

Strickland Metals Limited ACN 109 361 195 info@stricklandmetals.com.au www.stricklandmetals.com.au

5 March 2024

BRONCO-KONIK TREND SHOWS LARGE SCALE BULK TONNAGE POTENTIAL

DRILLING LINKS THE BRONCO AND KONIK PROSPECTS, DEFINING A 500M GOLD STRUCTURE **Key Points:**

- Ongoing work by Strickland has demonstrated the Bronco and Konik prospects at Horse Well are part of the same structure
- Konik was discovered by the Company during the 2023 drilling program in discovery hole HWAC1488: 58m @ 1.7g/t Au from 17m to BOH
- The Bronco prospect was initially drilled in the 1990s and subject to only one subsequent small RC program in 2019 since discovery; it was viewed as a shallow, high-grade oxide prospect
- The prospect now represents a large bulk tonnage target, with a high-grade oxide zone at surface
- Strickland remains extremely well-funded, with cash and Northern Star Resources Ltd (ASX:NST) shares totalling ~\$54m at the end of the previous guarter

Introduction

Strickland Metals Limited (ASX:STK) (**Strickland** or the **Company**) is pleased to provide an update on its 100% owned Yandal Gold Project.

Andrew Bray, Chief Executive Officer, said: "As mentioned in several previous announcements, Strickland has spent substantial time in recent months collating, reviewing and modelling data from last year's large drilling campaign. This ongoing work is continuing to yield significant project advancements.

On 2 October 2023, we announced the Konik discovery in HWAC1488: **58m @ 1.7g/t Au from 17m to BOH**. Approximately 250m to the south-west lies the historic Bronco prospect. Our initial thinking at the time was that both prospects were hosted on parallel structures, however it is now clear that they are part of the same structure.

Bronco was initially discovered in the mid-1990s. It had since been subject to only one small follow up RC program in 2019. Historic drilling returned very impressive shallow oxide gold results, however due to the drilling pattern, mineralisation did not appear to show coherency section to section. This is evident from the orientation of drilling, whereby the rig was pointed in virtually every direction (see Figure 1) in an attempt to understand the mineralisation, albeit with little success.

The drilling in HWAC1488 at Konik last year intersected the same basal horizon as observed historically at Bronco (i.e. the contact between the hanging wall felsic volcanics and the footwall mafic volcanics). This means both prospects are actually on the same structure, with the combined prospect area being a large bulk tonnage target.

This new interpretation is also supported by other historic drilling, including HWRC125: **79m @ 1.0g/t Au from 10m** – a result which lies in between Konik and Bronco (see Figure 1), and which had historically never been fully explained or understood. Several Bronco intersections lend further credence to this interpretation, including HWRC072: **89m @ 3.0g/t from 18m to BOH**, and the deepest hole to date drilled there, HWRC251: **95m @ 0.7g/t Au**.

Remodelling the prospect as a bulk tonnage target has allowed Strickland to determine the orientation of the mineralisation. The Bronco-Konik prospect dips to the west, plunges gently to the north-west, and remains entirely open both down-plunge and down-dip. The prospect area has also been expanded to approximately 500m of strike. Importantly, treating Bronco-Konik as a bulk-tonnage target does not limit the potential extensions to the higher grade zones of mineralisation intersected at depth.

This development is also highly significant for Strickland as none of this gold mineralisation has been included in any historic resource calculations. Bronco-Konik will be drilled once the main drilling campaigns for 2024 commence."

Bronco-Konik Trend

Bronco was first discovered in 1995 by Eagle Mining Corporation N.L (**Eagle Mining**) when they carried out reconnaissance exploration RAB drilling across the Horse Well area. This initial program defined a zone of gold anomalism 200 metres in length with values >1g/t Au. Around the same time, Eagle Mining undertook several phases of RC drilling from 1995 and 1996 in multiple orientations, with the attempt of understanding the primary controls on high-grade gold mineralisation.

The RC drilling intersected metasediments with the most anomalous intersections appearing to be associated with the margins of a chlorite-actinolite schist, with up to 5% quartz veining and minor limonite/sulphides. Eagle Mining attempted to drill deeper holes in 1996 to test the down-dip and down-plunge potential of the mineralised system, however these holes were unsuccessful due to the drilling difficulties/conditions encountered. No further drilling occurred at Bronco until a small RC program in 2019.

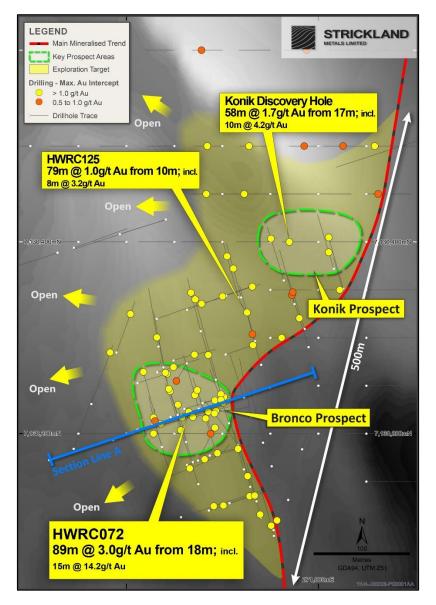


Figure 1: Topographic image showing the connection between the Bronco and Konik prospects

In 2019, Alloy Resources Ltd completed an additional 16 RC holes for 1,746 metres at Bronco (please refer to historic ASX announcement 16 December 2019, under the ASX code AYR). Drilling was designed to test potential high-grade mineralised structures that were interpreted to be sub-parallel to historic drilling. Results from this program returned the following high-grade intercepts but failed to confirm the revised interpretation of mineralisation:

- AHWR077: 11 metres @ 2.1g/t Au from 40 metres; and
 - 1 metre @ 9.9g/t Au from 64 metres
- AHWR078: 16 metres @ 1.8g/t Au from 102 metres

In 2023, Strickland undertook a significant aircore drilling program across Horse Well, with the aim of discovering new gold prospects and extending known mineralised systems. Drilling was very successful, with the discovery of a new gold prospect at Konik HWAC1488: 58m @ 1.7g/t Au from 17m to BOH (see ASX announcement 2 October 2023 and Figure 1 above). Konik lies approximately 250m to the north-east of Bronco.

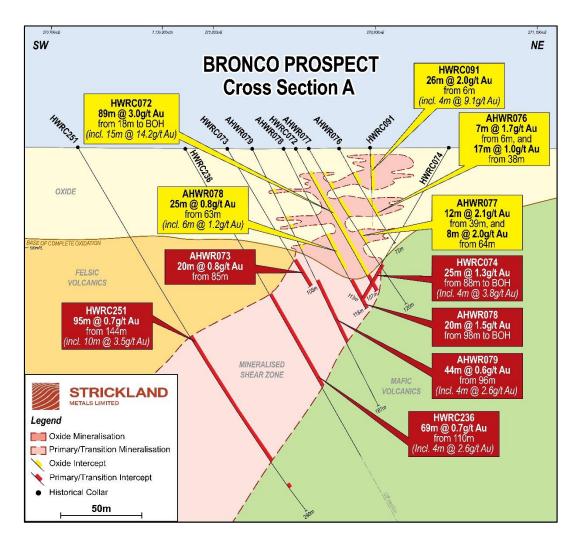


Figure 2: Cross section of Bronco-Konik highlighting shallow high grade oxide intercepts and primary bulk potential

In recent months, the Strickland team has focused on incorporating the data from the 2023 drilling into the broader project model. The specific work completed in this area demonstrates that Konik is actually part of the same mineralised system as Bronco, with the Konik discovery hole HWAC1488 successfully intersecting the basal horizon to the Bronco deposit i.e. intersecting the same contact between the hanging wall felsic volcanics and footwall mafic volcanics (Figure 1).

Key observations from this work suggest that the primary mineralised shear zone is situated sub-parallel to the contact between mafic and felsic volcanics on the west-dipping limb of Horse Well. There is also a highly efficient saprolite profile that has generated a very high grade oxide deposit from surface, consisting of laterite and multiple stacked horizontal lenses (Figure 2). There are currently no structural constraints on primary mineralisation orientation given the lack of diamond drilling.

Importantly, this is the first time a coherent exploration model has been developed for the prospect area.

Drilling at Bronco-Konik will occur once the main drilling programs for 2024 get underway during April.

Other Prospects

Strickland is continuing its ongoing incorporation of the 2023 drilling data into a broader Horse Well project area review. This work has yielded additional very promising advancements at several other prospect areas, the results of which will be released over the coming weeks. These results will form the basis of the initial drilling at Horse Well once the main drilling programs recommence in April 2024.

This release has been authorised by the Chief Executive Officer.

For more information contact

Andrew Bray Chief Executive Officer Phone: +61 (8) 6317 9875 info@stricklandmetals.com.au stricklandmetals.com.au

Competent Person Statement

The information in this announcement that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Geology Manager and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in this announcement of the of the matters based on the information in the form and context in which it appears.

APPENDIX A – DRILLING RESULTS

Table 1: Bronco Significant Intercepts

	Coordina	tes (MGA94 2 51)	Zone	Hole Details				Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWR076	270.070	7 120 222	F 4 1	D C	50	242	72	19	26	7	1.7	7m @ 1.7g/t Au from 19m
and	270,879	7,130,232	541	RC	-58	342	72	38	55	17	1.0	17m @ 1g/t Au from 38m
AHWR077								20	21	1	0.5	1m @ 0.5g/t Au from 20m
and	270.000	7 1 20 226	F 4 1	DC	50	244	120	32	33	1	0.5	1m @ 0.5g/t Au from 32m
and	270,860	7,130,226	541	RC	-59	344	120	39	51	12	2.1	12m @ 2.1g/t Au from 39m
and								64	72	8	2.0	8m @ 2g/t Au from 64m
AHWR078								36	38	2	0.5	2m @ 0.5g/t Au from 36m
and								57	59	2	0.5	2m @ 0.5g/t Au from 57m
and	270,846	7,130,217	541	RC	-60	342	118	63	88	25	0.8	25m @ 0.8g/t Au from 63m, incl.
including								82	88	6	1.2	6m @ 1.2g/t Au
and								98	118	20	1.5	20m @ 1.5g/t Au from 98m to BOH
AHWR079								32	33	1	1.3	1m @ 1.3g/t Au from 32m
and								50	51	1	0.9	1m @ 0.9g/t Au from 50m
and	270.027	7 1 20 200	F 4 1	DC	50	246	107	56	57	1	0.5	1m @ 0.5g/t Au from 56m
and	270,827	7,130,209	541	RC	-59	346	187	69	74	5	1.1	5m @ 1.1g/t Au from 69m
and									140	44	0.6	44m @ 0.6g/t Au from 96m*,
including								134	138	4	2.6	incl. 4m @ 2.6g/t Au
AHWR080								16	18	2	1.0	2m @ 1g/t Au from 16m
and	270,907	7,130,128	541	RC	-64	74	103	33	34	1	3.1	1m @ 3.1g/t Au from 33m
and								44	53	9	1.2	9m @ 1.2g/t Au from 44m
AHWR081								33	34	1	4.5	1m @ 4.5g/t Au from 33m
and	270.996	7 1 20 1 20	F 4 1	RC	62	67	102	45	46	1	1.1	1m @ 1.1g/t Au from 45m
and	270,886	7,130,120	541	ĸĊ	-63	67	103	72	75	3	0.8	3m @ 0.8g/t Au from 72m
and								82	83	1	1.3	1m @ 1.3g/t Au from 82m
AHWR082								4	6	2	1.2	2m @ 1.2g/t Au from 4m
and	270.007	7 1 20 1 77	F 4 1	DC	60	245	01	13	21	8	1.5	8m @ 1.5g/t Au from 13m, incl.
including	270,887	7,130,177	541	RC	-60	345	91	16	18	2	4.4	2m @ 4.4g/t Au
and								68	69	1	0.6	1m @ 0.6g/t Au from 68m
AHWR083	270.002	7 1 20 1 67	E 4 1	DC	60	70	115	27	28	1	1.0	1m @ 1g/t Au from 27m
and	270,863	7,130,167	541	RC	-60	72	115	39	41	2	1.8	2m @ 1.8g/t Au from 39m
AHWR084	270,845	7,130,155	541	RC	-61	72	151	46	81	35	0.5	35m @ 0.5g/t Au from 46m
AHWR085	270,903	7,130,283	541	RC	-61	346	73	65	71	6	1.1	6m @ 1.1g/t Au from 65m
AHWR086								19	20	1	0.6	1m @ 0.6g/t Au from 19m
and	270,849	7,130,276	541	RC	-59	344	97	22	23	1	0.5	1m @ 0.5g/t Au from 22m
and								48	49	1	3.1	1m @ 3.1g/t Au from 48m
AHWR087								19	24	5	0.8	5m @ 0.8g/t Au from 19m, incl.
including	270,832	7,130,264	541	RC	-60	347	92	19	21	2	1.6	2m @ 1.6g/t Au from 19m
and								35	36	1	3.6	1m @ 3.6g/t Au from 35m

	Coordina	tes (MGA94 2 51)	Zone	Hole Details				Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								42	43	1	1.3	1m @ 1.3g/t Au from 42m
AHWR088	270,812	7,130,253	541	RC	-59	349	67	64	65	1	0.5	1m @ 0.5g/t Au from 64m
AHWR089	270,904	7,130,344	541	RC	-60	270	79	43	46	3	1.9	3m @ 1.9g/t Au from 43m
and	270,904	7,130,344	541	ĸĊ	-00	270	75	60	61	1	28.6	1m @ 28.6g/t Au from 60m
AHWR090								42	48	6	0.5	6m @ 0.5g/t Au from 42m
and	270,863	7,130,329	541	RC	-60	90	139	72	84	12	0.7	12m @ 0.7g/t Au from 72m
and								94	95	1	0.9	1m @ 0.9g/t Au from 94m
AHWR091	270,832	7,130,320	541	RC	-60	270	139	92	120	28	0.7	28m @ 0.7g/t Au from 92m
HWAC1447	270,700	7,130,500	541	AC	-60	90	51					NSR
HWAC1448	270,750	7,130,500	541	AC	-60	90	61					NSR
HWAC1449	270,800	7,130,500	541	AC	-58	71	56					NSR
HWAC1450	270,850	7,130,500	541	AC	-59	71	57	37	38	1	0.5	1m @ 0.5g/t Au from 37m
HWAC1451	270,900	7,130,500	541	AC	-61	343	58	31	32	1	1.7	1m @ 1.7g/t Au from 31m
HWAC1452	270.050	7 120 500	F 4 1	10	60	2.44	64	44	45	1	1.2	1m @ 1.2g/t Au from 44m
and	270,950	7,130,500	541	AC	-60	341	64	57	60	3	0.5	3m @ 0.5g/t Au from 57m
HWAC1453	271,000	7,130,500	541	AC	-61	324	61	29	30	1	0.6	1m @ 0.6g/t Au from 29m
HWAC1454	271,050	7,130,500	541	AC	-59	342	90	48	49	1	0.7	1m @ 0.7g/t Au from 48m
HWAC1482	270,750	7,130,400	541	AC	-60	90	65					NSR
HWAC1483	270,700	7,130,400	541	AC	-60	75	65					NSR
HWAC1484	270,800	7,130,400	541	AC	-60	270	69					NSR
HWAC1485	270,850	7,130,400	541	AC	-60	270	75	32	33	1	0.8	1m @ 0.8g/t Au from 32m
HWAC1486	270,900	7,130,400	541	AC	-60	270	86					NSR
HWAC1487	270,950	7,130,400	541	AC	-60	270	71					NSR
HWAC1488								1	6	5	1.4	5m @ 1.4g/t Au from 1m
and							75	11	12	1	0.7	1m @ 0.7g/t Au from 11m
and	271,000	7,130,400	541	AC	-60	270	75	17	75	58	1.7	58m @ 1.7g/t Au from 17m to
including								60	70	10	4.2	BOH, incl. 10m @ 4.2g/t Au
HWAC1489	271,050	7,130,400	541	AC	-60	270	78					NSR
HWAC1519	270,750	7,130,200	541	AC	-60	345	87					NSR
HWAC1520	270,800	7,130,200	541	AC	-60	340	93					NSR
HWAC1521								8	9	1	0.5	1m @ 0.5g/t Au from 8m
and	270,850	7,130,200	541	AC	-59	345	93	18	19	1	0.8	1m @ 0.8g/t Au from 18m
and								43	44	1	1.1	1m @ 1.1g/t Au from 43m
HWAC1522			-					11	12	1	0.5	1m @ 0.5g/t Au from 11m
and	270,900	7,130,200	541	AC	-58	343	99	24	26	2	0.7	2m @ 0.7g/t Au from 24m
HWAC1523								28	36	8	1.0	8m @ 1g/t Au from 28m
and								41	42	1	1.1	1m @ 1.1g/t Au from 41m
and	270,950	7,130,200	541	AC	-60	270	100	80	81	1	0.8	1m @ 0.8g/t Au from 80m
and	1							90	91	1	0.8	1m @ 0.8g/t Au from 90m
HWAC1524						. –		9	10	1	1.5	1m @ 1.5g/t Au from 9m
and	271,000	7,130,200	541	AC	-60	270	95	26	29	3	4.3	3m @ 4.3g/t Au from 26m
HWAC1525	271,050	7,130,200	541	AC	-60	270	89		1			NSR

	Coordina	tes (MGA94 2 51)	Zone	Hole Details			Intercept Details						
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	
HWAC1643	270,900	7,130,450	541	AC	-60	270	66	30	34	4	0.6	4m @ 0.6g/t Au from 30m	
HWAC1643R								27	28	1	0.6	1m @ 0.6g/t Au from 27m	
and	270,900	7,130,450	541	AC	-60	270	75	48	49	1	1.0	1m @ 1g/t Au from 48m	
and								70	71	1	0.5	1m @ 0.5g/t Au from 70m	
HWAC1644	270,950	7,130,450	541	AC	-60	270	85					NSR	
HWAC1644R	270,950	7,130,450	541	AC	-60	270	68					NSR	
HWAC1645	271,000	7,130,450	541	AC	-60	270	80					NSR	
HWAC1645R	271,000	7,130,450	541	AC	-60	270	69					NSR	
HWAC1646	271,050	7,130,450	541	AC	-60	270	92	24	25	1	0.6	1m @ 0.6g/t Au from 24m	
HWAC1648	271,050	7,130,350	541	AC	-60	270	95					NSR	
HWAC1649								44	49	5	0.7	5m @ 0.7g/t Au from 44m, incl.	
including	271,000	7,130,350	541	AC	-60	270	93	44	45	1	2.0	1m @ 2g/t Au	
and								64	67	3	0.5	3m @ 0.5g/t Au from 64m	
HWAC1650	270,950	7,130,350	541	AC	-60	270	86					NSR	
HWAC1651	271,050	7,130,300	541	AC	-60	270	96					NSR	
HWAC1652								40	41	1	0.6	1m @ 0.6g/t Au from 40m	
and	271,000	7,130,300	541	AC	-60	270	102	51	54	3	0.8	3m @ 0.8g/t Au from 51m	
HWAC1653	270,950	7,130,300	541	AC	-60	90	106	19	28	9	0.6	9m @ 0.6g/t Au from 19m	
HWAC1656	271,050	7,130,250	541	AC	-60	341	98					NSR	
HWAC1657	271,000	7,130,250	541	AC	-60	342	105					NSR	
HWAC1661	271,050	7,130,150	541	AC	-59	342	96					NSR	
HWAC1683	271,050	7,130,000	541	AC	-60	342	66					NSR	
HWAC1684	271,000	7,130,000	541	AC	-60	340	88					NSR	
HWAC1685	270,950	7,130,000	541	AC	-61	74	94					NSR	
HWAC1686	270,900	7,130,000	541	AC	-61	72	89					NSR	
HWAC1687	270,850	7,130,000	541	AC	-64	78	83					NSR	
HWRC072								18	107	89	3.0	89m @ 3.0g/t Au from 18m to	
including	270,853	7,130,219	541	RC	-59	349	107	18	33	15	14.2	BOH*, incl. 15m @ 14.2g/t Au	
HWRC073	270,812	7,130,204	541	RC	-60	350	105	85	105	20	0.8	20m @ 0.8g/t Au from 85m to BOH	
HWRC074								73	74	1	0.6	1m @ 0.6g/t Au from 73m	
and	270,949	7,130,248	541	RC	-60	350	113	88	113	25	1.3	25m @ 1.3g/t Au from 88m to	
including								100	104	4	3.8	BOH, incl. 4m @ 3.8g/t Au	
HWRC075	270,745	7,130,394	541	RC	-61	75	107					NSR	
HWRC076	270,793	7,130,408	541	RC	-60	90	95					NSR	
HWRC091	270.051	7 4 2 2 2 2 2			~~~			6	32	26	2.0	26m @ 2.0g/t Au from 6m	
and	270,901	7,130,230	541	RC	-60	345	110	76	77	1	0.6	1m @ 0.6g/t Au from 76m	
HWRC092								12	33	21	0.8	21m @ 0.8g/t Au from 12m, incl.	
including								28	32	4	1.6	4m @ 1.6g/t Au from 28m	
and	270,907	7,130,211	541	RC	-59	344	117	41	66	25	0.9	25m @ 0.9g/t Au from 41m, incl.	
including	1							50	58	8	1.7	8m @ 1.7g/t Au from 50m	
HWRC093	270,916	7,130,188	541	RC	-60	345	117	74	100	26	1.8		

	Coordina	tes (MGA94 2 51)	Zone		Hole	Details		Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWRC094								15	16	1	1.0	1m @ 1g/t Au from 15m
and	270,875	7,130,226	541	RC	-60	345	111	20	32	12	0.7	12m @ 0.7g/t Au from 20m
and								47	58	11	0.7	11m @ 0.7g/t Au from 47m
HWRC095								25	34	9	0.5	9m @ 0.5g/t Au from 25m
and								42	50	8	0.7	8m @ 0.7g/t Au from 42m
and	270,889	7,130,202	541	RC	-61	343	117	64	66	2	4.4	2m @ 4.4g/t Au from 64m
and	270,885	7,130,202	341	iii c	-01	545	117	78	79	1	0.5	1m @ 0.5g/t Au from 78m
and								87	91	4	3.4	4m @ 3.4g/t Au from 87m
and								103	106	3	0.6	3m @ 0.6g/t Au from 103m
HWRC096								5	14	9	1.5	9m @ 1.5g/t Au from 5m
and		7 400 470						65	97	32	1.2	32m @ 1.2g/t Au from 65m, incl.
including	270,894	7,130,179	541	RC	-60	345	117	68	75	7	3.2	7m @ 3.2g/t Au from 68m
and								112	117	5	1.0	5m @ 1g/t Au from 112m to BOH
HWRC097	270.052	7 1 20 210	E 4 1	DC	60	242	117	50	51	1	4.2	1m @ 4.2g/t Au from 50m
and	270,853	7,130,219	541	RC	-60	342	117	58	59	1	0.5	1m @ 0.5g/t Au from 58m
HWRC098								35	36	1	0.6	1m @ 0.6g/t Au from 35m
and								41	48	7	0.5	7m @ 0.5g/t Au from 41m
and	270,862	7,130,191	541	RC	-59	342	117	53	56	3	0.5	3m @ 0.5g/t Au from 53m
and								108	111	3	0.5	3m @ 0.5g/t Au from 108m
and								115	117	2	1.8	2m @ 1.8g/t Au from 115m to BOH
HWRC099								41	43	2	1.4	2m @ 1.4g/t Au from 41m
and	270,869	7,130,170	541	RC	-62	67	117	72	98	26	0.5	26m @ 0.5g/t Au from 72m
and								112	117	5	2.0	5m @ 2g/t Au from 112m to BOH
HWRC100	220 022	7 1 20 21 2	541	DC	-60	343	117	89	94	5	0.5	5m @ 0.5g/t Au from 89m
and	270,832	7,130,213	541	RC	-60	343	117	101	106	5	0.8	5m @ 0.8g/t Au from 101m
HWRC101	270,837	7,130,186	541	RC	-60	344	111					NSR
HWRC102	270,844	7,130,163	541	RC	-63	71	117	96	97	1	0.8	1m @ 0.8g/t Au from 96m
HWRC103								22	28	6	0.8	6m @ 0.8g/t Au from 22m
and								54	56	2	0.6	2m @ 0.6g/t Au from 54m
and								69	70	1	0.6	1m @ 0.6g/t Au from 69m
and	270,877	7,130,307	541	RC	-60	90	108	78	82	4	1.5	4m @ 1.5g/t Au from 78m
and								93	94	1	0.5	1m @ 0.5g/t Au from 93m
and								97	98	1	0.6	1m @ 0.6g/t Au from 97m
and								105	106	1	0.6	1m @ 0.6g/t Au from 105m
HWRC104								25	26	1	1.0	1m @ 1g/t Au from 25m
and	270,887	7,130,284	541	RC	-60	344	117	100	102	2	0.5	2m @ 0.5g/t Au from 100m
and	2,0,007	,,130,204	741	ne -	-00	544	11/	105	114	9	0.5	9m @ 0.5g/t Au from 105m
and								116	117	1	0.5	1m @ 0.5g/t Au from 116m
HWRC105								16	17	1	0.9	1m @ 0.9g/t Au from 16m
and	270,893	7,130,256	541	RC	-60	26	117	36	37	1	0.5	1m @ 0.5g/t Au from 36m
and								49	50	1	1.8	1m @ 1.8g/t Au from 49m

	Coordina	tes (MGA94 2 51)	Zone		Hole	Details		Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								100	101	1	0.5	1m @ 0.5g/t Au from 100m
and								104	105	1	0.5	1m @ 0.5g/t Au from 104m
HWRC112								16	18	2	1.2	2m @ 1.2g/t Au from 16m
and	270,922	7,130,163	541	RC	-61	72	123	42	48	6	1.4	6m @ 1.4g/t Au from 42m
and								103	123	20	0.8	20m @ 0.8g/t Au from 103m to BOH
HWRC113	270,922	7,130,238	541	RC	-60	211	94					NSR
HWRC114	270,954	7,130,093	541	RC	-60	73	117					NSR
HWRC115								0	1	1	0.7	1m @ 0.7g/t Au from 0m
and								19	20	1	0.7	1m @ 0.7g/t Au from 19m
and	270,940	7,130,113	541	RC	-60	73	117	27	28	1	1.2	1m @ 1.2g/t Au from 27m
and								45	47	2	0.5	2m @ 0.5g/t Au from 45m
and								53	59	6	0.5	6m @ 0.5g/t Au from 53m
HWRC116								10	49	39	0.7	39m @ 0.7g/t Au from 10m
and	270,929	7,130,145	541	RC	-60	73	94	89	90	1	0.8	1m @ 0.8g/t Au from 89m
HWRC117	270,951	7,130,166	541	RC	-61	69	117					NSR
HWRC118								14	15	1	0.6	1m @ 0.6g/t Au from 14m
and	270,942	7,130,191	541	RC	-60	342	117	20	22	2	0.6	2m @ 0.6g/t Au from 20m
and	-							35	36	1	1.7	1m @ 1.7g/t Au from 35m
HWRC119								18	19	1	1.1	1m @ 1.1g/t Au from 18m
and	270,930	7,130,218	541	RC	-60	342	117	26	27	1	0.6	1m @ 0.6g/t Au from 26m
and								30	32	2	0.6	2m @ 0.6g/t Au from 30m
HWRC120	270,833	7,130,291	541	RC	-60	20	117					NSR
HWRC121								20	25	5	1.2	5m @ 1.2g/t Au from 20m
and	-							42	50	8	2.5	8m @ 2.5g/t Au from 42m, incl.
including	270,839	7,130,269	541	RC	-60	20	117	42	44	2	8.0	2m @ 8g/t Au from 42m
and	-							62	64	2	0.5	2m @ 0.5g/t Au from 62m
HWRC122								38	40	2	1.9	2m @ 1.9g/t Au from 38m
and	270,844	7,130,245	541	RC	-60	20	117	48	63	15	0.6	15m @ 0.6g/t Au from 48m
and	-							91	95	4	1.0	4m @ 1g/t Au from 91m
HWRC123	270,920	7,130,342	541	RC	-60	90	117	61	63	2	1.4	2m @ 1.4g/t Au from 61m
HWRC124								10	11	1	1.0	1m @ 1g/t Au from 10m
and	-							15	49	34	0.6	34m @ 0.6g/t Au from 15m
and	270,917	7,130,342	541	RC	-60	90	117	60	65	5	0.7	5m @ 0.7g/t Au from 60m
and	1							84	89	5	1.4	5m @ 1.4g/t Au from 84m
HWRC125								10	19	9	1.2	9m @ 1.2g/t Au from 10m
and	270,934	7,130,296	541	RC	-60	90	117	33	41	8	3.2	8m @ 3.2g/t Au from 33m
and	1							50	109	59	0.8	59m @ 0.8g/t Au from 50m*
HWRC126	270,940	7,130,272	541	RC	-60	20	117	66	67	1	0.9	1m @ 0.9g/t Au from 66m
HWRC127	270,964	7,130,360	541	RC	-60	90	117	83	113	30	1.7	30m @ 1.7g/t Au from 83m
HWRC128								19	20	1	0.6	1m @ 0.6g/t Au from 19m
and	270,975	7,130,335	541	RC	-60	90	117	111	112	1	0.6	1m @ 0.6g/t Au from 111m
2.10		I			l	l	1			-	0.0	

	Coordina	tes (MGA94 2 51)	Zone		Hole	Details		Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								115	116	1	0.5	1m @ 0.5g/t Au from 115m
HWRC129	270,986	7,130,309	541	RC	-60	90	124	80	81	1	0.5	1m @ 0.5g/t Au from 80m
HWRC130	270,990	7,130,290	541	RC	-60	90	117	59	61	2	1.3	2m @ 1.3g/t Au from 59m
HWRC131	271,016	7,130,372	541	RC	-60	90	117	35	43	8	1.2	8m @ 1.2g/t Au from 35m
HWRC132								61	65	4	0.6	4m @ 0.6g/t Au from 61m
and	271,026	7,130,351	541	RC	-60	90	117	75	78	3	0.5	3m @ 0.5g/t Au from 75m
and								109	112	3	0.6	3m @ 0.6g/t Au from 109m
HWRC133	271,032	7,130,328	541	RC	-60	90	117					NSR
HWRC167								16	17	1	3.2	1m @ 3.2g/t Au from 16m
and	270,875	7,130,172	541	RC	-60	20	83	66	69	3	0.5	3m @ 0.5g/t Au from 66m
and								76	79	3	3.0	3m @ 3g/t Au from 76m
HWRC168	270,863	7,130,273	541	RC	-60	20	53	42	45	3	0.5	3m @ 0.5g/t Au from 42m
and	270,803	7,130,273	541		-00	20	22	49	50	1	0.6	1m @ 0.6g/t Au from 49m
HWRC221	270,875	7,130,147	541	RC	-61	69	221					NSR
HWRC222	270,936	7,130,129	541	RC	-60	71	155	9	43	34	0.8	34m @ 0.8g/t Au from 9m*
HWRC223	270,983	7,130,184	541	RC	-59	343	125					NSR
HWRC224	270,969	7,130,131	541	RC	-60	270	149					NSR
HWRC225	270,790	7,130,285	541	RC	-60	20	113	85	86	1	2.4	1m @ 2.4g/t Au from 85m
HWRC226	270,763	7,130,231	541	RC	-60	20	131	104	106	2	0.5	2m @ 0.5g/t Au from 104m
and	270,703	7,150,251	541		-00	20	151	111	115	4	0.6	4m @ 0.6g/t Au from 111m
HWRC227	270,745	7,130,184	541	RC	-60	20	125					NSR
HWRC228	270,953	7,130,099	541	RC	-60	270	143	8	24	16	0.5	16m @ 0.5g/t Au from 8m
HWRC234								31	32	1	0.8	1m @ 0.8g/t Au from 31m
and	270,841	7,130,423	541	RC	-60	90	209	38	39	1	1.0	1m @ 1g/t Au from 38m
and								119	120	1	0.5	1m @ 0.5g/t Au from 119m
HWRC235	270,728	7,130,389	541	RC	-60	252	203					NSR
HWRC236	270,786	7,130,193	541	RC	-60	73	299	110	179	69	0.7	69m @ 0.7g/t Au from 110m*,
including	270,780	7,130,193	541	R	-00	23	233	173	177	4	2.6	incl. 4m @ 2.6g/t Au
HWRC237								67	73	6	0.6	6m @ 0.6g/t Au from 67m
and	270,857	7 120 112	E / 1	PC	-60 270 280		83	84	1	0.5	1m @ 0.5g/t Au from 83m	
and	210,857	7,130,113	541	RC	-60 270 280	105	107	2	0.5	2m @ 0.5g/t Au from 105m		
and							110	111	1	0.5	1m @ 0.5g/t Au from 110m	

	Coordina	tes (MGA94 2 51)	Zone	Hole Details				Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type			Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWRC251								144	239	95	0.7	95m @ 0.7g/t Au from 144m*,
including	270,720	7,130,172	541	RC	-60	72	280	229	239	10	3.5	incl. 10m @ 3.5g/t Au
and								258	264	6	0.6	6m @ 0.6g/t Au from 258m

Note: Significant intercepts were based on single metre sample intervals grading greater than 0.5g/t Au. *Reported bulk intercept includes internal waste: AHWR079 (13m), HWRC072 (13m), HWRC125 (11m), HWRC222 (10m), HWRC236 (16m), HWRC251 (17m).

Table 2: Bronco Drill Collars

	Coordina	tes (MGA94	Zone 51)	Hole Details					
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)		
HWAC1685	270,950	7,130,000	541	AC	-61	74	94		
HWAC1686	270,900	7,130,000	541	AC	-61	72	89		
HWAC1687	270,850	7,130,000	541	AC	-64	78	83		
AHWR080	270,907	7,130,128	541	RC	-64	74	103		
AHWR081	270,886	7,130,120	541	RC	-63	67	103		
AHWR083	270,863	7,130,167	541	RC	-60	72	115		
AHWR084	270,845	7,130,155	541	RC	-61	72	151		
HWRC099	270,869	7,130,170	541	RC	-62	67	117		
HWRC102	270,844	7,130,163	541	RC	-63	71	117		
HWRC112	270,922	7,130,163	541	RC	-61	72	123		
HWRC114	270,954	7,130,093	541	RC	-60	73	117		
HWRC115	270,940	7,130,113	541	RC	-60	73	117		
HWRC116	270,929	7,130,145	541	RC	-60	73	94		
HWRC117	270,951	7,130,166	541	RC	-61	69	117		
HWRC221	270,875	7,130,147	541	RC	-61	69	221		
HWRC222	270,936	7,130,129	541	RC	-60	71	155		
HWRC224	270,969	7,130,131	541	RC	-60	270	149		
HWRC228	270,953	7,130,099	541	RC	-60	270	143		
HWRC237	270,857	7,130,113	541	RC	-60	270	280		
HWAC1523	270,950	7,130,200	541	AC	-60	270	100		
HWAC1524	271,000	7,130,200	541	AC	-60	270	95		
HWAC1525	271,050	7,130,200	541	AC	-60	270	89		
HWAC1484	270,800	7,130,400	541	AC	-60	270	69		
HWAC1485	270,850	7,130,400	541	AC	-60	270	75		
HWAC1486	270,900	7,130,400	541	AC	-60	270	86		
HWAC1487	270,950	7,130,400	541	AC	-60	270	71		
HWAC1488	271,000	7,130,400	541	AC	-60	270	75		
HWAC1489	271,050	7,130,400	541	AC	-60	270	78		
HWAC1643	270,900	7,130,450	541	AC	-60	270	66		
HWAC1643R	270,900	7,130,450	541	AC	-60	270	75		
HWAC1644	270,950	7,130,450	541	AC	-60	270	85		
HWAC1644R	270,950	7,130,450	541	AC	-60	270	68		
HWAC1645	271,000	7,130,450	541	AC	-60	270	80		
HWAC1645R	271,000	7,130,450	541	AC	-60	270	69		
HWAC1646	271,050	7,130,450	541	AC	-60	270	92		
HWAC1648	271,050	7,130,350	541	AC	-60	270	95		

Hole ID Easting (m) Northing (m) RL (m) Hole Type Azi (deg) Dip (deg) Total Depth (m) HWAC1649 271,000 7,130,350 541 AC -60 270 93 HWAC1651 271,050 7,130,300 541 AC -60 270 96 HWAC1652 271,000 7,130,300 541 AC -60 270 102 HWAC1653 270,950 7,130,300 541 AC -60 90 106 HWR090 270,863 7,130,320 541 RC -60 90 139 HWR0161 270,877 7,130,320 541 RC -60 90 117 HWRC123 270,927 7,130,342 541 RC -60 90 117 HWRC124 270,947 7,130,326 541 RC -60 90 117 HWRC125 270,934 7,130,325 541 RC -60 90 117		Coordina	tes (MGA94	Zone 51)		Hole D	Details	
HWAC1650 270,950 7,130,350 541 AC -60 270 86 HWAC1651 271,050 7,130,300 541 AC -60 270 96 HWAC1653 270,904 7,130,300 541 AC -60 270 102 HWAC1653 270,904 7,130,300 541 AC -60 270 79 AHWR090 270,833 7,130,320 541 RC -60 90 133 HWR076 270,793 7,130,320 541 RC -60 90 15 HWR013 270,877 7,130,307 541 RC -60 90 117 HWRC123 270,917 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,320 541 RC -60 90 117 HWRC128 270,947 7,130,320 541 RC -60 90 117 HWRC128 270,99	Hole ID	-	-	RL (m)			-	Depth
HWAC1651 271,050 7,130,300 541 AC -60 270 96 HWAC1652 271,000 7,130,300 541 AC -60 270 102 HWAC1653 270,950 7,130,300 541 AC -60 270 79 AHWR089 270,863 7,130,329 541 RC -60 90 139 AHWR091 270,832 7,130,320 541 RC -60 90 139 HWRC103 270,877 7,130,307 541 RC -60 90 117 HWRC123 270,920 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,351 541 RC -60 90 117 HWRC125 270,956 7,130,372 541 RC -60 90 117 HWRC128 270,956 7,130,372 541 RC -60 90 117 HWRC128 270,	HWAC1649	271,000	7,130,350	541	AC	-60	270	93
HWAC1651 271,050 7,130,300 541 AC -60 270 96 HWAC1652 271,000 7,130,300 541 AC -60 270 102 HWAC1653 270,950 7,130,300 541 AC -60 270 79 AHWR089 270,950 7,130,329 541 RC -60 90 139 AHWR091 270,832 7,130,320 541 RC -60 90 139 HWRC103 270,977 7,130,307 541 RC -60 90 117 HWRC123 270,920 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,351 541 RC -60 90 117 HWRC125 270,954 7,130,351 541 RC -60 90 117 HWRC124 270,975 7,130,372 541 RC -60 90 117 HWRC128 270,	HWAC1650	270,950	7,130,350	541	AC	-60	270	86
HWAC1653 270,950 7,130,300 541 AC -60 90 106 AHWR089 270,964 7,130,324 541 RC -60 270 79 AHWR090 270,863 7,130,320 541 RC -60 90 139 HWR076 270,793 7,130,320 541 RC -60 90 95 HWRC103 270,877 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,355 541 RC -60 90 117 HWRC123 270,964 7,130,325 541 RC -60 90 117 HWRC120 270,986 7,130,372 541 RC -60 90 117 HWRC132 271,026 </td <td>HWAC1651</td> <td>271,050</td> <td>7,130,300</td> <td>541</td> <td>AC</td> <td>-60</td> <td>270</td> <td>96</td>	HWAC1651	271,050	7,130,300	541	AC	-60	270	96
HWAC1653 270,950 7,130,300 541 AC -60 90 106 AHWR089 270,904 7,130,324 541 RC -60 270 79 AHWR090 270,863 7,130,329 541 RC -60 90 139 HWR010 270,877 7,130,320 541 RC -60 90 95 HWRC103 270,877 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,342 541 RC -60 90 117 HWRC125 270,944 7,130,360 541 RC -60 90 117 HWRC128 270,975 7,130,325 541 RC -60 90 117 HWRC128 270,990 7,130,329 541 RC -60 90 117 HWRC128 270,090 7,130,372 541 RC -60 90 117 HWRC130 270,090 </td <td>HWAC1652</td> <td>271,000</td> <td>7,130,300</td> <td>541</td> <td>AC</td> <td>-60</td> <td>270</td> <td>102</td>	HWAC1652	271,000	7,130,300	541	AC	-60	270	102
AHWR090 270,863 7,130,329 541 RC -60 90 139 HWR076 270,832 7,130,320 541 RC -60 270 139 HWRC076 270,793 7,130,408 541 RC -60 90 108 HWRC103 270,877 7,130,342 541 RC -60 90 117 HWRC123 270,917 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,360 541 RC -60 90 117 HWRC127 270,964 7,130,309 541 RC -60 90 117 HWRC120 270,996 7,130,309 541 RC -60 90 117 HWRC131 271,016 7,130,321 541 RC -60 90 117 HWRC132 270,984 7,130,228 541 RC -60 90 117 HWRC132 270,281<	HWAC1653	270,950	7,130,300	541	AC	-60	90	106
AHWR091 270,832 7,130,320 S41 RC -60 270 139 HWRC076 270,793 7,130,408 S41 RC -60 90 95 HWRC103 270,877 7,130,307 S41 RC -60 90 117 HWRC123 270,920 7,130,342 S41 RC -60 90 117 HWRC124 270,917 7,130,342 S41 RC -60 90 117 HWRC122 270,947 7,130,360 S41 RC -60 90 117 HWRC122 270,986 7,130,309 S41 RC -60 90 117 HWRC133 270,097 7,130,327 S41 RC -60 90 117 HWRC133 270,026 7,130,328 S41 RC -60 90 117 HWRC133 270,700 7,130,500 S41 AC -60 90 117 HWRC132 270,707<	AHWR089	270,904	7,130,344	541	RC	-60	270	79
HWRC076 270,793 7,130,408 S41 RC -60 90 95 HWRC103 270,877 7,130,342 S41 RC -60 90 108 HWRC123 270,920 7,130,342 S41 RC -60 90 117 HWRC125 270,934 7,130,342 S41 RC -60 90 117 HWRC125 270,934 7,130,395 S41 RC -60 90 117 HWRC125 270,957 7,130,335 S41 RC -60 90 117 HWRC130 270,990 7,130,399 S41 RC -60 90 117 HWRC131 271,016 7,130,321 S41 RC -60 90 117 HWRC132 270,926 7,130,323 S41 RC -60 90 117 HWRC133 271,027 7,130,323 S41 RC -60 90 51 HWRC133 270,007 <td>AHWR090</td> <td>270,863</td> <td>7,130,329</td> <td>541</td> <td>RC</td> <td>-60</td> <td>90</td> <td>139</td>	AHWR090	270,863	7,130,329	541	RC	-60	90	139
HWRC076 270,793 7,130,408 541 RC -60 90 95 HWRC103 270,877 7,130,307 541 RC -60 90 108 HWRC123 270,920 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,342 541 RC -60 90 117 HWRC125 270,954 7,130,335 541 RC -60 90 117 HWRC128 270,975 7,130,335 541 RC -60 90 117 HWRC130 270,990 7,130,329 541 RC -60 90 117 HWRC131 271,016 7,130,321 541 RC -60 90 117 HWRC132 271,026 7,130,321 541 RC -60 90 117 HWRC133 271,027 7,130,328 541 RC -60 90 51 HWRC132 270,750 <td>AHWR091</td> <td>270,832</td> <td>7,130,320</td> <td>541</td> <td>RC</td> <td>-60</td> <td>270</td> <td>139</td>	AHWR091	270,832	7,130,320	541	RC	-60	270	139
HWRC103 270,877 7,130,307 541 RC -60 90 108 HWRC123 270,920 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,342 541 RC -60 90 117 HWRC127 270,934 7,130,360 541 RC -60 90 117 HWRC128 270,975 7,130,309 541 RC -60 90 117 HWRC130 270,986 7,130,309 541 RC -60 90 117 HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,328 541 RC -60 90 117 HWRC144 270,700 7,130,500 541 AC -60 90 117 HWRC132 270,700 7,130,500 541 AC -60 90 51 HWRC1482 270,700<	HWRC076	270,793		541	RC	-60	90	95
HWRC123 270,920 7,130,342 541 RC -60 90 117 HWRC124 270,917 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,360 541 RC -60 90 117 HWRC127 270,964 7,130,305 541 RC -60 90 117 HWRC129 270,986 7,130,309 541 RC -60 90 117 HWRC130 270,990 7,130,372 541 RC -60 90 117 HWRC133 271,026 7,130,372 541 RC -60 90 117 HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC133 271,032 7,130,300 541 AC -60 90 51 HWAC1447 270,700 7,130,400 541 AC -60 90 65 HWAC1448 270,700<	HWRC103	270,877		541	RC	-60	90	108
HWRC124 270,917 7,130,342 541 RC -60 90 117 HWRC125 270,934 7,130,296 541 RC -60 90 117 HWRC127 270,964 7,130,360 541 RC -60 90 117 HWRC128 270,975 7,130,309 541 RC -60 90 117 HWRC129 270,986 7,130,309 541 RC -60 90 117 HWRC130 270,990 7,130,315 541 RC -60 90 117 HWRC132 271,026 7,130,321 541 RC -60 90 117 HWRC132 270,261 7,130,323 541 RC -60 90 117 HWRC133 270,700 7,130,423 541 RC -60 90 61 HWAC1448 270,700 7,130,400 541 AC -60 90 65 HWAC1448 270,700<					-			
HWRC125 270,934 7,130,296 541 RC -60 90 117 HWRC127 270,964 7,130,360 541 RC -60 90 117 HWRC128 270,975 7,130,335 541 RC -60 90 117 HWRC130 270,980 7,130,329 541 RC -60 90 117 HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,372 541 RC -60 90 117 HWRC133 271,032 7,130,372 541 RC -60 90 117 HWRC142 270,706 7,130,370 541 AC -60 90 51 HWAC1448 270,750 7,130,500 541 AC -60 90 65 HWAC1482 270,750 7,130,400 541 AC -60 75 65 HWAC1483 270,700<		-			-	-60	90	117
HWRC127 270,964 7,130,360 541 RC -60 90 117 HWRC128 270,975 7,130,335 541 RC -60 90 117 HWRC129 270,986 7,130,309 541 RC -60 90 117 HWRC130 270,990 7,130,372 541 RC -60 90 117 HWRC131 271,026 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,328 541 RC -60 90 117 HWRC132 270,700 7,130,328 541 RC -60 90 51 HWAC1442 270,700 7,130,500 541 AC -60 90 65 HWAC1482 270,700 7,130,500 541 AC -60 70 56 HWAC1482 270,707 7,130,400 541 AC -61 75 107 HWRC235 270,728<		-				-60		
HWRC128 270,975 7,130,335 541 RC -60 90 117 HWRC129 270,986 7,130,309 541 RC -60 90 124 HWRC130 270,990 7,130,290 541 RC -60 90 117 HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,328 541 RC -60 90 117 HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC134 270,700 7,130,320 541 AC -60 90 61 HWAC1442 270,700 7,130,400 541 AC -60 90 65 HWAC1482 270,726 7,130,394 541 AC -60 75 65 HWRC135 270,728 7,130,390 541 AC -58 71 56 HWAC1449 270,800 </td <td></td> <td>,</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>		,			-			
HWRC129 270,986 7,130,309 541 RC -60 90 124 HWRC130 270,990 7,130,290 541 RC -60 90 117 HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,372 541 RC -60 90 117 HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC134 270,700 7,130,500 541 AC -60 90 51 HWAC1448 270,750 7,130,500 541 AC -60 90 65 HWAC1482 270,700 7,130,400 541 AC -60 90 65 HWRC135 270,728 7,130,394 541 RC -61 75 65 HWRC149 270,800 7,130,500 541 AC -58 71 56 HWRC1450 270,900 <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>117</td>		-			-			117
HWRC130 270,990 7,130,290 541 RC -60 90 117 HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,351 541 RC -60 90 117 HWRC133 271,026 7,130,328 541 RC -60 90 117 HWRC134 270,702 7,130,500 541 AC -60 90 51 HWAC1448 270,750 7,130,500 541 AC -60 90 65 HWAC1482 270,750 7,130,400 541 AC -60 90 65 HWRC075 270,745 7,130,394 541 RC -61 75 107 HWRC135 270,728 7,130,394 541 RC -61 75 107 HWRC1450 270,800 7,130,500 541 AC -58 71 57 HWAC1451 270,900<		-				-60		
HWRC131 271,016 7,130,372 541 RC -60 90 117 HWRC132 271,026 7,130,351 541 RC -60 90 117 HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC134 270,841 7,130,328 541 RC -60 90 209 HWAC1447 270,700 7,130,500 541 AC -60 90 61 HWAC1448 270,750 7,130,500 541 AC -60 90 65 HWAC1482 270,750 7,130,400 541 AC -60 90 65 HWAC1482 270,745 7,130,394 541 RC -61 75 65 HWRC075 270,745 7,130,394 541 AC -58 71 56 HWAC1450 270,800 7,130,500 541 AC -61 343 58 HWAC1451 270,907					-		90	
HWRC132 271,026 7,130,351 541 RC -60 90 117 HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC134 270,841 7,130,328 541 RC -60 90 209 HWAC1447 270,700 7,130,500 541 AC -60 90 61 HWAC1448 270,750 7,130,400 541 AC -60 90 65 HWAC1482 270,700 7,130,400 541 AC -60 90 65 HWAC1483 270,700 7,130,400 541 AC -60 75 65 HWRC075 270,728 7,130,394 541 RC -61 75 107 HWAC1450 270,800 7,130,500 541 AC -58 71 56 HWAC1451 270,900 7,130,500 541 AC -61 343 58 HWAC1452 270,95		-			-			
HWRC133 271,032 7,130,328 541 RC -60 90 117 HWRC234 270,841 7,130,423 541 RC -60 90 209 HWAC1447 270,700 7,130,500 541 AC -60 90 51 HWAC1448 270,750 7,130,500 541 AC -60 90 65 HWAC1482 270,750 7,130,400 541 AC -60 90 65 HWRC075 270,745 7,130,394 541 AC -60 252 203 HWRC1450 270,780 7,130,394 541 AC -50 75 65 HWRC1449 270,800 7,130,300 541 AC -58 71 56 HWAC1450 270,850 7,130,500 541 AC -61 343 58 HWAC1451 270,900 7,130,500 541 AC -61 324 61 HWAC1452 270,								
HWRC234 270,841 7,130,423 541 RC -60 90 209 HWAC1447 270,700 7,130,500 541 AC -60 90 51 HWAC1448 270,750 7,130,500 541 AC -60 90 61 HWAC1482 270,750 7,130,400 541 AC -60 90 65 HWAC1483 270,700 7,130,400 541 AC -60 75 65 HWRC235 270,745 7,130,394 541 RC -61 75 107 HWRC235 270,728 7,130,394 541 RC -60 252 203 HWAC1449 270,800 7,130,500 541 AC -58 71 56 HWAC1451 270,900 7,130,500 541 AC -61 343 58 HWAC1452 270,950 7,130,500 541 AC -61 324 61 HWAC1453 271,		-			-			
HWAC1447270,7007,130,500541AC-609051HWAC1448270,7507,130,500541AC-609061HWAC1482270,7507,130,400541AC-609065HWAC1483270,7007,130,400541AC-609065HWRC75270,7457,130,394541RC-617565HWRC75270,7457,130,394541RC-60252203HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-6034198HWAC1656271,0507,130,250541AC-6034290HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,200541AC-60342105HWAC1684271,0007,130,200541AC-6034266HWAC1520270,8007,130,200541AC-6034088HWAC1521270,800								
HWAC1448270,7507,130,500541AC-609061HWAC1482270,7507,130,400541AC-609065HWAC1483270,7007,130,400541AC-607565HWRC075270,7457,130,394541RC-6175107HWRC235270,7287,130,399541RC-60252203HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6132461HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-6034198HWAC1656271,0507,130,500541AC-5934290HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,000541AC-6034296HWAC1683271,0007,130,000541AC-6034296HWAC1684271,0007,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWAC1520270,800								
HWAC1482 270,750 7,130,400 541 AC -60 90 65 HWAC1483 270,700 7,130,400 541 AC -60 75 65 HWRC075 270,745 7,130,394 541 RC -61 75 107 HWRC235 270,728 7,130,394 541 RC -60 252 203 HWAC1449 270,800 7,130,500 541 AC -58 71 56 HWAC1450 270,850 7,130,500 541 AC -59 71 57 HWAC1451 270,900 7,130,500 541 AC -61 343 58 HWAC1452 270,950 7,130,500 541 AC -61 324 61 HWAC1453 271,000 7,130,500 541 AC -60 341 98 HWAC1656 271,050 7,130,500 541 AC -60 342 105 HWAC1657 2								
HWAC1483270,7007,130,400541AC-607565HWRC075270,7457,130,394541RC-6175107HWRC235270,7287,130,389541RC-60252203HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1657271,0007,130,150541AC-60342105HWAC1661271,0507,130,000541AC-60342105HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034266HWAC1520270,8007,130,200541AC-6034266HWAC1684271,0007,130,200541AC-6034266HWAC1520270,8007,130,200541AC-6034393HWAC1521270,800<		-						
HWRC075270,7457,130,394541RC-6175107HWRC235270,7287,130,389541RC-60252203HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-6034296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034266HWAC1519270,7507,130,200541AC-60343125HWAC1520270,8007,130,200541AC-6034587HWAC1521270,8007,130,200541AC-6034593HWAC1522270,9007,130,200541AC-5934593HWAC1521270,800<		-						
HWRC235270,7287,130,389541RC-60252203HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,500541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1651271,0507,130,250541AC-60342105HWAC1651271,0507,130,150541AC-60342105HWAC1681271,0507,130,000541AC-6034296HWAC1683271,0507,130,000541AC-6034296HWAC1684271,0007,130,200541AC-6034088HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8007,130,200541AC-6034587HWAC1522270,9007,130,200541AC-5934593HWAC1521270,80		-			-			
HWAC1449270,8007,130,500541AC-587156HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,250541AC-60342105HWAC1661271,0507,130,150541AC-6034296HWAC1683271,0507,130,000541AC-6034266HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,200541AC-6034088HWRC223270,9837,130,200541AC-59343125HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5834399HWAC1522270,9007,130,200541AC-5834272AHWR076270,879<		,			-			
HWAC1450270,8507,130,500541AC-597157HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034093HWAC1521270,8007,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541AC-5834272AHWR077270,8607,130,217541RC-59344120AHWR078270,846 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
HWAC1451270,9007,130,500541AC-6134358HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-6034296HWAC1683271,0507,130,000541AC-6034296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,200541AC-6034587HWAC1519270,7507,130,200541AC-6034093HWAC1521270,8007,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,226541RC-5834272AHWR078270,8467,130,217541RC-60342118		-						
HWAC1452270,9507,130,500541AC-6034164HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,250541AC-6034296HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWAC1684271,0007,130,200541AC-6034088HWAC1519270,7507,130,200541AC-6034088HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8007,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,217541RC-60342118								
HWAC1453271,0007,130,500541AC-6132461HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,150541AC-6034266HWAC1684271,0007,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034093HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR078270,8467,130,217541RC-60342118								
HWAC1454271,0507,130,500541AC-5934290HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-5034266HWAC1684271,0007,130,000541AC-6034088HWAC1684270,7007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034093HWAC1520270,8007,130,200541AC-5934593HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,226541RC-5834272AHWR078270,8467,130,217541RC-59344120AHWR078270,8467,130,217541RC-60342118								
HWAC1656271,0507,130,250541AC-6034198HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR078270,8467,130,217541RC-60342118								
HWAC1657271,0007,130,250541AC-60342105HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,226541RC-5834272AHWR078270,8467,130,217541RC-60342118		-						
HWAC1661271,0507,130,150541AC-5934296HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR078270,8467,130,217541RC-60342118						-60		105
HWAC1683271,0507,130,000541AC-6034266HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034093HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,226541RC-5834272AHWR078270,8467,130,217541RC-60342118						-59	342	
HWAC1684271,0007,130,000541AC-6034088HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118								
HWRC223270,9837,130,184541RC-59343125HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118								
HWAC1519270,7507,130,200541AC-6034587HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118								
HWAC1520270,8007,130,200541AC-6034093HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118		-						
HWAC1521270,8507,130,200541AC-5934593HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118								
HWAC1522270,9007,130,200541AC-5834399AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118								
AHWR076270,8797,130,232541RC-5834272AHWR077270,8607,130,226541RC-59344120AHWR078270,8467,130,217541RC-60342118		-						
AHWR077 270,860 7,130,226 541 RC -59 344 120 AHWR078 270,846 7,130,217 541 RC -60 342 118								
AHWR078 270,846 7,130,217 541 RC -60 342 118								
	AHWR079	270,827	7,130,209	541	RC	-59	346	187
AHWR082 270,887 7,130,177 541 RC -60 345 91								
AHWR085 270,903 7,130,283 541 RC -61 346 73								

	Coordina	ites (MGA94	Zone 51)	Hole Details					
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)		
AHWR086	270,849	7,130,276	541	RC	-59	344	97		
AHWR087	270,832	7,130,264	541	RC	-60	347	92		
AHWR088	270,812	7,130,253	541	RC	-59	349	67		
HWRC072	270,853	7,130,219	541	RC	-59	349	107		
HWRC073	270,812	7,130,204	541	RC	-60	350	105		
HWRC074	270,949	7,130,248	541	RC	-60	350	113		
HWRC091	270,901	7,130,230	541	RC	-60	345	110		
HWRC092	270,907	7,130,211	541	RC	-59	344	117		
HWRC093	270,916	7,130,188	541	RC	-60	345	117		
HWRC094	270,875	7,130,226	541	RC	-60	345	111		
HWRC095	270,889	7,130,202	541	RC	-61	343	117		
HWRC096	270,894	7,130,179	541	RC	-60	345	117		
HWRC097	270,853	7,130,219	541	RC	-60	342	117		
HWRC098	270,862	7,130,191	541	RC	-59	342	117		
HWRC100	270,832	7,130,213	541	RC	-60	343	117		
HWRC101	270,837	7,130,186	541	RC	-60	344	111		
HWRC104	270,887	7,130,284	541	RC	-60	344	117		
HWRC105	270,893	7,130,256	541	RC	-60	26	117		
HWRC113	270,922	7,130,238	541	RC	-60	211	94		
HWRC118	270,942	7,130,191	541	RC	-60	342	117		
HWRC119	270,930	7,130,218	541	RC	-60	342	117		
HWRC120	270,833	7,130,291	541	RC	-60	20	117		
HWRC121	270,839	7,130,269	541	RC	-60	20	117		
HWRC122	270,844	7,130,245	541	RC	-60	20	117		
HWRC126	270,940	7,130,272	541	RC	-60	20	117		
HWRC167	270,875	7,130,172	541	RC	-60	20	83		
HWRC168	270,863	7,130,273	541	RC	-60	20	53		
HWRC225	270,790	7,130,285	541	RC	-60	20	113		
HWRC226	270,763	7,130,231	541	RC	-60	20	131		
HWRC227	270,745	7,130,184	541	RC	-60	20	125		
HWRC236	270,786	7,130,193	541	RC	-60	73	299		
HWRC251	270,720	7,130,172	541	RC	-60	72	280		

APPENDIX B – JORC Tables

JORC Table 1 – Bronco

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historic Reverse Circulation Drilling Eagle Mining Corporation N.L completed an initial phase of RAB drilling across Bronco in 1995. Drilling was conducted on 200m x 200m spaced grids and then infilled to 100m x 100m and 100m x 50m. All samples were assays by L.L.A.L for Au to 0.02ppm. In 1995, Eagle Mining undertook a program of RC drilling that was conducted towards grid east (072 degrees) and also grid north (342 degrees). All samples were assayed by L.L.A.L for Au to 0.02ppm. Samples were collected as single metres via 75:25 Riffle Splitter and sent to L.L.A.L for Aqua Regia Digest/AAS finish. No other details with regards to sampling are recorded. From 2013 to 2021 exploration work was undertaken by Alloy Resources and Doray Minerals Ltd under the pre-existing JV agreement. The details regarding RC sampling from this work is outlined below: Reverse circulation (RC) percussion drill chips collected through a cyclone and cone splitter at 1m intervals. Splitter was cleaned regularly during drilling. Splitter was cleaned and levelled at the end of each hole. Mineralisation determined qualitatively through rock type, sulphide and quartz content and intensity of alteration. Mineralisation determined quantitatively via assay (aqua-regia digest followed by ICP-MS for multi-element data and 25g Fire Assay and AAS

Criteria	JORC Code explanation	Commentary
		 determination for gold at 1m intervals). RC samples pulverized to 75 pm. All samples analysed by aqua-regia digest followed by ICP-MS for multi- element data and 25g Fire Assay and AAS determination for gold at 1 m intervals.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drill chip recoveries recorded at the time of logging and stored in the database. Sample splitter was cleaned at the end of each rod to ensure no sample
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	

Criteria	JORC Code explanation	Commentary
		All RC holes were chipped and archived.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historic Alloy Resources RC Drilling RC chips were cone split every metre, sampled dry where possible and wet when excess ground water could not be prevented. Sample condition (wet, dry or damp) was recorded at the time of logging. Where mineralization was unlikely, the samples were composited by spear sampling – four x 1 metre subsamples combined to approximately 3kg and submitted for assay. The entire ~3kg RC sample was pulversised to 75um (85% passing). This is considered best practice and is standard throughout the industry. Pulp duplicates taken at the pulverizing stage and selective repeats conducted at the laboratories discretion. Duplicate samples were taken every 50th sample. Sample size is appropriate for the grain size of the sample material.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Historic Eagle Mining Drilling Samples were collected as single metres via 75:25 Riffle Splitter and sent to L.L.A.L for Aqua Regia Digest/AAS finish. Historic Alloy Resources RC Drilling Fire assay was used and is a total digest technique. Certified reference material standards, 1 in every 50 samples. Blanks: a lab barren quartz flush is requested following a predicted high grade sample (i.e visible gold). Lab: Random pulp duplicates were taken on average 1 in every 10 samples. Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, 	 Historic Alloy Resources RC Drilling All sampling was routinely inspected by senior geological staff. Significant intercepts were inspected by senior geological staff.

Criteria	JORC Code explanation	Commentary
	data storage (physical and electronic) protocols. • Discuss any adjustment to assay data.	 No twinned holes were drilled during the program Data was hard keyed into Excel data capture software and merged with Datashed SQL based database on internal company server. Data is validated bu a Database Administrator, import validation protocols in place. Visual checks of data was completed within Surpac software by consultant geologists. No adjustments were made to any of the assay data. This data is now managed and hosted by Mitchell River Group
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 <u>Historic Alloy Resources RC Drilling</u> Collars: surveyed with GPS with expected relative accuracy of approximately 2-3m Downhole: surveyed with in-rod reflex Gyro tool continuously. Holes are located in MGA94 zone 51 Estimated RL's were assigned during the drilling. Strickland has engaged with an independent surveyor to pick up and locate all collars that have not been subject to a DGPS pick-up.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Historic Drilling Holes were drilled on a variable collar spacing of approximately 40m on section. Given the varying degrees of drill direction, the data spacing and distribution is not sufficient enough to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation process. Further drilling is required, aimed perpendicular to the strike in mineralization for this to occur. Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au. Reported intercepts include internal waste averaging 5m. As outlined in the table of significant intercepts, select holes include internal waste greater than 5m to assess the bulk-tonnage potential of the shear

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this 	 zone domain. For these holes, all geological features (i.e., domain, lithology, structure, alteration) remain consistent with intercepts within holes along strike and dip, however, mineralisation is typically observed as stacked higher-grade lodes within the shear zone domain. Given the variations in historic drill orientation, further drilling is required to fully evaluate both the bulk-tonnage and high grade mineralized lodes, to determine if a sample bias has occurred.
	should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Historic Drilling The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation. All DRM historic samples were selected, cut and bagged in a tied numbered calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags were placed into larger Bulky Bags with a sample submission Doray Minerals Ltd, 21st October 2015 Criteria JORC Code explanation Commentary sheet and tied shut. Consignment note and delivery address details were written on the side of the bag and delivered to Toll Express in Meekatharra. The bags were delivered directly to MinAnalytical in Canning Vale, WA who are NATA accredited for compliance with ISO/IEC17025:2005. All Alloy Resources historic samples were assayed by ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01 and 0.001ppm respectively.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 <u>Historic Drilling</u> Performance meetings held between a DRM and MinAnalytical representative were conducted monthly. QAQC data were reviewed with each assay batch returned, and on regular monthly intervals (trend analysis).

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Bronco is located on 100% owned STK tenure (tenement ID) E69/1772. L11 Capital Pty Ltd holds a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Exploration prior to Strickland in the region was conducted by Eagle Mining and included shallow RAB and RC drilling completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.
Geology	• Deposit type, geological setting and style of mineralisation.	• Bronco is an Archean aged gold prospect with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain 	 Strickland has recently re-modelled the Bronco orebody and has treated each of the previously reported high grade intercepts, from all historic drilling, as a wider bulk-tonnage intercept. These have been compiled, with a summary of all information material to this revised model, documented in Appendix A – Table 1.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No top-cuts have been applied when reporting results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Reported intercept widths are denoted as down-hole widths. Due to the nature of multiple drilling directions, further drilling is required to delineate the true geometry and thickness of the mineralised body. The section reported in the body of the announcement is the closest representation of the true width with current knowledge of the mineralised body. The majority of drill holes shown in the section were drilled near-perpendicular to the mineralised body, as such they provide the best indication as to the true width of the mineralised body.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Please refer to the main body of text.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All Au assays are presented in the appendix to this announcement for clarity. Representative higher grade intervals have been presented in the text and section.
Other substantive	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater,	 All meaningful and material information has been included in the body of the text No metallurgical assessments have been completed at the date of this

Criteria	JORC Code explanation	Commentary
exploration data	geotechnical and rock characteristics; potential deleterious or contaminating substances.	report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 RC drilling to test the revised dip and plunge in mineralization across Bronco. First pass diamond drilling to obtain key structural controls on mineralization. Subsequent RC and diamond drilling to advance Bronco from a key exploration target into first pass resource category.