

26/02/2024 ASX Announcement

Forrestania to prioritise new district scale lithium opportunity in Leonora

Highlights:

- Review of historic drilling results from Breakaway Dam has highlighted several pegmatite intercepts never previously tested for lithium, with multiple holes ending in pegmatite, including:
 - o AXR014 18m of logged pegmatite to EOH from 6m
 - o AXR013 2m of logged pegmatite to EOH from 1m
 - o AXR016 4m of logged pegmatite to EOH from 1m
 - Additionally, other holes also with logged pegmatite to EOH, at depths shallower than 30m
- Results sit within ~20km of geologically significant greenstone/monzogranite contact, completely untested by drilling (for Li), but coincident with extensive, highly anomalous K/Rb geochemistry.
- Recent field work at Breakaway Dam has continued to map multiple, significant, outcropping LCT bearing pegmatites – up to 20m wide.
 - Additional 5km of strike located within greenstone/monzogranite contact identified at Breakaway Dam South for future follow up.
- Review of historical data and strong geochemistry highlights potential for district scale lithium project adjacent to Wesfarmers (ASX:WES) and Rio Tinto (ASX:RIO) in the Eastern Goldfields.
- FRS in final stages of drill programme planning, to immediately follow up strong targets.

Forrestania Resources' Chairman John Hannaford commented:

"Our review of previous exploration data revealing an 18m pegmatite intercept to bottom of hole has significantly enhanced the prospectivity of the Breakaway Dam project. The previous exploration programmes neither targeted nor assayed for lithium. The logged pegmatite is in close proximity to lithium rock chip results, along the ~20km monzogranite/greenstone contact. The extent of the Company's tenement package encompassing this prospect mean that any discovery could be potentially very large in scale.

The Company plans to drill test the Breakaway Dam prospect next quarter, targeting the known pegmatite outcrops and strong geochemical targets."

Forrestania Resources (ASX:FRS, Forrestania or the Company), is pleased to provide an update on the lithium exploration potential at the Breakaway Dam tenement (E29/1037), The Breakaway Dam area is a highly strategic part of the Company's Eastern Goldfields Project, located north of Coolgardie and Kalgoorlie, around the gold mining districts of Leonora and Menzies (see Figure 1). Overall, the Eastern Goldfields Project comprises a number of

tenements that are located over areas that the Company believes are highly prospective for large scale, multi commodity discoveries, including lithium, copper, REEs and gold.

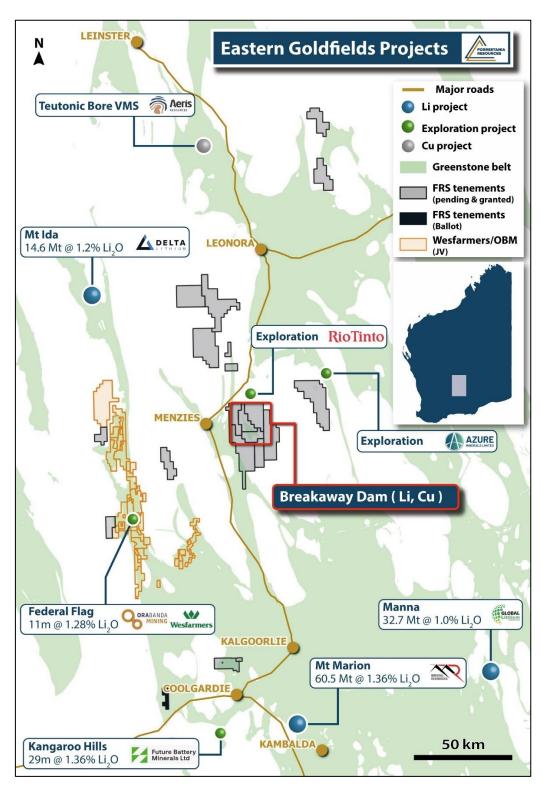


Figure 1: The Eastern Goldfields Breakaway Dam project area, showing proximity to recent Wesfarmers JV with Ora Banda at Federal Flag, and significant lithium exploration activity in the area by majors & lithium producers/developers.

Discussion:

The Breakaway Dam project area (Figure 1) is located approximately 17km east of Menzies, within the Gindalbie Terrane of the Eastern Goldfields Super Terrane, part of Western Australia's Yilgarn Craton. The under-explored Alexandra Bore greenstone belt, interpreted by GSWA to be made up of predominantly mafic volcanics, strikes (roughly north to south) through the tenement and into the Company's E29/1158 project area. This greenstone belt is bounded on either side by monzogranites and Archean granitoids.

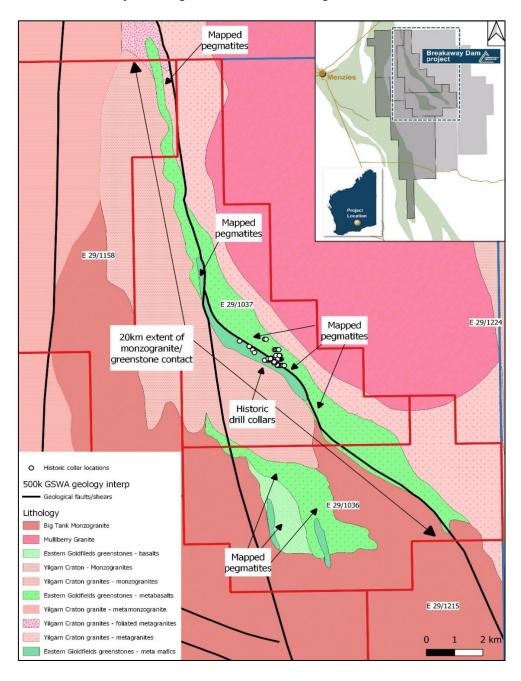


Figure 2: The Breakaway Dam project area with GSWA geology, showing areas of mapped pegmatites and historic drill collars.

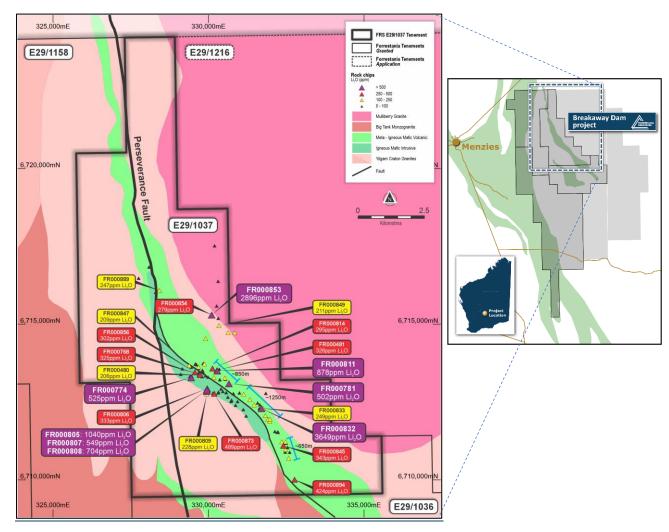


Figure 3: Breakaway Dam area showing strong lithium rock chip results, proximal to mapped pegmatites and pegmatites intersected in previous copper focussed drilling.

Breakaway Dam Li potential

The Breakaway Dam project area has undergone 3 historic drilling programmes. All of these programmes have focused on the Cu and Au potential of the project area, with no focus on Li.

Drilled pegmatites at Breakaway Dam – never tested for lithium, can be seen in Tables 1 & 2 and include:

• AXR014 – 18m of logged pegmatites with the hole ending in pegmatite.

Despite the presence of pegmatites in several holes, none of these holes were ever assayed for lithium; the AXR holes were only assayed for Au and Cu. The only assay data available for lithium is from the BDRC holes drilled on the western side of the major fault which intersected minimal pegmatites (Table 2). All pegmatite intersections in these holes were assayed using aqua regia, rather than four acid – therefore, ineffectively testing the lithium values.

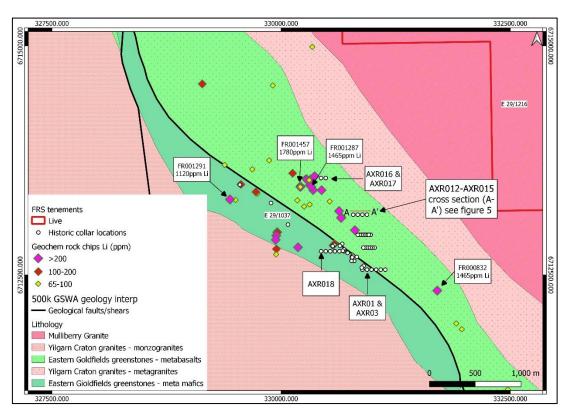


Figure 4: Breakaway Dam project area showing the previous, historic drilling (AXR holes referenced in this announcement are identified), FRS Li rock chips >65ppm Li (with selected high value Li rock chips). Geology map courtesy of GSWA.

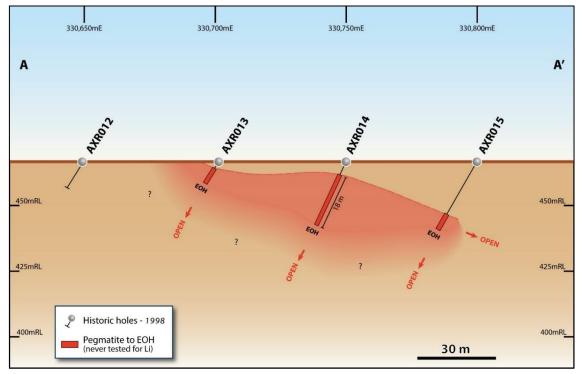


Figure 5: Cross section (A-A'), looking north at holes AXR012-AXR015, showing historically logged pegmatite intercepts.

Below (in Table 1) are the pegmatite intersections from those holes with prefix AXR and BDRC, the historic lithological logging codes for the OLRAB holes (completed in 2004) are unavailable and as such, details of lithological intersections from these holes cannot be validated.

Hole_ID	Hole_depth	Depth_From	Depth_To	Interval	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Original comments
AXR001	29	28	29	1	G00	PO		Pegmatitic EOH
AXR003	38	17	18	1	G00	SO	W	Pegmatite
AXR013	3	1	3	2	GOOGQM	PO		Pegmatite EOH
AXR014	24	6	24	18	GQM	so	w	Pegmatite mica rich EOH
AXR016	5	1	5	4	GQM	PO		Pegmatitic EOH
AXR017	4	1	4	3	GQM	PO		Pegmatitic EOH
AXR015	26	24	26	2	GQM	PO		ЕОН
AXR018	22	20	22	2	PMOGQM	SO	BG	ЕОН

Table 1: All pegmatite intervals from AXR holes, completed by Delta Gold NL. Interval width is downhole width and not true width. Original logging comments courtesy of WAMEX A55119 (historically, no specific lithological logging codes were used by the Delta Gold geologists for pegmatite and given the original comments in the geology log, GQM is presumed to have been used for pegmatites); relevant lithology codes used in WAMEX A55119: GOO – Granitoid, GQM – Quartz muscovite granitoid, PMO – Muscovite schist. Collar locations and full lithological logging can be found in the supplementary data (Tables 3 and 8). Note: all AXR holes were only ever assayed for Cu and Au).

Hole_ID	Depth_From	Depth_To	Interval	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Original comments
BDRC02	40	44	4	Amp	n/a	n/a	sheared mafic? 42-43 mafic/pegmatite
BDRC05	16	17	1	Pg	n/a	n/a	cl qtz pegmatite

Table 2: All pegmatite intervals from BDRC holes, completed by AMEX Resources. Interval width is downhole width and not true width. From WAMEX A78230 lithology codes Amp – Amphibolite, Pg – Pegmatite. Collar locations can be found in the supplementary data tables. *No lithology codes or logging comments were available for the BD001-BD003 logs. (To be noted: none of the historic diamond drill core nor the historic RC chip trays are available, photos are also unavailable.). (n/a indicates data unavailable). Collar locations and selected assay results for BDRC02 and BDRC05 can be found in the supplementary data (Tables 4 and 6).

As previously announced, FRS geologists have geologically mapped significant Li rich pegmatites across the Breakaway Dam project area^{2,3,4} with a number of K/Rb ratios less than 30, see figures 6 & 7:

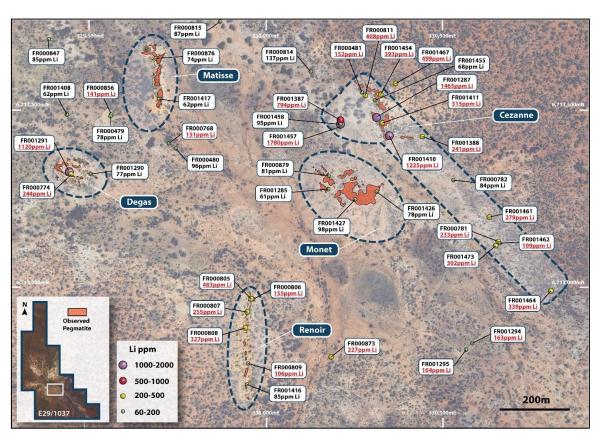


Figure 6: Breakaway Dam project area and observed surface pegmatites, with Li rock chips >60ppm Li.

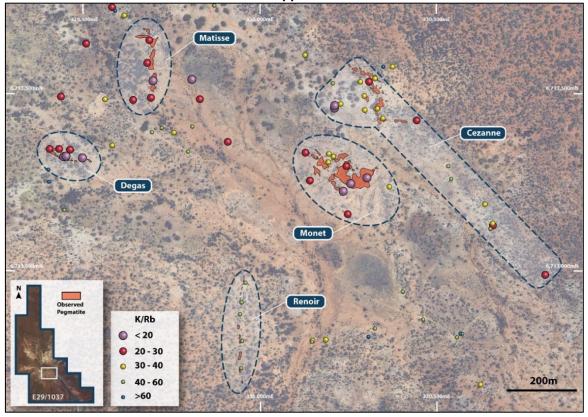


Figure 7: Breakaway Dam project area showing K/Rb ratios.

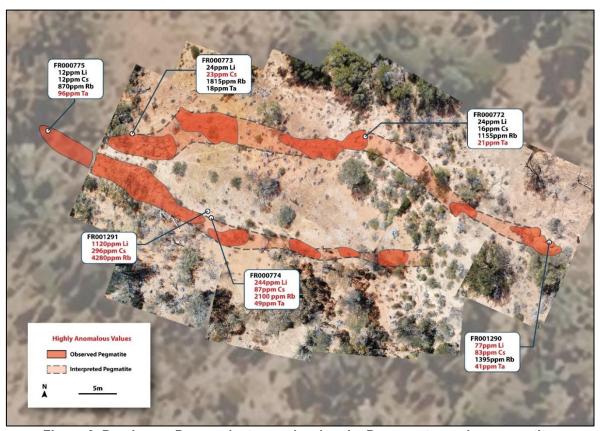


Figure 8: Breakaway Dam project area showing the Degas outcropping pegmatite.

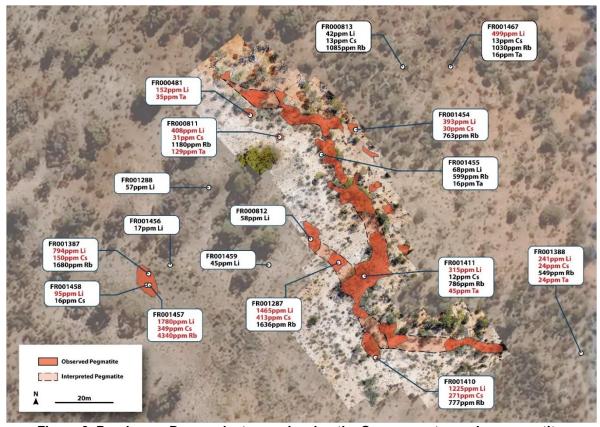


Figure 9: Breakaway Dam project area showing the Cezanne outcropping pegmatite.

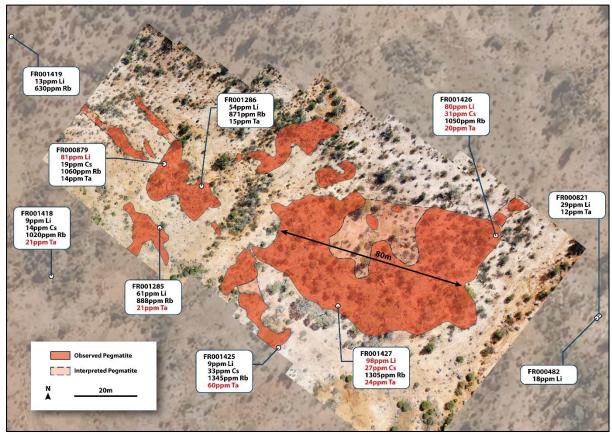


Figure 10: Breakaway Dam project area showing the Monet outcropping pegmatite.

Next steps:

The Company is currently completing further field trips to undertake clearing activities at the Breakaway Dam project area.

A geochemical and exploration reconnaissance trip is also scheduled to be undertaken later this quarter, by FRS staff with Dr Carl Brauhart, a highly regarded Exploration Geologist.

A drilling programme has been designed to test the lithium anomalism and preparations are in the process of being finalised.

¹ ASX:FRS – Copper prospectivity at Eastern Goldfields project, 14th September 2023

² ASX:FRS, Anomalous lithium returned from rock chips - Eastern Goldfields tenements, 9th August 2023

³ ASX:FRS, Option to acquire strategic, highly prospective Eastern Goldfields tenements, 19th May 2023

⁴ ASX:FRS, New pegmatites identified at Eastern Goldfields, 9th June 2023

References:

The Company is not reporting any data that has been drilled by Forrestania Resources or any companies associated with FRS. All drilling data reference in this announcement is historic.

References used for this announcement include:

- WAMEX A55119 Delta Gold NL, Annual Technical Report Alexandra Bore Project, 15th April 1997 – 21st May 1998
- WAMEX A70542 Final Report, 15th May 2004 14th May 2005
- WAMEX A78230 Annual Report, 8th March 2007 7th March 2008.
- WAMEX A109745 Final surrender report 10th June 2016
- Geologic setting of the Teutonic Bore massive sulphide deposit, Archean Yilgarn Block, Western Australia, Economic Geology (1985) 80 (7), Halberg et al, 1985.

This announcement is authorised for release by the Board.

For further information, please contact:

John Hannaford Cecilia Tyndall Chairman Company Secretary

T: +61 (0) 400 596 734 T: +61 (0) 419 042 769

E: Cecilia@forrestaniaresources.com.au E: john@forrestaniaresources.com.au

About Forrestania Resources Limited

Forrestania Resources Limited is an exploration Company searching for lithium, gold, and nickel in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia. The company is also exploring for lithium in the James Bay region of Quebec, Canada.

The Forrestania Project is prospective for lithium, gold and nickel. The Southern Cross Project is prospective for gold and lithium and the Eastern Goldfields project is prospective for gold, lithium, rare earth elements and copper.

The flagship Forrestania Project is situated in the well-endowed southern Forrestania Greenstone Belt, with a tenement footprint spanning approximately 100km, north to south of variously metamorphosed mafic, ultramafic / volcano-sedimentary rocks, host to the Mt Holland lithium mine (189mT @ 1.5% Li₂O), the historic 1Moz Bounty gold deposit and the operating Flying Fox, and Spotted Quoll nickel mines.

The Southern Cross Project tenements are scattered, within proximity to the town of Southern Cross and located in and around the Southern Cross Greenstone Belt. It is the Company's opinion that the potential for economic gold mineralisation at the Southern Cross Project has not been fully evaluated. In addition to greenstone shear-hosted gold deposits and lithium bearing pegmatites, Forrestania is targeting granite-hosted gold deposits. New geological models for late Archean granite-controlled shear zone/fault hosted mineralisation theorise that gold forming fluids, formed at deep crustal levels do not discriminate between lithologies when emplaced in the upper crust. Applying this theory, Forrestania has defined multiple new targets.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. The Project includes twelve Exploration Licences and six Exploration Licence Applications, covering a total of ~1,800km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts. The southernmost tenement is located approximately 15km north of Coolgardie, and the northernmost tenement is located

approximately 70km northeast of Leonora. Prior exploration over the project area has focused on gold, copper, diamonds, and uranium. Tenements in the Project area have been variably subjected to soil sampling, stream sampling, drilling, mapping, rock chip sampling and geophysical surveys.

Forrestania Resources also holds a 50% interest in the Hydra Lithium Project (HLP) located in northern Quebec, Canada. ALX Resources (TSXV: AL; FSE: 6LLN; OTC: ALXEF) holds the other 50%. The HLP comprises eight sub-projects totalling ~293km² within the world-class lithium exploration district of James Bay. These sub-projects strategically overlie or are positioned on the margins of highly prospective greenstone belts and are proximal to existing, significant lithium projects and deposits.

The Company has an experienced Board and management team which is focused on exploring, collaborating, and acquiring to increase value for Shareholders.

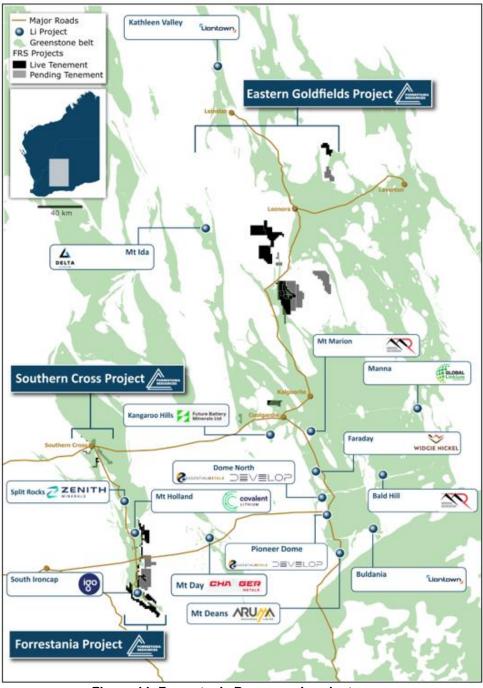


Figure 11: Forrestania Resources' project areas.

Competent person's statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr Ashley Bennett. Mr Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary statement regarding values & forward-looking information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forwardlooking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. The geochemical sampling data reported in this announcement is not intended to support a mineral resources estimation.

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 FRS did not conduct any drilling activities and no drilling data by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports (A109745, A55119, A70542, A78230), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). Holes with prefix BDRC were completed with reverse circulation drilling. Holes with prefix BD were part of a diamond drilling programme. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. BDRC10 has a diamond tail (BD004) from 214m but the holes is referred to as BDRC10 throughout this announcement as that is how it has been historically reported; as such, the samples taken from 214m were taken using quarter core over, 1m sample intervals. Samples were not taken for the entirety of the diamond tail of BDRC10 – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. BD holes were sampled using 4m composites over the RC pre collar interval and were sampled using quarter core over 1m sample intervals. Samples were not taken for the entirety of these holes – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. AXR holes were completed by RAB drilling. FRS rock chips were sent to ALS and assayed using ME-MS61L and Au-TL43 – assayed for gold and multi elements. Historic auger and soil samples were taken by multiple parties and were sent to ALS Perth, ALS Kalgoorlie and Genalysis for multi element and Au analysis using aqua regia and four acid with a variety of methodologies including: AU-GF42, ME-ICP43, ME-MS61L, Au-AROR43, Au-TL43, Cu-OG62 (with finishes including ICPAES, ICP-MS) AND 4AH/OE, AR005/MS, AR25/MS (with ICPOES and ICP-MS) – aqua regia and f

Criteria	JORC Code Explanation	Commentary
		 finish), Au-ICP21 (Au by fire assay with ICPAES finish), Cu-OG62 (ore grade Cu by 4 acid with ICPAES finish for the following holes and intervals:: BDRC01 20-21m, BDRC10 186-190m; this methodology was also applied to the standards used in all holes with a prefix BD0) and Au-TL43 (aqua regia with ICPMS finish). BD holes and all diamond core was assayed for multi elements and gold by Genalysis with 3 different methodologies: AX/MS, AX/OES and FA25/SAAS – 4 acid with ICPMS finish, 4 acid with ICPOES finish and fire ass ay (respectively). AXR holes were sampled using 5m composites throughout the hole. They were assayed at ALS Kalgoorlie using aqua regia for Au (0.01ppm detection limit) and Cu (1ppm detection limit) only. No Li analysis was undertaken. For the OLRAB holes: In total 133 samples were collected. The samples were laid on the ground in rows of 10 and sampled with a sampling spear. The samples were composited over 4m to 1m intervals. All samples were dispatched to (ALS) Chemex in Kalgoorlie, for 50 gram, 75-micron aqua regia digest with AAS finish. The samples were tested for Au only.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports (A109745, A55119, A70542, A78230), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The sampling data from the historic reports is believed to have been undertaken using "industry standard" techniques. Reported historic drilling is reverse circulation (RC) (prefix BDRC) and diamond drilling (prefix BD). BD001 – RC precollar to 120m BD003 – RC precollar to 72m BD003 – RC precollar to 111m BDRC10 is the precollar of BD004 but has historically been referred to as BDRC10))– the RC precollar is from a depth to 213.9m. Diamond drilling – no details of core orientation are known and the historic diamond core is no longer available, no photos are available. Core diameter – unknown and not reported in WAMEX. AXR holes were shallow RAB drilling. OLRAB holes were completed by RAB drilling.

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports (A109745, A55119, A70542, A78230), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The sampling data from the historic reports is believed to have been undertaken using "industry standard" techniques. Drill sample recovery is not known for the historic drilling. No known relationship exists between sample recovery and grade and no sample bias is known to have occurred.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drilling data reported in this announcement is from historic WAMEX reports (A109745, A55119, A70542, A78230), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The geological logging data from the historic reports is believed to have been undertaken using "industry standard" techniques by the relevant company geologists or contarctors The geological logs for holes with prefix BDRC are open source and available within the relevant WAMEX reports and those details transferred to the company database. Samples were logged geologically including but not limited to: recording colour, weathering, regolith, lithology, veining, structure, texture, alteration and mineralisation. Geological logs for holes with prefix BD were geologically logged with all standard geological information. The individual logs are available in WAMEX A88374. The geological logs are not reported here as the logs are available as a copy of hand written logs and majority of the logs are illegible, with no logging codes. At this stage, the historic data in this announcement is NOT intended for use in a mineral resource estimation. All geological logging data for AXR holes is taken from WAMEX A55119. Holes were logged by Delta Gold geologists. Original logging comments taken from this report have been used in this announcement.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed

Criteria	JORC Code Explanation	Commentary
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 appropriate by the logging geologist. WAMEX reports suggest samples were collected via a combination of riffle splitter and metals scoops/ spears. BD holes – according to the WAMEX reports and subsequent data downloads, all diamond core samples were quarter cored, no details of QAQC is given but industry standard is assumed. OLRAB holes: In total 133 samples were collected. The samples were laid on the ground in rows of 10 and sampled with a sampling spear. The samples were composited over 4m to 1m intervals. AXR holes: 18 holes were completed for 461m, 5m composites were taken.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the Analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. Historic assay techniques are considered appropriate for the elements that were being assayed for, at the time Hole collar locations were recorded at the time using a hand held GPS. The QAQC procedures for the historic RC and DD drilling is not always recorded adequately. It is assumed "industry standard" QAQC protocols were applied. Information that is present in WAMEX reports: BDRC 10 has 3 standards with no IDs and 2 blanks, these were taken every 5 samples. No details of the other BDRC holes' QAQC data is known from the WAMEX reports BD holes – according to the WAMEX reports and subsequent data downloads, blanks were taken approximately every 20 samples and unknown standards (details unavailable) were taken approximately every 10 samples. AXR holes were sampled using 5m composites throughout the hole. They were assayed at ALS Kalgoorlie using aqua regia for Au and Cu only. 6 duplicate samples were taken as part of the QAQC procedure. OLRAB holes: no QAQC data information is available on the historic WAMEX report but industry standard is assumed to have taken place by Sunrise Exploration; standard lab QAQC at ALS is assumed to have taken place. Historic auger and soil samples – no details of QAQC are available but as they were taken to ALS and Genalysis, they would have been subject to standard laboratory QAQC procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative Company personnel. The use of twinned holes. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. There are a number of historic, significant intersections that are reported in this announcement. Future drilling and exploration work by the company will seek to confirm the intersections and the validity of the mineralisation. It is

Criteria	JORC Code Explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 unknown whether the historic drilling results were the subject of verification by independent or alternative company personnel, but it is assumed that standard industry practice was adhered to. All data (where possible) has been transferred to the FRS database – adjustments have been made to the nature of the aggregation of significant intersections, using (where applicable) the following parameters: Au - lower cut off 0.5 ppm, minimum interval 1m, maximum internal waste 2m. Cu - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Ag - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Pb -lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. As previously stated, the lithological logs for BD001-BD003 were hand written and are illegible and have not been transferred to the FRS database and no reference to these logs are made in this announcement.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. All drill hole coordinates and samples were recorded in MGA zone 51 and have been taken from data files attached to the historic WAMEX reports or taken from the reports Geochemical sample locations with prefix FR were taken by FRS geologists using a hand held GPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. The drilling data outlined in this announcement is historic and at this stage is not intended to be used for a mineral resource estimate. Sample compositing has been used in the drilling – details are given earlier in the JORC table.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement and no new drilling by FRS is being reported in this announcement. All of the drilling referenced in this announcement is historic. The majority of the drilling at Breakaway Dam was exploration in nature and as such, an understanding of the mineralisation is not well understood.

Criteria	JORC Code Explanation	Commentary
		 No sampling bias is known to have occurred at the Breakaway Dam project and the drilling is too limited to ascertain whether a sampling bias has occurred. All holes with prefix BDRC were drilled with a dip of -60 degrees and azimuth of 45 degrees (WAMEX A78230). All of the diamond holes were drilled at the same angle at a dip of -60 degrees and azimuth of 45 degrees. AXR holes were drilled at a dip of -60 degrees and azimuth of 270 (all details in the supplementary data). OLRAB holes were drilled to blade refusal at a dip of -60 degrees and azimuth of 90 degrees.
Sample security	The measures taken to ensure sample security.	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement; however, it is assumed that the previous operators ensured that industry standards were adhered to for sample security. All of the FRS geochemical samples (prefix FR) were collected by FRS geologists and taken to ALS with no third party access.
Audits or reviews	The sampling methods being used are industry standard practice.	 FRS did not conduct any drilling activities and no drilling by FRS is reported in this announcement. Sampling methodology is reported where known and if historic information on sampling is not available in historic data, the methodology utilised by previous explorers is assumed to be industry standard. Where the sampling methodology is known, the details are noted in the FRS database.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code ExplAnntion	Commentary
Mineral tenementand land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or nationalpark and environmental settings.	 E29/1037 is currently in the name of Outback Minerals Pty Ltd. Forrestania Resources Limited has reached an agreement with Outback Minerals to operate the tenements and keep the tenements in good standing. Currently, all requirements have been met.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	

Criteria	JORC Code ExplAnntion	Commentary
Criteria Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 Although now recognised as one complete greenstone belt, the project area was originally mapped as being two separate outcropping greenstone areas, Breakaway Dam and Alexandria Bore (in the south – E29/1036), and the historical exploration will be described accordingly. At Breakaway Dam, the first indications of exploration were a number of small pits dug by prospectors, possibly in the late 1960s or early 1970s, which exposed malachite-coated quartz veining in chloritic schists. Systematic exploration commenced in the 1970s when copper, nickel, lead and zinc exploration was undertaken by Australian Selection Pty Ltd. Their work included geological mapping and surface geochemical sampling, the results of which clearly defined a greenstone belt and copper-zinc anomalism. It was subsequently concluded that the mineralisation was shear zone hosted with limited potential. Between 1997 and 1998, Delta Gold N.L. (Delta) negotiated an option to purchase the project area from prospectors. Delta then completed a shallow auger soil sampling program with a total of 157 holes on a 800m x 400m spacing. Samples were analysed for gold (ppb) and arsenic and copper (ppm). Follow-up by Delta consisted of a further 270 shallow auger soil samples
		arsenic and copper (ppm).
		 From May 2003 to May 2004, the exploration area was renamed the Oliver Twist Project and explored by Sunrise Exploration Pty Ltd (Sunrise) on behalf of Pelican Resources Limited. A total of 232 soil samples were collected from about 15cm depth at 25m spacings along four east-west lines with samples being analysed for gold and arsenic; no base metal analyses were undertaken. No anomalous results were returned. In the zone immediately adjacent to the old prospecting pits a programme of 15 easterly inclined shallow RAB holes (OLRAB1-OLRAB15) totalling 500m was

Criteria	JORC Code ExplAnntion	Commentary
		 completed by Sunrise Exploration Pty Ltd and 133 samples were collected and analysed for gold only. In 2007, the outcropping secondary copper mineralisation was sampled by a prospecting group and submitted for limited multielement analyses with the results revealing statistically anomalous levels of gold, lead, tin and tungsten possibly indicative of a significant mineralised sulphide system in the area. Later in 2007, Amex commenced a wide-spaced reconnaissance reverse circulation (RC) drilling program of 7 shallow holes over 250m strike length near Breakaway Dam focused initially on a number of the old prospecting pits and a shallow geophysical anomaly (MLEM, moving loop ground electromagnetics). A further three RC holes were drilled in mid 2008, testing several additional deeper targets. Another three holes were drilled later in 2009, up to 650m further north of BDRC10, to test other MLEM targets. A number of mineralised sulphide lodes were intersected in each hole, comprising predominantly pyrite, pyrrhotite and minor chalcopyrite, with anomalous copper and silver levels. Amex's initial interpretation was that some of the semi-massive to massive sulphides intersected had the potential to be "feeder zone" mineralisation and considered strongly indicative of a larger VMS copper sulphide system. Down hole geophysical surveying of these holes BDD001-003 identified eight DHTEM bedrock conductors of interest in close proximity to these drill holes, at depths from 45-100m below surface. The three largest of these have been interpreted as having copper sulphides as the conductor source and have yet to be drilled. Ground magnetics and moving loop electromagnetic (MLEM) surveying had also defined additional targets over several kilometres of strike extent which have yet to be tested. These exploration histories are taken from the Aurelia IPO prospectus 2012 and WAMEX report A109745 and from A78230, A70542, A55119.
Geology	Deposit type, geological setting and style of mineralisation.	 The Breakaway Dam project area is located approximately 17km east of Menzies, Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The Alexandra Bore greenstone belt, made up of predominantly mafic volcanics, strikes through both of the tenements. This greenstone belt is bounded on either side by Archean granitoids. Ultramafic, mafic, sedimentary and pegmatite outcrops have been mapped across both tenements.

Criteria	JORC Code ExplAnntion	Commentary
		 The Perseverance Fault runs through both tenements, roughly north south, intersecting the greenstone belt in the northern half of E29/1037; whilst an unnamed fault strikes roughly north-west/south-east intersecting the Perseverance Fault. The style of mineralisation at Breakaway Dam is unknown but previous explorers and this announcement hypothesize that there may be similarities with VMS style deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole, down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material andthis exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. Historical drilling information on the project areas can be found in open source data within WAMEX reports: A2523, A55119, A70542, A78230, A91577, A25113, A28449, A109745, Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Drill hole information for historic holes reported in this announcement are found in the tables in the supplementary data after the JORC table. All holes with prefix BDRC were drilled with a dip of -60 degrees and azimuth of 45 degrees (WAMEX A78230). All of the diamond holes were drilled at the same angle at -60 degrees and azimuth of 45 degrees. AXR holes drilled at -60 degrees and azimuth of 270 (all details in the supplementary data). OLRAB holes were drilled to blade refusal at a dip of -60 degrees and azimuth of 90 degrees.
Data aggregation	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. Historic data has been loaded into the FRS database where possible. Some of this historic data has previously been aggregated, the details of the aggregation is not always known. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. BD holes were sampled using 4m composites through the RC pre collar and were sampled over 1m intervals throughout the diamond core (quarter core was taken as a sample). OLRAB holes: In total 133 samples were collected. The samples were laid on the ground in rows of 10 and sampled with a sampling spear. The samples were composited over 4m to 1m intervals. AXR holes: 18 holes were completed for 461m, 5m composites were taken.

Criteria	JORC Code ExplAnntion	Commentary
		 Data that had not previously been aggregated has been loaded to the FRS database and calculated using: Au - lower cut off 0.5 ppm, minimum interval 1m, maximum internal waste 2m. Cu - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Ag - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Pb - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 FRS did not conduct any drilling activities and no new drilling results are reported in this announcement. The geometry of the historic mineralisation for the prospects reported in this announcement is not yet known. All intercept lengths reported are derived from downhole depths. All interval widths given in this announcement are downhole width and not true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view ofdrill hole collar locations and appropriate sectional views.	 Appropriate maps with scale are included within the body of the accompanying document. All geological base maps are courtesy of GSWA.
Balanced reporting	Where comprehensive reporting of all exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent the exploration potential of the tenements. All of the significant drilling intercepts where relevant (>0.1% Cu, >1g/t Au, >0.02% Pb, > 0.06% Zn and >170ppm Co) are included in the tables provided. All drilling intercepts not included have values less than those listed above.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 WAMEX reports: A55119, A70452, A78230, A81833, A88374, A91577, A109745, were used to confirm geochemical and drilling data for this report. WAMEX reports A88374 and A91577 reference a down hole EM survey that was completed in 2010, Three DHTEM surveys were completed at the Breakaway Dam project during mid September 2009 by GEM Geophysical Surveys and interpreted by Southern Geoscience Consultants. The objective of these surveys was to detect bedrock conductors of interest (possible copper sulphide concentrations) in close proximity to these drill holes).

Criteria	JORC Code ExplAnntion	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depthextensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Where possible, further validation of the historic drilling will be confirmed by site visits. A site visit with Dr Carl Brauhart has been arranged for mid March. Further geochemical work will be undertaken. Further drill planning will also be completed. Ultimately, the company wishes to drill test the anomalies – drilling programmes have been designed and as more data comes in, additional designs will be made; drilling and will be completed when the mapping has been completed and the requisite approvals have been granted.

Table 3: Historic drill collars for all of the (prefix AXR) holes, including those referred to in this announcement. All collars - Zone MGA94_51, estimated RL of 445.

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	East	North	RL	RC precollar	Lease_ID	Prospect	Started	Completed	Company	WAMEX	DD
AXR001	RAB	29	270	-60	330750	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR002	RAB	21	270	-60	330800	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR003	RAB	38	270	-60	330850	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR004	RAB	40	270	-60	330900	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR005	RAB	9	270	-60	330950	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR006	RAB	39	270	-60	331000	6712400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR007	RAB	58	270	-60	330350	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR008	RAB	45	270	-60	330400	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR009	RAB	40	270	-60	330450	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR010	RAB	24	270	-60	330500	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR011	RAB	26	270	-60	330550	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR012	RAB	9	270	-60	330650	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR013	RAB	3	270	-60	330700	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR014	RAB	24	270	-60	330750	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR015	RAB	26	270	-60	330800	6713000	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR016	RAB	5	270	-60	330300	6713400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR017	RAB	4	270	-60	330350	6713400	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a
AXR018	RAB	22	270	-60	330300	6712600	445	n/a	E29/1037	Breakaway Dam	21/5/98	21/5/98	Delta Gold	A55119	n/a

Table 4: Historic drill collars for all of the (prefix BD & BDRC) holes, drilled at Breakaway Dam. All collars - Zone MGA94_51, estimated RL of 445. (RC_DDT denotes and RC pre-collar with a diamond tail)

Hole ID	Hole Type	Max Depth	Azi	Dip	East	North	RL	RC precollar	Lease ID	Prospect	Started	Completed	Company	WAMEX	DD
_	//			·				•	_			•	Amex		
BD001	RC_DDT	246	45	-60	330015	6713150	445	120	E29/1037	Breakaway Dam	10/3/9	10/3/9	Resources	A78230	Yes
													Amex		
BD002	RC_DDT	117	45	-60	329890	6713285	445	72	E29/1037	Breakaway Dam	10/9/9	13/9/9	Resources	A78230	Yes
													Amex		
BD003	RC_DDT	165	45	-60	329550	6713485	445	111	E29/1037	Breakaway Dam	8/9/9	12/9/9	Resources	A78230	Yes
					330687	6712779		,					Amex		1, 1
BDRC01	RC	40	45	-60			445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
BBB603	B.C.	F2	45	60	330673	6712764	4.45	- 1-	520/4027	David and David	40/2/0	40/2/0	Amex	470220	
BDRC02	RC	52	45	-60			445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
BDRC03	RC	56	45	-60	330726	6712741	445	n/a	E29/1037	Breakaway Dam	10/2/9	10/2/8	Amex	A78230	n/a
BDRC03	RC	30	45	-60			445	П/а	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources Amex	A78230	II/ a
BDRC04	RC	46	45	-60	330785	6712708	445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
BBRCOT	i i i	40	73	- 00			443	11/ 0	123/1037	Dicakaway Dairi	10/2/0	10/2/0	Amex	A70230	11/ 0
BDRC05	RC	56	45	-60	330771	6712693	445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
								, :	-,	, .	-, ,-	-, , -	Amex		, -
BDRC06	RC	34	45	-60	330580	6712829	445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
					220562	6742045							Amex		
BDRC07	RC	58	45	-60	330563	6712815	445	n/a	E29/1037	Breakaway Dam	10/2/8	10/2/8	Resources	A78230	n/a
					330900	6712600							Amex		
BDRC07	RC	70	45	-60	330900	0712000	445	n/a	E29/1037	Breakaway Dam	10/3/8	10/3/8	Resources	A78230	n/a
					330880	6712580							Amex		[
BDRC09	RC	76	45	-60	330000	0712300	445	n/a	E29/1037	Breakaway Dam	10/3/8	10/3/8	Resources	A78230	n/a
					330075	6713050			1				Amex		1
BDRC10	DD	240.5	45	-60	555075	0.13030	445	214	E29/1037	Breakaway Dam	10/3/8	10/3/8	Resources	A78230	Yes

Table 5: Historic drill collars for all of the (prefix OLRAB) holes, drilled at Breakaway Dam. All collars - Zone MGA94_51. No pegmatites were logged in these holes.

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	East	North	RL	Lease_ID	Prospect	Started	Completed	Company	WAMEX	DD
OLRAB1	RAB	40	90	-60	331021	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLIVADI	INAD	40	30	-00	331021	0/12/30	412	123/103/	Dicaraway Dain	01/03/2004	01/03/2004	Sumise Exploration 1 ty	A70342	11/ a
OLRAB10	RAB	30	90	-60	330937	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB11	RAB	30	90	-60	330917	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB12	RAB	23	90	-60	330897	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB13	RAB	30	90	-60	330877	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB14	RAB	35	90	-60	330857	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB15	RAB	42	90	-60	330837	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB2	RAB	40	90	-60	330997	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB3	RAB	40	90	-60	330977	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB4	RAB	40	90	-60	330957	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB5	RAB	39	90	-60	330937	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB6	RAB	29	90	-60	330917	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB7	RAB	14	90	-60	330898	6712798	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB8	RAB	39	90	-60	330977	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a
OLRAB9	RAB	28	90	-60	330957	6712938	412	E29/1037	Breakaway Dam	01/05/2004	01/05/2004	Sunrise Exploration Pty	A70542	n/a

Table 6: Historic assay results for Cu, Li and various LCT pathfinder elements from those BDRC holes with logged pegmatite (note: Ta values all under detection limit, due to aqua regia assay methodology). Interval width is downhole width and not true width. For reference, pegmatite was logged at 16-17m in BDRC05 and 42-43m in BDRC02. Neither of these holes were assayed using four acid analytical methodology.

SampleID	Hole_ID	From	То	Cu_ppm	Li_ppm	Be_ppm	Cs_ppm	Nb_ppm	Rb_ppm	Sn_ppm
BDRC02 0-4	BDRC02	0	4	477.0	11	0.5	15.8	0.1	37.1	15.4
BDRC02 4-8	BDRC02	4	8	228.0	48	1.1	9.0	0.1	24.2	11.0
BDRC02 8-12	BDRC02	8	12	83.8	31	1.3	7.6	-0.1	15.5	6.8
BDRC02 12-16	BDRC02	12	16	274.0	24	0.7	2.4	-0.1	4.0	6.3
BDRC02 16-20	BDRC02	16	20	18.0	32	0.8	3.7	-0.1	6.7	4.8
BDRC02 20-24	BDRC02	20	24	98.0	44	0.4	2.1	-0.1	4.4	7.0
BDRC02 24-28	BDRC02	24	28	65.7	33	0.3	2.4	-0.1	4.1	6.4
BDRC02 28-32	BDRC02	28	32	511.0	33	0.2	3.4	-0.1	2.6	6.3
BDRC02 32-36	BDRC02	32	36	282.0	64	0.7	7.1	-0.1	10.4	5.5
BDRC02 36-40	BDRC02	36	40	109.0	56	1.2	3.5	-0.1	1.8	1.4
BDRC02 40-42	BDRC02	40	42	82.5	88	0.2	9.3	-0.1	16.4	0.9
BDRC02 42-43	BDRC02	42	43	22.6	84	5.2	5.7	-0.1	7.6	0.4
BDRC02 43-44	BDRC02	43	44	255.0	101	0.5	13.2	-0.1	28.7	1.5
BDRC02 44-45	BDRC02	44	45	2520.0	53	0.7	11.7	-0.1	30.9	11.2
BDRC02 45-46	BDRC02	45	46	4130.0	41	0.6	7.3	-0.1	6.1	6.4
BDRC02 46-47	BDRC02	46	47	7900.0	40	0.5	10.9	-0.1	16.0	19.3
BDRC02 47-48	BDRC02	47	48	3480.0	58	0.3	8.9	0.1	29.9	10.4
BDRC02 48-52	BDRC02	48	52	503.0	74	0.2	11.0	-0.1	15.5	2.7
BDRC05 0-4	BDRC05	0	4	190.0	6	0.2	3.7	0.1	9.9	8.1
BDRC05 4-8	BDRC05	4	8	126.0	28	0.6	1.5	0.1	2.3	16.5
BDRC05 8-12	BDRC05	8	12	71.7	44	2.5	9.4	0.1	19.6	9.0
BDRC05 12-16	BDRC05	12	16	703.0	37	0.4	5.2	0.1	7.7	8.7
BDRC05 16-20	BDRC05	16	20	115.5	23	0.8	3.5	0.1	3.8	8.4

SampleID	Hole_ID	From	То	Cu_ppm	Li_ppm	Be_ppm	Cs_ppm	Nb_ppm	Rb_ppm	Sn_ppm
BDRC05 20-24	BDRC05	20	24	114.0	56	0.4	20.0	0.1	32.7	5.4
BDRC05 24-28	BDRC05	24	28	101.0	40	0.7	8.6	0.1	19.4	3.4
BDRC05 28-32	BDRC05	28	32	57.2	55	1.2	5.7	0.1	11.1	2.7
BDRC05 32-36	BDRC05	32	36	712.0	45	0.7	2.9	0.1	2.9	3.7
BDRC05 36-40	BDRC05	36	40	176.0	26	0.4	2.9	0.1	3.5	2.9
BDRC05 40-44	BDRC05	40	44	134.0	43	0.3	10.7	0.1	20.8	3.7
BDRC05 44-48	BDRC05	44	48	190.0	23	0.3	5.8	-0.1	3.9	2.1
BDRC05 48-50	BDRC05	48	50	222.0	4	0.3	4.8	0.1	1.6	2.1
BDRC05 50-51	BDRC05	50	51	62.9	78	0.1	34.5	0.1	74.1	3.0
BDRC05 51-52	BDRC05	51	52	653.0	40	1.3	14.9	0.1	27.9	3.7
BDRC05 52-53	BDRC05	52	53	419.0	76	1.0	18.9	0.1	61.9	8.3
BDRC05 53-54	BDRC05	53	54	873.0	45	0.0	6.0	0.1	11.8	5.0
BDRC05 54-55	BDRC05	54	55	809.0	56	4.9	12.7	0.1	29.9	4.4
BDRC05 55-56	BDRC05	55	56	180.0	6	0.5	0.9	0.1	2.4	1.1

Table 7: Recent rock chip results for Li, Cu, Zn, K and LCT pathfinders (Be, Cs, Nb, Sn, Rb, Ta). All samples - Zone MGA94_51. RL ~450m. (note: n/a – sample result below detection limit; if no value is given for a specific element, it was not assayed for). All samples with prefix FR were taken by FRS. For other historic rock chips referred to in this or other FRS announcements, please refer to: ASX:FRS – Copper prospectivity at Eastern Goldfields project, 14th September 2023, ASX:FRS, Anomalous lithium returned from rock chips - Eastern Goldfields tenements, 9th August 2023, ASX:FRS, Option to acquire strategic, highly prospective Eastern Goldfields tenements, 19th May 2023, ASX:FRS, New pegmatites identified at Eastern Goldfields, 9th June 2023.

SampleID	Sample_Type	NAT_North	NAT_East	Sample_Description	Be_ppm	Cs_ppm	Cu_ppm	K_pct	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Zn_ppm
FR000927	ROCK	6709952	331399	Biotite rich granite	1.5	3.2	4	2.3	76	3.2	78.9	0.7	0.6	51.3
FR000959	ROCK	6715277	328027	pegmatite float	2.4	6.7	2	5.2	57	40.1	512.0	6.3	6.9	17.4
FR000960	ROCK	6715321	328023	Thin musc rich pegmatite on granite contact	2.2	6.4	2	4.3	70	25.0	368.0	4.4	3.5	17.6
FR000961	ROCK	6715191	328333	Fe rich qtz vein on contact with schist	1.4	1.0	131	0.4	9	2.1	36.2	1.0	0.5	122.5
FR000962	ROCK	6715186	328329	Qz musc pegmatite	0.2	0.1	2	0.1	10	1.4	4.6	0.3	0.3	2.8
FR000963	ROCK	6715466	328278	Thin pegmatite within schist	3.9	9.7	25	2.2	20	70.4	636.0	7.4	20.2	29.7
FR000964	ROCK	6715489	328377	Thin pegmatite within schist	2.9	9.4	56	1.9	19	82.5	587.0	23.8	29.0	23.6
FR000965	ROCK	6715567	328680	pegmatite in granite	2.2	5.0	13	0.6	39	78.3	229.0	7.9	34.2	34.1
FR000966	ROCK	6715594	328699	pegmatite in granite	2.4	8.5	16	2.0	44	42.1	472.0	16.0	7.4	32.3
FR000967	ROCK	6715549	328673	highly weathered schist?? (float) with 5cm bladed minerals	2.1	1.6	66	0.1	14	3.0	11.9	6.1	0.4	72.5
FR000968	ROCK	6715481	328656	Highly weathered pegmatite	3.1	4.3	80	0.8	30	32.5	229.0	8.9	14.8	49.9
FR000969	ROCK	6715430	328634	Coarse mica pegmatite float	3.2	9.7	12	1.1	54	71.3	489.0	16.6	24.8	50.3
FR000970	ROCK	6715227	328696	pegmatite weathered intense	3.3	12.9	54	1.5	42	101.5	616.0	27.2	53.4	30.7
FR000971	ROCK	6715814	327514	Sugary vqz	0.1	0.1	3	0.0	5	0.7	4.9	0.4	0.3	5.0
FR000972	ROCK	6715652	328261	Thin coarse mica rich pegmatite nnw	3.3	8.2	8	4.3	118	141.5	621.0	18.5	20.7	40.9
FR000973	ROCK	6715585	328279	weathered pegmatite mica rich	8.1	13.4	174	2.2	63	60.6	730.0	32.5	15.6	223.0

SampleID	Sample_Type	NAT_North	NAT_East	Sample_Description	Be_ppm	Cs_ppm	Cu_ppm	K_pct	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Zn_ppm
FR000974	ROCK	6719454	327149	Thin pegmatite trending nw - weathered	3.4	3.9	8	2.1	13	49.6	240.0	4.4	16.1	35.0
FR000975	ROCK	6719371	328334	Extremely weathered pegmatite	0.7	1.7	31	0.4	27	25.3	56.0	3.6	3.9	16.5
FR000976	ROCK	6710147	333113	Qtz feldspar rich pegmatite	4.4	8.4	2	3.2	16	77.5	798.0	2.4	17.4	7.9
FR001284	ROCK	6711912	335429	biotite rich (25%) granite	4.5	14.1	5	2.0	201	57.3	268.0	15.2	10.7	101.0
FR001285	ROCK	6713283	330175	Pegmatite	4.4	9.3	3	2.9	61	91.2	888.0	42.7	20.6	63.8
FR001286	ROCK	6713304	330194	green micaceous (30%) pegmatite	3.4	9.1	4	3.3	54	75.5	871.0	31.7	15.1	38.4
FR001287	ROCK	6713479	330312	Pegmatite - glimmerite? ~90% biotite	63.3	413.0	4	5.4	1465	2.7	1635.0	4.4	0.2	184.0
FR001288	ROCK	6713513	330244	gossanous sediment	4.3	2.1	552	0.1	57	4.7	8.6	2.2	0.4	507.0
FR001289	ROCK	6713152	330018	Sediment - green colouration	0.7	4.0	4	1.2	19	0.3	41.1	0.4	0.0	36.1
FR001290	ROCK	6713319	329503	green micaceous (30%) pegmatite	6.7	82.5	9	2.2	77	75.5	1395.0	70.2	41.1	114.5
FR001291	ROCK	6713325	329442	Pegmatite - glimmerite?	4.6	296.0	14	5.6	1120	17.7	4280.0	31.4	8.0	2220.0
FR001296	ROCK	6712244	331327	BIF/banded sed	1.2	1.9	208	0.3	10	1.2	21.1	1.4	0.1	50.8
FR001297	ROCK	6715293	329145	Qtz rich schist on granite contact	0.2	0.2	6	0.2	4	0.5	7.6	0.8	0.0	2.4
FR001298	ROCK	6715360	329865	gossanous sed/ironstone	0.0	0.0	9	0.0	2	0.4	0.9	0.6	0.0	3.6
FR001370	ROCK	6715181	329453	Schist	0.6	2.0	4	2.5	58	26.2	97.7	2.5	5.4	3.6
FR001371	ROCK	6715193	328798	BIF/banded sed	1.5	0.5	123	0.0	14	1.6	2.2	0.8	0.1	66.3
FR001384	ROCK	6715256	328762	gossanous sediment	0.0	0.1	3	0.0	1	0.6	1.9	0.8	0.0	2.8
FR001385	ROCK	6715281	328709	banded qtz & seds	1.5	0.4	44	0.0	11	0.9	2.4	1.3	0.1	48.9
FR001386	ROCK	6715373	328687	banded qtz & seds	0.4	0.3	212	0.0	9	0.9	2.5	1.9	0.0	32.4
FR001387	ROCK	6713467	330210	Qtz and biot rich glimmerite	1.2	150.5	6	3.0	794	7.8	1680.0	12.5	3.4	135.5

SampleID	Sample_Type	NAT_North	NAT_East	Sample_Description	Be_ppm	Cs_ppm	Cu_ppm	K_pct	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Zn_ppm
FR001388	ROCK	6713425	330442	Qtz rich (80%) pegmatite	9.6	23.8	3	1.5	241	59.3	549.0	15.1	24.4	58.7
FR001406	ROCK	6713588	329444	strongly weathered brown Fe oxidised material with vqz	10.0	1.5	205	0.2	7	2.8	13.9	2.1	0.5	316.0
FR001407	ROCK	6713603	329272	highly weathered peg	14.2	2.4	339	0.6	16	27.4	167.0	6.8	5.1	599.0
FR001408	ROCK	6713493	329435	Highly weathered pegmatite	5.8	24.6	76	3.6	62	126.0	1465.0	54.6	85.0	53.4
FR001409	ROCK	6713172	329445	Weathered granitic pegmatite	8.1	5.1	11	1.0	11	35.7	220.0	8.8	6.5	25.5
FR001410	ROCK	6713426	330349	Biotite rich halo zone contact pegmatite	8.7	271.0	10	2.9	1225	2.2	777.0	2.4	0.3	153.0
FR001411	ROCK	6713463	330328	pegmatite aplite	7.0	12.0	5	2.8	315	125.5	786.0	39.2	44.6	61.2
FR001412	ROCK	6713779	329715	Highly weathered schist	1.2	3.7	15	4.1	42	4.1	103.0	3.2	0.4	15.7
FR001413	ROCK	6713793	329596	Fe rich qtz vein	0.5	0.7	48	0.0	11	0.7	4.7	0.3	0.1	35.8
FR001414	ROCK	6714585	329140	Highly weathered pegmatite in schist along breakaway	3.3	9.4	9	1.5	146	82.3	538.0	25.4	29.8	29.8
FR001415	ROCK	6714403	329058	Thin pegmatite in mica schist	4.8	32.3	5	3.2	54	58.9	1050.0	41.1	60.2	18.8
FR001416	ROCK	6712724	329945	pegmatite with plumose musc	4.0	154.5	2	6.0	85	45.8	1135.0	14.7	6.1	41.5
FR001417	ROCK	6713538	329696	pegmatite aplite 7m thick	5.0	26.7	3	1.9	62	86.9	1270.0	40.0	60.7	60.9
FR001418	ROCK	6713258	330124	pegmatite aplite 1m wide	2.6	13.7	11	2.4	9	102.0	1020.0	55.4	20.5	55.2
FR001419	ROCK	6713364	330107	pegmatite aplite 1m wide	3.1	6.0	5	1.9	13	30.4	630.0	15.3	8.8	13.0
FR001420	ROCK	6715235	328744	Fe rich banded qtz & seds	0.4	0.5	12	0.0	13	1.1	6.3	0.5	0.3	15.6
FR001421	ROCK	6715344	328704	banded qtz & seds	0.5	0.4	43	0.0	11	1.1	4.4	0.6	0.1	40.5
FR001422	ROCK	6715398	328697	Fe rich qtz vein	0.4	0.7	24	0.1	17	2.9	6.1	5.0	0.2	7.3
FR001423	ROCK	6715383	328309	Fe rich qtz vein on magnetic high ridge	1.5	0.2	583	0.0	4	1.4	2.6	2.4	0.1	48.5
FR001424	ROCK	6713131	330267	5m wide pegmatite aplite?	4.1	13.2	13	1.5	9	54.8	674.0	23.6	21.5	30.4

SampleID	Sample_Type	NAT_North	NAT_East	Sample_Description	Be_ppm	Cs_ppm	Cu_ppm	K_pct	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Zn_ppm
FR001425	ROCK	6713219	330223	3m wide pegmatite aplite	10.5	33.1	5	2.3	9	73.0	1345.0	49.4	60.1	71.3
FR001426	ROCK	6713269	330312	20m wide pegmatite intersection zone, pegmatite sample	6.5	31.0	6	1.7	78	71.9	1050.0	34.8	20.3	108.0
FR001427	ROCK	6713247	330251	Plumose musc pegmatite	5.5	27.3	3	2.2	98	81.9	1305.0	44.3	23.7	105.0
FR001452	ROCK	6716699	328554	Fe vqz in schist	0.1	0.3	3	0.1	14	1.3	6.8	0.7	0.2	1.8
FR001453	ROCK	6716917	328125	Fe oxidised vqz	0.5	0.3	93	0.1	6	0.4	6.9	2.8	0.0	38.9
FR001454	ROCK	6713544	330324	vqz with disseminated biotite with strong oxidation patches	2.5	30.1	5	2.4	393	14.1	763.0	14.7	6.8	50.1
FR001455	ROCK	6713535	330307	Qtz mica pegmatite	3.5	9.5	2	1.6	68	68.5	599.0	24.5	16.1	55.6
FR001456	ROCK	6713472	330227	Fe rich qtz vein	13.4	1.1	29	0.0	17	0.4	5.2	0.8	0.1	127.0
FR001457	ROCK	6713460	330210	Pegmatite - glimmerite?	2.3	349.0	4	6.9	1780	4.4	4340.0	22.9	0.6	312.0
FR001458	ROCK	6713460	330209	vqz with disseminated biotite with strong oxidation patches	0.4	15.8	2	0.3	95	4.7	190.5	5.2	0.4	26.8
FR001459	ROCK	6713472	330279	Schist with Fe rich qtz vein	13.4	1.8	419	0.6	45	1.3	21.3	5.3	0.2	260.0
FR001460	ROCK	6713213	330578	Schist with fe vqz	1.0	2.6	166	2.1	14	2.3	34.1	1.9	0.8	26.4
FR001461	ROCK	6713197	330632	musc rich pegmatite	5.5	13.1	2	2.5	279	116.0	783.0	25.6	19.5	99.6
FR001462	ROCK	6713124	330661	Biotite rich pegmatite at contact with schist	8.7	6.2	5	0.7	109	32.1	232.0	14.1	69.3	12.0
FR001463	ROCK	6713123	330661	Qtz biotite rock	2.5	1.5	2	0.2	36	9.2	37.7	2.2	7.5	4.8
FR001464	ROCK	6712988	330806	Musc rich pegmatite	6.0	25.5	3	2.3	339	113.5	980.0	35.2	21.7	110.5
FR001467	ROCK	6713578	330365	Musc rich pegmatite	6.6	13.4	2	3.5	499	126.5	1030.0	59.3	16.2	128.5
FR001468	ROCK	6715973	328262	sugary Vqz chips in old drill spoils	0.0	0.1	8	0.0	2	0.6	1.2	0.2	0.0	4.9
FR001469	ROCK	6715970	328262	Vqz fe breccia - cu?	1.9	0.3	140	0.1	4	0.7	4.0	0.3	0.1	151.5

SampleID	Sample_Type	NAT_North	NAT_East	Sample_Description	Be_ppm	Cs_ppm	Cu_ppm	K_pct	Li_ppm	Nb_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Zn_ppm
FR001470	ROCK	6713012	330318	Homogenous sediment	0.7	0.5	17	0.2	14	4.0	12.7	1.1	0.4	124.0
FR001471	ROCK	6712960	330369	Banded sediment	0.2	0.4	183	0.1	7	1.4	9.9	0.7	0.1	142.0
FR001472	ROCK	6713349	329579	Pegmatite	6.6	29.2	9	2.0	45	39.9	577.0	14.7	12.3	51.2
FR001473	ROCK	6713122	330654	Weathered schist	6.4	16.3	241	1.1	302	11.0	236.0	16.0	7.9	57.5
FR001474	ROCK	6712706	330613	Banded sediment	2.6	1.0	2470	0.1	3	0.6	4.9	14.1	0.0	2380.0
FR001475	ROCK	6712802	330523	Banded sediment	1.3	2.6	438	1.0	21	1.0	43.5	0.9	0.1	75.4
FR001482	ROCK	6712840	330532	Banded sediment	1.1	0.4	1000	0.0	7	0.8	2.7	13.4	0.1	96.9
FR001483	ROCK	6713423	330186	Banded sediment	2.4	3.8	39	0.5	37	3.9	84.5	3.9	1.1	8.7
FR001484	ROCK	6713424	330187	Oxidised qtz outcrop	0.7	0.4	91	0.0	23	0.9	1.3	1.3	0.1	14.2
FR001485	ROCK	6713410	330199	Banded sediment	3.3	6.2	252	0.4	22	1.3	66.4	1.3	0.1	71.3
FR001486	ROCK	6713372	330234	Banded sediment	1.1	8.5	55	2.1	35	1.5	90.4	2.6	0.1	47.9

Table 8: All historic logging data from AXR holes, completed by Delta Gold NL. Interval width is downhole width and not true width. Original logging comments courtesy of WAMEX A55119 (historically, no specific lithological logging codes were used by the Delta Gold geologists for pegmatite); relevant lithology codes used in WAMEX A55119: GOO – Granitoid, GQM – Quartz muscovite granitoid, PMO – Muscovite schist. Collar locations can be found in the supplementary data tables.

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR001	0	1	TSC	со	В	
AXR001	1	3	WSC	so	С	
AXR001	3	4	WSW	so		
AXR001	4	8	MOO	so	GK	
AXR001	8	13	MOO	so	- Cit	
AXR001	13	14	MOOMDO	so	G	
AXR001	14	16	MOOMDO	so	G	
AXR001	16	19	MOOMDO	so	G	he/go FILLED PSEUDOMORPHS OF py
AXR001	19	20	МОО	so	GW	
AXR001	20	21	MDO	so	G	
AXR001	21	22	MDO	ро		
AXR001	22	26	МДОРВО	so	G	
AXR001	26	27	МДОРВО	ро		
AXR001	27	28	МДОРВО	so	IG	
AXR001	28	29	G00	ро		PEGMATITIC EOH
AXR002	0	1	TSCTSB	со	BR	SURFACE VEIN QTZ
AXR002	1	2	WLHCFH	со	BR	·
AXR002	2	7		so		

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR002	7	8	WSGMOO	so		
AXR002	8	10	WSGMOO	so		
AXR002	10	11	WSGMOO	so		
AXR002	11	16	МОО	so		
AXR002	16	18	РВО	ро		
AXR002	18	19	РВО	ро		
AXR002	19	21	BOOBHR	ро		ЕОН
AXR003	0	1	TSCTSB	со		VEIN QUARTZ
AXR003	1	10	WSGMOO	so	IG	
AXR003	10	11	MOO	so		
AXR003	11	17	WSGMOO	so	IG	
AXR003	17	18	G00	so	W	PEGMATITE
AXR003	18	19	МООВОО	ро		
AXR003	19	22	МООВОО	so		ALMOST PBO
AXR003	22	25	MOO	ро		
AXR003	25	32	МООРВО	ро		
AXR003	32	35	МООРВО	so		
AXR003	35	38	МООРВО	ро		ЕОН
AXR004	0	2	TSBTSC	со	BR	
AXR004	2	4	WLH	со	R	
AXR004	4	8	SLO	ро		
AXR004	8	13	SLO	ро		

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR004	13	14	SLO	ро		
AXR004	14	15	РООРРМ	so		SHEAR
AXR004	15	21	WSZMOO	so		SHEAR
AXR004	21	26	MOO	so		FRACTURE INFILL VUGGY QTZ
AXR004	26	36	MOOSOO	ро		
AXR004	36	40	воовна	ро		ЕОН
AXR005	0	1	TSB	со		VEIN QTZ
AXR005	1	4	WSGBOO	so	IG	
AXR005	4	7	воо	so		
AXR005	7	9	воомао	ро		AMPHIBOLITE EOH
AXR006	0	2	TSBTSG	со		VEIN QTZ
AXR006	2	8	WSB	so		
AXR006	8	10	WSR	so		
AXR006	10	16	WSRPOO	so		
AXR006	16	18	WSC	so		
AXR006	18	19	WSC	so		
AXR006	19	20	G00	so	С	
AXR006	20	25	WSC	so	С	
AXR006	25	26	G00	so		
AXR006	26	30	G00	so	С	
AXR006	30	31	G00	so	С	
AXR006	31	34	G00	so		

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR006	34	39	G00	ро		QTZ-FELD RICH EOH
AXR007	0	3	TSBTPU	со		
AXR007	3	9	WCTWLH	со		
AXR007	9	11	WLHCSB	со		
AXR007	11	19	WSB	so	BK	
AXR007	19	28	WSK	so		
AXR007	28	32	WSGGOO	so	GW	nn
AXR007	32	46	воомоо	so		nn
AXR007	46	47	моо	ро		
AXR007	47	49	моо	so	R	
AXR007	49	54	MOOGOO	ро		
AXR007	54	56	MOOGOO	so		bi RICH
AXR007	56	57	РВО	ро	В	
AXR007	57	58	PBOBOO	ро		ЕОН
AXR008	0	1	TSBTSG	со		
AXR008	1	6	wcc	со		
AXR008	6	8	WCRCSB	со	R	
AXR008	8	11	WST	so		
AXR008	11	14	WSR	so	R	
AXR008	14	25	WSTMOO	so		MAFIC PHENOCRYSTS
AXR008	25	32	WSTMOO	ро		MAFIC PHENOCRYSTS
AXR008	32	33	WSTMOO	so		MAFIC PHENOCRYSTS

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR008	33	38	WSTMOO	so		MAFIC PHENOCRYSTS
AXR008	38	42	воо	ро		
AXR008	42	45	воо	ро		bi RICH PSEUDO'S AFTER py EOH
AXR009	0	1	TSBTSG	со		VEIN QTZ
AXR009	1	2	TSGCFH	со	В	
AXR009	2	4	TCO	со	В	
AXR009	4	22	WCT	со		
AXR009	22	25	WSTPBO	so		
AXR009	25	29	WSWGOO	so		
AXR009	29	31	WSTPBO	so		
AXR009	31	35	POO	so		
AXR009	35	38	S00	so	В	METASEDIMENT QUARTZITE
AXR009	38	40	SOOPPM	ро		METASEDIMENT he AFTER SULPHIDES
AXR010	0	2	TSB	со	В	VEIN QTZ
AXR010	2	9	wsw	so		
AXR010	9	12	WSWPBO	so		
AXR010	12	19	G00	so		
AXR010	19	20	РВО	ро		
AXR010	20	23	воо	ро		
AXR010	23	24	РВОВНА	ро		ЕОН
AXR011	0	3	TSBTSG	со		VEIN QTZ
AXR011	3	8	SSOITO	so		?

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR011	8	11	МОО	so		?
AXR011	11	20	MOO	so		?
AXR011	20	26	вна	ро		AMPHIBOLE PORPH'S EOH
AXR012	0	1	TSB	со	В	VEIN QTZ
AXR012	1	4	МОО	ро		TUFF?
AXR012	4	9	воорво	ро		ЕОН
AXR013	0	1	CFH	со	BR	
AXR013	1	3	GOOGQM	ро		PEGMATITE EOH
AXR014	0	2	TSBTSG	со	В	
AXR014	2	3	WLH	со	W	
AXR014	3	5	wsw	so	W	
AXR014	5	6	wsw	so	W	
AXR014	6	24	GQM	so	W	PEGMATITE MICA RICH EOH
AXR015	0	1	TSBTSG	со	В	VEIN QTZ
AXR015	1	10	G00	so	W	PHYLLITIC
AXR015	10	19	WSWGOO	so	W	
AXR015	19	23	GOOPQM	ро	W	RECRYSTALLISED (SHEAR?)
AXR015	23	24	GOOPQM	ро		
AXR015	24	26	GQM	ро		ЕОН
AXR016	0	1	TSGTSB	со	R	
AXR016	1	5	GQM	ро		PEGMATITIC EOH
AXR017	0	1	TSGTSB	со	R	

Hole_ID	Depth_From	Depth_To	Lith1_Hist_Code	Oxidation_Weathering	Lith1_Colour1	Comments
AXR017	1	4	GQM	ро		PEGMATITIC EOH
AMOIT	-	7	उद्दारा	Po		T EGWATTIC EOT
AXR018	0	1	TSBTSG	со	В	VEIN QTZ
AXR018	1	4	WLH	so		
AXR018	4	9	WEST	so		
AXR018	9	16	WSBPOO	so	BG	
AXR018	16	19	РВО	so	В	
AXR018	19	20	РВО	so	В	
AXR018	20	22	PMOGQM	so	BG	ЕОН