red.

Prospect	Hole ID	From	То	Width	Grade g/t Au	Comments
Saltbush	24SWAC001	0	53	53		No significant intersection
	24SWAC002	0	64	64		No significant intersection
	24SWAC003	0	49	49		No significant intersection
	24SWAC004	0	51	51		No significant intersection
	24SWAC005	0	59	59		No significant intersection
	24SWAC006	0	64	64		No significant intersection
	24SWAC007	0	62	62		No significant intersection
	24SWAC008	12	16	4	0.12	4m composite
	24SWAC009	0	30	30		No significant intersection
	24SWAC010	0	40	40		No significant intersection
	24SWAC011	0	75	75		No significant intersection
	24SWAC012	0	80	80		No significant intersection
	24SWAC013	0	74	74		No significant intersection
	24SWAC014	0	40	40		No significant intersection
	24SWAC015	0	36	36		No significant intersection
	24SWAC016	8	24	16	0.19	4m composites
		56	60	4	0.11	4m comp to EOH
	24SWAC017	0	92	92		No significant intersection
	24SWAC018	72	86	14	1.15	4m comps to 84m; 86m EOH
	Including	72	76	4	3.43	4m composite
	24SWAC019	0	44	44		No significant intersection

TABLE 3: SIGNIFICANT INTERSECTIONS (GBR DRILLING)

ASX Code: GBR P: +61 8 9321 6037 Contact: Andrew Paterson, Managing Director Level 1, 51 Colin St West Perth WA 6005

24SWAC020	0	49	49		No significant intersection
24SWAC021	0	9	9		No significant intersection
24SWAC022	0	42	42		No significant intersection
24SWAC023	0	25	25		No significant intersection
24SWAC024	0	50	50		No significant intersection
24SWAC025	0	60	60		No significant intersection
24SWAC026	0	35	35		No significant intersection
24SWAC027	0	40	40		No significant intersection
24SWAC028	0	34	34		No significant intersection
24SWAC029	64	68	4	2.08	4m composite (EOH 74m)
24SWAC030	0	69	69		No significant intersection
24SWAC031	0	64	64		No significant intersection
24SWAC032	0	31	31		No significant intersection
24SWAC033	0	43	43		No significant intersection
24SWAC034	0	44	44		Assays incomplete
24SWAC035	0	35	35		No significant intersection
24SWAC036	0	4	4	0.11	4m composite
24SWAC037	0	49	49		No significant intersection
24SWAC038	0	57	57		No significant intersection
24SWAC039	0	49	49		No significant intersection
24SWAC040	0	61	61		No significant intersection
24SWAC041	0	77	77		No significant intersection
24SWAC042	0	98	98		No significant intersection
24SWAC043	0	45	45		No significant intersection
24SWAC044	0	24	24		No significant intersection
24SWAC045	0	31	31		No significant intersection
24SWAC046	0	25	25		No significant intersection
24SWAC047	0	40	40		No significant intersection
24SWAC048	0	30	30		No significant intersection
24SWAC049	0	29	29		No significant intersection
24SWAC050	0	50	50		No significant intersection
24SWAC051	0	33	33		No significant intersection
24SWAC052	0	7	7		No significant intersection
24SWAC053	0	10	10		No significant intersection
24SWAC054	0	13	13		No significant intersection
24SWAC055	0	8	8		No significant intersection
24SWAC056	0	4	4		No significant intersection
24SWAC057	0	26	26		No significant intersection
24SWAC058	0	12	12		No significant intersection
24SWAC059	0	10	10		No significant intersection
24SWAC060	0	33	33		No significant intersection
24SWAC061	0	30	30		No significant intersection
24SWAC062	0	5	5		No significant intersection
					· · · · · · · · · · · · · · · · · · ·

24SWAC063	0	5	5	No significant intersect	ion
24SWAC064	0	8	8	No significant intersect	ion
24SWAC065	0	5	5	No significant intersect	ion
24SWAC066	0	9	9	No significant intersect	ion
24SWAC067	0	9	9	No significant intersect	ion
24SWAC068	0	23	23	No significant intersect	ion
24SWAC069	0	53	53	No significant intersect	ion
24SWAC070	0	42	42	No significant intersect	ion
24SWAC071	0	18	18	No significant intersect	ion
24SWAC072	0	19	19	No significant intersect	ion
24SWAC073	0	37	37	No significant intersect	ion
24SWAC074	0	28	28	No significant intersect	ion
24SWAC075	0	57	57	No significant intersect	ion
24SWAC076	0	43	43	No significant intersect	ion
24SWAC077	0	32	32	No significant intersect	ion
24SWAC078	0	7	7	No significant intersect	ion
24SWAC079	0	7	7	No significant intersect	ion
24SWAC080	0	18	18	No significant intersect	ion
24SWAC081	0	16	16	No significant intersect	ion
24SWAC082	0	34	34	No significant intersect	ion
24SWAC083	0	24	24	No significant intersect	ion
24SWAC084	0	57	57	No significant intersect	ion
24SWAC085	0	78	78	No significant intersect	ion
24SWAC086	0	69	69	No significant intersect	ion
24SWAC087	0	41	41	No significant intersect	ion
24SWAC088	0	44	44	No significant intersect	ion
24SWAC089	0	61	61	No significant intersect	ion
24SWAC090	0	54	54	No significant intersect	ion
24SWAC091	0	64	64	No significant intersect	ion
24SWAC092	0	30	30	No significant intersect	ion
24SWAC093	0	36	36	No significant intersect	ion

Significant intersections include 4m composite samples > 0.1g/t Au and 1m samples > 0.5g/t Au.

Hole ID	Prospect	Easting	Northing	RL	Dip	Azi (Mag)	Total Depth
23SWAC158	Saltbush	660693	7053100	524	-60	90	33
23SWAC159	Saltbush	660653	7053100	525	-60	90	40
23SWAC160	Saltbush	660625	7053101	526	-60	90	50
23SWAC161	Saltbush	660568	7053107	527	-60	90	73
23SWAC162	Saltbush	660533	7053100	526	-60	90	90
24SWAC001	Saltbush	660406	7053100	521	-60	90	53
24SWAC002	Saltbush	660374	7053098	523	-60	90	64

TABLE 4: COLLAR DETAILS FOR GBR DRILLING

Contact: Andrew Paterson, Managing Director Level 1, 51 Colin St West Perth WA 6005

24SWAC003	Saltbush	660328	7053099	524	-60	90	49
24SWAC004	Saltbush	660292	7053103	521	-60	90	51
24SWAC005	Saltbush	660245	7053101	520	-60	90	59
24SWAC006	Saltbush	660212	7053100	520	-60	90	64
24SWAC007	Saltbush	660173	7053100	520	-60	90	62
24SWAC008	Saltbush	660811	7052896	530	-60	90	28
24SWAC009	Saltbush	660773	7052898	530	-60	90	30
24SWAC010	Saltbush	660732	7052899	529	-60	90	40
24SWAC011	Saltbush	660692	7052897	528	-60	90	75
24SWAC012	Saltbush	660654	7052893	521	-60	90	80
24SWAC013	Saltbush	660616	7052895	528	-60	90	74
24SWAC014	Saltbush	660495	7052897	523	-60	90	40
24SWAC015	Saltbush	660457	7052903	524	-60	90	36
24SWAC016	Saltbush	660411	7052904	524	-60	90	60
24SWAC017	Saltbush	660362	7052901	521	-60	90	92
24SWAC018	Saltbush	660332	7052897	529	-60	90	86
24SWAC019	Saltbush	660291	7052898	529	-60	90	44
24SWAC020	Saltbush	660251	7052897	530	-60	90	49
24SWAC021	Saltbush	660894	7052698	524	-60	90	9
24SWAC022	Saltbush	660853	7052697	523	-60	90	42
24SWAC023	Saltbush	660815	7052695	522	-60	90	25
24SWAC024	Saltbush	660766	7052699	524	-60	90	50
24SWAC025	Saltbush	660735	7052699	520	-60	90	60
24SWAC026	Saltbush	660690	7052695	527	-60	90	35
24SWAC027	Saltbush	660652	7052699	528	-60	90	40
24SWAC028	Saltbush	660531	7052702	519	-60	90	34
24SWAC029	Saltbush	660490	7052702	519	-60	90	74
24SWAC030	Saltbush	660449	7052698	521	-60	90	69
24SWAC031	Saltbush	660411	7052700	521	-60	90	64
24SWAC032	Saltbush	660372	7052701	520	-60	90	31
24SWAC033	Saltbush	660335	7052695	525	-60	90	43
24SWAC034	Saltbush	660295	7052695	520	-60	90	44
24SWAC035	Saltbush	660256	7052692	520	-60	90	35
24SWAC036	Saltbush	660653	7052502	523	-60	90	48
24SWAC037	Saltbush	660614	7052497	523	-60	90	49
24SWAC038	Saltbush	660574	7052499	517	-60	90	57
24SWAC039	Saltbush	660538	7052496	520	-60	90	49
24SWAC040	Saltbush	660493	7052495	520	-60	90	61
24SWAC041	Saltbush	660454	7052501	523	-60	90	77
24SWAC042	Saltbush	660413	7052497	521	-60	90	98
24SWAC043	Saltbush	660372	7052498	520	-60	90	45
24SWAC044	Saltbush	660277	7056501	517	-60	90	24
24SWAC045	Saltbush	660294	7052500	516	-60	90	31

ASX Code: GBR P: +61 8 9321 6037 Contact: Andrew Paterson, Managing Director Level 1, 51 Colin St West Perth WA 6005

24SWAC046	Saltbush	660252	7052498	515	-60	90	25
24SWAC047	Saltbush	660211 705		516	-60	90	41
24SWAC048	Saltbush	661450 705		520	-60	90	30
24SWAC049	Saltbush	661398	7052096	522	-60	90	29
24SWAC050	Saltbush	661343	7052092	515	-60	90	50
24SWAC051	Saltbush	661293	7052093	515	-60	90	33
24SWAC052	Saltbush	661244	7052094	514	-60	90	7
24SWAC053	Saltbush	661191	7052095	516	-60	90	10
24SWAC054	Saltbush	661150	7052097	521	-60	90	13
24SWAC055	Saltbush	661099	7052097	519	-60	90	8
24SWAC056	Saltbush	661052	7052095	518	-60	90	4
24SWAC057	Saltbush	661002	7052098	517	-60	90	26
24SWAC058	Saltbush	661499	7051895	530	-60	90	12
24SWAC059	Saltbush	661449	7051897	532	-60	90	10
24SWAC060	Saltbush	661401	7051894	531	-60	90	34
24SWAC061	Saltbush	661363	7051901	524	-60	90	30
24SWAC062	Saltbush	661299	7051897	521	-60	90	5
24SWAC063	Saltbush	661250	7051900	526	-60	90	5
24SWAC064	Saltbush	661196	7051899	526	-60	90	8
24SWAC065	Saltbush	661149	7051900	526	-60	90	5
24SWAC066	Saltbush	661097	7051899	526	-60	90	9
24SWAC067	Saltbush	661040	7051901	522	-60	90	9
24SWAC068	Saltbush	661002	7051898	520	-60	90	23
24SWAC069	Saltbush	660937	7051894	527	-60	90	53
24SWAC070	Saltbush	660903	7051901	525	-60	90	43
24SWAC071	Saltbush	661647	7051703	525	-60	90	18
24SWAC072	Saltbush	661603	7051706	527	-60	90	19
24SWAC073	Saltbush	661547	7051702	528	-60	90	37
24SWAC074	Saltbush	661500	7051704	527	-60	90	28
24SWAC075	Saltbush	661450	7051700	533	-60	90	57
24SWAC076	Saltbush	661400	7051700	533	-60	90	43
24SWAC077	Saltbush	661350	7051700	531	-60	90	32
24SWAC078	Saltbush	661301	7051702	532	-60	90	7
24SWAC079	Saltbush	661251	7051699	529	-60	90	7
24SWAC080	Saltbush	661202	7051701	530	-60	90	18
24SWAC081	Saltbush	661154	7051699	529	-60	90	16
24SWAC082	Saltbush	661100	7051702	528	-60	90	34
24SWAC083	Saltbush	661055	7051698	530	-60	90	24
24SWAC084	Saltbush	660899	7051498	532	-60	90	57
24SWAC085	Saltbush	660849	7051499	533	-60	90	78
24SWAC086	Saltbush	660801	7051498	531	-60	90	69
24SWAC087	Saltbush	660752	7051501	529	-60	90	41
24SWAC088	Saltbush	660897	7051322	528	-60	90	44

24SWAC089	Saltbush	660846	7051321	529	-60	90	61
24SWAC090	Saltbush	660801	7051317	537	-60	90	55
24SWAC091	Saltbush	660753	7051326	533	-60	90	64
24SWAC092	Saltbush	660947	7051326	517	-60	90	30
24SWAC093	Saltbush	660898	7052097	519	-60	90	36

Coordinates are in GDA94 projection, Zone 50

TABLE 5: COLLAR DETAILS FOR ESSO RAB DRILLING AT SALTBUSH, SEPTEMBER 1986

Hole ID	Prospect	Easting	Northing	RL	Dip	Azi (Mag)	Total Depth
SJP001	Saltbush	660505	7052953	524	-90	0	24
SJP002	Saltbush	660480	7052953	524	-90	0	21
SJP003	Saltbush	660455	7052953	523	-90	0	24
SJP004	Saltbush	660430	7052953	523	-90	0	27
SJP005	Saltbush	660405	7052953	522	-90	0	28
SJP006	Saltbush	660380	7052953	522	-90	0	18
SJP007	Saltbush	660355	7052953	521	-90	0	30
SJP008	Saltbush	660333	7052953	521	-90	0	18
SJP009	Saltbush	660305	7052953	521	-90	0	21
SJP010	Saltbush	660155	7052853	520	-90	0	18
SJP011	Saltbush	660205	7052853	520	-90	0	8
SJP012	Saltbush	660255	7052853	521	-90	0	6
SJP013	Saltbush	660305	7052853	521	-90	0	6
SJP014	Saltbush	660330	7052853	522	-90	0	6
SJP015	Saltbush	660355	7052853	522	-90	0	18
SJP016	Saltbush	660380	7052853	522	-90	0	12
SJP017	Saltbush	660405	7052853	522	-90	0	32
SJP018	Saltbush	660430	7052853	523	-90	0	30
SJP019	Saltbush	660455	7052853	523	-90	0	24
SJP020	Saltbush	660505	7052853	522	-90	0	24
SJP021	Saltbush	660555	7052853	521	-90	0	18
SJP022	Saltbush	660605	7052853	521	-90	0	6
SJP023	Saltbush	660505	7052753	520	-90	0	27
SJP024	Saltbush	660455	7052753	521	-90	0	24
SJP025	Saltbush	660430	7052753	522	-90	0	42
SJP026	Saltbush	660405	7052753	522	-90	0	21
SJP027	Saltbush	660355	7052753	521	-90	0	18
SJP028	Saltbush	660305	7052753	521	-90	0	12
SJP029	Saltbush	660355	7052653	519	-90	0	12
SJP030	Saltbush	660380	7052653	520	-90	0	6
SJP031	Saltbush	660405	7052653	520	-90	0	12
SJP032	Saltbush	660430	7052653	520	-90	0	18
SJP033	Saltbush	660455	7052653	520	-90	0	18
SJP034	Saltbush	660480	7052653	520	-90	0	12

ASX Code: GBR P: +61 8 9321 6037

Contact: Andrew Paterson, Managing Director Level 1, 51 Colin St West Perth WA 6005

ASX Announcement

26 FEBRUARY 2024

SJP035	Saltbush	660505	7052653	519	-90	0	12

Coordinates are converted from an Esso local grid by georeferencing maps in WAMEX report A20430 crossreferenced with GPS collar locations from holes SJPRC001 and SJPRC003. The collar for hole SJPRC002 could not be located.

TABLE 6: SIGNIFICANT INTERSECTIONS (ESSO RAB, 1986)

Prospect	Hole ID	Depth	From	То	Width	Grade g/t Au	Comments
Saltbush	SJP001	24	12	24	12		No significant intersection
	SJP002	21	14	21	7		No significant intersection
	SJP003	24	12	24	12		NSI. 12m @ 89ppm Pb from 12m
	SJP004	27	10	24	14		No significant intersection
	SJP005	28	16	28	12		No significant intersection
	SJP006	18	14	18	4	0.19	4m composite
	SJP007	30	18	30	12		No significant intersection
	SJP008	18	10	18	8		No significant intersection
	SJP009	21	10	21	11		No significant intersection
	SJP010	18	10	18	8		No significant intersection
	SJP011	8	4	8	4		No significant intersection
	SJP012	6	2	6	4		No significant intersection
	SJP013	6	2	6	4		No significant intersection
	SJP014	6	2	6	4		No significant intersection
	SJP015	18	4	18	14		No significant intersection
	SJP016	12	4	12	8		4m @ 1.3g/t Ag from 16m
	SJP017	32	24	32	8	0.14	EOH. 4m composite
	SJP018	30	18	24	6	0.16	4m composite to 22m
	SJP019	24	2	24	22		No significant intersection
	SJP020	24	12	24	12		No significant intersection
	SJP021	18	10	18	8		No significant intersection
	SJP022	6	2	6	4		No significant intersection
	SJP023	27	14	27	13		No significant intersection
	SJP024	24	12	24	12		No significant intersection
	SJP025	42	30	42	12		No significant intersection
	SJP026	21	2	21	19		No significant intersection
	SJP027	18	10	18	8		No significant intersection
	SJP028	12	4	12	8		No significant intersection
	SJP029	12	4	12	8		No significant intersection
	SJP030	6	2	6	4		No significant intersection
	SJP031	12	4	12	8		No significant intersection
	SJP032	18	10	18	8		No significant intersection
	SJP033	18	10	18	8		No significant intersection
	SJP034	12	4	12	8		No significant intersection
	SJP035	12	4	12	8		No significant intersection

Significant intersections include all samples >0.1g/t Au

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	At the Side Well Project GBR has collected data from auger sampling and from AC, RC and Diamond drilling techniques. This section encompasses all four methods.
	RC samples were collected into calico bags over 1m intervals using a cyclone splitter. The residual bulk samples are placed in lines of piles on the ground. 2 cone splits are taken off the rig splitter for RC drilling. Visually prospective zones were sampled over 1m intervals and sent for analysis while the rest of the hole was composited over 4m intervals by taking a scoop sample from each 1m bag.
	Core samples are selected visually based on observations of alteration and mineralisation and sampled to contacts or metre intervals as appropriate. Once samples are marked the core is cut in half longitudinally with one half taken for assay and the other half returned to the core tray.
	AC samples were placed in piles on the ground with 4m composite samples taken using a scoop.
	Auger samples are recovered from the auger at blade refusal depth. Auger drilling is an open-hole technique.
Drilling techniques	Industry standard drilling methods and equipment were utilised.
	Auger drilling was completed using a petrol-powered hand-held auger.
Drill sample recovery	Sample recovery data is noted in geological comments as part of the logging process. Sample condition has been logged for every geological interval as part of the logging process. Water was encountered during drilling resulting in minor wet and moist samples with the majority being dry.
	No quantitative twinned drilling analysis has been undertaken.
Logging	Geological logging of drilling followed established company procedures. Qualitative logging of samples includes lithology, mineralogy, alteration, veining and weathering. Abundant geological comments supplement logged intervals.
Sub-sampling techniques and sample preparation	1m cyclone splits and 4m speared composite samples were taken in the field. Samples were prepared and analysed at ALS Laboratories Perth for the RC drilling and Intertek Laboratories for the AC drilling. Samples were pulverized so that each samples had a nominal 85% passing 75 microns. Au analysis was undertaken using Au-AA26 involving a 50g lead collection fire assay and Atomic Adsorption Spectrometry (AAS) finish. For AC drilling, Au analysis was undertaken using a 50g lead collection fire assay with ICP-OES finish.
	Multi-element analysis was completed at both ALS and Intertek Laboratories. Digestion was completed using both 4 Acid and Aqua-regia and analysed by ICP-AES and ICP-MS (Intertek code 4A/MS48, ALS codes ME-MS61, ME-ICP41-ABC).
Quality of assay data and laboratory tests	All samples were assayed by industry standard techniques. Fire assay for gold; four-acid digest and aqua regia for multi-element analysis.
Verification of sampling and assaying	The standard GBR protocol was followed for insertion of standards and blanks with a blank and standard inserted per 25 for RC drilling and 40 samples for AC drilling. Analysis of ME was typically done on master pulps after standard gold analysis with a company multi-element standard inserted every 50 samples. No QAQC problems were identified in the results. No twinned drilling has been undertaken.
Location of data points	Sample locations and mapping observations were located and recorded electronically using a handheld GPS. Coordinates were recorded in GDA94 grid in Zone 50, which is the GDA94 zone for the Meekatharra area.
	Drill holes were positioned using the same technique. Hole collars were initially picked up after drilling using a handheld GPS. RC and Diamond hole collars were subsequently surveyed with a DGPS for greater accuracy.
	This accuracy is sufficient for the intended purpose of the data.
Data spacing and distribution	The spacing and location of the majority of drilling in the projects is, by the nature of early exploration, variable.

	The spacing and location of data is currently only being considered for exploration purposes.
Orientation of data in relation to geological structure	Drilling is dominantly perpendicular to regional geological trends where interpreted and practical. True width and orientation of intersected mineralisation is currently unknown or not clear. The spacing and location of the data is currently only being considered for exploration purposes.
Sample security	GBR personnel were responsible for delivery of samples from the drill site to the courier companies dispatch center in Meekatharra. Samples were transported by Toll Ipec from Meekatharra to the laboratories in Perth.
Audits or reviews	Data review and interpretation by independent consultants on a regular basis. Group technical meetings are usually held monthly.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	Side Well tenement E51/1905 is a 48-block exploration license covering an area of 131.8km2 immediately east and northeast of Meekatharra in the Murchison province. The tenement is a 75:25 joint venture between Great Boulder and Zebina Minerals Pty Ltd.
Exploration done by other parties	Tenement E51/1905 has a protracted exploration history but is relatively unexplored compared to other regions surrounding Meekathara.
Geology	The Side Well tenement group covers a portion of the Meekatharra-Wydgee Greenstone Belt north of Meekatharra, WA. The north-northeasterly-trending Archaean Meekatharra-Wydgee Greenstone Belt, comprises a succession of metamorphosed mafic to ultramafic and felsic and sedimentary rocks belonging to the Luke Creek and Mount Farmer Groups.
	Over the northern extensions of the belt, sediments belonging to the Proterozoic Yerrida Basin unconformably overlie Archaean granite-greenstone terrain. Structurally, the belt takes the form of a syncline known as the Polelle syncline. Younger Archaean granitoids have intrusive contacts with the greenstone succession and have intersected several zones particularly in the Side Well area.
	Within the Side Well tenement group, a largely concealed portion of the north-north-easterly trending Greenstone Belt is defined, on the basis of drilling and airborne magnetic data, to underlie the area. The greenstone succession is interpreted to be tightly folded into a south plunging syncline and is cut by easterly trending Proterozoic dolerite dykes.
	There is little to no rock exposure at the Side Well prospect. This area is covered by alluvium and lacustrine clays, commonly up to 60 metres thick.
Drill hole Information	A list of the drill hole coordinates, orientations and intersections reported in this announcement are provided as an appended table.
Data aggregation methods	Results were reported using cut-off levels relevant to the sample type. For composited samples significant intercepts were reported for grades greater than 0.1g/t Au with a maximum dilution of 4m. For single metre splits, significant intercepts were reported for grades greater than 0.5g/t Au with a maximum dilution of 3m.
	A weighted average calculation was used to allow for bottom of hole composites that were less than the standard 4m and when intervals contain composited samples plus 1m split samples.
	No metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	The orientation of structures and mineralisation is not known with certainty, but majority of the drilling was conducted using appropriate perpendicular orientations for interpreted mineralisation. Stratigraphy appears to be steeply dipping to the west however mineralisation may have a different orientation.
Diagrams	Refer to figures in announcement.
Balanced reporting	It is not practical to report all historical exploration results from the Side Well project. Selected historical intercepts have been re-reported by GBR to highlight the prospectivity of the region. Full drillhole details can be found in publicly available historical annual reports.

Other substantive exploration data	Subsequent to Doray Minerals Limited exiting the project in 2015, private companies have held the ground with no significant work being undertaken.
Further work	Further work is discussed in the document.

Appendix 2 - JORC Code, 2012 Edition Table 1 (Esso Exploration Drilling, Side Well Project)

The information tabulated below is taken from the *Annual Report for Period Ending 25th March, 1987, Sherwood (6603) PL's 51/762 and 51/281* on behalf of Esso Exploration and Production Australia Inc by L. G. Dudfield, February 1987. This is filed on the WAMEX database as report A20430.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	Samples were collected as 4m composite intervals. Some smaller composites are included. The type of sample splitter, rig type and sampling process is not recorded.
Drilling techniques	Historical drilling shown in this announcement and not previously reported is recorded as RAB drilling in Esso's report. RAB is an open-hole drilling technique so sample smearing down-hole may occur.
Drill sample recovery	Sample recovery and sample condition is not recorded.
	No quantitative twinned drilling analysis has been undertaken.
Logging	The drilling was logged for lithology, alteration and veining. Logging is shown on plotted cross sections within the body of the report however the logging data is not included in tabular format.
Sub-sampling techniques and sample preparation	Samples were mainly collected in 4m composites. The assay laboratory used for analysis is not recorded, so sample preparation and assay technique is unknown other than a comment that assaying was AAS.
Quality of assay data and laboratory tests	Unknown. All samples were assayed for Au, Ag, As, Bi, Cr, Cu, Mo, Ni, Pb, Sb, W and Zn with results reported in ppm (parts per million). Detection limits for each element are not recorded.
Verification of sampling and assaying	GBR has not been able to verify the sample and assay data. There are no remnant sample chips remaining for check assays. In order to validate the information to JORC 2012 standard all holes would need to be twinned with an AC rig and assayed using GBR's current protocols.
Location of data points	The original collar coordinates in Esso's report were mapped off a 100x50m local grid which was set up to facilitate mapping, ground magnetics and drilling. These have been converted to GDA94 coordinates using a combination of georeferencing Esso's collar plans and comparing the results to two known points (two of the RC collars that are still visible at Saltbush). The RAB hole locations are reliable enough for helping with litho-geochemical trend mapping, but
	not sufficiently reliable to be used in any quantitative estimation or other form of resource estimate.
Data spacing and distribution	The spacing and location of the historic data is adequate for the likely style of mineralisation in the area, being orogenic or structurally controlled gold mineralisation.
	Data from the Esso drilling has been used to help map lithological contacts, particularly Cr assays which distinguish between mafic and ultramafic host units.
Orientation of data in relation to geological	The holes were drilled vertically to bit refusal. As the local lithologies are steeply-dipping each hole is effectively point data for the purpose of a bottom-of-hole multi-element sample.
structure	The spacing and location of the data is currently only being considered for exploration purposes. The data has been used to interpret mafic-ultramafic lithologies using the chrome assay values.
Sample security	Not recorded.
Audits or reviews	No data audits have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	Side Well tenement E51/1905 is a 48-block exploration license covering an area of 131.8km2 immediately east and northeast of Meekatharra in the Murchison province. The tenement is a 75:25 joint venture between Great Boulder and Zebina Minerals Pty Ltd.
Exploration done by other parties	Tenement E51/1905 has a protracted exploration history but is relatively unexplored compared to other regions surrounding Meekathara.
Geology	Refer to Appendix 1, Section 2 above for a geological summary of the Side Well project.
Drill hole Information	Tables of drill hole collar coordinates, orientations and intersections reported in this announcement are provided as an appended table.
Data aggregation methods	Results were reported using cut-off levels relevant to the sample type. Significant intercepts are reported for grades greater than 0.1g/t Au with no internal dilution.
	No weighted average calculations have been used. No metal equivalents are used.
Relationship between mineralisation widths and intercept lengths	As the holes were drilled vertically no conclusions can be made about the relevance of intersection widths to true thickness. Stratigraphy appears to be steeply dipping to the west however mineralisation may have a different orientation.
Diagrams	Refer to figures in announcement.
Balanced reporting	All drilling in the Esso report has been included for the Saltbush prospect, which was referred to by Esso as the Jones Prospect. GBR is using the Saltbush name to avoid confusion with Jones Well at the Northern end of Side Well.
	GBR does not regard the data as reliable to the extent required for reporting under JORC 2012 standards and as such is only using it as a guide for drill planning in the area. Esso's drilling indicates the presence of gold mineralisation at the prospect; the specific location, style and quantity of any mineral endowment there will be established by subsequent drilling programs completed by GBR.
Other substantive exploration data	Subsequent to Doray Minerals Limited exiting the project in 2015, private companies have held the ground with no significant work being undertaken.
Further work	Further work is discussed in the document.